
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Dynamic Parametric Sensitivity Optimization Using Simultaneous Discretization in
JModelica.org

Magnusson, Fredrik; Palmer, Kyle; Han, Lu; Bollas, George

Published in:
2015 International Conference on Complex Systems Engineering

DOI:
10.1109/ComplexSys.2015.7385980

2015

Document Version:
Peer reviewed version (aka post-print)

Link to publication

Citation for published version (APA):
Magnusson, F., Palmer, K., Han, L., & Bollas, G. (2015). Dynamic Parametric Sensitivity Optimization Using
Simultaneous Discretization in JModelica.org. In 2015 International Conference on Complex Systems
Engineering (pp. 37-42). IEEE - Institute of Electrical and Electronics Engineers Inc..
https://doi.org/10.1109/ComplexSys.2015.7385980

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1109/ComplexSys.2015.7385980
https://portal.research.lu.se/en/publications/a7675587-d305-40b8-8ae2-a13fc5353e8f
https://doi.org/10.1109/ComplexSys.2015.7385980


Dynamic Parametric Sensitivity Optimization Using
Simultaneous Discretization in JModelica.org

Fredrik Magnusson∗, Kyle Palmer†, Lu Han†, George Bollas†
∗Department of Automatic Control

Lund University, SE-221 00 Lund, Sweden
Email: fredrik.magnusson@control.lth.se

†Department of Chemical & Biomolecular Engineering
University of Connecticut, Storrs, 191 Auditorium Road, Unit 3222, Storrs, CT, 06269-3222, USA

Email: bollas@engr.uconn.edu

Abstract—Dynamic optimization problems involving paramet-
ric sensitivities, such as optimal experimental design, are typically
solved using shooting-based methods, while leveraging numerical
integrators with sensitivity computation capabilities. In this paper
we present how simultaneous discretization can be employed to
solve these problems, by augmenting the dynamic optimization
problems with forward sensitivity equations. We present an
implementation of this approach in the open-source, Modelica-
based tool JModelica.org, which addresses the need for solving
optimal experimental design problems in Modelica tools. The
implementation is demonstrated on a fed-batch reactor and a
plate-fin heat exchanger.

I. INTRODUCTION

Dynamic optimization problems (DOP) occur in many
different fields and contexts, including optimal control, param-
eter and state estimation, and design optimization. Another
class of DOPs is Optimal Experimental Design (OED) [1]–
[3], which is a model-based methodology for maximizing the
useful information that can be extracted from any experiment.
Experimental data are required to assess the applicability of
the model and to estimate the empirical parameters in order
to arrive at a model that is accurate and reliable. In a model-
based OED approach, the mathematical model is used to solve
a dynamic optimization problem for the experimental design.
This paper is focused on model-based OED for parameter
estimation, wherein the objective function is composed of the
sensitivities of the measurements with respect to unknown
parameters.

There are many approaches to numerically solving DOPs
[4], [5], which all involve the discretization of differential
equations in order to obtain a nonlinear program (NLP).
Most of these—such as control vector parametrization and
direct multiple shooting—utilize embedded numerical integra-
tors to treat the differential equations. The computation of
the parametric sensitivities in the optimization formulation
is then straightforward by relying on solvers with sensitivity
calculation capabilities. These are also the methods that are
typically used for OED [6]–[8], in order to reduce the size
of the resulting NLP. In this paper we explore the use of
simultaneous discretization approaches for DOPs involving
parametric sensitivities. These approaches fully discretize the
state and control variables and encode the discretized equa-
tions in the NLP. This eliminates the need for an embedded
numerical integrator, but on the other hand results in a very

large NLP. Also, for DOPs that involve parametric sensitivities,
numerical integrators can no longer be utilized for sensitivity
computations. We treat this by essentially transforming the
DOP that involves parametric sensitivities into one that does
not, by transforming the parametric sensitivities into state
variables using standard sensitivity analysis techniques. The
main advantages of simultaneous approaches is that while the
resulting NLP is large, it is also sparse and has less severe
nonlinearities. They also allow for more efficient treatment of
path constraints.

