The population of metastable states as a probe of relativistic-energy fragmentation reactions

Published in: Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics

DOI:
10.1016/j.physletb.2013.05.033

2013

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The population of metastable states as a probe of relativistic-energy fragmentation reactions

A.M. Denis Bacela, A.M. Brucea,*, Zs. Podolyák b, N. Al-Dahan b, M. Górska c, S. Lalkovski a,d, S. Pietri c, M.V. Ricciardic, A. Algora e,f, N. Alkhomashi b, J. Benlliure g, P. Boutachkov c, A. Bracco h, E. Calore i, E. Casarejos j, I.J. Cullen b, A.Y. Deo b, P. Detistov d,k, Zs. Dombradi f, C. Domingo-Pardo c, M. Doncel k, F. Farinon c, G.F. Farrelly b, H. Geissel c, W. Gelletly b, J. Gerl c, N. Goel c, J. Griebosz c, I. Hoischen c, I. Kojouharov c, N. Kurz c, S. Leoni h, F. Molina e,***, D. Montanari b, A.I. Morales g, A. Musumarra h, D.R. Napoli i, R. Nicolini b, C. Nociforo c, A. Prochazka c, W. Prokopowicz c, P.H. Regan b, B. Rubio e, D. Rudolph m, K.-H. Schmidt c, H. Schaffner c, S.J. Steer b, K. Steiger o, P. Strmen p, T.P.D. Swan b, I. Szarka p, J.J. Valiente-Dobón i, S. Verma g, P.M. Walker b, H. Weick c, H.J. Wollersheim c,

a School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ, UK
b Department of Physics, University of Surrey, Guildford GU2 7XH, UK
c GSI Helmholtzzentrum für Schwerionenforschung, Planckstr 1, D-64291 Darmstadt, Germany
d Department of Physics, University of Sofia, 1164 Sofia, Bulgaria
e Instituto de Física Corpuscular, CSIC, Universitat de Valencia, E-46071 Valencia, Spain
f Institute of Nuclear Research of the Hungarian Academy of Sciences, P.O. Box 51, Debrecen, 4001, Hungary
g Universidad de Santiago de Compostela, 15706, Spain
h Department of Physics, Università degli Studi di Milano and INFN, 20133 Milano, Italy
i INFN, Laboratori Nazionali di Legnaro, Italy
j University of Vigo, E-36310, Vigo, Spain
k Laboratorio de Radiaciones Ionizantes, Universidad de Salamanca, 37008, Spain
l Niewodnicza´nski Institute of Nuclear Physics, Polish Academy of Science, ul. Radzikowskiego 152, Krakow 31-342, Poland
m Department of Physics, Lund University, 22100 Lund, Sweden
n INFN, Laboratori Nazionali del Sud, via S. Sofia 62, 95125 Catania, Italy
o Physik-Department E12, Technische Universität München, D-85748 Garching, Germany
p Bratislava Faculty of Mathematics and Physics, Comenius University, 84215 Bratislava, Slovak Republic

A B S T R A C T

Isomeric ratios have been measured for high-spin states in 198,200,208,208Po, 208,Rn, 210,211,212,214,Rn, 208,211,212,214,Fr, 210,211,212,214,Fr, 208,209,210,211,212,213,214,Fr, 208,209,210,211, Ra, 215,216,217,218,219,220,221,Fr, 215,216,217,218,219,220,221,Ra, and 215,216,217,218,219,220,221,Af following the projectile fragmentation of a 1 AGeV 238U beam by a 9Be target at GSI Helmholtzzentrum für Schwerionenforschung. The fragments were separated in the fragment separator (FRS) and identified by means of energy loss and time-of-flight techniques. They were brought to rest at the centre of the RISING gamma-ray detector array and intensities of gamma rays emitted in the decay of isomeric states with half-lives between 100 ns and 40 μs and spin values up to 55/2 were used to obtain the corresponding isomeric ratios. The data are compared to theoretical isomeric ratios calculated in the framework of the abrasion–ablation model. Large experimental enhancements are obtained for high-spin isomers in comparison to expected values.

