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Abstract

Nonlinear Model Predictive Control (NMPC) is a control
strategy based on repeatedly solving an optimal control
problem. In this paper we present a new MPC frame-
work for the JModelica.org platform, developed specif-
ically for use in NMPC schemes. The new framework
utilizes the fact that the optimal control problem to be
solved does not change between solutions, thus decreas-
ing the computation time needed to solve it. The new
framework is compared to the old optimization frame-
work in JModelica.org in regards to computation time
and solution obtained through a benchmark on a com-
bined cycle power plant. The results show that the new
framework obtains the same solution as the old frame-
work, but in less than half the time.
Keywords: Nonlinear Model Predictive Control, JMod-
elica.org, Optimization, IPOPT

1 Introduction

Model Predictive Control (MPC) is an optimization-
based control strategy based on the repeated on-line solu-
tion of an open-loop optimal control problem at discrete
time points. Feedback is incorporated by measuring the
state at each of these discrete timepoints and using the
measured state as the initial state in the optimal control
problem. From each optimization the first input in the
optimal control sequence computed is applied to the sys-
tem. Two of the main advantages of MPC compared to
other control methods are that

• it easily extends to multivariable systems with mul-
tiple inputs and outputs.

• it intrinsically handles constraints on all system
variables.

In general, one distinguishes between linear and non-
linear model predictive control (LMPC/NMPC). In the
case of linear MPC, where the system model and any
constraints imposed upon the system are linear and the
cost is quadratic, the optimal control problem can be

cast as a quadratic program. Quadratic programs can
be solved efficiently on-line. In case of nonlinear MPC,
the optimal control problem is instead cast as a NonLin-
ear Program (NLP), which is more computationally de-
manding to solve. The long computation time of the op-
timization, along with the risk that sometimes an optimal
solution is not found at all, are two of the main limiting
factors for successful application of NMPC in industry.
(Allgöwer et al., 2004).

JModelica.org is an open-source platform for simu-
lation, optimization and analysis of complex dynamic
systems described by Modelica models (Åkesson et al.,
2010). In recent research its use has been proposed for
the solution of the optimal control problem for NMPC
applications in several different fields, including (Cavey
et al., 2014) where a JModelica.org/NMPC scheme was
successfully implemented to control the heating system
in a building, (Berntorp and Magnusson, 2015) where
the use of JModelica.org was proposed to solve the
NMPC optimal control problem in a hierarchical pre-
dictive control scheme for the lane keeping of a vechi-
cle and (Larsson et al., 2013) where a case study of the
start up of a combined cycle power plant using a JMod-
elica.org/NMPC scheme was made. Features and perfor-
mance for NMPC application using JModelica.org has
been evaluated in (Hartlep and Henningsson, 2015).

The optimization algorithm in JModelica.org is cur-
rently embedded into an open-loop framework, which is
well suited for solving dynamic optimization problems
once. This paper describes a new optimization frame-
work, the MPC framework, developed specifically for
the repeated solution of the optimal control problem in
NMPC schemes (Axelsson, 2015). The new MPC frame-
work is built around the same optimization algorithm as
the open-loop framework, but for efficiency it exploits
the fact that the optimal control problem to solve has
the same structure in each consecutive optimization. The
main goals of the new MPC framework has been to de-
crease the average computational time for one optimiza-
tion as much as possible while streamlining the setup of
NMPC schemes, making JModelica.org faster and easier
to use for NMPC applications.



The rest of the paper is outlined as follows. Section 2
gives general background on Nonlinear Model Predictive
Control and optimization using JModelica.org. Section
3 presents the new MPC framework implemented in this
paper. Section 4 compares the MPC framework to the
existing open-loop framework in terms of performance
on an NMPC setup of a combined cycle power plant.
The section also evaluates the effects of warm starting
the NLP solver. Finally, Section 5 summarizes the paper
and further work is discussed.

2 Background

2.1 MPC

This subsection presents the type of optimal control
problems that are considered in this paper, and a basic
MPC control algorithm. A common problem in MPC
and how it can be solved is also discussed.