Modelica [9] is an object-oriented language for the model-
ing of heterogeneous physical systems. It is based on a declar-
ative equation-based paradigm designed for both textual and
graphical modeling, whose underlying mathematical formalism
is that of DAE systems. JModelica.org [10] is a Modelica tool
for model-based analysis of large-scale dynamic systems. The
support for solving OED problems is close to nonexistent in
today’s Modelica tools, which this paper addresses.

The contribution of this paper is twofold. The first is the
exploration of employing simultaneous, rather than sequential,
discretization methods for the numerical solution of OED
problems. The second contribution is an open-source toolchain
for OED using Modelica. Recent and related work in these
directions is [11] and [12].

The outline of the paper is as follows. In Section II we
present the theoretical foundations of the proposed framework
and also describe the relevant modules of JModelica.org.
In Section III we discuss how the theory is used to re-
alize a framework for solving DOPs involving parametric
sensitivities—in particular OED—and its implementation in
JModelica.org. In Section IV we demonstrate the framework
on two OED examples and compare the performance with
other frameworks. In Section V we discuss the framework
properties and possible extensions.

II. BACKGROUND

In this section we present the theoretical background of
dynamic optimization, OED, and sensitivity analysis, which is
needed to realize the proposed framework.



A. Dynamic Optimization

The mathematical foundation of Modelica is that of implicit
differential-algebraic equations (DAE) in the form

F (ẋ(t),x(t),w(t),u(t),p,θ) = 0, (1)

where t ∈ [t0, tf ] is the time, x is the differential variables, w
is the algebraic variables, u is the system inputs, p is the free
parameters, and θ is the parameters for which sensitivities are
needed. Note that a model parameter can be included in both
p and θ. In this work we restrict ourselves to DAEs whose
residual function F is sufficiently smooth, which in particular
excludes hybrid DAEs. We also assume the DAE to be of most
index one, which however is without great loss of generality,
as the JModelica.org compiler will transform the DAE into
index one using the method of dummy derivatives [13]. The
differential variable x thus corresponds to the system state. We
will treat initial conditions on the general implicit form

F0(ẋ(t0),x(t0),w(t0),u(t0),p,θ) = 0, (2)

although they are most commonly available on the explicit
form

x(t0) = x0(p,θ), (3)

possibly depending on parameters.

A general formulation of a DOP is

min. f(x(t1),w(t1), . . . ,x(tnm),w(tnm)), (4a)
w.r.t. x : [t0, tf ]→ Rnx , w : [t0, tf ]→ Rnw ,

u : [t0, tf ]→ Rnu , p ∈ Rnp ,
s.t. F (ẋ(t),x(t),w(t),u(t),p,θ) = 0, (4b)

F0(ẋ(t0),x(t0),w(t0),u(t0),p,θ) = 0, (4c)
g(ẋ(t),x(t),w(t),u(t),p,θ) ≤ 0, (4d)
∀t ∈ [t0, tf ],

where (4a) is the objective, (4b) are the differential equations
governing the system dynamics and (4c) are the corresponding
initial conditions, and (4d) are general inequality constraints,
such as lower and upper bounds on state or input variables. A
more typical objective function than (4a) is a Bolza functional
[14, Section 3.3]. However, (4a), which can be seen as a
generalized Mayer term [15], has been chosen due to its
compatibility with discrete measurements as is typically the
case in OED, where f is a scalar-valued function depending
on system variable values at discrete time points—typically
measurement points—ti ∈ [t0, tf ] and nm is the number of
such points.

B. Optimal Experiment Design

The purpose of OED is to maximize the information con-
tent of a set of experiments to facilitate parameter estimation.
In general, the experiment design space consists of the system
inputs u, initial state x0, measurement time points ti, and
experiment duration tf , giving us the general design vector

φ′ = [u,x0, ti, tf ]. (5)

Assuming state- and parameter-independent, zero-mean Gaus-
sian noise, the information is measured by the Fisher informa-
tion matrix

Hθ =

nm∑
i=1

nm∑
j=1

σi,jQ
T
i Qj , (6)

where σ is the experimental variance matrix and

Qi =


∇θyi(t1)
∇θyi(t2)

...
∇θyi(tnm)

