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Symbolic Transformations of Dynamic Optimization Problems
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Abstract

Dynamic optimization problems involving differen-
tial-algebraic equation (DAE) systems are tradition-
ally solved while retaining the semi-explicit or implicit
form of the DAE. We instead consider symbolically
transforming the DAE into an ordinary differential
equation (ODE) before solving the optimization prob-
lem using a collocation method. We present a method
for achieving this, which handles DAE-constrained
optimization problems. The method is based on tech-
niques commonly used in Modelica tools for simula-
tion of DAE systems.

The method is evaluated on two industrially rele-
vant benchmark problems. The first is about vehicle-
trajectory generation and the second involves startup
of power plants. The problems are solved using both
the DAE formulation and the ODE formulation and
the performance of the two approaches is compared.
The ODE formulation is shown to have roughly three
times shorter execution time. We also discuss benefits
and drawbacks of the two approaches.

Keywords: dynamic optimization, symbolic trans-

formations, causalization, collocation

1 Introduction

Industrial usage of optimization of large-scale dy-
namic systems has increased during the last decades.
Dynamic optimization problems occur in many dif-
ferent fields and applications, and include parameter
estimation and optimal control. Applications of opti-
mal control include minimization of material and en-
ergy consumption during set-point transitions in power
plants [1] and chemical processes [2], minimizing du-
ration of vehicle maneuvers [3], and trajectory opti-
mization in robotics [4].

The applications of optimal control are diverse and
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occur in both online and offline settings. Online opti-
mal control is usually done in the form of Model Pre-
dictive Control (MPC). Offline applications include
finding optimal trajectories, which can be used ei-
ther as a reference during manual control or as nom-
inal trajectories combined with online feedback han-
dling deviations due to model uncertainty and distur-
bances. Another offline application is the identifica-
tion of system bottlenecks, for example by analyzing
adjoint variables.

This paper considers models described by differen-
tial-algebraic equation (DAE) systems, and investi-
gates the benefits of applying symbolic transforma-
tions to the DAE before applying numerical optimiza-
tion methods. The DAE is transformed into an ordi-
nary differential equation (ODE). This will often lead
to a drastically reduced number of system variables, as
the algebraic variables are eliminated from the equa-
tion system. On the other hand, the transformed equa-
tions will also be denser and consist of more expres-
sions of higher complexity. This transformation is
common practice in simulation of DAEs in Modelica
tools [5], but is traditionally not done in the context
of DAE-constrained optimization, where the DAE is
instead usually retained in its natural semi-explicit or
implicit form.

The technique is evaluated in two case studies. The
first case concerns generation of time-optimal trajec-
tories for road vehicles. The second case concerns op-
timal startup of combined-cycle power plants.

The main contributions of this paper are the demon-
stration of how a method commonly used in Model-
ica tools can be applied to dynamic optimization prob-
lems and experiments indicating the potential of the
method. While similar methods have been used before
[6, 7], this paper studies the properties of the approach
when compared to the more traditional approach that
discretizes the full DAE.

The paper outline is as follows. Section 2 presents
the background of transforming low-index DAEs into
ODEs by causalization, the formulation of dynamic



optimization problems and their solution, and the tools
used in the implemented framework. Section 3 dis-
cusses how the DAE causalization technique is used
to transform DAE-constrained optimization problems
into ODE-constrained problems. Section 4 explains
the case studies used to evaluate the method and Sec-
tion 5 presents the corresponding results. Finally, Sec-
tion 6 concludes the paper and discusses future work.

2 Background

We present the standard approach of transforming a
DAE into an ODE by causalization. We then discuss
the formulation of general optimization problems in-
volving dynamic systems and commons methods for
solving these. We finally present the tools used to im-
plement the methods presented in this paper.

