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External losses in photoemission from strongly correlated quasi-two-dimensional solids
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Expressions are derived for photoemission, which allow experimental electron energy loss data to be used
for estimating losses in photoemission. The derivation builds on new results for dielectric response and mean
free paths of strongly correlated systems of two-dimensional layers. Numerical evaluations are made for
Bi,Sr,CaCyOg (Bi2212) by using a parametrized loss function. The mean free path for Bi2212 is calculated
and found to be substantially larger than obtained by Noreiaal. [Phys. Rev. B59, 11 191(1999] in a
recent paper. The photocurrent is expressed as the convolution of the intrinsic approximation for the current
from a specific two-dimensional layer with an effective loss function. This effective loss function is the same
as the photocurrent from a core level stripped of the dipole matrix elements. The observed current is the sum
of such currents from the first few layers. The correlation within one layer is considered as a purely two-
dimensional(2D) problem separate from the embedding three-dimensi@ml environment. When the con-
tribution to the dielectric response from electrons moving in 3D is taken as diaganpapiace, its effect is just
to replace bare Coulomb potentials in t8D) coupling between the 2D layers with dynamically screened
ones. The photoelectron from a specific CuO layer is found to excite low-energy acoustic plasmon modes due
to the coupling between the CuO layers. These modes give rise to an asymmetric power-law broadening of the
photocurrent an isolated two-dimensional layer would have given. We define an asymmetry index where a
contribution from a Luttinger line shape is additive to the contribution from our broadening function. Already
the loss effect considered here gives broadening comparable to what is observed experimentally. Our theory is
not related to the loss mechanism recently discussed by JRydbynt, Scienc284, 777(1999; R. Haslinger
and R. Joynt, J. Electron Spectrosc. Relat. Pherfdi#118 31 (2001)] which adds additional broadening
beyond what we calculate. A superconductor with a gapped loss function is predicted to have a peak-dip-hump
line shape similar to what has been observed, and with the same qualitative behavior as predicted in the recent
work by Campuzanet al. [Phys. Rev. Lett83, 3709(1999].

DOI: 10.1103/PhysRevB.64.115109 PACS nuni®er79.60—i, 74.25.Gz, 78.20.Bh

[. INTRODUCTION a more extended energy region, which is important for, e.g.,
strongly correlated systems, SA can no longer be relied on.
Photoemission spectroscoES is an important tool to  For core level photoemission from weakly correlated sys-
understand the electronic structure of strongly correlatedems such as metals and valence semiconductors SA*LF cor-
quasi-two-dimensional systems such as Highsupercon- rectly describes the satellite intensities only in the keV re-
ductors. Most theoretical work concentrates on two-gion, while the asymmetric quasiparticle line shaie
dimensional(2D) model systems, and when the theoreticalmetals is given correctly by SA already at low energreSor
results are compared with PES the three dimensionality ofocalized strongly correlated systems SA is reached rather
the actual experimental samples is only schematically, if aguickly, say, at 5-10 eV above threshdld.
all, taken into account. Further, almost all discussions are We analyze the three-dimensioné&D) dielectric re-
based on the sudden approximati®a), and do not con- sponse of a stack of strongly correlated 2D sheets in the
sider extrinsic losses and interference effects. For recer(x,y) plane, embedded in a 3D background. We then as-
work on strongly correlated systems beyond SA we refer théume, as expressed in E&8), that the response to the total
reader to Refs. 1-4. electrostatic potential is given by the sum of a 3D part and a
We define SA as the bulk one-electron spectral functior2D part. With the 3D part depending only on the coordinate
augmented with dipole matrix elements. This approximatiordifference in 3D, and the 2D part on the difference in 2D, the
is exact in the high-energy limit for isolated systems such aslielectric function is obtained on a closed form. This closed
atoms and molecules. For solids, where the electrons conferm allows us to find an approximate relation between the
from a surface region and the mean free path is an importargtectron energy loss function and the dynamically screened
feature, SA is never valid, not even at high energies. Here thpotential W. The relation is only approximate since energy
correct high-energy limit is a convolution of the sudden ap-loss is related to the diagonal péir g-spacé of the dielec-
proximation and the loss functio(BA*LF). SA is particu- tric  function, while we need the nondiagonal
larly valuable when we only look for peak positions such asimW(z,z’,Q, ) [or equivalently ImW(q,,q;,Q,w)] for
quasiparticle energiege.g., for band-structure mapping the loss problem in photoemission. In PES we need to know
There are indications that also quasiparticle line shapes alen W(z,z’,Q, ) in the presence of a surface, while the loss
well represented When it comes to spectral properties over data are obtained from a bulk sample. This calls for addi-
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tional approximations. Our numerical evaluations concerr(cf., e.g, Ref. 9we introduce dispersion by replacirg and
Bi2212 and are based on a parametrization of the loss fung; in Eq. (1) by w;(q) andc;(q),
tion given by Normaret al? We, however, include disper-