The need for an understanding of relativistic heavy-ion collisions spans a number of scientific fields, from the safety of human space exploration [1] and cosmic-ray astrophysics [2], to the structure of the early Universe [3] and the generation of radioactive ion beams [4]. Nevertheless, the complexity of the nuclear-reaction processes and the large number of possible product isotopes have resulted in only limited tests of reaction models, which have focused mainly on hydrodynamic properties [5], isotope yields [6], and momentum distributions [7].

In addition, the angular-momentum degree of freedom has the potential to reveal important aspects of the reaction dynamics.
However, this requires special circumstances for study to be possible. Following a given collision, the excited nuclear products typically de-excite in less than 10^{-10} s. Such a short time is insufficient to apply separation techniques that would enable the initial excitation energies and angular momenta to be determined, since the de-excitation radiations all occur in close proximity to the reaction target.

A breakthrough came with the ability to separate the products of projectile-fragmentation reactions according to their mass and charge [8], combined with the detection of γ rays from nuclear isomeric states [9,10]. Excellent sensitivity was achieved for isomer half-lives in the 0.1–100 μs range, after the recoiling ions had been transported to a remote measurement station in less than 1 ms. In the present context, a key feature of nuclear isomers is that in many cases they carry high angular momentum, which is itself closely associated with their extended half-lives [11].

The measurement of isomer production probabilities following fragmentation reactions initially supported the validity of the model calculations [12,13], with angular momenta up to 20 h being studied. However, when higher angular momenta were identified, a large production excess became apparent [14]. At that time, the evidence rested heavily on a single data point, from a source containing 241Am, 133Ba, 137Cs and 60Co. Data were collected using four different FRS settings: centred on 212Rn, 214Th, 213Fr and 214Ra. The 9Be target thicknesses and typical primary 238U beam intensities were 2.5 g/cm2 and 2×10^6 particles per second for the first two settings and 3 g/cm2 and 1×10^8 for the other two.

At the end of the separator, the fragments were slowed by an Al degrader and implanted in a stopper. γ rays emitted by the implanted nuclei were measured in the RISING γ-ray array, comprising 15 Cluster detectors, which has an efficiency of \sim15% for the 662 keV gamma rays emitted in the decay of 137Cs [15]. The array was calibrated for energy using a composite gamma-ray source containing 241Am, 133Ba, 137Cs and 60Co. Data were collected using two different stoppers and the efficiency information for each has been obtained using a combination of GEANT4 [16] simulations and data obtained from the source placed on either side of the stopper. A detailed description of the performance of RISING in its stopped-beam configuration is given in [15,17]. The acquisition system was triggered by the arrival of a fragment and remained ‘open’ for a time window of 100 ms. Fragments which did not implant triggered a scintillation detector behind the stopper and this provided a veto. In addition to the veto detector, other conditions imposed in the off-line analysis included the exclusion of events where the fragment changed its charge state during transmission through the separator and events where the fragment interacted with the degrader.

Following isotopic identification of each fragment, 2-d spectra of the energies of γ rays measured in the RISING array and their emission time (relative to fragment deposition) were constructed. These were then analysed to obtain isomeric ratios (R_{exp}), determined from the total intensity of transitions depopulating an isomeric state and defined as [12]:

$$R_{\text{exp}} = \frac{Y}{N_{\text{imp}}FG},$$

where N_{imp} is the number of ions implanted in the stopper, F and G are correction factors and Y is the observed decay yield calculated from measured gamma-ray intensities and corrected for electron conversion. The factor F corrects for the decay of the isomeric state as it travels through the FRS and depends on theToF through the FRS and the corresponding Lorentz factors. This factor also takes account of any hindrance to the decay due to the ions being in a fully stripped state as they travel through the separator. The factor G corrects for the time window used in the off-line analysis to produce the delayed-gamma-ray spectra and accounts for the fact that only a fraction of the total decay is observed. The largest contribution to the error on R_{exp} is in the decay yield (Y) and is due to the low statistics in the gamma-ray spectra. The uncertainty in the implantation depth of the ion and hence in the gamma-ray absorption in the stopper is also included in this term. If more than one isomer was populated in the same nucleus then a lower-lying isomer could be fed by the delayed decay of the higher-lying isomer. In these cases the isomeric ratio of the lower-lying state has been corrected for the decay from the higher-lying isomer and the uncertainty on the upper value is included in the error on the lower value. Further details of this method and the relevant formulæ are given in [12].