 (7)

contains the parametric sensitivities of measured variable yi,
with respect to all uncertain parameters θ, at all measurement
points ti. In this paper we examine the case where only a single
experiment is performed and the measurement time points ti
and the duration tf are fixed a priori, giving us the simplified
design vector

φ = [u,x0]. (8)

Maximizing the Fisher information matrix is equivalent to min-
imizing its inverse, the variance-covariance matrix. By doing
so, the inference regions of the model parameters are decreased
and the parameter precision is improved. The objective of
OED is thus to maximize some scalar metric of Hθ or to
minimize some scalar metric of H−1θ . Three common measures
of the information are the D-criterion, which maximizes the
determinant of the Hθ, A-criterion, which minimizes the
trace of H−1θ , and E-criterion, which maximizes the minimum
eigenvalue of Hθ. We will focus on A-optimal design for
simplicity, but the method is extensible to other designs. The
optimal design in this work is thus

φA = arg. min.
φ

tr
(
H−1θ

)
, (9a)

subject to F (ẋ(t),x(t),w(t),u(t),θ) = 0, (9b)
x(t0) = x0, (9c)
g(ẋ(t),x(t),w(t),u(t)) ≤ 0, (9d)
∀t ∈ [t0, tf ],

C. Parametric Sensitivity Analysis

A common approach for computing parametric sensitivities
for explicit ordinary differential equations is to apply the chain
rule of differentiation to the differential equations [16]. This
way of computing forward sensitivities can also be applied
to the implicit DAE system (1) and the initial equations (2),
yielding

∇ẋF (ẋ(t),x(t),w(t),u(t),p,θ)ṡ(t)

+∇xF (ẋ(t),x(t),w(t),u(t),p,θ)s(t)

+∇wF (ẋ(t),x(t),w(t),u(t),p,θ)z(t)

+∇θF (ẋ(t),x(t),w(t),u(t),p,θ)1 = 0,

(10a)

∇ẋF0(ẋ(t0),x(t0),w(t0),u(t0),p,θ)ṡ(t0)

+∇xF0(ẋ(t0),x(t0),w(t0),u(t0),p,θ)s(t0)

+∇wF0(ẋ(t0),x(t0),w(t0),u(t0),p,θ)z(t0)

+∇θF0(ẋ(t0),x(t0),w(t0),u(t0),p,θ)1 = 0,

(10b)

where ṡ = ∇θẋ, s = ∇θx, and z = ∇θw.

This approach gives rise to (nx+nw)·nθ additional implicit
DAEs, which are added to the original DAE system (1).
Numerical integration of the augmented system then computes
the parametric sensitivities, with a clear computational burden
for systems with many equations and parameters for which to
compute sensitivities for.



D. JModelica.org Toolchain

An overview of the JModelica.org toolchain for optimiza-
tion and simulation used in this paper is shown in Figure 1. It
uses the modeling language Modelica [9] to describe system
dynamics, and the optimization problem is formulated with
the use of the Modelica language extension Optimica [17].
The user interacts with the different modules of JModelica.org
via Python. One such module is a high-level and efficient
framework for dynamic optimization, in which the Modelica
and Optimica code is compiled and transferred into CasADi
Interface [18]. This procedure creates a symbolic represen-
tation of the optimization problem and the model equations.
CasADi Interface serves as a three-way interface between the
JModelica.org compiler, the numerical dynamic optimization
algorithms, and the user. The main optimization algorithm in
JModelica.org is based on direct local collocation [4], [15],
which simultaneously discretizes the infinite-dimensional DOP
into a finite-dimensional NLP. A local solution to the NLP
is then computed by IPOPT [19], utilizing first- and second-
order derivatives computed by algorithmic differentiation using
CasADi [20].

Figure 1. The JModelica.org toolchain for simulation and optimization.
For simulation purposes, C code is generated based on the Modelica code
and then connected to CVODES via PyFMI. For optimization purposes, the
Modelica and Optimica code is symbolically transferred to CasADi Interface.
The optimization problem is then solved using direct collocation and IPOPT.
The Sensitivities module is described in Section III.