2.1 Causalization of DAEs

In the first step of the compilation process in a Model-
ica tool chain, a compiler front-end transforms Model-
ica source code into a flat representation, consisting es-
sentially of lists of variables, functions, equations, and
algorithms. Based on this model representation, sym-
bolic operations such as alias elimination and index
reduction are applied to reduce the size of the model
and to ensure that the resulting DAE is of most index
1. In this section, we outline the steps needed to trans-
form an implict DAE into an ODE, which is one of the
key elements of the method investigated in this paper.
We introduce the following notation:

t time
t f final time
x state (differentiated variables)
ẋ time derivative of state
y algebraic variables
u inputs
p parameters without predetermined values

The initial time is assumed to be 0 and the final time
t f may or may not be predetermined, but is always
finite. The variables x, ẋ,y, and u depend on time. This
dependence will be implicit in certain expressions
throughout the paper.

We consider nonlinear nonhybrid index-1 DAE sys-
tems of the form

F(t, ẋ(t),x(t),y(t),u(t), p) = 0, t ∈ [0, t f ]. (1)

From an integrator perspective, we introduce

z := (ẋ,y), v := (t,x,u, p)

to denote the unknown and known variables of the
equation system, respectively. By reordering the ar-
guments of F , the DAE can be written

F(z,v) = 0. (2)

The conceptual idea of DAE causalization commonly
used in Modelica tools is to compute the inverse rela-
tionship of F:

z = g(v). (3)

The DAE can then be written as the ODE

ẋ =F(t,x,u, p), (4)

where the algebraic variables are internal in the right-
hand side function. In general, there is no closed ex-
pression for the function F̄ . Rather, iterative tech-
niques, such as Newton’s method, are employed to
solve algebraic loops required for computation of z.

Modelica models are typically of large scale but
sparse in the sense that each model equation contains
references only to a small number of equations. Graph
algorithms can be employed to exploit this structure.
Two commonly used algorithms that are used for this
purpose are matching algorithms, such as the Hopcroft
Karp algorithm, and Tarjan’s algorithm [8] for com-
puting strong components. The result of Tarjan’s algo-
rithm is used to permute the variables and equations of
the DAE into Block Lower Triangular (BLT) form.

To demonstrate this procedure, let us consider an
exemplary DAE system with five equations and five
unknowns, where the DAE system is given by

F1(z1,z5,v) = 0,

F2(z3,v) = 0,

F3(z1,z2,z3,z4,v) = 0,

F4(z1,z3,z5,v) = 0,

F5(z2,z5,v) = 0.

(5)

Note that the variable v = (t,x,u, p) is known and
needs not be considered in the following analysis. The
dependence on the z variables can be shown in the fol-
lowing incidence matrix:

z1 z2 z3 z4 z5

F1 ∗ 0 0 0 ∗
F2 0 0 ∗ 0 0
F3 ∗ ∗ ∗ ∗ 0
F4 ∗ 0 ∗ 0 ∗
F5 0 ∗ 0 0 ∗

(6)



An asterisk in (6) in row i and column j denotes that
the residual function Fi contains a reference to the vari-
able z j. Application of the BLT procedure yields the
following permuted incidence matrix:

z3 z1 z5 z2 z4

F2 ∗ 0 0 0 0
F4 ∗ ∗ ∗ 0 0
F1 0 ∗ ∗ 0 0
F5 0 0 ∗ ∗ 0
F3 ∗ ∗ 0 ∗ ∗

(7)

By reordering and grouping the variables according to

z̄1 := z3,

z̄2 := (z1,z5),

z̄3 := z2,

z̄4 := z4,

the DAE (5) can be written

G1(z̄1,v) = 0, (8a)

G2(z̄1, z̄2,v) = 0, (8b)

G3(z̄2, z̄3,v) = 0, (8c)

G4(z̄1, z̄2, z̄3, z̄4,v) = 0, (8d)

where the functions Gi are constructed from the func-
tions Fj. For demonstrative purposes, we assume that
(8a) and (8d) can be solved explicitly for z̄1 and z̄2 re-
spectively, and that (8b) and (8c) can not be solved
analogously. The DAE can then be represented by the
following sequence of assignment statements and im-
plicit equation systems:

z̄1← g1(v), (9a)

G2(z̄1, z̄2,v) = 0, (9b)

G3(z̄2, z̄3,v) = 0, (9c)

z̄4← g4(z̄1, z̄2, z̄3,v). (9d)

where (9b) and (9c) require iterative methods to be
solved. It is typical for Modelica models to contain
only a small number of implicit equation systems that
require iteration and a large number of trivial, for ex-
ample linear, equations that can be solved symboli-
cally.