Table 1 lists the isomeric ratios measured in the current work, calculated in most cases, using more than one depopulating transition. In all cases, bar those of 210–215Ra, the half-life that has been used in the determination of the isomeric ratio is from the literature. From the current data it was possible to confirm these values but better accuracy could not be obtained. The values measured in the current work for 210–211Ra, are in general agreement with previous values [20,21] but have a smaller error and therefore have been used in the analysis. In the case of 212Ra, half-lives of 480(40) ns and 7.1(2) μs for the (11$^-$) and (8$^+$) isomeric states respectively, have been measured in this experiment and used for the calculation of the isomeric ratios. The value obtained for the (11$^-$) state is about half the value of 850(13) μs quoted in [18] while the value for the (8$^+$) state compares with previous values of 9.1(6) μs in [21] and 10.9(4) μs in [18].

Although Table 1 shows that there are 12 cases where the excitation energy of the isomeric state is unknown, there are only 3 (12^+ in 198160Po and (55$^+$) in 213Rn) where the unobserved transition depopulates the isomer directly and therefore affects the isomeric ratio. The effect of the multipolarity of the unobserved transition on the isomeric ratio was discussed in detail in [13] for the case of the 12^+ level in 198160Po. Table 2 of [13] shows that for a missing transition of energy $E_{\gamma} = 50$ keV, the multipolarity of the transition has no effect on the isomeric ratio (to 3 significant figures). The (55$^+$) level in 213Rn has the highest spin value for which an isomeric ratio has been measured in the current work. Fig. 1 shows the gamma-ray energy spectrum obtained in coincidence with implanted 213Rn ions within a time gate of $\Delta t = 50–1450$ ns. The isomeric ratio for the (55$^+$) level at $\gamma + 5929$ keV has been obtained from the intensity of the 1010 keV transition which is clearly observed in the figure. Assuming no in-flight decay, the isomeric ratio is 0.8(2) which is the same as would
be obtained for an E2/M1 transition of 100 keV. If the transition were to be an E1, then the ratio increases to 1.3(4) which is the maximum value consistent with the lack of observation of the direct gamma decay from the isomer. The half-life measured in this work has been used in the analysis.

Table 1

Summary of the measured isomeric ratios ordered by increasing \(Z \) and \(A \). The third last column contains the results of previous measurements and the last two columns calculated values. Data obtained for Po from [22–25], for At from [26–30], for Rn from [31–35], for Fr from [20,36–41], for Ra from [18,20,21,42–44] and for Ac from [45].

