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Abstract 

Preeclampsia is a pregnancy-related disease afflicting 3-7 % of pregnancies worldwide and leads 

to maternal and infant morbidity and mortality. The disease is of placental origin and is 

commonly described as a disease of two stages. A variety of preeclampsia animal models have 

been proposed, but all of them have limitations in fully recapitulating the human disease. Based 

on the research question at hand, different or multiple models might be suitable. Multiple animal 

models in combination with in vitro or ex vivo studies on human placenta together offer a 

synergistic platform to further our understanding of the etiology of preeclampsia and potential 

therapeutic interventions. The described animal models of preeclampsia divide into four 

categories 1) spontaneous, 2) surgically induced, 3) pharmacologically/substance induced, and 4) 

transgenic. This review aims at providing an inventory of novel models addressing etiology of the 

disease and or therapeutic/intervention opportunities. 
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1. Introduction 

Preeclampsia is a pregnancy-related disease afflicting 3-7 % of pregnancies worldwide and leads 

to maternal and infant morbidity and mortality. Preeclampsia is described to have a placental 

origin that results in systemic effects in the mother. A variety of preeclampsia animal models 

have been proposed, but all of them have limitations in fully recapitulating the human disease1. 

The human placenta is unique among species and its function has been suggested to play a central 

role in the development of preeclampsia. Removal of the placenta is believed to be crucial for the 

resolution of the symptoms2, and has led to the theory of a placenta-derived factor as a culprit. 

The disease evolves in two stages3. Stage one occurs during the formation of the placenta with a 

defective and shallow invasion of the trophoblasts into the uterine muscle layers failing to 

remodel the spiral arteries4. This contributes to a reduced utero-placental blood flow, which can 

result in fetal intra-uterine growth restriction (IUGR), seen in one of four preeclampsia cases. 

Inadequate blood flow gives rise to a reduced oxygen delivery and oxidative stress, which further 

aggravates placental vascular dysfunction5. Stage two consists of the clinical manifestations, i.e. 

hypertension and proteinuria, appearing from 20 weeks of gestation onwards. Early onset 

preeclampsia is in general more severe than late onset, and is associated with more placenta 

pathology than late onset preeclampsia. As the disease progresses, angiospasm and brain edema 

may cause severe epileptic seizures –eclampsia6. The renal disturbances seen in preeclampsia 

lead to reduced glomerular filtration rate and proteinuria. Glomerular endotheliosis is 

pathognomonic for preeclampsia7. General endothelial dysfunction,  reduced vasodilatation and 

increased peripheral resistance are also vascular hallmarks of preeclampsia8. 

 

The placenta is an organ with extremely high evolutionary diversity among animal species. 

Hence, an animal model that fully reflects the human placenta does not exist9, 10. The majority of 



described animal models, however, have placentas that are discoid hemochorial just like the 

human placenta9. Despite this, differences can be found in terms of anatomy, cell types and 

molecular composition. Few animal models aim to mimic stage one of the disease. The great 

majority of models instead focus on the second stage, the systemic response and symptoms 

present in the mother. The ideal animal model should reflect both stages of the disease. 

 

The animal models can be divided into the following four mechanistic categories 1) spontaneous 

animal models of preeclampsia, 2) surgically induced animal models of preeclampsia, 3) 

pharmacologically/substance induced animal models of preeclampsia, and 4) transgenic animal 

models of preeclampsia. Over the past decade a multitude of animal models of preeclampsia have 

been established and they are already well described in the literature1, 11-13. This review aims at 

providing an inventory of novel models addressing etiology of the disease and or 

therapeutic/intervention opportunities (Table 1).  

 

2. Animal models of preeclampsia 

2.1. Spontaneous animal models of preeclampsia 

There are inbred strains of mice and rats that present with spontaneous preeclampsia of various 

degrees. The BPH/5 mouse, an inbred strain with mildly elevated blood pressure, displays 

pregnancy-induced characteristics in late gestation resembling those of preeclampsia in humans, 

including endothelial dysfunction, glomerular lesions, proteinuria and hypertension, as well as 

feto-placental defects and fetal demise14. Defective trophoblast invasion, defects in maternal 

decidual arteries and an increase in oxidative stress in the placentas preceded the onset of the 

maternal symptoms15, 16. Thus, the model describes events that are linked to both stage one and 



stage two of preeclampsia. Treatment with the antioxidant Tempol throughout the pregnancy 

improved fetal outcome and ameliorated maternal hypertension and proteinuri16. It was shown 

that excessive complement activation in the pregnant BPH/5 females led to increased neutrophil 