For a general DAE, the BLT procedure results in a
sequence of equation systems of the form

G1(z̄1,v) = 0,
...

Gi(z̄1, ..., z̄i,v) = 0,
...

Gb(z̄1, ..., z̄b,v) = 0,

(10)

where b is the number of blocks in the BLT form and
the unknown of each equation is z̄i. Some equations
can be solved explicitly by symbolic manipulation,
while the rest needs to be solved iteratively.

Given values of the known variables in v, the se-
quence of solved and unsolved blocks (10) allows for
the computation of the corresponding state derivative
and algebraic vectors contained in z. Accordingly, the
DAE has been causalized into an ODE of the form (4).

We consider the class of DAEs that can be trans-
formed into an ODE where no implicit systems of
equations need to be solved. This lets us redefine each
unknown z̄i to be a single scalar variable and compute
it explicitly as

z̄i = gi(z̄1, ..., z̄i−1,v), i = 1, . . . ,nz, (11)

where nz is the total number of states and algebraic
variables. While this class of systems is limited, the
proposed method is trivially extendible to systems
containing implicit systems by simply exposing the
implicit systems to the numerical optimization method
used in the end, in which case some algebraic equa-
tions will remain in the transformed DAE.

2.2 Dynamic optimization

Consider the DAE-constrained optimization problem:

minimize φ(t f , ẋ(t f ),x(t f ),y(t f ),u(t f ), p)

+

∫ t f

0
L(t, ẋ(t),x(t),y(t),u(t), p)dt, (12a)

w.r.t. t f , ẋ,x,y,u, p,

subject to F(t, ẋ,x,y,u, p) = 0, (12b)

F0(ẋ(0),x(0),y(0), p) = 0, (12c)

ẋL ≤ ẋ(t)≤ ẋU , (12d)

xL ≤ x(t) ≤ xU , (12e)

yL ≤ y(t) ≤ yU , (12f)

uL ≤ u(t)≤ uU , (12g)

pL ≤ p≤ pU , (12h)

he(t, ẋ,x,y,u, p) = 0, (12i)

hi(t, ẋ,x,y,u, p) ≤ 0, (12j)

He(ẋ(t f ),x(t f ),y(t f ),u(t f ), p) = 0, (12k)

Hi(ẋ(t f ),x(t f ),y(t f ),u(t f ), p)≤ 0, (12l)

∀t ∈ [0, t f ].

The objective (12a) consists of the terminal cost φ and
the integral of L, which is the accumulated cost. Con-
straint (12b) is the DAE describing the system dynam-



ics. Constraint (12c) enforces the DAE initial condi-
tions, which are often given on the form x(0) = x0.
Constraints (12d)–(12h) are variable bounds. Con-
straints (12i) and (12j) are path constraints on equal-
ity and inequality form, which can be seen as gen-
eralizations of the variable bounds, where the func-
tions he and hi define the boundary. The variable
bounds are separated from the path constraints because
some solvers allow for more efficient treatment of the
bounds. Constraints (12k) and (12l) are terminal con-
straints on equality and inequality form. These are
similar to the path constraints, but instead of being en-
forced at all points in time they are only enforced at
t f .

There are many approaches to solving dynamic op-
timization problems of the form (12). Until the 1970s,
problems were solved using dynamic programming or
Pontryagin’s maximum principle. These approaches
are ill-suited for large-scale problems and problems
with inequality constraints. Modern techniques often
involve finding an approximate solution to the infinite-
dimensional optimization problem by transcribing it
into a finite-dimensional nonlinear program (NLP).
These are called direct methods. The main difference
among direct methods is how to handle the dynamic
equations of the system. This paper employs direct lo-
cal collocation. Another common approach is direct
multiple shooting. See [9, 10] for overviews on direct
local collocation and other direct methods.