2.1.1 Optimal Control Problem

An optimal control problem includes a model of the sys-
tem that is to be controlled, an objective function and, if
desired, constraints on variables in the system.

The objective function, also commonly referred to as
the cost function, expresses what is to be minimized
in the optimization. For MPC problems the objective
function is typically formulated to penalize deviations
of some variables from their set points. The variables
that have set points are called the controlled variables
and may be any of the different types of variables in the
system. For ease of notation we introduce w as the con-
trolled variables

w = (xcontrolled,ycontrolled,ucontrolled) (1)

where xcontrolled ⊂ x,ycontrolled ⊂ y and ucontrolled ⊂ u.
In practice all processes are subject to constraints.

These include physical constraints, such as actuators that
have a limited working range and slew rate as well as
constructive, safety and environmental constraints im-
posed on the process to make sure it is operating in a safe
and desired manner. Examples of constraints included in
the second category are maximum and/or minimum lev-
els in tanks, temperatures, pressures, flow rates etc.

The purpose of an optimal control problem is to find
the input that minimizes the objective function, while up-
holding the constraints imposed upon the system. A typ-
ical optimal control problem for MPC applications, ex-
pressed in continuous time, can have the form

minimize

f (w) =
∫ t f

t0
(wref−w(t))T Q(wref−w(t))dt (2a)

with respect to

x(t) ∈ Rnx , y(t) ∈ Rny , u(t) ∈ Rnu ,

subject to

F(ẋ(t),x(t),y(t),u(t)) = 0, (2b)

x(t0) = x0, (2c)

xL ≤ x(t)≤ xU , (2d)

yL ≤ y(t)≤ yU , (2e)

uL ≤ u(t)≤ uU , (2f)

g(ẋ(t),x(t),y(t),u(t))≤ 0, (2g)

G(ẋ(t f ),x(t f ),y(t f ),u(t f ))≤ 0, (2h)

∀t ∈ [t0, t f ]

where (2a) is the objective function where w are the
controlled variables, wref are their set points and Q is a
weighting matrix. The Modelica model, expressed by a
set of Differential Algebraic Equations (DAE) describing
the system dynamics, is included in (2b) where x(t) are
the differentiated variables, y(t) are the algebraic vari-
ables and u(t) are the control variables. We rely on Mod-
elica compilers to perform index reduction and thus only
consider DAE systems of index at most 1, so the differ-
entiated variables correspond to the system state. The
initial conditions (2c) define the initial state x(t0) of the
system. Here x0 are the initial condition parameters. Ad-
ditionally, (2d)-(2h) are the constraints imposed upon the
system, where(2d)-(2f) are variable bounds with lower
limit {x,y,u}L and upper limit {x,y,u}U , (2g) is path
constraints and (2h) is terminal constraints. The optimal
control problem is considered over a prediction horizon
of Hp = t f − t0 seconds.

2.1.2 Control Algorithm

The general idea with MPC is that the optimal control
problem (2) is solved on-line at each sample point tk. The
solution to (2) will determine the input that is to be ap-
plied to the system until the next sample point tk+1. The
time between two sample points is called the sample pe-
riod.

The control algorithm states that at each sample point
tk, the following steps should be carried out:

1. Obtain an estimate of the initial state xest(tk).

2. Set the initial condition parameters x0 = xest(tk), the
start time t0 = tk and the final time t f = t0 +Hp.

3. Solve (2).

4. Apply u1 to the system, where u1 is the first value
in the resulting control sequence. Hold the input
constant through the entire sample period.



To be able to solve (2) we need to know the initial state
of the system. Typically however, all the states are not
measurable. It is therefore assumed that a state estimator
is used to estimate the initial state in step 1. A Mov-
ing Horizon Estimator is an example of an optimization-
based state estimator for nonlinear systems. An MHE
framework is currently being developed for JModel-
ica.org (Larsson, 2015).

2.1.3 Constraint softening

A common problem in MPC is that (2) is infeasible for
the estimated initial conditions. This can happen if the
process is running close to a limit and a particularly large
disturbance occurs, or if the model is not good enough
and the process behaves differently than predicted. Infea-
sibility caused by constraint violations can be prevented
by softening the constraints. This means that rather than
to regard constraints as hard limits which may never be
crossed, we soften them by allowing them to be crossed,
but only if necessary.