JModelica.org’s simulation framework is based on the
Functional Mockup Interface (FMI) [21]. After the system has
been transformed into an ODE and exported via FMI, it is
imported again via PyFMI and connected to ODE solvers via
Assimulo [22], in particular CVODES [16] from the SUN-
DIALS suite, which supports the computation of parametric
sensitivities.

III. FRAMEWORK IMPLEMENTATION

The dynamic optimization framework in JModelica.org can
solve problems in the form of (4) (with various generalizations
not considered in this paper). However, the objective function
(9a) does not fit into the form of (4), due to the dependence on
parametric sensitivities. The proposed way of handling this is
to augment (4) with state and algebraic variables corresponding
to the parametric sensitivities s and z and the corresponding
forward sensitivity equations and initial conditions, as de-
scribed in Section II-C. The parametric sensitivities are then
available as state or algebraic variables, and the objective (9a)

becomes a special case of (4a). The transformed formulation
of the A-optimal design problem is thus

min. tr


nm∑
i=1

nm∑
j=1

σi,jQ
T
i Qj

−1
 , (11a)

w.r.t. x : [t0, tf ]→ Rnx , w : [t0, tf ]→ Rnw ,
s : [t0, tf ]→ Rnx·nθ , z : [t0, tf ]→ Rnw·nθ ,
u : [t0, tf ]→ Rnu , p ∈ Rnp ,

s.t. F (ẋ(t),x(t),w(t),u(t),p,θ) = 0, (11b)
F0(ẋ(t0),x(t0),w(t0),u(t0),p,θ) = 0, (11c)
(10), (11d)
g(ẋ(t),x(t),w(t),u(t),p,θ) ≤ 0, (11e)
∀t ∈ [t0, tf ],

which is a special case of (4).

This framework has been implemented in JModelica.org.
Modelica is used to encode (11b) and (11c). Optimica is
used to encode (11e). The Modelica and Optimica code is
then transferred to CasADi Interface by the JModelica.org
compiler. A new parametric sensitivity framework has been
implemented as a part of the Python side of CasADi Interface
which takes the symbolic representation of (11b) and (11c)
and a list of the names of the parameters in ps and augments
the DOP with (11d). Users can then use CasADi Interface
and the additional sensitivity variables to construct a general
DOP involving parametric sensitivities. This however requires
some familiarity with CasADi. Therefore, to streamline the
solution of OED problems in JModelica.org, the parametric
sensitivity framework also supports the formulation of (11)
by simply providing the list of names of measured variables
yi, parameters to estimate ps, the experiment variance matrix
σ, the measurement time points ti, and the OED optimality
criterion, such as A-optimality.

IV. EXAMPLES

We demonstrate the presented framework on two OED
examples. The first is a simple fed-batch reactor well studied
in literature, for which we compare the performance of the
framework with three other frameworks for OED. The second
example is for a plate-fin heat exchanger.

A. Fed-batch reactor

In the first example, we illustrate the application of OED to
a biomass fermentation process, as presented in several papers
as a benchmark example for the model-based metholdogy
[1]–[3], [23]. The growth rate of the biomass is modeled
using Monod-type kinetics, where θ1 is the maximum specific
growth rate, and θ2 is the Monod constant. The cell death rate
is linear with respect to the biomass concentration, where θ4 is
an empirical constant for the cell death. The yield coefficient
of biomass to substrate is represented as θ3 and assumed
unknown. This process is carried out in a fed-batch reactor
with a time-varying feed rate, where u1 is the flow velocity
(h−1) and u2 is the substrate concentration (g/L). The design
equations for the biomass and substrate concentrations (y1,y2)



are shown below:

ẏ1 = (rm − u1 − θ4)y1, y1(0) = 7, (12a)

ẏ2 =
rmy1
θ3

+ u1(u2 − y2), y2(0) = 0, (12b)

rm =
θ1y2
θ2 + y2

. (12c)

The objective is to find the experimental conditions that will
allow for precise estimation of the four parameters θi, i =
1, . . . , 4. The set of conditions that characterize this particular
experiment are the dilution factor u1 [range 0.02–0.5 h−1],
and the substrate concentration in the feed u2 [range 5–35
g/L]. The duration of the experiment is set to 20 hr. It is
assumed that there are 5 sampling points, equally spaced
over the experiment duration. The inputs are modeled as
piecewise constant functions over five control action intervals.
For simplicity, the number of sampling times and control
actions are the same. The experimental variance matrix is
σ = 5I . A nominal set of values of θi = 0.1 is used to start
the experiment design algorithm.