<table>
<thead>
<tr>
<th>(\Delta Z)</th>
<th>(J^\pi)</th>
<th>(E_{\gamma}, \text{(keV)})</th>
<th>(\tau_{1/2}, \text{((\mu s))})</th>
<th>(R_{\text{exp}})</th>
<th>(\rho_{\text{exp}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>199Po</td>
<td>12(^+)</td>
<td>x + 2692</td>
<td>0.75(5)</td>
<td>4(2)(^a)</td>
<td>9(1)</td>
</tr>
<tr>
<td>200Po</td>
<td>11(^-)</td>
<td>2566</td>
<td>0.20(2)</td>
<td>20(5)(^a)</td>
<td>36</td>
</tr>
<tr>
<td>212Fr</td>
<td>12(^+)</td>
<td>x + 2804</td>
<td>0.268(3)</td>
<td>7(3)(^a)</td>
<td>7(1)</td>
</tr>
<tr>
<td>210Rn</td>
<td>9(^-)</td>
<td>2596</td>
<td>0.04(9)</td>
<td>48(23)(^b)</td>
<td>39(4)</td>
</tr>
<tr>
<td>208Po</td>
<td>8(^+)</td>
<td>1586</td>
<td>0.232(4)</td>
<td>12(2)</td>
<td>44</td>
</tr>
<tr>
<td>206Po</td>
<td>8(^+)</td>
<td>1528</td>
<td>0.35(2)</td>
<td>27(2)</td>
<td>42</td>
</tr>
<tr>
<td>205At</td>
<td>16(^-)</td>
<td>2276</td>
<td>1.5(2)</td>
<td>6.8(9)</td>
<td>5.8</td>
</tr>
<tr>
<td>205At</td>
<td>(29/2)(^+)</td>
<td>2429</td>
<td>0.89(4)</td>
<td>17(1)</td>
<td>7.2</td>
</tr>
<tr>
<td>201At</td>
<td>19(^+)</td>
<td>4028</td>
<td>5.66(7)</td>
<td>8.9(9)</td>
<td>1.7</td>
</tr>
<tr>
<td>211At</td>
<td>39/2(^-)</td>
<td>4815</td>
<td>4.2(4)</td>
<td>6.6(4)</td>
<td>1.2</td>
</tr>
<tr>
<td>210Rn</td>
<td>(17(^-))</td>
<td>x + 3812</td>
<td>1.06(5)</td>
<td>10(1)</td>
<td>3.9</td>
</tr>
<tr>
<td>211Rn</td>
<td>35/2(^+)</td>
<td>x + 3926</td>
<td>0.040(1)</td>
<td>14(3)</td>
<td>2.7</td>
</tr>
<tr>
<td>212Rn</td>
<td>17/2(^-)</td>
<td>x + 1578</td>
<td>0.60(3)</td>
<td>38(3)</td>
<td>33</td>
</tr>
<tr>
<td>213Rn</td>
<td>22(^+)</td>
<td>6174</td>
<td>0.109(5)</td>
<td>3.4(5)</td>
<td>0.5</td>
</tr>
<tr>
<td>213Rn</td>
<td>8(^+)</td>
<td>1694</td>
<td>0.91(3)</td>
<td>34(2)</td>
<td>39</td>
</tr>
<tr>
<td>214Rn</td>
<td>(55/2(^-))</td>
<td>y + 5929</td>
<td>0.16(1)</td>
<td>0.8(2)(^ab)</td>
<td>0.031(5)</td>
</tr>
<tr>
<td>214Rn</td>
<td>43/2(^-)</td>
<td>x + 3495</td>
<td>0.028(1)</td>
<td>9(5)(^a)</td>
<td>0.5</td>
</tr>
<tr>
<td>214Rn</td>
<td>31/2(^-)</td>
<td>x + 2187</td>
<td>1.36(7)</td>
<td>17(2)(^a)</td>
<td>4</td>
</tr>
<tr>
<td>214Rn</td>
<td>25/2(^+)</td>
<td>x + 1664</td>
<td>1.02(3)</td>
<td>9(3)</td>
<td>11</td>
</tr>
<tr>
<td>209Fr</td>
<td>10(^-)</td>
<td>826</td>
<td>0.43(1)</td>
<td>16(1)</td>
<td>32</td>
</tr>
<tr>
<td>211Fr</td>
<td>45/2(^-)</td>
<td>4657</td>
<td>0.12(1)</td>
<td>2.8(3)</td>
<td>0.4</td>
</tr>
<tr>
<td>212Fr</td>
<td>29/2(^+)</td>
<td>2423</td>
<td>0.15(1)</td>
<td>16(1)</td>
<td>6(2)</td>
</tr>
<tr>
<td>212Fr</td>
<td>15(^-)</td>
<td>2492</td>
<td>0.58(2)</td>
<td>19(1)</td>
<td>8(2)</td>
</tr>
<tr>
<td>213Fr</td>
<td>11(^+)</td>
<td>1551</td>
<td>27(1)(^a)</td>
<td>21(2)</td>
<td>22</td>
</tr>
<tr>
<td>214Fr</td>
<td>29/2(^+)</td>
<td>2538</td>
<td>0.238(6)</td>
<td>23(2)</td>
<td>12(8)</td>
</tr>
<tr>
<td>214Fr</td>
<td>21/2(^-)</td>
<td>1590</td>
<td>0.51(1)</td>
<td>22(2)</td>
<td>21</td>
</tr>
<tr>
<td>214Fr</td>
<td>11(^+)</td>
<td>638</td>
<td>0.103(4)</td>
<td>69(10)(^a)</td>
<td>20</td>
</tr>
<tr>
<td>210Ra</td>
<td>8(^+)</td>
<td>2050</td>
<td>2.1(1)(^d)</td>
<td>31(2)</td>
<td>43</td>
</tr>
<tr>
<td>211Ra</td>
<td>(13/2(^-))</td>
<td>1198</td>
<td>9.4(4)(^d)</td>
<td>35(2)</td>
<td>52</td>
</tr>
<tr>
<td>212Ra</td>
<td>(11(^-))</td>
<td>2613</td>
<td>4.8(4)(^d)</td>
<td>25(2)</td>
<td>20</td>
</tr>
<tr>
<td>212Ra</td>
<td>(8(^-))</td>
<td>1958</td>
<td>7(1)(^e)</td>
<td>18(2)</td>
<td>41</td>
</tr>
<tr>
<td>214Ra</td>
<td>17(^-)</td>
<td>4147</td>
<td>0.225(4)</td>
<td>13(1)(^d)</td>
<td>7(2)</td>
</tr>
<tr>
<td>214Ra</td>
<td>14(^+)</td>
<td>3478</td>
<td>0.279(4)</td>
<td>13(1)</td>
<td>7</td>
</tr>
<tr>
<td>215Ra</td>
<td>8(^+)</td>
<td>1865</td>
<td>0.68(1)</td>
<td>64(2)</td>
<td>38</td>
</tr>
<tr>
<td>215Ra</td>
<td>(43/2(^-))</td>
<td>x + 3757</td>
<td>0.55(1)</td>
<td>79(8)</td>
<td>3.1(6)</td>
</tr>
<tr>
<td>215Ac</td>
<td>(29/2(^-))</td>
<td>x + 2438</td>
<td>0.34(1)</td>
<td>20(4)(^a)</td>
<td>5(1)</td>
</tr>
<tr>
<td>215Ac</td>
<td>21/2(^-)</td>
<td>1796</td>
<td>0.19(3)</td>
<td>20(5)</td>
<td>15</td>
</tr>
</tbody>
</table>

