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ABSTRACT
Software engineering considers performance evaluation to be
one of the key portions of software quality assurance. Unfor-
tunately, there seems to be a lack of standard methodologies
for performance evaluation even in the scope of experimen-
tal computer science. Inspired by the concept of “instanti-
ation” in object-oriented programming, we distinguish the
generic performance evaluation logic from the distributed
and ad-hoc relevant studies, and develop an abstract eval-
uation methodology (by analogy of “class”) we name Do-
main Knowledge-driven Methodology (DoKnowMe). By re-
placing five predefined domain-specific knowledge artefacts,
DoKnowMe can be instantiated into specific methodologies
(by analogy of “object”) to guide evaluators in performance
evaluation of different software and even computing systems.
We also propose a generic validation framework with four
indicators (i.e. usefulness, feasibility, effectiveness and re-
peatability), and use it to validate DoKnowMe in the Cloud
services evaluation domain. Given the positive and promis-
ing validation result, we plan to integrate more common
evaluation strategies to improve DoKnowMe and further fo-
cus on the performance evaluation of Cloud autoscaler sys-
tems.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of
Systems; D.2.4 [Software Engineering]: Software/Program
Verification—Validation

General Terms
Measurement, Performance, Experimentation

Keywords
domain-specific knowledge, experimental computer science,
methodology, performance evaluation

1. INTRODUCTION
Performance evaluation has belonged to the experimen-

tal computer science field since the beginning of 1980s [3].
Unfortunately, compared to the well-established theory and
practice, computer science has put less focus on experimen-
tal methodologies and scientific observations [4]. Although

Copyright is held by author/owner(s).

experimental computer science requires more standardiza-
tion, researchers and practitioners in this field seem to have
to borrow methodologies from natural sciences [4] and even
from economics [7], not to mention having a specific method-
ology for performance evaluation of software systems. In
fact, the literature shows that the existing relevant studies
usually employ ad-hoc approaches instead of strict means to
implement performance evaluations (e.g., [17]). In extreme
cases, the evaluation methodology was treated as experimen-
tal setup and/or preparation of experimental environment;
some evaluators only focused on metrics; while some others
only highlighted benchmarks when specifying their evalua-
tion approach. Thus, a natural question would be: Is there
a dedicated methodology for software system performance
evaluation? In general:

A methodology refers to “an organised set of prin-
ciples which guide action in trying to ‘manage’ (in
the broad sense) real-world problem situations.” [2]

When it comes to the performance evaluation problem,
however, it seems impossible to obtain a one-size-fits-all
methodology for evaluating performance of all kinds of soft-
ware systems. Although there exist standard principles for
guiding particular activities involved in performance evalu-
ation (e.g., using randomization to eliminate measurement
bias), different system domains might come with domain-
specific evaluation concerns and experiments, because the
features and characteristics of different software systems could
vary significantly (e.g., performance evaluation of component-
based software systems [12] vs. performance evaluation of
database-oriented software systems [20]).

Inspired by the concept of Instantiation in object-oriented
programming, we developed a generic performance evalua-
tion methodology that can be instantiated into various con-
crete methodologies for evaluating different software systems
and even other computing systems, by integrating their cor-
responding domain-specific knowledge. We name this root
methodology “class” as Domain Knowledge-driven Method-
ology for Performance Evaluation (DoKnowMe), and all the
potential concrete methodologies are its instance “objects”,
as shown in Figure 1.

In addition to relying on our own experience, the develop-
ment of DoKnowMe is largely based on two relevant disci-
plines. Firstly, it borrows common lessons from the existing
performance evaluation work in computer science (e.g., [6,
10, 11, 12, 20]). Secondly, it refers to the guidelines from De-
sign of Experiments (DOE) [18]. Although DOE is normally
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Figure 1: The “instantiation” relationship between
DoKnowMe and its instance methodologies in differ-
ent domains. (*Validations have been done in the
Cloud services evaluation domain (cf. Section 4.2).)

applied to agriculture, chemical, and process industries, con-
sidering the natural relationship between experimentation
and evaluation in this case, the various DOE techniques of
experimental design and statistical analysis can also benefit
performance evaluation of software/computing systems. In
particular, as suggested in [5], we define a set of knowledge
artefacts integrated in DoKnowMe to organize and facilitate
utilizing the domain-specific knowledge.

This paper introduces DoKnowMe that has been partially
validated in the Cloud services evaluation domain. Note
that although the concept of performance evaluation could
include both experimental measurement and model-based
prediction, DoKnowMe is defined to be applicable to the
experimental measurement scenario only, while not to the
model-based prediction scenario. We consider experimen-
tal performance measurement to be a fundamental evalua-
tion scheme, because the model-based prediction still needs
measurements to determine the performance annotations in-
volved in the model [12].

The contributions of this work are mainly threefold.