The main idea of direct local collocation is to first
divide the time horizon into a certain number of el-
ements. Then within each element, the constraints
(12b) and (12d)–(12j) are enforced at only a finite
number of points, called collocation points, instead
of at every point in the element. There are different
schemes for choosing the placement of the collocation
points with different numerical properties. The results
in Section 5 have been generated using Radau points.

The constraints resulting from the collocation pro-
cedure are considered as interpolation conditions on
the time-dependent variables x, y, and u. Thus the
sought approximate optimal trajectories to (12) be-
come piecewise-polynomial, where the degrees of the
polynomials are determined by the number of collo-
cation points. The state derivative ẋ is obtained by
differentiating the corresponding polynomials for the
state x. The integral term in the objective (12a) is ap-
proximated as a sum using quadrature. See [11] for a
complete description of the used collocation method,
and also possible generalizations of (12). Once the
discretization procedure is completed, the infinite-

dimensional dynamic optimization problem (12) has
been transformed into an NLP of the following gen-
eral form:

minimize f̃ (x̃), (13a)

with respect to x̃ ∈ R
nx̃ ,

subject to x̃L ≤ x̃≤ x̃U , (13b)

g̃(x̃) = 0, (13c)

h̃(x̃)≤ 0. (13d)

The number of discretization points is affected both by
the number of elements and the number of collocation
points within each element. An increase in either of
these directly corresponds to an increase in the number
of variables and constraints in the NLP (13).

In this work, (13) is solved using a gradient-based
method. This requires the NLP functions f , g, and h

to be twice continuously differentiable with respect to
all of the NLP variables x̃. In particular, this require-
ment implies differentiability of the DAE-residual F ,
which excludes the possibility of solving optimization
problems involving hybrid systems.

When using direct methods for dynamic optimiza-
tion problems involving DAEs, the time discretization
method is typically applied to the DAE in its natural
semi-explicit or implicit form [9, 10]. In this paper,
we instead consider causalizing the DAE as described
in Section 2.1 and then eliminating the algebraic vari-
ables in the optimization problem as described in Sec-
tion 3. The result is an ODE-constrained optimization
problem of the following form:

minimize φ(t f , ẋ(t f ),x(t f ),u(t f ), p)

+

∫ t f

0
L(t, ẋ(t),x(t),u(t), p)dt, (14a)

with respect to t f , ẋ,x,u, p,

subject to ẋ =F(t,x,u, p) = 0, (14b)

F0(ẋ(0),x(0), p) = 0, (14c)

ẋL ≤ ẋ(t)≤ ẋU , (14d)

xL ≤ x(t)≤ xU , (14e)

uL ≤ u(t)≤ uU , (14f)

pL ≤ p≤ pU , (14g)

h̄e(t, ẋ,x,u, p) = 0, (14h)

h̄i(t, ẋ,x,u, p) ≤ 0, (14i)

He(ẋ(t f ),x(t f ),u(t f ), p) = 0, (14j)

Hi(ẋ(t f ),x(t f ),u(t f ), p) ≤ 0, (14k)

∀t ∈ [0, t f ].

The objective and constraint functions occurring in



problem (14) are defined analogously to those occur-
ring in problem (12).

This paper investigates the possibilities of trans-
forming problems on the form of (12) to the form of
(14) and the impact this has on the solution of the
NLPs resulting from collocation methods.

2.3 Tools

The proposed method has been implemented using the
open-source platform JModelica.org [12]. JModel-
ica.org is a tool targeting simulation and optimization
of large-scale dynamic systems. The systems are de-
scribed using Modelica, and the optimization is for-
mulated with the Modelica extension Optimica [13].

The framework uses IPOPT [14] to solve the NLP
(13). IPOPT uses a sparse primal-dual interior point
method to find local optima to large-scale NLPs. To
this end, it uses first- and second-order derivatives of
the NLP functions f , g, and h in problem (13). The
implemented framework uses CasADi [15] (Computer
algebra system with Automatic Differentaion) to ob-
tain these derivatives, and also to perform the transfor-
mation from (12) to (14). CasADi is a low-level tool
for efficiently computing derivatives using algorithmic
differentiation (AD) while preserving sparsity, and is
tailored for dynamic optimization.

