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Hierarchical Predictive Control for Ground-Vehicle Maneuvering

Karl Berntorp1 and Fredrik Magnusson2

Abstract— This paper presents a hierarchical approach to
feedback-based trajectory generation for improved vehicle au-
tonomy. Hierarchical vehicle-control structures have been used
before—for example, in electronic stability control systems,
where a low-level control loop tracks high-level references.
Here, the control structure includes a nonlinear vehicle model
already at the high level to generate optimization-based ref-
erences. A nonlinear model-predictive control (MPC) formu-
lation, combined with a linearized MPC acting as a backup
controller, tracks these references by allocating torque and steer
commands. With this structure the two control layers have
a physical coupling, which makes it easier for the low-level
loop to track the references. Simulation results show improved
performance over an approach based on linearized MPC, as
well as feasibility for online implementations.

I. INTRODUCTION

Currently, one of the main trends in the automotive re-
search is improving situation awareness, where, for example,
(semi) autonomous lane-keeping systems are natural exten-
sions to the Electronic Stability Program (ESP) [1]. The
enabler for improved situation awareness is the increased
sensing and computing capabilities in modern vehicles [2].

In this paper we propose a combined high- and low-
level optimal-control approach to lane keeping and trajectory
generation for road vehicles, which already at the high
level accounts for nonlinear chassis and tire dynamics. The
work presented here builds on the conclusions from [3]–
[5], which showed that single-track models can replicate
expert-driving behavior for high-level variables, such as yaw
rate and velocity. It was also shown that the vehicle states
are qualitatively similar for single- and double-track models
when using an appropriate tire model, but the input torques
and steer angles are significantly different. This conclusion
is utilized here, where a high-level trajectory-generation
problem is cast as a dynamic optimization problem over a
road-curvature dependent horizon. The dynamics is already
at the high level based on a nonlinear vehicle model, unlike
most previous work on vehicle autonomy for lane keeping.
We use the single-track model combined with the exper-
imentally verified weighting-functions tire model, which
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incorporates combined-slip behavior. The low-level control-
input allocator is formulated as a nonlinear model-predictive
control (NMPC) problem [6] over a part of the high-level
references. Nonlinear optimization problems sometimes fail
to converge, or the convergence is slow. By combining the
approach with linearized MPC (LMPC), which results in a
convex optimization problem, a control solution is provided
also when the NMPC fails to converge in a timely manner.
A simulation example shows that this combined approach
yields improved reference tracking compared with LMPC,
despite higher sampling rates in the LMPC.

Application of optimal control to automotive systems is
a popular research topic. In [7], a hierarchical approach
for automated highway driving was introduced, where the
high-level control uses a point-mass representation of the
vehicle. This might work well for steady-state conditions.
However, the reference trajectories that are generated may
not be feasible in more aggressive maneuvering, because
there is little physical coupling between the high- and low-
level controllers. An approach based on robust invariant sets
is explored in [8]. Other work on MPC in vehicle-dynamics
control is [9]. MPC was also used in [10] for predictive
prevention of roadway departure, with operation restricted
to the linear region of the dynamics. Mitigation of collision
impact has been explored in a series of papers, see [11] and
references therein. Optimization of emergency maneuvers
has also been treated—some examples are [12]–[14].

We assume that the vehicle’s position, velocity, and param-
eters are known, and road-preview information is assumed
available. See [2], [15]–[17] for some examples of how to
achieve the desired information. Regarding actuation, the
assumption is that individual wheel torques and steer angle
can be controlled. If this is not the case, it is straightforward
to reformulate the optimization problem [4], [18].

II. VEHICLE MODELING

The high-level trajectory generator uses a nonlinear single-
track model, see Fig. 1, where the two wheels on each
axle are lumped together. The model has three degrees of
freedom, two translational and one rotational:

v̇X − vY ψ̇ =
1

m
(F xf cos(δ) + F xr − F

y
f sin(δ)),

v̇Y + vX ψ̇ =
1

m
(F yf cos(δ) + F yr + F xf sin(δ)),

IZZ ψ̈ = lfF
y
f cos(δ)− lrF yr + lfF

x
f sin(δ),

(1)

where m is the vehicle mass, IZZ is the vehicle inertia about
the Z-axis, ψ̇ is the yaw rate, δ is the steer angle, [vX , vY ]
are the longitudinal and lateral velocities at the center of
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Fig. 1. The single-track model used in the high-level optimization problem.

gravity, [lf , lr] are the distances from the mass center to the
front and rear wheel base, and [F x, F y] are the longitudinal
and lateral tire forces acting at the front and rear wheels.