When employing simultaneous discretization, an initial
guess is needed for all system variable trajectories, not only
those generating degrees of freedom (inputs). With the aug-
mented problem formulation (11), this includes the parametric
sensitivities of the state and algebraic variables. To generate
such initial guesses, the system is simulated in JModelica.org
with CVODES (as described in Section II-D) with the constant
inputs u1 = 0.1 and u2 = 15g/L. Using this initial guess, and
a collocation discretization of 20 elements with 4 collocation
points per element, the solution in Figure 2 is obtained. The
NLP has 1.7× 103 variables and is solved in 0.9 seconds with
a tolerance of 10−8 and using the linear solver MA27 [24] in
IPOPT.

0 5 10 15 20
0
2
4
6
8

10
12
14

O
u
tp

u
ts

y1 (Matlab)

y2 (Matlab)

y1 (Matlab w/FMI)

y2 (Matlab w/FMI)

y1 (JModelica)

y2 (JModelica)

y1 (gPROMS)

y2 (gPROMS)

0 5 10 15 20
0.05

0.10

0.15

0.20

0.25

u
1

u1 (Matlab)

u1 (Matlab w/FMI)

u1 (JModelica)

u1 (gPROMS)

0 5 10 15 20
time (s)

5
10
15
20
25
30
35

u
2

u2 (Matlab)

u2 (Matlab w/FMI)

u2 (JModelica)

u2 (gPROMS)

Figure 2. A-optimal experimental design for the fed-batch reactor with
measurement and control sampling frequency 0.25 Hz. The problem has been
solved using 4 different frameworks.

Other software optimization tools were tested with this
example to compare the computational efficiency of the si-
multaneous discretization. The example was also solved with
gPROMS and a MATLAB-based approach, either using FMI
or encoding the model directly in MATLAB. gPROMS is

Table I. COMPARISON OF SOLVER TIME AND OPTIMAL DESIGN
OUTPUTS FOR TESTED SOFTWARE TOOL CHAINS

Framework Solver Time [s] A-Optimal Value
JModelica.org 0.88 0.091

MATLAB 28.6 0.169
MATLAB w/FMI Toolbox 6040 0.168

gPROMS 3.05 0.151

state-of-the-art software for conducting optimal experimental
design and uses single or multiple shooting. To solve for the
optimal design in MATLAB, a series of scripts were configured
using the Sundials solver CVODES to compute the parametric
sensitivities using finite differences. The first setup contained
the fed-batch reactor model in the MATLAB code, while the
second setup acquired the model from an FMU file made with
Modelica, imported through FMI-Toolbox [25]. This was done
to observe the effects on performance and solving time when
MATLAB must continuously draw from an external source.
For both cases, the optimization problem was solved using a
sequential quadratic programming method from MATLAB’s
optimization toolbox.

Each framework uses a different set of solvers to achieve
optimal design. After several iterations of this case study at
various initial values, it was observed that each tool chain ends
the operation at different local minima, such as in Figure 2. The
optimal design with the smallest A-optimal value (from the
JModelica framework) was placed into the other frameworks
and it was confirmed that the A-optimal value was consistent
for all four tools. It is currently not known why the output from
the JModelica framework was more effectively minimized than
the other frameworks. Expected variance is known to affect
the optimization process, so future analysis for this framework
comparison needs to take this into account, along with other
possible factors.

All results for this analysis were generated on a HP
Z820 Workstation (Intel R© Xeon R© CPU E5-2367 v2, 3.50
GHz). Table I shows that the solver times for gPROMS and
JModelica.org are significantly smaller than the MATLAB and
MATLAB/FMU hybrid tests. The manually written code used
in the MATLAB coding significantly was less efficient than
the setup for the faster programs. This is especially clear in
the FMI Toolbox setup, when the function had to call from
an external C code at every iteration. gPROMS already had
an experimental design setup internalized before this test, so
design optimization was fairly quick.