3 Proposed method

This section presents the proposed method for trans-
forming the DAE-constrained optimization problem
(12) into an ODE-constrained optimization problem
of the form (14). We then compare the properties of
the untransformed problem to those of the transformed
problem.

3.1 Problem transformation

The first step is the causalization of the DAE in (12b),
as described in Section 2.1. Under the assumption that
all equations in (10) can be solved explicitly by sym-
bolic manipulations, this yields the system of equa-
tions (compare with (11) )

z̄i = gi(z̄1, z̄2, . . . , z̄i−1,v), i = 1, . . . ,nz, (15)

where z̄i is a state derivative or an algebraic variable.
The explicit solution for z̄1, z̄2, . . . , z̄i−1 is then inlined
into (15). The resulting equations are described by the

following recursive relations:

ḡ1(v) := g1(v), (16a)

ḡi(v) := gi(ḡ1(v), ḡ2(v), . . . , ḡi−1(v),v), (16b)

z̄i = ḡi(v), i = 1, . . . ,nz. (16c)

By expanding the variables v and z and separating the
state derivatives from the algebraic variables in (16c),
the equations can be written in the form

ẋ =F(t,x,u, p), (17a)

y = k(t,x,u, p), (17b)

where each scalar component of F and k is equal to ḡi

for some i. Thus (17a) gives rise to the constraint in
(14b). Equation (17b) is used to eliminate the alge-
braic variables in the objective function and remaining
constraints of (12). To demonstrate, the function hi in
(12j) is transformed according to

hi(t, ẋ(t),x(t),y(t),u(t), p)

= hi(t, ẋ(t),x(t),k(t,x(t),u(t), p),u(t), p)

=: h̄i(t, ẋ(t),x(t),u(t), p).

Constraint (12f) is not possible to transform in this
manner, since the algebraic variables have been elim-
inated. This is handled by transforming (12f) into
its more general form (12j), which has consequences
discussed in Section 3.2, and then transforming it as
demonstrated above. By eliminating the algebraic
variables in the objective and remaining constraints in
the same manner, the optimization problem (12) has
been transformed into the equivalent problem (14).

3.2 Method properties

A significant benefit of transforming the original DAE-
constrained problem into an ODE-constrained prob-
lem is the reduction of system variables and equations,
which directly leads to a smaller NLP after applying a
collocation method. However, while the constraints
will be fewer in number their expressions will be more
complex, which may lead to expression graphs that in
the end require more memory to store and more time
to evaluate than the expression graphs in the original
problem. On the other hand, component-based physi-
cal modeling will often lead to a great amount of trivial
algebraic equations that can be solved explicitly with-
out increasing expression complexity. It thus stands to
reason that the proposed method is well suited to be
used in a Modelica framework.

The elimination of algebraic variables will make
the incidence matrix for the dynamic equation system



denser. However, the sparsity in the NLP does not
mainly stem from the structure of the dynamic equa-
tions, but rather from the largely decoupled depen-
dency of NLP variables representing system variable
values in different elements. Hence in many cases, the
loss of sparsity in the DAE will not have a significant
impact on the solution of the NLP constructed by col-
location methods.

When employing interior-point methods to solve
NLPs originating from dynamic optimization prob-
lems, it is often beneficial to introduce artificial bounds
on system variables to prevent the solver from leaving
the domains of the involved functions. When the al-
gebraic variables are eliminated from the problem, it
is no longer possible to use these artificial bounds on
algebraic variables. This can lead to difficulties in ob-
taining convergence in the numerical solver.

Experience has shown that seemingly trivial modifi-
cations in the original problem formulation can lead to
drastically different convergence behavior in the NLP
solver. By explicitly solving these trivial equations by
performing the proposed transformation, increased ro-
bustness to small model modifications is attained.

The inlining step performed to obtain (16c) gives
rise to a great amount of expression duplication in the
expression graph for the right-hand side of (16b) be-
cause of the recursive nature of the equations. This can
be avoided by storing the expressions used to evaluate
ḡi in a function and calling these functions when eval-
uating gi. This paper does, however, not consider this
proposition any further.