sion in the dielectric function, which makes the mean free 2 ciw? i
path much longer. We use atomic units wigh=#%=m=1, o=+, cl@=—— =23
and thus, e.g., energies are in Hartréga2 e\j and lengths i (d)
in Bohr radii (0.529 A). We have putke=0 for simplicity, which gives a slight un-
derestimate of the mean free path.
II. MEAN FREE PATH The expression for the mean free path in a layered mate-
For the interpretation of photoemission from the cupratesrIaI 'S
the value of the mean free path at energies of about 20 eV, 1 1 (= = QdQ (2=
where the experiments usually are done, is very important. In N —Zf dqzj - dopbO(ey—q— 1)
a recent paper by Normaet al* very short values of the 20(K) 72k 0 g;+Q"Jo
order 2—3 A were obtained for Bi2212. Normanal., how- 1
ever, neglected thg dependence in the loss function. In the X Im ,
electron gas case neglect of dispersion makes the mean free e(Q;w)

path about half the value with dispersion. When we introducherek, andk are components perpendicular and parallel to
dispersion for Bi2212 we find an even larger effect on they,q layersk=(k,,K), k=|k|, K=|K|, etc., and

mean free path.
Normanet al. used a parametrization of the energy loss w=ex—&y_q=KO,— 02/2— Q%/2+KQ cos¢.

data on BjSr,CaCyOg (Bi2212) obtained by Nukeret al.
For simplicity we have taken free electron energies. Further

-1 i wriwiz considering propagation perpendicular to the layers we have
Im =, C 1 K=0, and no dependence on the angldetweerK andQ,
e(w) =1 '(wz_wi2)2+ wzriz @ P "o Q
. L . 1
with parametergenergies in ey given below I
i Ci [OF Fi )\ZD(kZ)
1 0.164 1.1 0.7 :ifdefqmax Qde, -1
2 0.476 185 13.6 mkJo " Jann 42+ Q% 8(Qik0,~ a2/2-Q%2)
3 0.345 32.8 17.0 3)
The first peak at about 1 eV is associated with 2D plas-
mon excitations, while the large double peak comes from Amin=K— Vk?=Q?,  Qmac=k+ Vk>— Q2.

essentially 3D excitations since it is similar to what is ob-
served in Cu metwcf_ Ref. 4) The linear rise for small In Ref. 10 there is a detailed discussion of the 1 eV feature
comes from acoustic plasmoiidue to the coupling of the (the first peak It has aQ” dispersion that is a signature of
2D plasmons in the different layersand also to some extent coupled particle holegplasmong They also estimate the
from electron-hole excitations. Phonons and other low-<coefficient theoretically with reasonable results. From
energy excitations cannot be seen incker et a|.’36 data Nuckeret a|.6 it is clear that the first peak, besides diSperSing
since the broadening is too large50 me\j. asQ?, quickly broadens whe@ increases. For the first term

For an electron gas we have the well-known relation bein Eq. (1) we use
tween the mean free paiyp(ey) and the inverse dielectric

. 71 2
function ime(a). o Q=0y+aQ, TyQ=T| 1+ %],
1 2 fwdq “)maxl -1 d (2) 0
- = - m ,
Nao(e) k2o a Jo e(qw)| Cr0?
| Q)= —, Qp=0.13 au., a=06.
with 01(Q)