Notes:
- \(^a\) The intensity of only one transition has been used in Eq. (1) to calculate the isomeric ratio.
- \(^b\) Statistical error, assuming no in-flight decay. The corresponding values of \(R_{\text{exp}} \) for an E2/M1 or E1 decay of 100 keV are 0.8(2) and 1.3(4) respectively. The latter value is the maximum possible compatible with the lack of observation of the direct gamma decay from the isomer.
- \(^c\) No error is quoted in the original reference [38].
- \(^d\) The half-life measured in this work has been used in the analysis.

Although the distribution of data points makes a firm cut-off point difficult to establish, Fig. 2 indicates that there is reasonable agreement between the experimental values and those calculated by the ABRABLA code for spin values \(\leq 13\hbar \). For spin values greater than this, both codes underestimate the level population by a factor...
Such an effect could originate from a type of friction or viscosity as sion of any collective effect in the angular-momentum generation. The underestimation of the data by the ABRABLA codes and, on average, does not change the angular momentum gamma rays. This part of the decay is modelled using Monte Carlo threshold, the nuclei continue to cool via the statistical emission of sion process that is relevant and once below the particle emission stage, the excited prefragment either fissions or emits nucleons. In the case of the nuclei discussed here, it is the nucleon emis-mentum generated in the target fragment is dependent solely on consideration energy shows the same trend of increasing underestimation of the data (by a factor ranging from ~2 at spin 14 h to ~10 at spin 21 h). No ART + SBD predictions are currently available for the isomer ratio for the 55/2 ± state measured in this work.

In summary, isomeric ratios for states with spin values between 13/2 and 55/2 h, in neutron-deficient N ~ 126 nuclei produced in projectile fragmentation reactions, have been measured at the GSI facility. Although the data show the expected decrease of the isomeric ratio as a function of spin, this decrease is much slower than predicted by model calculations, an effect which could be due to the lack of a collective component in current models. Given the recent increase in the number and diversity of beams which are being produced by fragmentation, it is important that this discrepancy is investigated and understood in the near future.

Acknowledgements

This work is supported by the STFC (UK), AWE plc, the Bulgarian National Science Fund (DMU02/1-06.01.2010), the Hungarian Scientific Research Fund (OTKA K100835), the Polish Ministry of Science and Higher Education (1-P03B-030-30 and 620/E-77/SPB/GS/P-03/DWM105/2004-2007), the Spanish Ministerio de Educación y Ciencia (FPA2005-00696 and FPA2006-12431), the Swedish Science Council, the DFG (EXC 153), the German Federal Ministry of Education and Research (06KY2051) and EURONS (EU contract number 506065).

References