4 Benchmark problems

Two different optimal-control cases are presented for
evaluation of the proposed transformation method: ve-
hicle trajectory generation and startup of a combined-
cycle power plant. The vehicle models are imple-
mented in a flat manner, with condensed and complex
equations, whereas the power plant model is imple-
mented in an object-oriented fashion with a large num-
ber of simple equations.

4.1 Vehicle trajectory generation

The first considered case is a minimum-time problem,
where we seek the time-optimal maneuver for an au-
tomobile in a hairpin turn, see Figure 1. A methodol-
ogy for solving this kind of problems has previously
been investigated in [3, 16, 17]. We use two different
chassis models in the evaluation. The first is a single-
track model [18], where the two wheels on each axle

are lumped together. The model has three degrees of
freedom: two translational and one rotational.

Figure 1: An example of a hairpin turn. Photo courtesy
of RallySportLive.

The second model is a double-track model [19] with
five degrees of freedom: two translational and three
rotational. The suspension dynamics model is a rota-
tional spring-damper system, and longitudinal and lat-
eral load transfer is included.

The lateral slip α and the longitudinal slip λ are
defined as in [20]:

α̇i

σ

vx,i
+αi :=−arctan

(

vy,i

vx,i

)

, (18)

λi :=
rωi− vx,i

vx,i
, (19)

where σ is the relaxation length, r is the wheel radius,
ωi is the wheel angular velocity for wheel i, and vy,i

and vx,i are the lateral and longitudinal wheel veloci-
ties for wheel i with respect to an inertial system, ex-
pressed in the coordinate system of the wheel.

The tire forces Fx0 and Fy0 for the longitudinal and
lateral directions under pure slip conditions are com-
puted with the Magic formula [20], given by

Fx0,i = µxFz,i sin
(

Cx,i arctan
(

Bx,iλi

−Ex,i(Bx,iλi− arctan Bx,iλi)
)

)

, (20)

Fy0,i = µyFz,i sin
(

Cy,i arctan
(

By,iαi

−Ey,i(By,iαi− arctan By,iαi)
)

)

, (21)

for each wheel i = 1, . . . ,4. In (20)–(21), µx and µy are
friction coefficients and B, C, and E are parameters.

We have chosen two different approaches for mod-
eling the tire forces under combined slip constraint,
both of which are described next. A straightforward
model of combined slip is based on the friction ellipse,
and is described by the elliptical relation

Fy,i = Fy0,i

√

1−
(

Fx0,i

µx,iFz,i

)2

, (22)



where Fx0 is used as an input variable [21]. However,
here the driving/braking torques are used as input. The
main limitation with this model is that the longitudinal
force does not explicitly depend on the lateral slip.

Another approach to tire modeling, which is in-
spired by the Magic Formula, is to scale the nomi-
nal forces (20)–(21) with weighting functions Gα ,i and
Gλ ,i, which depend on α and λ [20]. The relations in
the longitudinal direction are

Hα ,i = B1,i cos(arctan(B2,iλi)), (23)

Gα ,i = cos(Cα ,i arctan(Hα ,iαi)), (24)

Fx,i = Fx0,iGα ,i, (25)

and the corresponding relations in the lateral direction
are given by

Hλ ,i = B1,i cos(arctan(B2,iαi)), (26)

Gλ ,i = cos(Cλ ,i arctan(Hλ ,iλi)), (27)

Fy,i = Fy0,iGλ ,i. (28)

To summarize, four different model configurations
were investigated for the vehicle trajectory generation,
all having three control inputs. The combination of
single-track chassis model and friction ellipse for tire
modeling (ST-FE) has 13 states and 13 algebraic vari-
ables. The corresponding numbers for the combina-
tion of single-track chassis model and weighting func-
tions (ST-WF) are 13 states and 23 algebraic variables.
Considering the double-track model with friction el-
lipse model (DT-FE), it has 21 states and 36 algebraic
variables. For the combination of double-track model
and weighting functions (DT-WF), the corresponding
numbers are 21 states and 56 algebraic variables.