• We have developed a generic performance evaluation
methodology, namely DoKnowMe, in the field of ex-
perimental computer science. To the best of our knowl-
edge, DoKnowMe is the first unified methodology that
can help guide performance evaluation for different
software/computing systems through instantiation.

• Common experimental artefacts would be necessary
and beneficial for sharing evaluation experiences. How-
ever, the existing studies mainly focused on repeating
or reproducing previous experiments [4, 5]. We have
defined five artefacts to cater for replaceable domain-
specific knowledge. These knowledge artefacts are es-
sentially used to instantiate DoKnowMe to facilitate
evaluation implementations in a specific system do-
main.

• We have proposed a methodology validation frame-
work covering four indicators, i.e. Usefulness, Feasi-
bility, Effectiveness and Repeatability. In addition to
using the four indicators to validate DoKnowMe in the
Cloud service system domain, we argue that this vali-
dation framework would be able to guide methodology
validation in a generic sense.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the five artefacts for sharing replaceable
domain-specific knowledge of performance evaluation. Sec-

tion 3 specifies the step-by-step procedure when applying
DoKnowMe to performance evaluation implementations. A
generic methodology validation framework is introduced in
Section 4, and we also report how we used this framework
to validate DoKnowMe in the Cloud service system domain.
Conclusions and some future work are discussed in Section
5.

2. DOMAIN KNOWLEDGE ARTEFACTS
As the name suggests, the domain knowledge plays a cru-

cial role in our methodology. Domain-specific evaluation
knowledge can be learnt from various publications and do-
main experts. However, the unstructured and distributed
knowledge would be difficult for efficient reuse. Therefore,
we define a set of knowledge artefacts to facilitate reusing
the existing evaluation experiences, and they also need to
be implemented on a case-by-case basis for different system
domains.

The knowledge artefacts integrated in DoKnowMe can be
distinguished between pre-established and post-established.
The pre-established artefacts include a Taxonomy, a Met-
rics Catalogue, an Experimental Factor Framework, and a
Conceptual Model for building Experimental Blueprints.

• Taxonomy: Considering that a well-founded taxonomy
is significantly beneficial to corresponding research in
any field of study [21], the primary knowledge artefact
is a taxonomy that collects, standardizes and organizes
the relevant concepts and atomic elements of perfor-
mance evaluation in a particular system domain. In
particular, the taxonomy elements should at least in-
clude both the performance features to be evaluated,
and the atomic scenes for setting up evaluation exper-
iments. As such, evaluators can conveniently investi-
gate evaluation studies through a divide-and-conquer
approach: the existing evaluation work can be ana-
lyzed through decomposition into elements for expe-
rience summarization, while new evaluation scenarios
can be portrayed through composing relevant taxon-
omy elements.

• Metrics Catalogue (e.g., [15]): According to the lessons
from computer system evaluation, a performance eval-
uation study must choose a set of performance met-
rics [10], and each metric provides a different lens into
the performance [6]. To facilitate choosing metrics,
here we define a dictionary-type of knowledge artefact
that enables using performance features as retrieval
keys to look up suitable metrics and their correspond-
ing benchmarks. Such a knowledge artefact, namely
Metrics Catalogue, can be established along a regres-
sion manner, by using the aforementioned divide-and-
conquer approach. In other words, benefiting from the
clarified performance features and experimental setup
scenes in the taxonomy, we can realize a metric lookup
capability by isolating and collecting the de facto met-
rics from the existing evaluation work in a particular
system domain.

• Experimental Factor Framework (e.g., [14]): In any
system performance evaluation, a proper set of experi-
ments must be designed, while the relevant factors that
have impacts on performance play a prerequisite role
in designing evaluation experiments [10, 18]. Similar
to Metrics Catalogue, an experimental factor frame-



work is also a dictionary-like knowledge artefact built
from the existing domain-specific evaluation studies.
This artefact helps evaluators identify suitable exper-
imental factors while excluding others in a concrete
space instead of on the fly, which essentially indicates
a systematic rather than an ad-hoc decision making
process. Note that this factor framework is supposed
to supplement, but not replace, the expert judgment
for experimental factor identification, and it would be
particularly helpful for performance evaluation when
there is a lack of experts.

• Conceptual Model (e.g., [16]): Considering “a picture
is worth a thousand words”, a domain-specific evalu-
ation conceptual model can be viewed as a graphical
extension of its corresponding taxonomy. It further
rationalizes and emphasizes the detailed relationships
among evaluation elements and classifiers, so as to por-
tray and even characterize actual evaluation experi-
ments. For complex evaluation projects involving col-
laboration between multiple evaluators, characterizing
experiments is particularly helpful to facilitate infor-
mation exchange and avoid experimental duplications.
In practice, relevant elements and classifiers can be
employed to conveniently compose natural languages-
style descriptions together with UML-style Experimen-
tal Blueprints for recording and sharing evaluation ex-
perimental design.

The post-established artefact is a library of DoKnowMe-
based Evaluation Templates.