Fig. 2 provides a schematic of the double-track model that
is used in the low-level formulation. It has five degrees of
freedom: two translational (vX and vY ) and three rotational
(the roll-pitch-yaw angles (φ, θ, ψ)). The suspension model
is a rotational spring-damper system, and longitudinal and
lateral load transfer is included. The derivation and details
of both models are found in [5], [19].

The nominal tire forces F x0 and F y0 for the longitudinal
and lateral directions under pure slip conditions are computed
with the Magic formula [20], given by

F x0 = µxF
z sin

(
Cx arctan

(
Bxλi

− Ex(Bxλ− arctanBxλ)
))
,

F y0 = µyF
z sin

(
Cy arctan

(
Byα

− Ey(Byα− arctanByα)
))
,

(2)

with lateral slip αi and longitudinal slip λi defined as

α̇i
σ

vxi
+ αi := − arctan

(
vyi
vxi

)
, (3a)

λi :=
Rwωi − vxi

vxi
, (3b)

where σ is the relaxation length, Rw is the wheel
radius, ωi is the wheel angular velocity for wheel
i ∈ {f, r} or {1, 2, 3, 4}, and [vyi , v

x
i ] are the lateral and

longitudinal wheel velocities for wheel i. In the following
we suppress the index i for brevity. In (2), µx and µy are
friction coefficients and B, C, and E are parameters. The
nominal normal force acting on each wheel axle is given by

F z0,f = mg
lr
l
, F z0,r = mg

lf
l
,

where g is the gravitational acceleration and l = lf + lr.
In the single-track model F z = F z0 in (2). This is not
true for the double-track model, because of load transfer.
An experimentally verified approach to tire modeling under
combined slip constraints is to scale the nominal forces
(2) with a weighting function G for each direction, which
depends on α and λ [20]. The relations are

F x,y = F x,y0 Gm,

Gm = cos(Cm arctan(Hmm)),

Hm = Bm1 cos(arctan(Bm2m)),

(4)
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Fig. 2. The double-track model used in the low-level MPC formulations.

where m is either α or λ. Moreover, since it is the torques
that can be controlled in a physical setup, we introduce a
model for the wheel dynamics, namely

τ = Iwω̇ −RwF x,

where Iw is the wheel inertia and τ is the input torque.
To account for that commanded steer angle and brake/drive
torques are not achieved instantenously, we incorporate first-
order models from reference to achieved value according to

T δ̇ = −δ + δref , (5)

and similarly for the torques, where T in (5) is the time
constant of the control loop. The parameter values used here
correspond to a medium-sized passenger car on dry asphalt.

III. PROPOSED CONTROL STRUCTURE

Fig. 3 displays the control structure. It consists of a high-
level optimizer that uses information about the road geometry
and surrounding vehicles as inputs, in addition to estimates
of the position p, velocity v, yaw angle ψ, and yaw rate ψ̇.
Based on this information, it computes reference trajectories
for the position, velocity, yaw angle, and yaw rate. These
references are then fed to an NMPC, which computes desired
wheel torques τ and steer angle δ. If the NMPC fails to
converge, or if the convergence is deemed too slow, the
references are instead sent to an LMPC. The LMPC uses
a linearization of the double-track model, and computes
desired wheel torques and steer angle.

A. High-Level Trajectory Generation

The goal of the high-level optimizer is to find a path and
corresponding state trajectories that minimize a suitable cost
J while staying in lane. In a lane-keeping scenario, it is
natural to include the deviation e from the middle of the
lane in the cost. A common measure of vehicle stability is
the vehicle sideslip angle β, defined as

β := arctan

(
vY

vX

)
.

A large β indicates poor maneuverability for the average
driver. It is traditionally used as a performance measure
in electronic stability control systems [1]. In theory, an
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Fig. 3. The proposed control structure. The high-level optimizer finds
references over the considered horizon. The inputs are measurements and/or
estimates of the relevant vehicle states. Based on the high-level trajectories,
the NMPC aims to find wheel torques and steer angle. If the NMPC fails to
converge in time, the references are instead sent to an LMPC. The LMPC
uses a linearized version of the double-track model.

optimization-based safety system does not suffer from a large
β, because it by definition finds the optimal solutions and
can thus operate in the unstable regions of the tire-ground
interaction. In practice, however, model errors will lead to
deviations from the computed trajectories. Therefore, it is
still desired to keep the vehicle in the small-slip region, if
possible. Furthermore, a large β is a measure of driver and
passenger discomfort. Thus, the cost depends on the mid-lane
deviation e and the body-slip angle β according to

J =

∫ tf

t0

(κ1e
2 + κ2β

2) dt,

where [κ1, κ2] are positive, scalar weights, t0 is the prede-
termined start time, and tf is the free final time.