We have putw=0. With a finite x, and thus a finit&kg we
should replaceJk?—Q? with \k2—Q? for Q<k in the

In a solid at lower energies we should use Bloch functiondimits above. Such a replacement makes,3/ smaller and
and not plane waves for the scattered electron. Howevenur approximation thus again slightly underestimates the
calculations by Campill@t al.” show that for copper use of mean free path.

plane waves but with a full-band-structure dielectric function In Fig. 1 we show results for the inverse mean free paths
is a reasonable approximation. In our calculations we use Edor the 2D and 3D contributions. It is remarkable that the 2D
(2) for the two last terms in the Normaet al. parametriza-  effects, while peaked at 1.5 eV, extend quite far, out to some
tion. Following Ritchie and Howféand many other authors 30 eV. The 3D contribution starts dominating at about 10 eV.

£=K?2,  oma=min(kq—q?/2k?2—k2/2).
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0.1

Ill. PHOTOEMISSION

e
2
]

We are interested in photoemission from the CuO layers.
The layers are regarded as localized systems embedded in a
3D environment. The crystal surface is taken to be parallel
with the layers and in thex(y) plane. We take the electrons
in the 2D layers as separate from the other electrons, and
write the state vectors for the initial and final states as

e
2
&

e
o
]

e
o
&

INg)[N2p),INE ,S1)[Nop— 1.5,) k). (4)

Here [N,p) is the state vector for the electrons in one par-
ticular layer at a distance, (z,>0) from the surfacdthe

- p p - one from which the photoelectron comeand|Ng) the state
ENERGY (eV) vector for the remainingbulk) electrons that move in 3D.
IN,p—1,5,) is an excited stats, of the particular layer, and
INE ,s1) an excited stats, of the bulk electrons. The star
indicates that these electrons move in the presence of a lo-
The mean free path, given by 1h=1/M\,p+1/M\4p, is Calized hole ar=(0,zy), and thus is an eigenfunction of a
shown in Fig. 2. The maximum in 14 is reached at about different Hamiltonian than that fofNg). Finally, [k) is the
100 eV, where the mean free path has its minimum of som@hotoelectron state. One may argue that the hole should be
5 A. It seems to be a universal feature that the minimunextended over the 2D layer rather than sit in one point. How-
mean free path is about 5 A at an energy about 3—4 times thever, even in weakly correlated solids correlation effects give
energy where the loss processes are strongest, as can be sdsa to satellites corresponding rather to the removal of the
from tabulations of loss functiofsand mean free pattd. electron from a point than from an extended redidRor the
The qualitative behavior of the 2D and 3D contributions instrongly correlated systems considered here the band is quite
Fig. 1 are similar to what has been obtained in random-phasgarrow and thus the atomic functions building the Bloch
applrgxmatlon(RPA) calculations for the layered electron functions have small overlaps, which makes our approxima-
gas.” We remark that Normaret al. besides the inverse tion of a localized hole even better. We consider processes
mean free path also calculated the background in PES in thghen the photo electron energy is high enough that we have
traditional way from the extrinsic losses only, following the reached the sudden limit as far as the excited layer is con-
common convention to take the background as zero at thgemed(about 10 eV according to Ref).1
bottom of the main band. If we do a similar background  The expression for the PES transition amplitude then
calculation the results are very close to Nornedral's since  pecome¥
in such a calculation only the shape and not the strength of
the loss function enters. We emphasize that in our treatment
of PES later in this paper we include besides the extrinsic 7(K,S1,5)= 2 (KI(N§ ,S1/(Nop— 1.8,
losses also the intrinsic ones and the interference terms, '
which gives a radically different result for small energy
losses. X

inverse mean free path (1 /l°\)

1 1
0 5 10

FIG. 1. The contributions to the inverse mean free pathfidm
2D (full drawn) and 3D(dashegi terms in the case of Bi2212.