• Evaluation Templates: When conducting a performance
evaluation by different people at different times and lo-
cations, a common requirement would be reproducible
evaluation implementations and comparable experimen-
tal results. DoKnowMe-driven evaluation maintains a
live document that cannot only help deliver a struc-
tured report to the recipient of evaluation result, but
also help generate evaluation templates to enhance
the experimental repeatability. An evaluation tem-
plate records the implementation details of evaluat-
ing a particular performance feature, including pre-
experimental information, experimental instructions,
and automated experimental actions. As such, evalua-
tors can directly reuse suitable DoKnowMe-based tem-
plates to facilitate reproducing evaluation implementa-
tions and making experimental results more compara-
ble. A template library can eventually be established
by gradually accumulating DoKnowMe-based evalua-
tion templates.

3. STEP-BY-STEP PROCEDURE OF USING
DOKNOWME

The procedure of performance evaluation driven by Do-
KnowMe can be imagined as a sequential-process main thread,
plus a possible spiral-process part representing recursive ex-
perimental activities. The recursive experimental activities
will happen when an evaluation implementation is composed
of a set of experiments, and the experimental design in a
later iteration has to be determined by the experimental re-
sults and analyses from a prior iteration. Such a procedure
can be illustrated as shown in Figure 2.

Inspired by the system thinking from the perspective of
electrical dynamics, we further consider each evaluation step

to be an input-output component of the whole methodol-
ogy. A methodology component here essentially comprises
a set of evaluation activities, and DoKnowMe particularly
integrates strategies to facilitate conducting these activities.
The strategies indicate both the generic evaluation lessons
and the utilization of our knowledge artefacts. In this way,
the evaluation steps can be described by using their inputs,
activities with corresponding evaluation strategies, and out-
puts, as individually specified in the following subsections.

Note that this paper is not supposed to stick to any spe-
cific system domain, and thus reporting a detailed evaluation
work is out of the scope of this paper. Therefore, we only
adopt some conceptual examples to demonstrate particular
evaluation steps involved in DoKnowMe.

3.1 Requirement Recognition
The recognition of an evaluation requirement is not only

to understand a problem related to the system performance
evaluation, but also to achieve a clear statement of the eval-
uation purpose, which is an obvious while non-trivial task
[18]. A clearly specified evaluation requirement can facilitate
driving the remaining steps properly in the evaluation im-
plementation. To help recognize a requirement, it has been
suggested to prepare a set of specific questions to be ad-
dressed by potential evaluation experiments [18]. Moreover,
it is normally helpful to replace one comprehensive question
with a list of separate and more easily answerable questions,
so that evaluators can conveniently define specific evaluation
objectives, and then employ the strategy of sequential ex-
periments to satisfy the overall evaluation requirement.

The elements of the step Requirement Recognition are
specified as below.
<Input:>

The input for recognizing an evaluation requirement is the
natural-language description of a system evaluation prob-
lem. If an evaluation implementation is not in the charge
of the recipients of evaluation results, the evaluation prob-
lem description will need to be generated by the discussions
between the evaluators and the result recipients.
<Activity:>

According to the natural-language description of a sys-
tem performance evaluation problem, evaluators clarify and
specify the objectives of the forthcoming evaluation imple-
mentation. Note that the clearly defined performance goals
for a system would also be useful and necessary for clarifying
its evaluation objectives.
<Strategy:>

The main strategy here is to use a standard terminology
to define evaluation objectives into requirement questions.
This can be realized by creating a mapping between the ele-
ments in a well-established Taxonomy (e.g., a taxonomy for
performance evaluation of Cloud services [16]) and the key-
words in the evaluation problem description. If necessary,
the natural-language problem description can be rephrased
by using the relevant taxonomy elements in advance.

Moreover, evaluators need to revise the requirement ques-
tions to make them as specific as possible, for example,
breaking one comprehensive question into a list of separate
and more easily answerable questions.
<Output:>

The recognition output is a set of specific requirement
questions to be addressed by potential evaluation experi-
ments.
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Figure 2: The step-by-step procedure of using DoKnowMe.

Example:
Suppose users are concerned with a modern software sys-

tem that is “expected to deliver reliable performance under
highly variable load intensities” [23]. Although the perfor-
mance keywords in this natural-language description are “re-
liable” and “variable”, the real performance concern should
be how well the software system scales, according to the
specifications of reliability, variability, and scalability [16].
Correspondingly, we can define three specific requirement
questions for driving this software system performance eval-

uation, such as:

• How scalable is the software system when dealing with
different amounts of workloads?

• How fast does the software system scale with an in-
creasing workload?

• How fast does the software system scale with a de-
creasing workload?

3.2 Performance Feature Identification



Given the clarified evaluation requirement of a system,
evaluators need to further identify relevant performance fea-
tures to be evaluated. Since different end users could be
interested in numerous quality aspects of various function-
alities of a particular software/computing system, it would
be difficult for evaluators to directly locate proper perfor-
mance features. Therefore, it will be helpful and valuable
to have a relatively complete set of domain-specific feature
candidates in advance. Then, in most cases, suitable perfor-
mance features can be conveniently selected from the can-
didate feature set.