One way of softening a constraint is by adding a new
variable, a so-called slack variable, to the problem. This
slack variable is heavily penalized in the cost function
and is defined in such a way that it needs to be non-
zero if the constraint is violated. With a large enough
constraint penalty this gives the solver an incentive to
keep the slack variable at a small value, meaning that the
original constraint is upheld (Maciejowski, 2002). The
MPC framework supports automatic softening of vari-
able bounds using this method. More details on the au-
tomatic softening will be presented in Section 3.3.1.

2.1.4 Other NMPC tools

Another framework that may be used for NMPC appli-
cations based on Modelica models is the one described
in (Franke et al., 2003). The framework described in
that article uses multiple shooting to discretize the prob-
lem and HQP (Franke et al.), to solve the resulting NLP.
One drawback with this tool, compared to the MPC
framework described here, is that it implements a quasi-
Newton type algorithm, meaning only first order deriva-
tives are utilized.

ACADO toolkit is another tool suitable for NMPC ap-
plications on embedded hardware (Houska et al., 2011).
However, ACADO toolkit does not have a Modelica in-
terface and models are instead written in C++.

2.2 Optimization in JModelica.org

This subsection presents how optimization problems are
solved in JModelica.org. It briefly explains the theory of
the discretization and solution process, as well as how
the open-loop optimization framework in JModelica.org
works.

2.2.1 Discretization

The optimization algorithm in JModelica.org can solve
different types of dynamic optimization problems, in-
cluding the optimal control problem for MPC applica-
tions but also parameter estimation and parameter op-
timization problems. The optimization problems to be
solved are expressed using Optimica (Åkesson, 2008); a
Modelica extension including language constructs to e.g.
formulate the objective function and constraints.

The optimization problem needs to be discretized in
order for numerical solvers to solve it. To discretize the
problem we let a finite number of discrete time points
on the prediction horizon represent the trajectories of all
variables in the optimization problem.

The optimization algorithm in JModelica.org uses di-
rect collocation to transcribe the infinite-dimensional op-
timization problem into a finite-dimensional NLP (Mag-
nusson and Åkesson, 2015). The collocation methods
supported in JModelica.org are Radau and Gauss collo-
cation. They both start with dividing the prediction hori-
zon into ne collocation elements. In each element, nc
number of collocation points are placed. The total num-
ber of collocation points thus becomes ne ·nc, and it is in
these points that we consider the optimization problem.
This means that each time-dependent variable in the orig-
inal optimization problem, yields a set of ne ·nc optimiza-
tion variables in the NLP, one at each collocation point.
The collocation points approximate the system trajecto-
ries by polynomials through interpolation. This in turn
means that each constraint or equation in the original
optimization problem, which include a time-dependent
variable, is transcribed into a set of ne · nc constraints or
equations in the NLP, one at each collocation point. The
structure of the resulting NLP is dependent on the struc-
ture of the original optimization problem and the collo-
cation options chosen.

2.2.2 Solving the NLP

JModelica.org uses the third party NLP solver IPOPT
(Interior Point OPTimizer) to solve the resulting NLP
(Wächter and Biegler, 2006). IPOPT implements a
primal-dual interior point method to find a solution to
the NLP, which after transcription has the general form

minimize
f (z) (3a)

with respect to
z ∈ Rnz ,

subject to

zL ≤ z≤ zU (3b)
ge(z) = 0, (3c)
gi(z)≤ 0, (3d)



where z are the optimization variables and (3b) their
bounds. All constraints have been categorized depend-
ing on whether they are equality constraints ge (3c) or
inequality constraints gi (3d). An optimal solution to
the NLP requires the Karush-Kuhn-Tucker (KKT) con-
ditions to be satisfied (Boyd and Vandenberghe, 2004).
The KKT conditions can be derived from the Lan-
grangian function, which is defined as

L(z,λ ,ν) = f (z)+λ ·ge(z)+ν ·gi(z), (4)

where λ ∈ Rnge and ν ∈ Rngi are the Lagrange multi-
pliers. The Lagrange multipliers are also treated as iter-
ation variables in the solution process. To separate them
from the optimization variables z, the Lagrange multipli-
ers are often called the dual variables while z are called
the primal variables.