The prediction horizon (look-ahead) is dependent on the
road geometry and sampling periods. It must be chosen such
that the reference trajectories span over the control horizon of
the MPC, before a new high-level optimization is performed.
However, the horizon cannot be made arbitrarily large. A
larger horizon implies longer optimization times, and if the
road curvature is steep, the available look-ahead information
prevents a large prediction horizon. In practice the horizon is
determined by a terminal constraint ptf on the mass center’s
position, given by a higher-level planner.

Constraints on input torques τ and steer angle δ are also
introduced. The single-track dynamics (1) in combination
with the tire dynamics (3)–(4) can be written as an index-
one system of differental-algebraic equations (DAEs):

F (x, ẋ, w, δref , τf,ref , τr,ref) = 0, (6)

where x contains the differential (state) variables, w contains
the algebraic variables, and τf,ref , τr,ref are the desired wheel
drive/brake torques on the front and rear axle, respectively.
The dynamic optimization problem is then formulated over

the time horizon t ∈ [t0, tf ], with free final time, as

minimize
δref ,τf,ref ,τr,ref

∫ tf

t0

(κ1e
2 + κ2β

2) dt

subject to |τi,ref | ≤ τi,max, ∀i ∈ {f, r},
|δref | ≤ δmax,

‖p(tf )− ptf ‖ ≤ ε,
Γ(p) ≤ 0, x(t0) = x0,

F (ẋ, x, w, δref , τf,ref , τr,ref) = 0

(7)

where x0 is the initial state and Γ(p) is a mathematical
description of the road constraint for the vehicle’s mass
center and its endpoints. Note that it is possible to express
collision avoidance tasks in Γ(p). We have introduced a
slack ε in the terminal constraint for the position, since
exact tracking is typically not crucial. Moreover, it improves
convergence since exact terminal constraints are harder to
fulfill. To generate an initial guess for the nonconvex problem
(7), we simulate the system with a constant steer angle and
zero input torques. When (7) has been solved, the optimal
trajectories for p, v, ψ, ψ̇, are sent to the low-level layer for
allocation to the wheel and steer actuators. The optimization
problem (7) is solved repeatedly, with a sampling period
of Ts,h s, and a new optimization is started directly after
sending the trajectory references to the low-level layer.

B. Low-Level Control-Input Allocation

The aim of the low-level controller is to track the refer-
ences. This is done by allocating appropriate wheel-torque
and steer-angle references to the vehicle’s internal controllers
using an MPC. To this end, introduce the notation

r =
[
pT vT ψ ψ̇

]T
(8)

for the references to the MPC. Let

u =
[
δref τ1,ref τ2,ref τ3,ref τ4,ref

]T
(9)

denote the control input to the vehicle. Note that there
are four torque references in (9), since we use a double-
track model for torque allocation, but only one steer-angle
reference. The individual steer angles (Fig. 2) are determined
through the Ackermann geometry of the steering mechanism.

The chassis dynamics for the double-track model and the
tire dynamics are formulated as the DAE system

F (x, ẋ, w, u) = 0, (10)

where x is the state for the combined double-track and tire
model and w are the corresponding algebraic variables. The
function and variables in (10) are not the same as in (6).

The references are tracked by introducing a quadratic
cost on the deviations from (8). For better tracking, it is
typically advantageous to include a specific cost term on
the terminal position. In addition, we include a terminal
constraint on the position. Tracking of references is not the
only objective, since driver comfort also needs attention. This
is accommodated by introducing a penalty on the control



signals as well. The low-level NMPC problem formulation is
in each time step k stated as (with a slight abuse of notation)

minimize
u

∫ t̄f

t̄0

(‖x− r‖2Q + ‖u‖2R) dt+ ‖p(t̄f )− pt̄f ‖
2
Qf

(11a)
subject to F (x, ẋ, w, u) = 0, (11b)

‖p(t̄f )− pt̄f ‖ ≤ ε, (11c)

− umax ≤ u ≤ umax, (11d)
Γ(p) ≤ 0, (11e)
x(t̄0) = x̄0, (11f)

where t̄0 = t0 + kTs,l and t̄f = t0 + (k +Hl)Ts,l ≤ tf are
the initial and final time, respectively, Ts,l is the sampling
period of the MPC, and Hl is the prediction horizon of the
MPC. Also, ‖x‖2Q = xTQx. Moreover, Q, R, and Qf in
(11a) are the weight matrices, pt̄f in (11c) is the position
reference at time t̄f , umin and umax contain the input-
reference bounds, and x̄0 in (11f) is the initial state vector
at time t̄0, given by estimates and/or measurements. Note
that the path constraints are also included at the low level,
in (11e). In each time step, (11) is solved with the constraint
that the control-input vector is piecewise constant over the
sampling periods. To generate an initial guess for (11), we
use the optimal control inputs from the previous time step.
When (11) has been solved, the control inputs from the first
sampling period are sent to the internal vehicle controllers.