infiltration in the placenta followed by abnormal placental and fetal development as well as 

reduced vascular endothelial growth factor (VEGF) plasma levels. Inhibition of the complement 

activation or adenoviral delivery of VEGF early in pregnancy prevented hypertension and 

proteinuria, and reduced the incidence of fetal resorption17, 18. The Dahl salt-sensitive rat strain is 

a genetic model of kidney disease and hypertension. Females exhibit pregnancy-specific 

exacerbation of hypertension, proteinuria, placental hypoxia, increased levels of angiogenetic 

factors and reduced pup and litter size19. For both these models, the major criticism is the 

preexisting hypertension in non-pregnant mice. However, they could be considered as models for 

superimposed preeclampsia where a preexisting hypertension dramatically increases the risk of 

developing preeclampsia during pregnancy20.  

 

2.2   Surgically induced models of preeclampsia 

A mechanical model, where the surgical occlusion of the uterine artery or the abdominal aorta 

results in reduced uterine perfusion pressure (RUPP), has been extensively used to elucidate 

events occurring during stage two of preeclampsia. The RUPP model has been performed in 

rats21, non-human primates22, 23, sheep24, rabbits25, Guinea pigs26 and dogs27. The RUPP rat model 

has been widely used since it displays a number of typical features of stage two of human 

preeclampsia such as hypertension, proteinuria and increased plasma and placental levels of 

angiogenetic markers21. This model has recently been used to test therapeutic interventions to 

alleviate the maternal symptoms. Treatment with sodium tanshinone IIA sulfonate (STS) led to 



decreased oxidative stress, but did not improve fetal outcome or maternal blood pressure28. 

Treatment in late gestation with 17-α-hydroxyprogesterone caproate (17-HPC) resulted in 

decreased blood pressure, decreased levels of circulating CD4+ T cells, reduced uterine artery 

resistance index and improved litter size29. Employing the RUPP model in baboons led to a rapid 

increase in blood pressure and proteinuria to levels seen in human preeclampsia23. There was a 

rapid rise in soluble fms-like tyrosine kinase 1 (sFlt-1) of a magnitude seen in human 

preeclampsia; predating the development of proteinuria but timing with the hypertensive 

response. The response was sustained until delivery. Given the possibility of studying pregnancy 

over a 4-6 week period, there is an opportunity to study the effect of reducing sFlt-1 while at the 

same time allowing sufficient time for the syndrome to be controlled without the inevitable 

delivery of the neonate.  

 

2.3.  Pharmacologically/substance induced models of preeclampsia 

Several inducible models of preeclampsia are described and the majorities focus on the maternal 

systemic symptoms in stage two of the disease. 

 

Nitric oxide (NO), a vasodilator, is synthesized by nitric oxide synthase (NOS) from the amino 

acid L-arginine, and is a vasodilator. Inhibition of NOS in mice or rats by injections of nitro-L-

arginine methyl ester (L-NAME) at different gestational stages led to preeclampsia-like 

symptoms such as hypertension, proteinuria, reduced glomerular filtration rate and IUGR30, 31. 

Concerns have been raised regarding the validity of this model due to uncertainty of the true role 

of NOS in preeclampsia. However, studies in women with severe preeclampsia have shown a 

polymorphism in the NOS gene, with certain mutations associated with this group32. Both the L-



NAME rat and mouse preeclampsia models have been used for testing therapeutic avenues during 

pregnancy. Sildenafil treatment was shown to reduce hypertension, proteinuria and fetal demise 

in both early- and late-onset preeclampsia33-36 as well as lowering the sFlt-1 and soluble Endoglin 

(sEng) plasma levels37. Other reports have failed to document the positive effects, both in rat and 

pregnant women suffering from preeclampsia38, 39. Although in both cases the treatment was 

given later in gestation. Resveratrol treatment in L-NAME pregnant rats reduced the hypertension 

and oxidative stress in placental tissue40. 

 

Arginine vasopressin (AVP) is highly elevated throughout human preeclampsia pregnancies and 

as early as the 6th week of gestation it has been proposed as a predictor of preeclampsia41. AVP is 

a peptide hormone that regulates the body’s water retention and constricts blood vessels. Thus, at 

high concentrations it increases the blood pressure, and it has been shown to be elevated in other 

hypertension disorders. AVP-infusion in mice during pregnancy resulted in both classical 

maternal and fetal preeclampsia symptoms such as pregnancy-specific hypertension, glomerular 

endotheliosis, proteinuria and IUGR41. 