1
1+V—r

E_H CiIN2p)INg)A[i),  (5)

30

where |i) and |k) are one-electron states. The stdip

u | =|K;)|¢o) is the product of a 2D Bloch stat;) with
momentumK; , and the bound stat¢,(z) for the motion in
thez direction, which only will enter akpo(2)|>=w(z). The
operatorc; destroys an electron in staté,* and c;|Nyp) is
regarded as a localized state concerning its influence on the
3D states. The optical transition operatorAisandV is the
potential for the interaction between the photoelectron and
the solid, the potential that causes external losses. Since
contains both operators acting on the photoelectron and on
the solid the expectation valugNg ,s;|---V---|Ng) is a
one-electron operator acting on photoelectron states. The
0 . . . . state Ali) generated by optical excitation is considered a
ENERGY (e\%’ & 1% photoelectron stateH is the full Hamiltonian includingV,

andE is the total energy

[N
=3

mean free path (/-o\)

=3

FIG. 2. The full drawn curve gives the mean free patifrom

our calculations that include dispersion in the dielectric constant, E=E(N2p)+E(Ng) + @pnot
and the dashed curve the results without dispersion given by Nor- .
manet al? =E(Ng ,s1) +E(Nzp—1,5;) + &y, (6)
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where w0 is the photon energy ang,=k?/2 the photo-

X - k=k22+ K). We are thus interested iR\ (Zo,®pnoi— &0
electron energy. The photocurrent is proportional to

—&,) as a function ofgy in the rangewp,no—eo>€>0.
Since Py(zy,w) varies fairly slowly with k for fixed o,

Jk(wphot)zz |T(k131152)|25(wph0t+ Esz—wsl—gk), Pk(zq,w.) as a fqnqtion ofw for fixed k desc_:ribes. the pho—
S152 toemission(in a limited energy range We will mainly dis-
with ﬁuss the properties &, (zy,w) as a function ok for fixed
ws, = E(N% ,s;)—E(Npg), The effective broadening function to second ordeYfris

found to be(Appendix A),

Es,=E(N2p) ~E(Nzp—155). wlkza:0)

, ®

. Pk(Zo,w)=e‘Z°’”‘a[ o(w)+
For the HamiltoniarH we take,

H=Hyp+Hog+h+V, where
where H,p, describes the pertinent 2D layetlog the 3D @(K.Zo;@)
electrons in a quasi-boson representatioria one-electron 1)
operatoy the photoelectron, an¥ the interaction between

the photoelectron and the 3D systéitme interaction with the 20 2

2D system is neglected since we assume the sudden limit to ZES: J'O f(k,Q ®,20;2)V(0;,Q,2)dZ| 5(w—ws),
apply here. Explicitly we have, 9)

H alagc—VpPn, Vp=2, Vi(as+a! S(z-7p) €K@
QB E Wg S h™h h 2 ( S ) f(k,Q,w,Zo;Z):_ ( > O)+ iK elkzZe—IKZ.

(10

This expression is the same as in E@6) and (27) for the
core electron current in Ref. 5. The functid{qg,,Q,z) in
VE=V5(0,20). Eq. (9) is the fluctuation potential giving the coupling be-

tween the photoelectron and a density fluctuatisn

Py is a projection operator that gives 1 for states with a hole=(q,,Q) with energyws. In f(2) the first term gives the

in the 2D system, and O otherwise, a¥g is the potential intrinsic or shake-up contribution to the amplitude, while the

from the hole in the 2D system. The functioN$(r) are  second term gives the contribution from losses when the

fluctuation potentials, discussed at length in Refs. 5 and 15lectron propagates from the layerzgt>0 to the surface at

Say that we somehow can calculate the photocurrenf— g The quantitiesc andk, are the(compley momenta in
J5°(20, wpnod from one isolated two-dimensional layer at a the z direction of the photoelectron when inside the solid
distancez, from the surface, and want to estimate the currenbefore and after it excited the density fluctuatismaving

from this layer when a set of such layers together with addiparallel momentun®. The photoelectron momentum outside
tional electrons of 3D character form a three-dimensionaly . <id isk,2+ K and its energy = (K2+K?2)/2. Further,

crystal. We have to account for the shake up in the 3D surVO is the (negative inner potential, and’; andT, are the

rounding of the layer as well as the losses the phOtoeleCtrOHampings before and after emitting the excitatioft is easy
can have on its way out to the surface. In Appendix A We, " Jerive expressions where the plane wagé ande ™'

shpw that the photocurrent theg can be written as a CONVO;re replaced bydamped Bloch functions, and can find ex-
lution between the 2D currenlﬁ (z9,w) and an effective

. , pressions where the band structure also is present in the lat-
broadening functiorP,(zy,w) [Egs.(A4) and(A5)], eral motion.