As an interior point method IPOPT considers the aux-
iliary barrier problem formulation

min
z

Jµ(z) = f (z)−µ

nz

∑
i=0

ln(zi) (5a)

s.t. g(z) = 0 (5b)

where µ is the barrier parameter (Wächter, 2009). This
transformation from (3) to (5) is handled internally in
IPOPT and for ease of notation it has here been as-
sumed that the variables z only have lower bounds of
zero. Given a value of the barrier parameter µ > 0, which
tends to zero during the solution procedure, the barrier
objective function J will go towards infinity if any vari-
able z approaches its bound of zero. The initial value
of the barrier parameter µinit determines how far away
from the constraints that the intermediate solution will
be pushed. For an initial guess very close to the optimal
solution, a small value of µinit might decrease the itera-
tions needed to get to the optimal solution, while for a
less accurate initial guess a larger value of µinit typically
gives faster convergence.

Given a good enough initial guess of the optimization
variables the solver will converge to a local optimal so-
lution of the NLP. An initial guess closer to the optimum
will also in most cases reduce the number of iterations
needed to get there. For MPC applications, it is typically
a good idea to use the solution to the last optimization as
the initial guess for the next.

Since the dual variables are iteration variables as well,
they also need an initial guess. IPOPT has a method to
compute an initial guess for the dual variables automat-
ically. However, in the same way as for the primal vari-
ables, it might be a good idea to use the previous result of
the dual variables as initial guess instead. Providing an
initial guess of both primal and dual variables is called
warm starting the solver and will be evaluated in section
4.3.

JModelica.org is interfaced with IPOPT through
CasADi (Computer algebra system with Automatic Dif-

ferentiation)(Andersson, 2013). CasADi is an open-
source, symbolic framework for automatic differentia-
tion. It is used in JModelica.org for two main reasons;
to give all optimization variables and expressions a sym-
bolic representation using CasADi Interface (Lennernäs,
2013) and to calculate function derivatives. Scripts for
JModelica.org are written in Python.

2.2.3 Optimization framework

Solving an optimization problem using the open-loop
framework in JModelica.org is done in three steps:

1. Pre-processing: In the pre-processing step, the op-
timization problem is transcribed into an NLP by
means of direct collocation as described in the pre-
vious section. All optimization variables in the re-
sulting NLP are given a symbolic representation us-
ing CasADi and a solver object is created and ini-
tialized.

2. Solution: The solution step is handled completely
by the third-party NLP solver IPOPT and includes
the iterative steps that the solver takes to find a so-
lution to the NLP.

3. Post-processing: The NLP solver returns the re-
sult for all optimization variables in one long vec-
tor. The post-processing step includes processing
the result so that it is presented to the user in a con-
venient way, which includes creating a result object
and writing the result to file.

The total computation time to solve an optimization
problem is thus the time for each of these steps com-
bined.

3 MPC framework
This section presents the new MPC framework imple-
mented in this paper. It includes a comparison to the
open-loop framework as well as a presentation of how it
is used and a few of the features included in it.

3.1 Compared to open-loop framework
The MPC framework was created to make the total com-
putation time for solving the optimal control problem
shorter, while making JModelica.org easier to use for
MPC applications. The reason the computation time is
shorter using the MPC framework compared to directly
using the open-loop framework is that the MPC frame-
work utilizes the fact that the structure of the discretized
optimal control problem is the same in each consecutive
optimization. This allows performing the discretization
only once, and reusing the resulting NLP for all opti-
mizations. Solving the optimal control problem using
the MPC framework is done in these steps:



0. Initialization: In the initialization step, the optimal
control problem is transcribed into an NLP as in the
pre-processing step of the open-loop framework.

1. Pre-processing: The initial condition parameters as
well as the start and final time of the optimization
horizon are updated. A new initial guess for the
optimization variables is also set.

2. Solution: The solution step includes the same
things as this step in the open-loop framework, with
the difference that warm start of the solver can be
enabled.