 

Abnormal fatty acid oxidation has been implicated in the pathogenesis of preeclampsia in 

humans42. To investigate this, pregnant mice were injected with beta 2-glycoprotein I (β2GPI) 

prior to mating and developed preeclampsia-like symptoms such as hypertension, proteinuria and 

poor pregnancy outcome43.  

 

Activin A is an anti-angiogenic factor produced by the placenta, and is strongly elevated in 

plasma from women with preeclampsia. Activin A has therefore been implicated in the 

pathophysiology of the disease44. When activin A was administered at mid-gestation to pregnant 



mice it resulted in preeclampsia-like symptoms such as hypertension, endothelial oxidative stress 

proteinuria and IUGR, and the hypertension and proteinuria were significantly reduced by 

inhibiting activin A signaling by a low molecular weight activin-receptor-like kinase inhibitor44. 

 

2.3.1.  Fetal hemoglobin-induced model of preeclampsia in pregnant rabbit 

The preeclampsia placenta has an increased production and accumulation of cell-free fetal 

hemoglobin (HbF)45, resulting in damage to the placenta barrier and consequent leakage of cell-

free HbF into the maternal blood circulation46. Extracellular hemoglobin (Hb) and its metabolites 

induce oxidative stress, which may lead to acute renal failure and vascular dysfunction seen in 

preeclampsia47. Cell-free HbF could be detected in the maternal circulation as early as 14 weeks 

of gestation in women that later developed preeclampsia48. Thereby, HbF may link the two stages 

of preeclampsia through damage to the placenta and eventually to the maternal endothelium49, 50. 

A rabbit model of HbF-induced preeclampsia-like symptoms was recently described51. By 

administering species-specific cell-free HbF, the model mimics the human symptoms at stage two 

of preeclampsia. The dams displayed disrupted placental morphology, proteinuria and renal 

glomerular lesions. Further examination of the placenta revealed dramatic reduction of the 

collagen fibers in the extracellular matrix as well as mitochondrial swelling and high levels of 

apoptotic bodies. The model failed to evoke any increase in blood pressure. In this model, the 

therapeutic effect of α1-microglobulin (A1M) was tested. The human plasma and tissue protein 

A1M has emerged as a potential therapeutic drug candidate in treatment or prophylaxis of 

diseases or conditions that are associated with oxidative stress52, 53. A1M is synthesized in the 

liver54 and secreted to the blood55. Of high functional importance is that A1M is rapidly 

equilibrated between the intra- and extravascular compartments56, 57. A1M has mechanistic 



properties, which contribute to its role as a tissue housekeeping protein and a potential drug 

candidate. These properties can be summarized as 1) heme-binding, 2) reductase- and 3) radical-

trapping52. A1M has been shown to protect cells and tissues against internal and external 

chemical insult46, 51, 58-61 and postulated to function as a “radical sink”. This refers to its ability to 

continuously clean tissues from free radicals and oxidants, including free heme and radicals 

generated by extracellular Hb, heme and iron, by binding, neutralizing and transporting them to 

the kidneys for degradation52. A1M treatment of the preeclampsia rabbits ameliorated the 

proteinuria and reversed the increased glomerular sieving coefficient in kidney. The A1M-treated 

animals also displayed a significant reduction of the structural and cellular damages seen in 

placenta and kidney (Figure 1). 

 

2.3.2. Starvation-induced model of preeclampsia in pregnant ewes 

In a pregnant ewe animal model, starvation induces preeclampsia-like symptoms by causing 

hemolysis with subsequent release of cell-free Hb62. In a tailored version of the model, with a 

reduced time of starvation61, the exposure to Hb and its metabolites resulted in tissue damage in 

placenta, with an almost complete elimination of the collagen fibers as well as cellular damages. 

Structural damages were also observed in kidneys combined with an increase in glomerular 

sieving coefficient indicating a defect filtration barrier. However, the ewes did not manifest any 

significant elevation of blood pressure. Intravenous infusion with A1M ameliorated the structural 

tissue damages seen in both kidney and placenta, as well as restored the glomerular filtration rate 

in the kidney61.  

 

2.3.3.  Induced models of preeclampsia in baboons 



The use of non-human primates for study of human pregnancy is predicated on several basic 

principles related to physiological comparisons63. These are singleton pregnancy, upright posture, 

antigravity blood flow via two uterine arteries arising from the iliac circulation with no co-lateral 

(or ovarian) blood flow, and single disc placentas13, 63. Most importantly though, the formation of 

placental cell structures that relate to placental metabolic transfer and oxygenation, and likely cell 

signaling, are common to armadillos, guinea pigs, baboons and humans. This formation is 

hemomonochorial placentation, which has the lowest number of cell layers between fetal blood 

flow and the maternal blood-derived supply, i.e. fetal endothelium and trophoblast layer9, 12. 