By standardizing the terms/concepts and their relation-
ships (e.g., the whole-part relationship) within a system do-
main, the knowledge artefact Taxonomy essentially provides
such a set of candidate performance features with respect to
a family of systems, which correspondingly facilitates Per-
formance Feature Identification, as specified below. Note
that the widely-used term “feature” itself also needs to be
clarified in the domain-specific Taxonomy. For example, a
particular Cloud service’s performance feature can be de-
fined as a combination of the service’s physical property and
its capacity [16].
<Input:>

Following Requirement Recognition, the input here is a set
of specific evaluation requirement questions.
<Activity:>

Evaluators rescan the predefined requirement questions,
and identify relevant performance features from each of them.
<Strategy:>

Evaluators still utilize the pre-established Taxonomy to
explain the system quality concerns from each of the require-
ment questions. The performance features to be evaluated
can then be determined by matching the quality concern
explanations with the performance feature descriptions.

If possible, evaluators can further consult domain experts
to help verify and identify performance features.
<Output:>

This step outputs the identified performance features to
be evaluated.
Example:

Recall that the first requirement question focuses on the
capacity of eventually catering the changed workload, while
the other two questions emphasizes the speed of response to
the changing for workload. By exploring the domain knowl-
edge, It is clear that such explanations match the definitions
of scalability and elasticity respectively [9]. Therefore, the
three requirement questions correspond to two features of
the software system, i.e., scalability and elasticity.

3.3 Metrics and Benchmarks Listing
The choice of the right metrics depends on the identi-

fied performance features to be evaluated [10], while given
that the performance features are yet insufficient for choos-
ing right metrics. On the one hand, a performance feature
can be measured by different metrics with different bench-
marks [15]; on the other hand, the selection of particular
metrics and benchmarks might have other constraints or
tradeoffs (see the step Metrics and Benchmarks Selection
below). Therefore, to facilitate the metric/benchmark se-
lection, it is also helpful for evaluators to refer to the exist-
ing available metrics and benchmarks for the corresponding
evaluation implementation.

The purpose of the step Metrics and Benchmarks List-

Table 1: Candidate Metrics and Benchmarks for
Evaluating Communication Data Throughput (orig-
inally appeared in [15])

Feature Metric Benchmark

Communication
Data
Throughput

TCP/UDP/IP
Transfer Speed

iPerf

Private tools
TCPTest/UDPTest

SPECweb 2005

Upload/Download/Send
large size data

MPI Transfer
Speed

HPCC: b eff

Intel MPI Bench

mpptest

OMB-3.1 with MPI

ing is thus to list as many as possible candidate metrics
and benchmarks for evaluating the identified performance
features. The elements of this step are specified as below.
<Input:>

The input is the identified performance features to be eval-
uated.
<Activity:>

For each of the identified performance features, evaluators
enumerate as many relevant metrics and benchmarks as they
can come up with.
<Strategy:>

Evaluators can use the identified Cloud service features
as retrieval keys to quickly search metrics and benchmarks
from the knowledge artefact Metrics Catalogue (e.g., a met-
rics catalogue for performance evaluation of Cloud services
[15])1. The Metrics Catalogue essentially provides a lookup
capability for finding candidate metrics and benchmarks
from the existing evaluation experiences in a particular sys-
tem domain.

Note that group meetings and expert opinions are not
supposed to be completely replaced with this Metrics Cata-
logue. New metrics and benchmarks can still be introduced
by domain experts and other evaluators.
<Output:>

The output of this step is a set of lists of candidate metrics
and benchmarks, and each list is related to a single perfor-
mance feature.
Example:

In general, scalability has to be reflected by the change of
value of some primary performance features [16]. To simplify
the demonstration, suppose we measure the primary feature
“communication data throughput” to reflect the previously
identified feature scalability. Benefiting from the pre-built
metrics catalogue [15] (note that this catalogue is for eval-
uating Cloud service systems only), we can quickly list two
candidate metrics and each of them corresponds to four can-
didate benchmarks for evaluating the performance feature
“communication data throughput”, as shown in Table 1.

3.4 Metrics and Benchmarks Selection
A metric is a measurable quantity that precisely captures

some characteristics of a performance feature. According
to the rich research in the evaluation of computer systems,

1An online version of this metrics catalogue can be found
at: http://cloudservicesevaluation.appspot.com/



the selection of metrics plays an essential role in evalua-
tion implementations [19]. Furthermore, a suitable metric
would play a Response Variable role [18] in applying DOE
to performance evaluation. Although traditional evaluation
lessons treat metrics selection as one of the prerequisites
of benchmark selection [10], the availability of benchmarks
could in turn constrain the employment of metrics. For ex-
ample, if adopting the benchmark iPerf, only one metric
(i.e. TCP/UDP/IP Transfer Speed) can be selected from the
list to measure the feature communication data throughput
(cf. Table 1). Therefore, DoKnowMe puts the selection of
metrics and benchmarks together within one step.