SinceP,(w) is quadratic in the fluctuation potential§,
Jk(zoywphm):f \]iD(ZO:w,)Pk(ZO:wphot_ o')do'. we can relate it to the dynamically screened potemiaFor
@ the imaginary part oW we have[cf. Eq. (49) in Ref. 5],

A delta function peakd(w—=eo—sy) in IZ°(zg,w) will
hence give a contributioR(zy, wpnor— &0~ &) to the pho-
tocurrent. In core-electron photoemission we have a similar s iOR
expression with12°(z,, ) replaced by the expression for With V:(r)=e""V(q,,Q.2)
the current from a core level in an isolated i@ssentially a IMW(z,2'":0: )
delta function.

The common energy distribution curve experiment gives

the current for fixed photon energy,,; as a function of the =—mAY, V(0q,,Q,2)V(q,,0,2") 80— wy),
electron energy, for a given direction ok (or K, where az

V=2 Vj.clep(astal), Vi =(k|VIk'),
skk’

IMW(z,2;R,R";w)=—72, V(NVr')d(ow— ws).

115109-4
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whereA is the normalization area of the planes. In an exact
treatment th&/(q,,Q,z) can be chosen real, and we see that

ImW(z,z";Q; w) is symmetric inzandz’. Comparison with
Egs.(8) and(9) shows that

a(k!ZO;w) _

1 )
A > fo f(kQ.0,20:2)

w
XIMW(z,2";Q; w)f(k,Q,w,zg;z')*dzdZ.

To simplify the calculations we relate I to the mea-

sured loss function. The loss function, however, is connectec

with losses in the bulk, and we also have to find an approxi
mate relation between IWP''“ and ImwWsU"". This was done

in Ref. 5 by using the Inglesfield simplified expression for
the fluctuation potential,

1 o0
|mW2L5rf(Z,Z’,Q,w)= zfo F(quQlZ)F(qZ!QIZ,)

X ImWie'(q,,Q,w)dq,,

where

F(d,,Q,z)=2[coqq,z+ d)q) - COSQSqe_QZ] 0(z),

0
n—.

Q

¢dq=arcta

This means that for the strength of the coupling we keep the

PHYSICAL REVIEW 84 115109

2500

2000

1500

1000

Vp(2)

500

L

-500

FIG. 3. The periodic functions Ré" (z) and ImVP(z) for z/c
in the interval (0,1), where is the lattice constant and’ is defined
in Eq. (12). We have taken some typical valuas:0.03 andQ
=0.1(for Bi2212¢c=29.1 anda=10.2, which givesr/c=0.11 and
mla=0.31).

Here VP(q,,Q;z) is a well-known periodic potentiglVP
=exp(q,2)V, with V defined in Eq(B7)]

Vp<qz,Q:z>=§ v(g,+G,Q)w(q,+G)e ¢

_ 2mce sinhQ(c—2)+e '%°sinhQz
- Q coshQc— cosq,c

bulk expression, while for the spacial part we have a bulk

function (here plane wavethat is modified to be zero at the
surface. The relation to the loss function is

e30(0,;Q )

For 2D excitations we can do a similar modification of the

ImW35%(q,,Q,0)=v(q,,Q)Im

(12

The explicit expression follows when the form factefq,)
(cf. Appendix B is taken as 1, and is valid only for<0Oz
<c. The phasep(z,) in Eq. (1) is chosen to mak¥" zero
at the surfacey'(q,,Q,zy) =0.

In Fig. 3 we plot R&/P(z) and ImVP(z) for some typical
values ofg, andQ, and in Fig. 4 we show'(z) for the same

bulk fluctuation potential to make it zero at the surface.