For each model configuration, the time-optimal tra-
jectories in the hairpin turn are to be determined. An
initialization procedure based on a driver model pre-
sented in [18] is used. The optimization problem is
formulated over the time horizon t ∈ [0, t f ] and the ob-
jective of the optimization is to minimize the final time
t f of the maneuver. Accordingly, the dynamic opti-
mization problem to be solved can be written as:

minimize t f ,

subject to Ti,min ≤ Ti ≤ Ti,max, i ∈ {1,2,3,4},

|Ṫi| ≤ Ṫi,max, i ∈ { f ,r},

|δ | ≤ δmax, |δ̇ | ≤ δ̇max

x(0) = x0,

x(t f ) = xt f
, y(t f ) = yt f

,

Γ(Xp,Yp)≤ 0,

F(ẋ,x,y,u) = 0,

(29)

where x0 are the initial conditions for the state vari-
ables, xt f

and yt f
are the desired values at the final time

t = t f , and (Xp,Yp) is the position of the center-of-
gravity of the vehicle. The wheel driving and brak-
ing torques T =

(

Tf Tr

)

of the front and rear wheel
axles, as well as the steer angle δ of the front wheels
are considered as inputs. The inputs are equally dis-
tributed between the wheels at the respective axle, that
is, T1 = T2 = Tf/2 and T3 = T4 = Tr/2 for the double-
track chassis model. In practice, the terminal con-
straints are only applied to a subset of the model vari-
ables. Further, Γ(Xp,Yp) is a mathematical description
of the road constraint for the center-of-gravity of the
vehicle for the maneuver. These constraints in the ge-
ometric two-dimensional XY -plane are formulated as
super-ellipses.

Figure 2 shows the geometric path and the time-
optimal control inputs obtained for ST-WF. For more
details about the solution method and the model pa-
rameters used, see [3, 17].
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Figure 2: The geometric path and control inputs are
shown for the time-optimal hairpin maneuver when us-
ing a single-track model with the weighting functions.
The black bars in the left plot indicate the direction of
the car every second.

4.2 Combined-cycle power plant startup

The second considered case concerns optimal startup
of combined-cycle power plants (CCPP). The model
used is described in [1]. The model has 9 states, 128
algebraic variables, and 1 control variable. The task
is to minimize the time required to perform a warm
startup of the power plant. This problem has become
highly industrially relevant during the last years, due to
an increasing need to improve power-generation flexi-
bility. The startup process is considered finished when



the normalized load input signal u to the steam turbine,
starting at 15 %, has reached 100 % and the evapora-
tor pressure p, which is a state with an initial value of
approximately 3.47 MPa, has reached 8.35 MPa.

In order to reduce the wear and tear on the steam tur-
bine, which is one of the most expensive parts of the
power plant, the thermal stress in the turbine σ , which
is an algebraic variable, may not exceed 260 MPa.
This is the main limiting factor in the startup process.
Another imposed constraint is that the derivative of the
load input signal u may not be negative and may not
exceed 0.1/60 s−1. Since these bounds are applied
to the derivative of the control variable, which is not
supported by the current framework, we introduce the
control variable u̇ and add the equation

du

dt
= u̇.

This converts the control variable u into a state, giv-
ing us a total of 10 states, and the control variable is
now instead u̇, on which we can impose the discussed
bounds. The model diagram is displayed in Figure 3.

Figure 3: Power plant model diagram

The objective function is the weighted square devi-
ation of the load input signal and the evaporator pres-
sure from their respectively desired values, given by

f (z) =

∫ t f

0

(

10−12 ·
(

p(t)−8.35 ·106)2
+

0.5 · (u(t)−1)2
)

dt.

The final time is chosen to be t f = 4000 s. The ob-
tained solution is displayed in Figure 4.