The elements of this step are specified as below. Since the
selection of metrics and benchmarks is fairly straightforward
based on pre-listed candidates, we do not use any example
to demonstrate this step.
<Input:>

This step takes the lists of candidate metrics and bench-
marks as input.
<Activity:>

Evaluators select the most appropriate metrics and bench-
marks from the pre-listed candidates. In addition, evalua-
tors can also develop benchmark tools by themselves if there
is a lack of suitable resources.
<Strategy:>

Based on the candidate lists, the decision on metrics and
benchmarks selection can be made by checking the avail-
able resources in hand, estimating the overhead of potential
experiments, and judging the evaluators’ capabilities of op-
erating different benchmarks.

When it is necessary to measure various performance fea-
tures from the holistic perspective, evaluators can further
employ the Boosting Metrics technique [13] to combine var-
ious indicators into a single index. In brief, a boosting met-
ric is a secondary measurement criterion by manipulating
a set of primary metrics that directly measure individual
performance features.
<Output:>

This step outputs the selected metrics and benchmarks.

3.5 Experimental Factors Listing
To evaluate a performance feature, knowing all factors

(also called parameters or variables) that affect the per-
formance feature has been considered to be a tedious but
crucial task [11]. Although listing a complete scope of ex-
perimental factors may not be easily achieved, at all times
evaluators should keep the factor list as comprehensive as
possible, for further analysis and decision making about the
factor selection and data collection [10].

Thus, the purpose of Experimental Factors Listing is to
list all the candidate experimental factors related to the per-
formance features to be evaluated. The elements of this step
are specified as below.
<Input:>

The input here has two parts: the first part is the identi-
fied performance features to be evaluated, and second part
is the selected metrics and benchmarks.
<Activity:>

According to the identified performance features and the
selected metrics and benchmarks, evaluators list potential
candidate experimental factors.
<Strategy:>

Evaluators can screen and lookup potential factors in the
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Figure 3: Workload-related factors (originally ap-
peared in [14]).

knowledge artefact Experimental Factor Framework (e.g., a
factor framework for performance evaluation of Cloud ser-
vices [14]). In particular, the identified performance features
are used to explore system-contained and/or environmental
Resource factors, the selected benchmarks are used to search
Workload factors, and the selected metrics are directly used
as system Quality factors. Note that following DoKnowMe
evaluators only need to list input-process factors (i.e. re-
source and workload factors), because the output-process
factors (i.e. system quality factors) are essentially the met-
rics that have been selected in the previous step.

If possible, evaluators can further hold group discussions
and consult domain experts for listing potential factors and
updating the Experimental Factor Framework. Although an
ideal factor framework is supposed to capture the state-of-
the-practice of experimental factors in a particular system
domain, the “state of the practice” does not imply that the
framework has exhaustively provided all the potential fac-
tors. Instead, this knowledge artefact offers a concrete and
rational basis for further discussion and factor listing by ex-
pert judgments.
<Output:>

The output includes three types of candidate experimental
factors, with respect to the identified performance feature-
related resource, workload and system quality respectively.
Example:

Recall that the evaluation requirement example is mainly
concerned with highly variable workloads, we particularly
demonstrate potential workload-related factors, as illustrated
in Figure 3. Our previous work shows that workload used in
performance evaluation could be described through one of
three different concerns or a combination of them, namely
Terminal, Activity, and Object. More details have been
specified in [14].

3.6 Experimental Factors Selection
It is clear that the determination of factors and their lev-

els/ranges is the prerequisite of a factor-based experimental



design [18]. Furthermore, it is better to start with limited
design factors distinguished from nuisance ones and those
that are not of interest, and the factors that are expected to
have high impacts should be preferably selected [10]. Note
that there is no conflict between selecting limited factors
in this step and keeping a comprehensive factor list in the
previous step. On the one hand, an evaluation requirement
usually comprises a set of experiments, and different exper-
iments might have to select different factors from the same
factor list. On the other hand, intentionally excluding un-
used factors does not mean that evaluators have not con-
sidered them, and some of the excluded factors can also be
saved for reinforcement experiments in the future.

The elements of Experimental Factors Selection are spec-
ified as below.
<Input:>

The input of this step is a list of candidate experimental
factors.
<Activity:>

Given the pre-listed candidate experimental factors, eval-
uators select a limited set that are of most interest, and also
determine the values or ranges of the selected factors.
<Strategy:>

Suitable experimental factors can be selected by roughly
considering pilot experiments without detailed experimen-
tal design. Following DoKnowMe, evaluators can use the
experimental setup scenes clarified in the Taxonomy to try
making up different experimental scenarios by combining
candidate factors. Through this way, the factor selection
eventually becomes determining experimental scenarios that
have been constrained by the pre-specified evaluation re-
quirement questions, as demonstrated in Section 3.1. Driven
by separate experimental scenarios, different combinations
of selected factors would be either independently involved in
parallel experimental processes, or incrementally involved in
a consecutive and/or recursive experimental process.
<Output:>

The output is one or more groups of selected experimen-
tal factors, corresponding to various factor combinations for
designing different experiments.