B. Heat exchanger

Another OED problem is formulated for a counter-current
plate-fin heat exchanger using the same A-optimality criterion.
This example comes from a marine-gas intercooler, with
geometry obtained from [26]. The heat exchanger model used
is more complex than the fed-batch reactor shown previously,
for it contains multiple state-dependent correlations and relies
on numerous structural parameters. The model consists of three
states and three algebraic variables. It is assumed that the inlet
gas temperature, Ta,in, is the controllable input with lower and
upper bounds at 100 ◦C and 200 ◦C respectively, and the
system gas and coolant (water) temperatures Ta and Tb are the
states. In systems where fluid is treated upstream, it is likely
that no sensors are available immediately before entering the



heat exchanger. Due to this uncertainty of inlet conditions, the
entering coolant temperature Tb,in and mass flow Wb are the
parameters that need to be estimated, with nominal values 20
◦C and 20 kg/s respectively. These values were originally at
20 ◦C and 200 kg/s for the intercooler example from Zhao et
al [26], but a slower flow rate was used for this example in
order to observe dynamic response). The experiment duration
tf is 200 seconds, with measurements every 5 seconds. The
experimental variance matrix was θ = 2I , and for simplicity’s
sake the system is assumed to start at steady-state.

0 50 100 150 200
25

30

35

40

45

50

55

60

O
u
tp

u
ts

Ta

Tb

0 50 100 150 200

100

120

140

160

180

200

T
a
,i
n

Figure 3. A-optimal experimental design for the plate fin heat exchanger with
measurements every 5 seconds and a control sampling period of 100 seconds.

The problem was solved with 60 elements and 4 collocation
points per element and the initial guess Ta,in = 150. The
problem was solved in 5.25 seconds, with the solution shown
in Figure 3. The optimal design is straightforward, as it
demonstrates how the outlets behave under each specified
boundary as well as through transient response, examining
steady-state and dynamic heat transfer. The exiting tempera-
tures are strongly dependent on the flow conditions hot and
cold intlet streams. If the inlet temperature of one stream
is different than from what is expected at steady-state then
they may be undetectable, as similar outputs can be obtained
through a change in either flow rate. However, by adjusting
the controllable inlet temperature to achieve two separate
steady-state conditions, one at each bound assigned in the
design space, we can observe the effects of that change in the
measurements, and more effectively characterize the expected
behavior of the heat exchanger. Estimating dynamic response
can also increase overall certainty for heat exchanger inlet
conditions, so long as a feasible model is used. It was observed
that at high flow rates, steady-state comparisons were more
practical for estimation, as transient effects were too quick for
observation in the sampling frequency that was used.

V. DISCUSSION

It is noteworthy that the use of IPOPT to solve (4) as-
sumes twice continuous differentiability of all the expressions,
including F , with respect to all of the optimization variables.
However, since (11d) already involves first-order derivatives of

F , the solution of (11) will require third-order derivatives of
F .

The dynamic optimization framework in JModelica.org
using simultaneous discretization is designed for systems of
moderate complexity and size. A very rough quantification of
the limitations is that the number of equations in the DAE sys-
tem (4b) does not exceed 103 in order of magnitude. If it does,
one can expect computational times and memory consumption
that exceeds the capabilities of standard, modern computers.
This means that for the solution of (11), (nx+nw) ·nθ should
not exceed 103 in order of magnitude. For problems of this
size, simultaneous methods often outperform shooting-based
methods when combined with algorithmic differentiation rather
than finite differences, both in terms of speed and reliability.

The OED problem (11) is a rather simple variant of
OED. Possible generalizations would be to consider multiple
experiments, free measurement time points ti, and free time
horizon endpoints t0 and tf . The implementation of multiple
experiments is straightforward by simply duplicating the DAE
and forward sensitivity equations for each experiment, meaning
that for ne experiments, the number of equations in the
transformed DAE system will be (nx + nw) · (1 + nθ) · ne.
For systems with many algebraic variables, this number can
be greatly reduced by eliminating the algebraic variables using
the techniques presented in [27].