Figure 4: Optimal power plant startup

5 Results

The problems in the respective cases described in
Section 4 were solved with the implementation de-
scribed in Section 2.3. The solutions were obtained us-
ing JModelica.org revision [5625] and IPOPT version
3.11.3 with the linear solver MA57 [22]. The colloca-
tion discretization was done using 150 elements with
3 collocation points for each vehicle maneuver prob-
lem and 40 elements with 4 collocation points for the
power plant startup problem. The solution procedure
consists of the following three steps:

1. Model compilation, where the compiler of JMod-
elica.org generates XML code that describes the
system equations and optimization formulation.
This code is then parsed by CasADi, which then
creates symbolic representations of all the prob-
lem expressions.

2. Offline NLP setup, where the symbolic expres-
sions created by CasADi in the previous step are
used to construct the corresponding NLP by col-
location. First- and second-order derivatives are
computed by algorithmic differentiation while
preserving sparsity.

3. Online NLP solution, where IPOPT solves the
NLP constructed in the previous step. This is
the only part of the solution procedure that would
need to be performed in an online setting, such as
MPC.

All problems were solved both with the model dy-
namics on DAE form and transformed to ODE form.



If the DAE is transformed into an ODE, the transfor-
mation takes place in the first step and is performed by
CasADi. The respectively obtained solutions for the
DAE and ODE formulations are the same up to toler-
ances.

For comparison of the two different strategies to
solving the optimization problems, the time spent in
step 2 and 3 of the solution procedure were measured
separately for each of the optimization runs. The num-
ber of iterations required by IPOPT and the number
of NLP variables have also been recorded. Table 1
displays the resulting numbers, where times are pre-
sented in seconds. The time spent in step 1 of the so-
lution procedure is between 1 and 2 seconds for all
of the problems and is largely unaffected by whether
the ODE transformation is performed. These times are
thus not presented.

Table 1: Solution times [s] for the considered model
configurations with DAE and ODE form in the optimal
control problem, respectively. In addition, the number
of iterations required to solve the NLP and the total
number of NLP variables are shown.

Problem Offline Online Iter NLP

ST-FE
DAE 3.6 10.6 112 20880
ODE 3.5 5.0 83 15017

ST–WF
DAE 4.2 17.6 102 25390
ODE 3.7 5.1 77 15017

DT–FE
DAE 9.0 152.2 303 39661
ODE 10.5 46.0 151 23425

DT–WF
DAE 9.1 229.6 364 48681
ODE 10.8 116.4 322 23425

CCPP
DAE 3.5 5.4 109 23574
ODE 1.8 1.4 79 3771

There is no clear trend for the offline execution time
in the four vehicle problems, whereas it is halved for
the power plant. Both the number of iterations and
the online execution times are shorter for the trans-
formed problem in all compared scenarios. For the
power plant, the difference in online execution time is
approximately a factor of 4, whereas the vehicle exam-
ples exhibit a factor of between 2 and 3. This indicates
that models containing a large amount of simple equa-
tions gain more from the proposed method, for reasons
discussed in Section 3.2, but also that models with
mainly complex algebraic equations gain speedups in
the online NLP solution from the transformation.

6 Conclusions

We have presented a method for symbolically trans-
forming a broad class of DAE-constrained optimiza-
tion problem into an ODE-constrained optimization
problem. The approach has been evaluated by measur-
ing execution times for benchmark problems involv-
ing time-optimal trajectory generation for vehicles and
startup of combined-cycle power plants.

The considered problems have been solved with
both a traditional approach where the DAE is left
intact in an implicit form, and with the presented
method where the DAE system is symbolically trans-
formed into an ODE before applying discretization
techniques. Significant speedups have been observed
in the solution of the NLPs resulting from a direct col-
location discretization method.

While the method has exhibited great performance
improvements, potential drawbacks have also been
discussed. The most significant drawback is that while
the dynamic equation system becomes smaller in size,
the resulting expressions are often of much higher
complexity.

Future work is the resolution of some of the dis-
cussed drawbacks of the approach, by only eliminat-
ing a suitable subset of the algebraic variables. A pos-
sible improvement in the opposite direction is to em-
ploy tearing techniques, which are often used for sim-
ulation of DAEs, to further reduce the number of vari-
ables exposed to the collocation method and the NLP
solver. The interaction between the proposed method
and other types of NLP solution methods, such as ac-
tive set methods, is also worth investigating.
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