3.7 Experimental Design
Once experimental factors are selected, evaluation exper-

iments can subsequently be prepared and designed. Nor-
mally, a small scale of pilot experiments would benefit the
relevant experimental design, for example, by helping eval-
uators get familiar with the experimental environment, op-
timize the experimental sequence, etc.

The elements of Experimental Design are specified as be-
low.
<Input:>

The input here includes the selected metrics, benchmarks
and experimental factors, and possible results and analyses
from trial experiments.
<Activity:>

DoKnowMe recognizes four consecutive activities during
experimental design:

• Evaluators design simple experiments based on pilot
trials which includes developing codes/scripts for auto-
matically preparing environments and driving bench-
marks.

• Evaluators use DOE techniques to design more com-
plex experiments.
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Figure 4: A root blueprint for evaluating a comput-
ing system (originally appeared in [16]).

• If necessary, evaluators modify experiments based on
previous iteration experimental results and analyses.

• Evaluators record and even characterize experiments
for delivering the experimental design.

<Strategy:>
Designing simple experiments is based on pilot trials that

act as a continuation of experimental factor selection. As
previously mentioned, pilot trials are essentially the imple-
mentations of different experimental scenarios, while the ex-
perimental scenarios can be generated by using suitable ex-
perimental setup scenes listed in the Taxonomy.

When it comes to designing complex experiments, evalu-
ators can select suitable DOE techniques integrated in Do-
KnowMe. For example, using operating characteristic (OC)
curves to decide the sample size – number of replicates, or
using full factorial design to facilitate identifying the most
influential factor. In particular, three basic principles of
DOE, namely Randomization, Replication, and Blocking
[18], should be generally taken into account when design-
ing experiments.

The designed experiments can be further characterized
and recorded by building UML-style Experimental Blueprints.
As a supplement to literal experimental instructions, evalua-
tors can use experimental blueprints to facilitate discussions
among different people, or facilitate “apple-to-apple” com-
parison between different evaluation experiments.
<Output:>

The output includes experimental instructions, experi-
mental blueprints, and codes/scripts for preparing experi-
ment environment and driving benchmarks.
Example:

Due to the space limit, here we only demonstrate a root
blueprint at the top abstract level (cf. Figure 4) for evaluat-
ing a computing system. As explained in [16], this blueprint
reflects the most generic reality of a system performance
evaluation, i.e., “evaluating [capacity] of particular [com-
puting resources] with particular [workload] driven by a set
of [experimental operations]”.

3.8 Experimental Implementation
Implementing an experiment involves carrying out a series

of experimental actions ranging from preparing experiment
environment to running benchmarks. Since any error in the
experimental procedure may spoil the validity of the experi-



mental results, the implementation process should be moni-
tored carefully to ensure that every detail of the experiments
follows the design [18].

To help guide Experimental Implementation, DoKnowMe
emphasizes specifying and automating experimental actions
(e.g., repeat running benchmark for 24 hours) based on the
design, and the elements of this step are specified as below.
<Input:>

The input of this step accepts the experimental design
materials.
<Activity:>

Evaluators record experiment environment (e.g., time and
location), carry out the designed experiments and obtain ex-
perimental results. Based on their practical activities, eval-
uators further improve the automation of experimental ac-
tions.
<Strategy:>

DoKnowMe requires experimental implementations to rig-
orously follow their corresponding design. To reach the rig-
orousness, evaluators can make the experimental actions au-
tomated as much as possible to increase repeatability and
reduce human mistakes. Note that DoKnowMe regards pilot
experimental runs as the evaluation activities in Experimen-
tal Design instead of any activity in this step.
<Output:>

This step not only outputs experimental results, but also
delivers automation codes/scripts for experimental imple-
mentation.

3.9 Experimental Analysis
As demonstrated so far, experimental results can some-

times answer their corresponding evaluation requirement ques-
tions already. However, in most cases, more convincing
conclusions would have to be drawn through further ex-
perimental analysis. In general, an experimental analysis
could heavily rely on statistical methods [18]. Although
such methods do not directly prove any factor’s effect, the
statistical analysis adds objectivity to drawing evaluation
conclusions and potential decision-making process.

The elements of Experimental Analysis are specified as
below.
<Input:>

The input is the experimental results.
<Activity:>

Evaluators use statistical techniques to analyze experi-
mental results, and visualize both experimental results and
analysis results if applicable.
<Strategy:>

Being compatible with the traditional evaluation lessons,
DoKnowMe also emphasizes that visualizing experimental
results by using various graphical tools would significantly
facilitate data analysis and interpretation. In our existing
practices, suitable charts are directly used as metrics for
measuring performance, as defined in the knowledge arte-
fact Metrics Catalogue [15]. For example, representations
in column, line, and scatter can be used as scalability and
variability evaluation metrics; while the radar plot is used
as one of the typical preliminary boosting metrics [13].