3. Post-processing: All u1 values are extracted from
the result and returned to the user.

Step 0 is only done once, off-line, when an MPC ob-
ject is created, while steps 1-3 are executed in each op-
timization. Since the time-consuming discretization has
been moved to initialization the pre-processing time in
the MPC framework is significantly decreased. The post-
processing time is also decreased due to the MPC frame-
work not creating a result object after each optimization
but rather only returning the computed u1 values instead.

The open-loop framework hardcodes the values of
Modelica parameters, including initial conditions. To en-
able the update of the initial conditions in Step 1 for the
NLP constructed in Step 0, the initial conditions are in-
stead introduced as symbolic NLP parameters. Defining
the initial conditions as parameters x0 thus makes it pos-
sible to update their values between optimizations.

3.2 Example

The MPC framework includes features that simplify the
use of JModelica.org for MPC purposes. After the setup,
the MPC object requires very little interaction from the
user as most things are handled internally. The only
information that has to be supplied to the MPC object
is the next initial state. The Python code excerpt be-
low gives an example on how the MPC framework is
used. Here it is assumed that the optimization problem
opt_problem, the optimization options options,
the sample period sample_period and the predic-
tion horizon horizon have already been defined. A
detailed description of how to do this is found in (Axels-
son, 2015). The Optimica code for the benchmark sys-
tem used in this article will be presented in Section 4.2.

The first line of this example shows how to utilize the
support for automatically softening variable bounds, in
this case for the variable plant.sigma. In this exam-
ple, artificial measurement data is created by simulating
an FMU of the system from the initial state and one sam-
ple period forward in time, with the optimal input ob-
tained from the optimization.
# Define variable bounds to be softened
cvc = {’plant.sigma’: 1e5}

# Create the MPC object
MPC_object = MPC(opt_problem, options,

sample_period, horizon, constr_viol_costs=cvc
)

# Set initial state
x_k = {}
for name in op.get_state_names():

x_k["_start_"+name] = opt_problem.get("
_start_"+name)

for k in range(nbr_opt):
# Update the state and optimize nbr_opt times

MPC_object.update_state(x_k)
u_k = MPC_object.sample()

# Simulate for one sample period with the
# optimal input u_k
sim_model.reset()
sim_model.set(x_k.keys(), x_k.values())
sim_res = sim_model.simulate(

start_time = k*sample_period,
final_time = (k+1)*sample_period,
input=u_k, options=sim_opts)

# Extract state values at end of sim_res
x_k = MPC_object.extract_states(sim_res)
# Add measurement noise to states

# Get result and extract variable profiles
opt_res = MPC_object.get_complete_results()
opt_plant_sigma = opt_res[’plant.sigma’]

3.3 Features

3.3.1 Softening Variable Bounds

The need for constraints to be softened was discussed in
Section 2.1.3. The MPC framework has a method that
automatically softens variable bounds. The softening is
done before the discretization, and will thus be described
in continuous time. For each variable bound that is to be
softened, a slack variable is added to the problem formu-
lation. That means that if a variable z has both an upper
limit zU and a lower limit zL, the same slack variable,
zslack, will be used when softening both bounds. The
softening is done in four steps:

1. A new input, the slack variable zslack, is added to
the optimization problem. The slack variable is
bounded to be larger than 0 and the nominal value
is set to 0.0001 times the nominal value of the base
variable. That is,

zslack ≥ 0 (6)

zslack, nominal = 0.0001 · znominal (7)

2. The slack variable times a constraint violation
penalty Pz is added to the cost function. That is,
the cost function f (w) is changed to:

f (w)+Pz ·
∫ t f

t0
zslack(t)dt (8)



Once discretized, this formulation will be equiva-
lent with adding the 1-norm of the slack variable
times the constraint violation penalty.

3. The old variable bounds are transformed into path
constraints on the form

z≤ zU + zslack (9)

z≥ zL− zslack (10)

These four steps are done for all variables that have
bounds to be softened. If a variable has only either an
upper or a lower bound, step 3 is modified accordingly.
Ideally, if the initial condition has not violated the con-
straint, the slack variable should be zero or very close to
zero at all times. However, choosing the nominal value
of the slack variable has to be done with care to avoid
numerical issues. This is why we have made the nominal
value of the slack variable proportional to the nominal
value of the base variable. The factor of 0.0001 included
in the calculation of the slack nominal value was decided
through testing.