The highly nonlinear dynamics (11b) will sometimes cause
the convergence of (11) to be too slow, or even fail. We
therefore design an additional controller, an LMPC, which is
based on repeated linearizations of the dynamics. The result-
ing LMPC can be written as a quadratic program, for which
there exist very efficient and reliable solvers. To reduce the
problem size, note that (10) is a DAE system that can be
reformulated as an ordinary differential equation (ODE). The
algebraic variables w arise from the slip definition (3b) and
the tire-force equations (2)–(4). These can be solved for, see
Sec. IV, and the result is an ODE of the form ẋ = f(x, u).
By introducing

Ak =
∂f

∂x

∣∣∣∣
xk,uk

, Bk =
∂f

∂u

∣∣∣∣
xk,uk

, (12)

where xk and uk are the measured and/or estimated quanti-
ties at time t0 + kTs,l, the LMPC formulation becomes

minimize
u

∫ t̄f

t̄0

(‖x− r‖2Q + ‖u‖2R) dt+ ‖p(t̄f )− pt̄f ‖
2
Qf

(13a)
subject to ẋ = fk +Ak(x− xk) +Bk(u− uk) (13b)

‖p(t̄f )− pt̄f ‖ ≤ ε (13c)

− umax ≤ u ≤ umax (13d)
Γ̄(p) ≤ 0 (13e)
x(t̄0) = x̄0, (13f)

where fk = f(xk, uk). Compared with (11), (13) involves a
linearized version of the dynamics, (12) and (13b), which in-

troduces approximation errors. Hence, (13) is only executed
when (11) fails to converge or when the convergence rate is
slow. The path constraint Γ̄(p) in (13e) is an approximate
version of (11e) (e.g., ellipses or hyperplanes), to preserve
convexity. The endpoint constraint (13c) can be removed if a
quadratic program is wanted, otherwise the problem becomes
a second-order cone program [21]. One cycle of the complete
algorithm is summarized in Algorithm 1, where conv is an
indicator of whether the NMPC has converged or not.

Algorithm 1.
1: Given state estimates x(t0) and road-preview informa-

tion, solve (7) and form

r =
[
pT vT ψ ψ̇

]T
for the time period t ∈ [t0, tf ].

2: Set k = 0.
3: while k ≤ bTs,h/Ts,lc do
4: Acquire state estimates xk and solve (11).
5: if conv 6= True then
6: Compute (12) and solve (13).
7: end if
8: Apply the first control to the plant.
9: Set k = k + 1.

10: end while

Algorithm 1 executes with the sampling period Ts,h s,
and the while-loop executes with the sampling period Ts,l s.
The convergence condition conv on line 5 in Algorithm 1
is based on an analysis of mean convergence time of the
LMPC: Assume that the mean solution time of the LMPC is
h s. Then the NMPC is terminated and conv is set to false
if the execution time is larger than Ts,l−h+ ∆, where ∆ is
a slack that is introduced to provide robustness with respect
to variations in execution time.

IV. IMPLEMENTATION

The high-level trajectory generation and the MPC for-
mulations are implemented using the open-source software
platform JModelica.org [22]. The DAE-constrained opti-
mization problems (7) and (11) are first transformed into
ODE-constrained optimization problems and then discretized
using the procedures in [23], [24]. The resulting nonlinear
program (NLP) is solved using IPOPT [25] and the linear
solver MA27 [26]. CasADi [27] is used to obtain the relevant
first- and second-order derivatives of the NLP functions.

The symbolic transformations to ODE-constrained opti-
mization problems lead to drastically reduced number of
system variables and hence improved convergence speed,
as the algebraic variables are eliminated from the equation
system. Moreover, it provides solution times that enable
online implementations. We have also noticed that the con-
vergence is more robust, which is important for an online
implementation. A way to reduce the computation time
further is to generate C code for evaluation of the NLP
functions and their derivatives. We expect this to reduce the
solution time with approximately 30%.