Baboons have featured in studies of NO, Interleukin-10 (IL-10), TNF-α, and more recently sFlt-1 

as an angiogenic pathway inhibitor in pregnancy. In pregnant baboons, treated with a NO 

inhibitor, the effect on blood pressure was not of the magnitude seen in other species64, 65; 

however, studies of cytokine imbalance have shown that anti-IL-10 caused a low grade but highly 

significant increase in blood pressure66, mimicking reduced IL-10 levels seen in preeclampsia67. 

The effect of low dose TNF-α infusion was proteinuria and hypertension68. These effects 

mimicked those seen in rodent studies, linking an inflammatory response to preeclampsia69. This 

was consistent with the studies of human disease, in which patients have been shown to have 

heightened cytokine production profiles in serum70 and in placental tissue71. Therefore, the 

capacity to utilize this model to dissect further pathway interactions has increased comparative 

validity72. 

 

2.4.   Genetically modified models of preeclampsia 

Several mouse knockout models display preeclampsia-like characteristics and capture events 

during stage one and/or stage two. Indoleamine 2,3-dioxygenase (IDO) regulates endothelial-



derived relaxing factors and T-cell activity and the IDO knockout mouse show symptoms of 

preeclampsia such as proteinuria, mild hypertension, IUGR and glomerular endotheliosis73.  

Interleukin-4 (IL-4) is an anti-inflammatory cytokine and the IL-4 deficient mice display mild 

preeclampsia-like symptoms during pregnancy including mild hypertension, proteinuria, 

increased levels of pro-inflammatory cytokines and placental inflammation74. IL-10 has been 

shown to support trophoblast-driven endovascular crosstalk, and pregnant IL-10 knockout mice 

exposed to hypoxia demonstrate a full spectrum of preeclampsia-like symptoms such as placental 

injury, renal pathology, proteinuria and hypertension75. High temperature requirement A1 

(HtrA1) protein is expressed by trophoblast precursors in the placenta and abnormal levels have 

been observed in women with preeclampsia76. Pregnant HtrA1 knockout mice have reduced 

placental size, pathological changes to the spiral arteries and IUGR77. This model also displays 

impaired remodeling of the maternal arteries, which might suggest that HtrA1 plays a role in 

stage one of preeclampsia. 

 

In addition to knockout models, various transgenic models in both rats and mice have been 

established. In a transgenic rat model, female rats transgenic for the human angiotensinogen gene 

are crossed with male transgenic for the human renin gene, and the pregnant females exhibit 

typical preeclampsia symptoms such as hypertension, IUGR and proteinuria78. This is not the 

case in the reverse mating. In this model, an increase in regulatory T cells by induction resulted in 

improved fetal outcome but had no effect on maternal proteinuria or hypertension79.  

 

A variety of genetic modification is the introduction into rats or mice of adenoviral or lentiviral 

vectors expressing various proteins. The protein sFlt-1 is an antagonist for VEGF and increased 

in preeclampsia80. Overexpression of sFlt-1 via the administration of viral vectors results in 



pregnancy-specific proteinuria and hypertension in mice and rats81, 82, which was alleviated by 

the co-administration of VEGF81. Similar to this, it was recently shown that removal of excess s-

Flt-1 from women with preeclampsia, by plasma apheresis, ameliorated the symptoms and 

prolonged the pregnancy83, 84. Mice subject to viral overexpression of sFlt1 were challenged two 

months post-partum with an uni-lateral carotid injury, resulting in enhanced vascular remodeling 

and vessel fibrosis in the preeclampsia-exposed mice85. This model could contribute to research 

regarding the elevated risk of cardiovascular disease seen in women who have had preeclampsia.  

 

2.4.1.  STOX1 transgene mouse model 

A study of family cases of preeclampsia identified more than 20 genome regions with mutations 

involved in the disease, one of these has been identified in the Storkhead box 1 (STOX1) gene86. 