3.3.2 Unsuccessful Optimization

Since finding a solution to the NLP is not guaranteed,
it is important to have a fallback method in case of un-
successful optimization. Using the MPC framework, if
the solver terminates without finding a solution to the
given problem the input returned will be the second in-
put u2 in the input sequence of the previous optimiza-
tion (which was successful). If the next optimization af-
ter that is unsuccessful as well, the third input u3 in the
input sequence in the last successful optimization is re-
turned, and so on. This way of returning optimal inputs
from the last successful optimization continues until the
solver finds a feasible solution again, or until there are no
more values in the last successful optimization to return.

This is the default fallback method in case of unsuc-
cessful optimizations the MPC class uses. However, it is
straightforward to detect if an optimization was success-
ful or not, so it is possible for the user to create a custom
fallback method instead.

3.3.3 Next initial guess

Having a good initial guess for the optimization variables
is important to decrease the risk of not finding a solution
and to speed up the solution process. Defining a new ini-
tial guess of the optimization variables prior to each op-
timization is handled internally in the MPC framework.
There are three different methods of computing the ini-
tial guess in the MPC framework:

1. Extracting it from a result object. This method uses
the same methods that are used by the open-loop
framework to extract an initial guess of the opti-
mization variables from the trajectories of a result

object. This method is quite time-consuming and
requires that a result object, from which to extract
the initial guess, is available.

2. Shifting the result vector. The NLP solver returns
the solution of an optimization in one vector con-
taining the value of each variable at each of the
collocation points. The result vector is on the
same form as the vector corresponding to the ini-
tial guess, but offset by one sample period in time.
Looking at the result vector, this method discards
all the values included in the first sample period
and shifts the rest of the values to cover the voids.
This means that all the values corresponding to the
second sample period in the result vector will be
shifted to the values corresponding to the first sam-
ple period in the initial guess vector. The values of
the last sample period in the initial guess vector are
all set to the value of the last collocation point from
the result vector. On a uniform mesh, this method
yields the same initial guess as method 1 and is less
time-consuming.

3. Using the result vector without shifting it. This
method sets the new initial guess to the result from
the previous optimization directly, without shifting
it. Using this method will yield the least accurate
initial guess, since all values will be offset by one
sample period in time, but it is the least time con-
suming method of the three.

The default method of computing the next initial guess
in the MPC framework is method 2, mainly because it is
faster than method 1 and yields a better initial guess than
method 3.

3.4 Limitations
Because the MPC framework reuses the NLP for each
optimization it is not as flexible as the open-loop frame-
work. There are currently some collocation options that
are not compatible or will not work as desired with the
MPC framework and there are also some restrictions re-
garding the formulation of the optimal control problem.
These are described in more detail in (Axelsson, 2015).

4 Results

4.1 Test setup
In this section we will evaluate the performance of the
MPC framework through two different tests. The first
test is to evaluate how the performance of the NLP solver
is affected by the warm start options chosen. The second
test is a benchmark where the aim is to compare the re-
sults of the MPC framework to the open-loop framework.
For both tests we provide some or all of the following
statistics:



• Optfail. The sample number of the optimizations
which were unsuccessful. For IPOPT it is as-
sumed that the return statuses ’Solve_Succeeded’
and ’Solved_To_Acceptable_Level’ denote a suc-
cessful optimization. All other return statuses are
regarded as unsuccessful.

• Iterations. The average number of iterations in
IPOPT for one sample.

• Tpre. The average pre-processing time for one sam-
ple.

• Tsol. The average solution time in IPOPT for one
sample.

• Tpost. The average post-processing time for one
sample.

• Ttot. The average total computation time for one
sample.

All tests are run using the MA27 solver for IPOPT
(HSL, 2013).