Support for free measurement time points would require
a more significant implementation effort, with two distinct
possible approaches. The first approach is to implement sup-
port for multiphase problems [5, Section 3.7] and having one
phase per measurement point. Due to the difficulty of solving
multiphase problems with free phase endpoints, a seemingly
better approach is to use global collocation, allowing for
the evaluation of the sensitivities at free time points using
the global collocation polynomials. Once support for free
measurement time points is available, the extension to free
experiment durations comes for free, as the JModelica.org
framework already supports dynamic optimization with free
time horizon endpoints.

The paper has focused on A-optimal design. Extending the
framework to handle D-optimal design would be straightfor-
ward. However, the framework in JModelica.org relies heavily
on differentiability, which makes it less straightforward to
support non-differentiable criteria such as E-optimality. The E-
criterion can however be reformulated to get differentiability
by using semidefinite programming [28].

The solutions obtained for the fed-batch reactor example in
Section IV are not global optima. That example has many local
optima, and global optimization techniques should be utilized
if the global optimum is sought. The presented framework
lends itself well to global optimization techniques which are
based on locally solving subproblems, such as the simple
approach of Latin hypercube sampling [29] of the degrees of
freedom.

VI. CONCLUSION

Dynamic parametric sensitivity optimization problems, in
particular model-based optimal design of experiments, are typ-
ically solved numerically using shooting methods. In this paper



we proposed a method for solving these problems using simul-
taneous discretization, based on forward sensitivity analysis,
which is feasible and efficient for systems of moderate size. We
also presented the implementation of a high-level framework
in JModelica.org to address a relevant gap in the capabilities
for dynamic optimization and parameter estimation offered
by Modelica tools. The implementation was demonstrated on
two examples and its performance was compared to equivalent
gPROMS- and a MATLAB- based solution approaches. It was
shown that the proposed framework is computationally effi-
cient and precise. It was also demonstrated that the proposed
tool chain allows for seamless integration of the programmatic
environments that perform dynamic optimization of parametric
sensitivities. Possible extensions of the proposed method and
framework were also discussed, in particular the treatment of
free measurement time points and experiment durations.

ACKNOWLEDGMENT

Fredrik Magnusson acknowledges support from the
Swedish Research Council through the LCCC Linnaeus Center
and is a member of the eLLIIT Excellence Center at Lund
University. The remaining authors were sponsored by the UTC
Institute for Advanced Systems Engineering (UTC-IASE) of
the University of Connecticut and the United Technologies
Corporation. Lu Han also acknowledges support by the Na-
tional Science Foundation under Grant No. 1054718. Any
opinions expressed herein are those of the authors and do not
represent those of the sponsors. Help and guidance by Modelon
and Modelon AB are gratefully acknowledged.

REFERENCES

[1] F. Galvanin, S. Macchietto, and F. Bezzo, “Model-based design of
parallel experiments,” Ind. Eng. Chem. Res., vol. 46, pp. 871–882, 2007.

[2] S. Asprey and S. Macchietto, “Statistical tools for optimal dynamic
model building,” Comput. Chem. Eng., vol. 24, pp. 1261–1267, 2000.

[3] ——, “Designing robust optimal dynamic experiments,” J. Process
Control, vol. 12, pp. 545–556, 2002.

[4] L. T. Biegler, Nonlinear Programming: Concepts, Algorithms, and
Applications to Chemical Processes. Philadelphia, PA, USA: Mathe-
matical Optimization Society and the Society for Industrial and Applied
Mathematics, 2010.

[5] J. T. Betts, Practical Methods for Optimal Control and Estimation Using
Nonlinear Programming, 2nd ed. Philadelphia, PA, USA: Society for
Industrial and Applied Mathematics, 2010.

[6] E. Balsa-Canto, A. A. Alonso, and J. R. Banga, “Computational
procedures for optimal experimental design in biological systems,” IET
Systems Biology, vol. 2, pp. 163–172, 2008.

[7] I. Bauer, H. G. Bock, S. Körkel, and J. P. Schlöder, “Numerical methods
for optimum experimental design in DAE systems,” J. Comput. Appl.
Math., vol. 120, pp. 1–25, 2000.

[8] G. Franceschini and S. Macchietto, “Model-based design of experiments
for parameter precision: State of the art,” Chem. Eng. Sci., vol. 63, pp.
4846–4872, 2008.