Overexpression of STOX1 altered gene expression in a trophoblast cell line, strongly correlating 

with the transcriptional alterations seen in the preeclamptic placenta87. In the STOX1 transgenic 

mouse model, pregnant female mice recapitulate the human preeclamptic phenotype with 

hypertension, proteinuria, and increased plasma levels of the anti-angiogenic proteins sFlt-1 and 

sEng88. Moreover, the mice present with alterations of the kidney structure, reminiscent of the 

renal endotheliosis seen in preeclampsia. Hence, this model re-capsulate both of the stages in 

preeclampsia, stage one by trophoblast interference in the feto-placental unit, and stage two 

through its systemic effects on the mother. Since it has recently been shown that STOX1 

modulates mitochondrial function, hypoxia response, and the expression of genes involved in 

oxidative stress, the effects of STOX1 is probably associated with an increase of the oxidative 

stress89. More precisely, STOX1 appears to modulate the balance between oxidative and 

nitrosative stress. Furthermore, recent results have also shown endothelial cell-deregulation of 

2000 genes that are linked to oxidative stress, cardiac hypertrophy and down-regulation of the 



cell cycle90. In summary, by covering both stages of the disease, the STOX1 transgenic mice 

constitute a strong model for investigating the etiology of preeclampsia, as well as testing original 

therapeutic avenues.  

 

3. Summary 

Preeclampsia models that involve impaired trophoblast invasion and placentation are a recent 

contribution to the scientific literature. In the majority of cases, models inducing preeclampsia 

through experimental interventions fail to capture processes leading to the abnormal placentation 

postulated to be the core element of the pathophysiology of preeclampsia. Targeting stage two of 

the disease, namely the maternal symptoms, offers opportunities to evaluate therapeutic options 

to alleviate the maternal symptoms. However, it sheds little light on the actual etiology of 

preeclampsia. Based on the research question at hand, different or multiple models might be 

suitable. Multiple animal models in combination with in vitro or ex vivo studies on human 

placenta together offer a synergistic platform to further our understanding of the etiology of 

preeclampsia and potential therapeutic interventions.  
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 Table 1. Four mechanistic categories of animal models of preeclampsia addressing etiology 
of the disease and or therapeutic/intervention opportunities  

Mechanism Species Stage 1 Stage 2 Therapeutic intervention 
     
Spontaneous Mouse BPH/5  Tempol 
 Mouse BPH/5  Inhibition of complement 
 Mouse BPH/5  VEGF 
 Rat Dahl S   
     
Surgical Rat  RUPP STS 
 Rat  RUPP 17-HPC 
 Baboon  RUPP  
     
Pharmacological Mouse  L-NAME Sildenafil 
 Rat   L-NAME Sildenafil 
 Rat  L-NAME Resveratrol 
 Mouse  AVP  
 Mouse  β2GPI  
 Mouse  Activin A Inhibitor 
 Rabbit  HbF A1M  
 Sheep  Starvation A1M  
 Baboon  NO inhibitor  
 Baboon  Anti-IL-10  
 Baboon  TNFα  
     
Genetic Mouse  IDO (ko)  
 Mouse  IL-4 (ko)  
 Mouse IL-10 (ko)   
 Mouse HtrA1(ko)   
 Rat  Angio/Renin(tg) Induction of T-reg 
 Mouse STOX1(tg)   
 Mouse  sFlt1 (vector) VEGF 
 Rat  sFlt1 (vector)  
β2GPI, beta-2-glycoprotein I; A1M, α1-microglobulin; AVP, arginine vasopressin; HtrA1, high temperature 
requirement A1; HbF, fetal hemoglobin; 17-HPC, 17-α-hydroxyprogesterone caproate; IDO, indoleamine 2,3-
dioxygenase; L-NAME, nitro-L-arginine methyl ester; NO, nitric oxide; NOS, nitric oxide synthase; RUPP, reduced 
uterine perfusion pressure; sFlt-1, soluble fms-like tyrosine kinase 1; STOX1, Storkhead box 1; STS, sodium 
tanshinone IIA sulfonate; VEGF, vascular endothelial growth factor.  



Figure legends 

 

Figure 1. A1M treatment ameliorates the structural damages caused by cell-free HbF in 

rabbit placenta 

Transmission electron microscopy of placental tissue from HbF-infused pregnant rabbits. (A) 

Control rabbits showing normal placental tissue with extracellular matrix filled with dense 

bundles of collagen fibers. (B) HbF-infusion causes loss of collagen fibers (indicated by arrows) 

together with severe damage to the extracellular matrix, extracellular apoptotic bodies, cell debris 

and a lot of empty extracellular space (indicated by stars). (C) The structural damages were 

significantly normalized by A1M treatment, with normal bundles of collagen fibers, normal 

electron dense barrier and reduced numbers of apoptotic bodies in the extracellular space. Scale 

bar 500 nm. Image modified from Naav et al. (2015).51 
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