4.2 Test problem
The system we are going to evaluate the performance
of the MPC framework on is a Combined-Cycle Power
Plant (CCPP) (Casella et al., 2011), during start-up. The
aim of the MPC controller is to take the system from
an off state to full capacity. The plant is considered to
be at full capacity once the evaporator pressure p has
reached 8.35 MPa and the plant load load has reached
100%. During the start-up there is an upper bound on
the thermal stress σ in the steam turbine, which may not
exceed 260 MPa. The MPC framework will soften this
bound automatically as discussed in section 3.3.1. We
are going to extend the model with an integrator at the
input by connecting the plant load with a new state vari-
able u and thus having u̇ as the input in the optimization
problem. This yields a plant load which is piecewise lin-
ear, rather than piecewise constant. This also allows for
setting variable bounds on u̇. Variable bounds on u and u̇
are

0≤ u≤ 1,
0≤ u̇≤ 0.1/60.

The Optimica code for this system is presented below.
optimization Startup(objectiveIntegrand=((

plant.p-8.35e6)/1e6)^2 + 0.5*(u-1)^2,
startTime=0,finalTime=4000)

parameter Real sigma_max = 2.6e8;
CombinedCycle.Optimization.Plants.CC0D_WarmStartUp

plant(sigma(max=sigma_max));
Modelica.Blocks.Interfaces.RealInput du(min=0,

max=0.1/60);
RealConnector u(start=0.15,fixed=true,min=0,max

=1);

equation
der(u) = du;
connect(u, plant.load);

end Startup;

On the first line, the keyword
objectiveIntegrand is used to define the
Lagrange part of the cost function, while startTime
and finalTime denote the beginning and end of the
prediction horizon. A model of the plant is instansiated,
plant, and an upper variable bound is added to sigma
using the keyword max. The following two lines show
how to add variable bounds to the inputs, u and du,
and how to connect them to the model. Additional
constraints are not present in this example, but could
be added under a new section started with the keyword
constraint.

To emulate noise a normally distributed disturbance,
with the mean 0 and the standard deviation 0.001 times
the current state value, will be added at each sample point
to all the states except for the extra state u.
With the addition of u as a state, and the extra input
σslack which the MPC framework will add to the problem
when softening the bound on σ , the resulting optimiza-
tion problem has 10 states, 123 algebraic variables and
2 inputs. With the MPC and collocation options chosen,
presented in Table 1, the resulting NLP has 4564 opti-
mization variables after the discretization.

Table 1. The MPC and collocation options used for all tests on
the CCPP system.

MPC options value

Sample period 100 [s]
Prediction horizon 1000 [s]

Collocation options value

ne 10
nc 3

4.3 Warm start test

The warm start test aims to evaluate whether we can
improve the robustness and speed of the solver by
providing an initial guess of the dual variables to
the solver. The options we consider in IPOPT are
’warm_start_init_point’, which indicates whether an ini-
tial guess of the dual variables will be provided by the
user or should be computed by IPOPT, and ’mu_init’,
which is the initial value of the barrier parameter. For the
cases where an initial guess of the dual variables will be
provided, the guess will be the result from the previous
optimization. Note that since there is no implemented
support for shifting the dual variables yet, they will be



implicitly offset by one sample period in time. The re-
sult of this test is presented in Table 2.

Table 2. Summary of the results for the warm start test. The
two leftmost columns define which options were used, while
the other three are the results obtained. Warm start on means
that an initial guess of the dual variables was provided to the
solver while warm start off means that the solver computed it’s
own initial guess for them.

Warm start µinit Optfail Iterations Tsol
[k] [nbr] [s]

Off 1e-1 - 32 0.282
Off 1e-2 - 34 0.289
Off 1e-3 5, 24 32 0.282
Off 1e-4 - 34 0.282

On 1e-1 - 31 0.266
On 1e-2 - 31 0.261
On 1e-3 - 32 0.262
On 1e-4 - 30 0.259

From the data in Table 2 it can be seen that provid-
ing an initial guess of the dual variables decreases both
the number of iterations needed to find a solution and
the solution time slightly. The robustness also seems to
be improved since optimal solutions were found for all
samples in the case where warm start was on, while two
unsuccessful optimizations were noted when warm start
was off. The best average solution time was in the case
where warm start was on and µinit = 10−4.