[9] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with
Modelica 3.3: A Cyber-Physical Approach, 2nd ed. Piscataway, NJ,
USA: Wiley-IEEE Press, 2015.

[10] J. Åkesson, K.-E. Årzén, M. Gäfvert, T. Bergdahl, and H. Tummescheit,
“Modeling and optimization with Optimica and JModelica.org—
languages and tools for solving large-scale dynamic optimization prob-
lems,” Comput. Chem. Eng., vol. 34, pp. 1737–1749, 2010.

[11] M. Hoang, T. Barz, V. Merchan, L. Biegler, and H. Arellano-Garcia,
“Simultaneous solution approach to model-based experimental design,”
AIChE J., vol. 59, pp. 4169–4183, 2013.

[12] S. Mayr, G. Grabmair, and J. Reger, “Input design and parameter esti-
mation with open source tools,” in 8th Vienna International Conference
on Mathematical Modelling, Vienna, Austria, 2015.

[13] S. E. Mattsson and G. Söderlind, “Index reduction in differential-
algebraic equations using dummy derivatives,” SIAM J. Sci. Comput.,
vol. 14, pp. 677–692, 1993.

[14] D. Liberzon, Calculus of Variations and Optimal Control Theory: A
Concise Introduction. Princeton, NJ, USA: Princeton University Press,
2012.

[15] F. Magnusson and J. Åkesson, “Dynamic Optimization in JModel-
ica.org,” Processes, vol. 3, pp. 471–496, 2015.

[16] R. Serban and A. C. Hindmarsh, “CVODES: The sensitivity-enabled
ODE solver in SUNDIALS,” in In Proceedings of the ASME 2005 In-
ternational Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, 2005.

[17] J. Åkesson, “Optimica—an extension of Modelica supporting dynamic
optimization,” in In Proceedings of the 6th International Modelica
Conference, Bielefeld, Germany, 2008.

[18] B. Lennernäs, “A CasADi based toolchain for JModelica.org,” M.Sc.
thesis, Lund University, Sweden, 2013.

[19] A. Wächter and L. T. Biegler, “On the implementation of a primal-
dual interior point filter line search algorithm for large-scale nonlinear
programming,” Math. Program., vol. 106, pp. 25–57, 2006.

[20] J. Andersson, “A general-purpose software framework for dynamic
optimization,” Ph.D. thesis, Arenberg Doctoral School, KU Leuven,
2013.

[21] T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß, H. Elmqvist,
A. Junghanns, J. Mauss, M. Monteiro, D. Neumerkel, and J.-V. Peetz,
“The functional mockup interface for tool independent exchange of
simulation models,” in Proceedings of the 8th International Modelica
Conference, Dresden, Germany, 2011.

[22] C. Andersson, C. Führer, and J. Åkesson, “Assimulo: A unified frame-
work for ODE solvers,” Math. Comput. Simulat., 2015, in press.

[23] D. Espie and S. Macchietto, “The optimal design of dynamic experi-
ments,” AIChE J., vol. 35, pp. 223–229, 1989.

[24] HSL, “A collection of Fortran codes for large scale scientific computa-
tion,” Software available at http://www.hsl.rl.ac.uk.

[25] Modelon, “FMI Toolbox for MATLAB/Simulink,” Software available
at http://www.modelon.com/products/fmi-toolbox-for-matlab/.

[26] N.-b. Zhao, X.-y. Wen, and S.-y. Li, “Dynamic time-delay characteristics
and structural optimization design of marine gas turbine intercooler,”
Math. Prob. Eng., vol. 2014, 2014.

[27] F. Magnusson, K. Berntorp, B. Olofsson, and J. Åkesson, “Symbolic
transformations of dynamic optimization problems,” in Proceedings of
the 10th International Modelica Conference, Lund, Sweden, 2014.

[28] L. Vandenberghe and S. Boyd, “Semidefinite programming,” SIAM
Review, vol. 38, pp. 49–95, 1996.

[29] M. D. McKay, R. J. Beckman, and W. J. Conover, “Comparison of three
methods for selecting values of input variables in the analysis of output
from a computer code,” Technometrics, vol. 21, pp. 239–245, 1979.