When it comes to some complex cases, similarly, the eval-
uators can employ suitable DOE techniques integrated in
DoKnowMe to analyze experimental results. For example,
using Analysis of Variance (ANOVA) to reveal unclear char-
acteristics of variability, or using Pareto plot to illustrate the

performance effects of different factors and factor combina-
tions [14].
<Output:>

Similarly, the output here includes not only experimental
analysis results but also potential codes/scripts for automat-
ing experimental analysis.

3.10 Conclusion and Documentation
Drawing appropriate conclusions is significant after ana-

lyzing the experimental results [18]. In addition, it is worth
paying more attention to reporting the whole performance
evaluation work [8]. In fact, not only conclusions but also
complete evaluation reports would be vital for other peo-
ple to learn from or replicate/confirm previous evaluation
practices.

DoKnowMe uses a structured manner to implement Con-
clusion and Documentation, and the elements of this step
are specified as below.
<Input:>

The input includes both the experimental results and the
experimental analysis results.
<Activity:>

Evaluators build mappings between the experimental (anal-
ysis) results and the requirement questions. Furthermore, in
most cases, evaluators summarize conclusions based on the
experimental results and analysis results.

By this step, evaluators finalize documenting the evalua-
tion study. Note that documentation is a default activity at
each step of DoKnowMe.
<Strategy:>

Evaluators can directly use tables and visual representa-
tions of experimental (analysis) results to respond to the pre-
specified requirement questions. The answers to all the re-
quirement questions can further be summarized into natural-
language findings to better reflect the conclusions.

As for the documentation, evaluators can follow the steps
of DoKnowMe to generate structured evaluation reports and
evaluation templates. In particular, the evaluation report
mainly focuses on the whole logic of evaluation procedure
in natural language, while the evaluation templates mostly
record the detailed environmental information, experimental
instructions, and automated experimental actions to facili-
tate evaluation replications. Generally, an evaluation im-
plementation would deliver a set of different templates for
evaluating different performance features.

Although evaluators can employ any well-proposed tech-
nique of reporting experiments or case studies [22] to help
document performance evaluation studies, the advantage
of following DoKnowMe is that, by recording the evalua-
tion activities of every single step, a live and structured log
is essentially maintained and self-documented. This self-
documented log can then act as a base for generating eval-
uation report and DoKnowMe-based evaluation templates.
<Output:>

The final step of DoKnowMe delivers evaluation conclu-
sions, a complete evaluation report, and a set of DoKnowMe-
based evaluation templates.

4. VALIDATING DOKNOWME

4.1 A Generic Validation Framework
To help validate a performance evaluation methodology in

a systematic way, we propose a generic validation framework



with four indicators:

• Usefulness
• Feasibility
• Effectiveness
• Repeatability

Given the definition of methodology (cf. Section 1), the
indicator Usefulness implies that the methodology to be val-
idated should be helpful for guiding human activities to deal
with real-world problems. In this case, a methodology would
be useful as long as it can drive performance evaluation im-
plementations.

However, a useful evaluation methodology is not necessar-
ily feasible. Compared to the existing performance evalua-
tion approaches, a new methodology is feasible only when
it has more advantages in evaluating performance. In other
words, an alternative methodology might not be worth be-
ing employed even if it works as well as the others. There-
fore, we further use Feasibility to indicate the validation
scenario of replicating the existing studies, to check if the
useful methodology can bring more value than the existing
approaches to performance evaluation.

Compared to feasibility studies that are used to assess
whether or not the ideas and findings are appropriate for
further testing, effectiveness studies are used to evaluate suc-
cess in real-world with non-ideal conditions [1]. Therefore,
we use Effectiveness to indicate the validation scenario of
applying the feasible methodology to new performance eval-
uation problems with real requirements.

When it comes to Repeatability, we further emphasize two
views of repeatedly applying a methodology. The first view
is to validate whether or not an alternative methodology
is repeatable for reproducing an evaluation implementation,
from the dynamic perspective of evaluation activities. The
second view is to validate whether or not an alternative
methodology can lead to comparable results of the corre-
sponding activities, from the static perspective of evaluation
outputs. Overall, given the same performance evaluation
requirement and the same methodology, we are concerned
whether or not different evaluators can independently work
along (at least nearly) the same evaluation processes and
generate (at least nearly) the same outputs at each evalua-
tion step.

4.2 Validating DoKnowMe by Validating its
Instance Methodology

Since DoKnowMe is a root methodology for performance
evaluation of different types of software/computing systems,
the validation of DoKnowMe has to be reflected by val-
idating its instance methodologies. By instantiating Do-
KnowMe, we have developed and validated a Cloud Eval-
uation Experiment Methodology (CEEM), and correspond-
ingly validated DoKnowMe in the Cloud services evaluation
domain.