V. SIMULATION STUDY

The simulation results are from a road segment with a
curvature radius of 30 m, obtained by applying the proposed
control structure to the double-track model in Sec. II. The
initial velocity is v0 = 70 km/h. The input constraints are

δmax = 0.5, τi,max = F zi µxRw, i ∈ {f, r} or {1, 2, 3, 4}.

The steer-angle constraint is based on the achievable wheel-
steer angle for a standard passenger vehicle, and the torque
constraints are based on the maximum attainable longitudinal
forces. In reality the torque limits depend on several factors,
such as transmission ratios and vehicle speed. Moreover, it
is typically possible to generate much larger brake torques
than acceleration torques. These factors are neglected here,
but is not a restriction for the considered scenario (Fig. 4).

For the high-level optimization problem (7), κ1 = 1 and
κ2 = 15. The sampling period is Ts,h = 0.4 s. The look-
ahead in this example is between 10–20 m, resulting in
0.5–1 m between the dicretization points for the high-level
control problem. For the low-level MPCs, the prediction
horizons are Hl = 5 samples and Ts,l = 0.04 s. The choice
for when to terminate the NMPC is decided based on
estimations of how long execution time the LMPC needs to
converge. With the settings used here, the LMPC typically
converges within 10 ms (15–20 iterations). Thus, when the
NMPC has been executing more than approximately 30 ms
without converging, the LMPC is turned on. In the actual
implementation, however, to facilitate reproducibility the
number of iterations are used as the termination criterion.

For comparison, we also show results from a setup where
an LMPC is responsible for allocating control inputs. The
LMPC uses Ts,l = 0.01 s, corresponding to its average
computation time. The same controller parameters are used
in both LMPC and NMPC, but the tuning is custom-tailored
to the LMPC to give a good tradeoff between tracking and
control aggressiveness. The weights Q and R are

Q = diag([50, 50, 30, 10, 10, 50]),

R = diag([1, 10−5, 10−5, 10−5, 10−5]),

where diag(·) is the diagonal matrix. The outer path con-
straint is modeled as a circle for the considered segment in
the MPC. The inner path constraint is neglected, because it
will never be active in the considered scenario. The LMPC
can therefore be posed as a second-order cone program
without imposing approximations on the path (13c).

A. Results

The control signals are shown in Fig. 4. The combined
NMPC/LMPC gives more aggressive steer angle than LMPC,
but the torques do not differ much. An interpretation is that
the LMPC overestimates the available lateral tire force, and
therefore does not turn as aggressively. Fig. 5 displays the
position references and actual positions. The NMPC/LMPC
results in much better position tracking. Fig. 6 contains some
of the states that are often connected to vehicle stability, and
these are followed closely for most of the maneuver. There
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Fig. 4. Control inputs as computed from the low-level control architecture
(black) and when using LMPC only (green). Using linearization seems to
overestimate the available tire forces, especially the lateral forces (the steer
angle is smaller for the LMPC). The same tuning has been used for both
setups, and can be considered conservative.
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Fig. 5. Position references (red) from the high-level optimizer and actual
positions (black). The results for LMPC only are black dashed. Clearly,
using NMPC improves tracking performance. The mid-line segment is
shown in blue dotted, and the road constraints are shown in blue dashed.

are three convergence failures in the NMPC out of the 77
optimizations for this particular scenario, see Fig. 7.

VI. CONCLUSION

This paper presented a hierarchical approach to optimal
motion planning for vehicles. It uses a nonlinear vehicle
model with tire modeling in the optimization problem at
the high level, which provides for better coupling with the
low-layer control-input allocator, especially for aggressive
maneuvering. We designed a low-level control structure that
uses an NMPC for allocating the torques to the wheels, in-
corporating a nonlinear double-track model with suspension
dynamics as well as rotations in space. We combined this
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Fig. 7. The figure shows when the NMPC and LMPC are active. The
NMPC converges before the computation-time limit in 74 out of the 77
optimizations.

with LMPC, to be used in those cases when the NMPC fails
to find a solution within a prescribed time limit. Results
showed that viable computation times are achieved, even
when using a general framework for implementation. We
compared with only using an LMPC for allocating controls.
Despite that the tuning was custom-tailored to the LMPC
and the higher sampling rate in the LMPC, the NMPC gave
a clear performance increase.
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[25] A. Wächter and L. T. Biegler, “On the implementation of a primal-
dual interior point filter line search algorithm for large-scale nonlinear
programming,” Mathematical Programming, vol. 106, no. 1, pp. 25–
57, 2006.

[26] HSL, “A collection of Fortran codes for large scale scientific compu-
tation,” http://www.hsl.rl.ac.uk, 2014.
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