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Splitting of dissipative evolution equations

Eskil Hansen

(joint work with Tony Stillfjord)

The aim of this note is to give an overview of some recent progress when analyzing
splitting schemes applied to nonlinear evolution equations. Such equations are
frequently encountered in biology, chemistry and physics, as they describe reaction-
diffusion systems, as well as the damped wave equation. More precisely, we will
consider splitting based discretizations for evolution equations of the form

(1) u̇ = (F +G)u, u(0) = u0,

where F is typically the vector field of a nonlinear diffusion process and G is a
nonlinear source term. Due to the nonlinearity of F + G, we can not expect the
solution to exhibit any higher-order temporal regularity. For example, if

(F +G)u = ∆(|u|mu) + 0,

then the solution of (1) is given by the classical Barenblatt solution which is
not continuously differentiable in time nor space. Because of the lack of time-
regularity it is not, in general, possible to prove that a time discretization of the
problem converges with an order greater than p = 1. Furthermore, due to the
presence of diffusion, a spatial discretization of the equation will result in a stiff
ODE system and therefore implicit schemes are required. Of the few remaining
numerical methods the implicit Euler scheme is then the natural choice, but it
is often computationally costly. An alternative is given by splitting methods,
where the flows related to F and G are are approximated separately. This can
dramatically reduce the computational cost. We consider several (formally) first-
order splitting schemes given by the time stepping operators

Sh = (I − hF )−1PhG,

where Sn
hu0 is an approximation of the solution u at time t = nh and the oper-

ator PhG is chosen depending on the structure of G. Three standard choices are
PhG = I + hG, (I − hG)−1 or ehG.

The foundation of our numerical analysis is to assume that (1) is given on a
real Banach space X and the nonlinear operator F +G is m-dissipative, i.e., the
resolvent

Rh = (I − h(F +G))−1

is defined on X and it has a Lipschitz constant of the form L[Rh] ≤ 1 + Ch for
sufficiently small values of h. The m-dissipativity of the operator F+G guarantees
the existence of a unique mild solution to (1), which is one of the core results of
the nonlinear semigroup theory [1, 4]. The main idea of the existence proof is to
establish that {Rn

t/nu0}n≥1 is a Cauchy sequence in X, and then define the mild

solution as

u(t) = lim
n→∞

Rn
t/nu0.
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In other words, the solution is given by the limit of the implicit Euler discretization.
Furthermore, as part of the original proof [4, Theorem I] a convergence order of
p = 1/2 was derived for the implicit Euler approximation Rn

hu0, i.e.,

∥Rn
hu0 − u(nh)∥ ≤ CTh

1/2, 0 ≤ nh ≤ T,

when u0 ∈ D(F +G). Note that a convergence order of p = 1 is typically observed
when X is finite dimensional, but the obtained order of one half is in fact optimal
for general m-dissipative vector fields, as exemplified by [8].

The convergence of splitting schemes can be proven in this m-dissipative frame-
work, see e.g. [3] where the case PhG = (I − hG)−1 is treated. Also [2] and [9]
prove convergence of several similar splitting schemes in different contexts. How-
ever, the aim of this work is to prove orders of convergence. Our basic idea, which
unifies the theory for different PhG, is to prove that the splitting approximation
Sn
hu0 is within an O(hq)-vicinity of the implicit Euler approximation Rn

hu0 when
the operator G has some further structure:

Theorem 1. Let F , G and F + G all be m-dissipative operators on the real
Banach space X, u0 ∈ D(F + G) be given and h ≤ h0. If PhG is stable, i.e.,
L[PhG] ≤ 1 + Ch, and satisfies the consistency bound

(2) ∥
(
hGRh + I − PhG

)
Rj

hu0∥ ≤ Ch1+q,

for all j = 0, . . . , n, then

∥Sn
hu0 − u(nh)∥ ≤ CT (h

p + hq), 0 ≤ nh ≤ T,

where u is the mild solution of (1) and p ∈ [1/2, 1] is the convergence order of the
implicit Euler scheme.

The proof follows by the telescopic sum

∥Rn
hu0 − Sn

hu0∥ ≤
n∑

j=1

∥Sn−j
h Rj

hu0 − Sn−j+1
h Rj−1

h u0∥

≤
n∑

j=1

L[Sh]
n−jL[(I − hF )−1]∥

(
(I − hF )Rh − PhG

)
Rj−1

h u0∥

≤ C
n∑

j=1

∥(hGRh + I − PhG)R
j−1
h u0∥.

While the stability assumption L[PhG] ≤ 1 + Ch is natural for a well-defined
scheme, the question of when the consistency (2) is true remains. We give three
different examples of this, which illustrate the wide applicability of the theory.

Example 1. Let G be Lipschitz continuous and choose PhG = I+hG. This gives
the implicit-explicit Euler method where the diffusive term F is approximated by
the implicit scheme and the non-stiff perturbation by the explicit scheme. In this
case it is seen that Equation (2) holds with q = 1. For example, the evolution of
s competing species can be modeled by the system

u̇ℓ = ∆(uℓ)
m+1 +Gℓ(u1, u2, . . . , us), ℓ = 1, . . . , s,
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which can be cast into the setting of an m-dissipative evolution equation on X =
[L1(Ω)]s. Splitting the system means that the diffusion terms decouple, and hence
their approximations can be parallelized. See [5] for details.

Example 2. A nonlinear parabolic equation with delay such as

u̇(t) = ∇·
(
|∇u(t)|m∇u(t)

)
+G1u(t− 1) +G2

∫ 0

−1

u(t+ s)ds

can be formulated on an appropriate Banach space so that the operators are again
m-dissipative. With PhG = (I−hG)−1, we get that the consistency assumption (2)
holds with q > 1/2. Such equations e.g. model electrical circuits and more realistic
population dynamics which takes gestation periods into account. We refer to [6].

Example 3. The abstract Riccati equation

u̇ = A∗ ◦ u+ u ◦A+ v − u ◦ u
can be treated in the setting of Hilbert-Schmidt operators on L2(Ω) when −A is
a linear elliptic differential operator. If Fu = A∗ ◦ u+ u ◦A+ v and Gu = −u ◦ u,
respectively, then PhG = ehG has a closed-form expression and it can be proven
that Equation (2) holds with q = 1. Riccati equations arise in e.g. linear quadratic
regulator problems, where their solutions provide the link between the system
states and the optimal feedback. For more details, see [7].
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