Figure 1. The solution time for each of the samples in the
warm start test. The upper plot is for warm start being turned
off and the µinit values as specified by the legend and the lower
plot is for warm start being turned on.

In Figure 1 the solution time for each of the samples is
plotted for all the options tested. Since 8 different option
combinations were tested, the results have been split into
two separate plots, one where warm start is turned off and
one where warm start is turned on. The barrier parame-
ters impact on the solution time is especially noticable

in the region between sample number 15 and 25, where
the largest deviations are present. The overall conclusion
from this test is that turning the warm start on i.e. pro-
viding an initial guess of the dual variables to the solver,
has a positive effect on the solution time and robustness.
This even though the dual variables provided are offset
by one sample period in time. The gain of warm starting
the solver might improve even more if a shift method for
the dual variable was to be implemented.

4.4 Benchmark

In this section the results of using the MPC framework
will be compared to the results of using the open-loop
framework for an MPC setup. We will look specifically
at the result trajectories as well as the different aver-
age times for one sample (pre-processing, solution, post-
processing and total).

To get equivalent problem formulations the variable
bound on σ is softened manually for the case where the
open-loop framework is used. The manual softening is
done in exactly the same way as the MPC framework
does it. The collocation and MPC options chosen are
the same in both cases and the resulting NLP:s shall thus
be identical in both cases. For the case running with the
MPC framework warm start of the solver is activated and
the barrier parameter is set to µinit = 10−4, since those
were the options that gave the best results in the warm
start test. The results are summarized in Table 3.

Table 3. Results from the benchmark of the CCPP system.

Optfail Tpre, Tsol, Tpost, Ttot,
[k] [s] [s] [s] [s]

MPC fw. - 0.053 0.267 0.012 0.332
OL fw. 12 0.901 0.295 0.044 1.241

From the data in Table 3 it can be concluded that using
the MPC framework compared to using the open-loop
framework has decreased the total average computation
time by 70%. This is also clearly illustrated in the total
computational time per sample plot in Figure 2. Look-
ing closer at the average times we can conclude that the
majority of the time saved is in the pre-processing step,
which was what we had expected since the time consum-
ing discretization has been moved outside the MPC loop.
The post-processing time is also decreased due to the
MPC framework not creating a result object after each
optimization.

Figure 3 shows the CCPP system simulated with the
optimal inputs obtained, where we can conclude that the
results obtained in both cases are almost identical.



Figure 2. Total computation time for each sample in the bench-
mark, using the MPC framework and the open-loop framework
respectively.

Figure 3. The CCPP system simulated with the optimal inputs
obtained in both cases. The dashed cyan lines are the set points
while the dashed red line is the variable bound.

5 Conclusions
This paper describes the implementation of a new MPC
framework in JModelica.org, which significantly de-
creases the total average computation time of solving
an NMPC optimal control problem. The main reason
the computation time has been shortened is due to the
MPC framework reusing the NLP for all optimizations,
rather than creating a new NLP each time the optimal
control problem is solved. For the benchmark presented
in this paper, using the MPC framework compared to us-
ing the open-loop framework, the total average computa-
tion time went from 1.24 s to 0.33 s, a relative decrease
of 70%. The benchmark also shows that the same results
were obtained with both frameworks.

In addition to being faster than the open-loop frame-
work, the MPC framework is also easier to use since a lot
of things are handled internally. This includes the initial

guess being set and the prediction horizon being shifted
automatically as well as the built in fall back method in
case of unsuccessful optimization and a method that au-
tomatically softens variable bounds.

Further work includes adding support for nominal tra-
jectories and external data, two of the collocation options
that do not work correctly when reusing the NLP. Nomi-
nal trajectories are used for scaling the optimization vari-
ables and external data could be used to define set point
trajectories, rather than constant set points, for the con-
trolled variables. A shift method for the dual variables
could also be implemented to, hopefully, decrease the
solution time in the solver further. The automatic soft-
ening of variable bounds method could be extended to
support automatic softening of constraints as well as dif-
ferent softening schemes.
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