In detail, to validate the usefulness and feasibility of CEEM,
we performed two case studies of replicating past Cloud ser-
vices evaluation implementations (computation evaluation
of Google AppEngine Python runtime and storage evalua-
tion of different types of Amazon EC2 instances), and com-
pared our practices with the original ones. The results show
that our replication work followed a more systematic and
complete procedure driven by CEEM, and the systematic
evaluation procedure brought more value than those original

studies. For example, our practices delivered more convinc-
ing results and conclusions by rigorously conducting every
single evaluation step, and the integrated DOE techniques
helped reveal more information behind the Cloud service
specifications.

To verify the effectiveness and repeatability of CEEM, we
performed four case studies of implementing new Cloud ser-
vices evaluations: (1) Selection between two similar types
of Amazon EC2 instances; (2) An “apple-to-apple” compar-
ison of computation performance between Google Compute
Engine (GCE) and Amazon EC2; (3) Communication, mem-
ory, storage and computation evaluations of the recently
available GCE; and (4) A relatively complicated project of
evaluating content delivery network applications over public
Clouds by different evaluators. These four case studies show
that CEEM can effectively drive evaluation of Cloud ser-
vices to satisfy real-world requirements. Each case study has
followed the CEEM-based documentation structure to re-
port the evaluation implementation details. The integrated
knowledge artefacts have been particularly validated as valu-
able and helpful for facilitating both relevant evaluation ac-
tivities and expert judgments. Moreover, it is clear that
CEEM is repeatable for evaluating and comparing different
Cloud services, even some characteristics of the evaluated
services are fairly different. When employing CEEM inde-
pendently by different people, the fourth case study shows
that different evaluators can obtain similar outputs at each
evaluation step within the same requirement domain. More
importantly, the CEEM-based evaluation templates can be
conveniently reused to significantly facilitate new evaluation
implementations.

4.3 Threats to Validity
As mentioned previously, a root methodology cannot di-

rectly be validated. To justify the general applicability of
DoKnowMe to different types of systems, we need to either
exhaustively validate its instance methodologies in all sys-
tem domains, or we should realize the general validation
through an induction approach, i.e. by reasoning a set of in-
dividual domain-specific validation instances. Considering
that we have only conducted validations in the Cloud ser-
vices evaluation domain, DoKnowMe is still premature at
this current stage, and its validation requires instantiating
and verifying additional methodologies for other software
system types.

To relieve the threat to our work’s validity, we are cur-
rently working with several research groups on applying Do-
KnowMe to their performance evaluation studies. For ex-
ample, DoKnowMe has been involved in an autoscaler eval-
uation project by our colleagues from Ume̊a University. Au-
toscalers are a special type of software that aims for efficient
resource management through automatic scaling in Cloud
computing. We plan to reuse the successful experience of
evaluating Cloud services, and now we are developing the
autoscaler-oriented knowledge artefacts. Another example
is that DoKnowMe was just employed for evaluating ma-
chine learning tools by two researchers at Concordia Uni-
versity. Overall, it is clear that applying our methodology
to various system domains will need numerous performance
evaluation practices that might require extensive collabora-
tions with different researchers and practitioners. Therefore,
we try to broadcast DoKnowMe to speed up its applicability
verification.



5. CONCLUSIONS
It has been identified that performance plays a key role

in the success of software systems, and its evaluation is a
crucial approach to assuring software performance. Thus,
a suitable methodology would be necessary and helpful to
guide evaluators in implementing performance evaluations.
Considering numerous and various software features and
characteristics in different domains, it could be impossible to
come up with a universal evaluation methodology for mea-
suring performance of different types of software systems. It
is also irrational to build individual evaluation methodolo-
gies from scratch for different systems, because there exist
common principles for some generic evaluation steps and
activities.

By distinguishing the domain-independent logic of perfor-
mance evaluation from the distributed and ad-hoc relevant
studies, we developed a domain knowledge-driven evalua-
tion methodology, namely DoKnowMe, to act as a unified
methodology in experimental computer science. Following
the idea of “instantiation” in object-oriented thinking, Do-
KnowMe can be instantiated by integrating domain-specific
knowledge artefacts to facilitate evaluating different soft-
ware and even computing systems.

After preliminarily validating DoKnowMe in the Cloud
services evaluation domain, we plan to unfold our future
work along two directions. Firstly, we will keep improv-
ing DoKnowMe by further specifying and supplementing
more strategies for individual evaluation steps and activi-
ties. In contrast to our defined domain-specific knowledge
artefacts, the common strategies can be viewed as domain-
independent knowledge of conducting performance evalua-
tion. Secondly, we are about to apply DoKnowMe to the
performance evaluation of other software systems. This work
will in turn help validate DoKnowMe in different system do-
mains.
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