When we takew(q,) =1 we have(see Appendix B
ImMW55(2,2";Q; »)

mlc

0 Vr(qleZ_ZO)Vr(QZrQ!Z, _ZO)

2

X0(02:Q; w)
m—
C

X1 da,

for the contribution from the layer at, where Imy(q;Q; w)
is related to the loss function by

1 -1
~ 20(0,,.Q) £2°(q,: Qi)

andV'(q,,Q,z) is the fluctuation potential,

V'(Qz'Q,Z)=2R€{Vp(Qz,Q:Z)eXp{—iqZZ+i¢(Zo)}]&1

Xo(0z;Q; w)
m
C

| m
82

[

-500 |

-1000 |-

-1500 |-

-2000 |-

-2500 |-

<3000 -

fluctuation potential

v "(q,Q2-0.39c) —
v'(q,Qz-061c) —

3500 |-

~4000 |-

~4500

A A
0.5 15 25

z/c

FIG. 4. The fluctuation potential"(q,Q;z—z) in Eq. (12) for
z/c in the interval (0,2.5) and foz;=0.3% and 0.6t, the dis-
tances from the surface of the first two CuO layers. The potentials
are zero at the surface and the cusps come at CuO layers. The
maximum possible value d¥%'| is 2VP(0).
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048 (a) 0.5 (b)

o FIG. 5. Results fora,p(w) and asp(w) [cf.

omb Egs.(17) and(18)]. The parameter values are ob-
a" n— a2 2n— tained from energy loss data for Bi2212. The
S 12 22—

curves in Figs. @),(b) give contributions to
asp(w). The symbolmn refers to a contribution
when the fluctuation potential is centered at layer
m (and m+2, m+4, etc) and the photocur-
rent comes from layen. Thus the dashed curve
in Fig. 5@ (m = 1, n=2) refers to a contribu-
tion from the fluctuation potential centered on the
o . ~ layer closest to the surface when the photocurrent
comes from the second layer. Figuré&)sshows
the total contributions tar,p(w) when the cur-
rent comes from layers 1 to 4, and Fig(db
shows the corresponding contributions to
azp(w). The curves in the inset ard hocad-
justed to take out the unphysical low-energy part
coming from a schematic parametrization. The
photon energy is 1 a.u.

L) 005 (3] 015 02 025 03 035
E(a.u.)

° 006 01 015 [X'3 03 03

L X3
E(au)

parameter values. The sharp peak with a singular derivativapproximation(the electron-hole part is then not included
in ReVP(z) atz=0 is smoothened if we take(q)#1. For  can be shown analytically that

a typical binding energy of 3 eV and an exponential wave

function, we havev(q,) =a?%/ (a?+q2), with a=0.9. Typical « :
values ofgq, andQ are w/c and 7r/a. The lattice parameters a(K,Zp;, 0 _
for Bi2212 arec=29.1 anda=10.22, which makesr/c j do=a+z/A, (14
=0.11 andm/a=0.31% We can also compare with the cut-

off parameter for the collective excitations in Bi2212 dis- ) S
cussed in the section on mean free p&h=0.13. Thusa is and Eq.(lS) thus also gives th(_a correct prefactor in this limit.
substantially larger thag andQ, and it is hence reasonable ~ With an electron-hole continuum, E(L4) no longer can

to takew(q,) = 1. We note that the values of Ré(z) atthe  hold since the integral diverges. We then splik, wpnot; @)

first two Cu layers are substantially smaller than the maxii" @ 2D part from the excitations in the layers, and a 3D part
mum value of Re 2P(z). An approximation with bulk po- from the remaining excitations;= ap + a3p . The 3D con-
tentials cut at the surface clearly can give very large andfibutions in Eq.(1) have been smoothly deformed to be zero
spurious effects unless we go to so extremely high energie@r w<wi,= 0.1 since the metallic excitations come from the

that the mean free path becomes much larger than the latti¢8Yers. To give a good representation of the experimental loss
parametec. function this deformation should be compensated by a small

When there are no low-energy excitations, like for an in-increase in the 2D term, but this is a minor effect that we
sulator or for a metal when the electron-hole excitations aréave omitted. Now the integrafl;, dwasp(K,wphor; )/
neglected and only the plasmons are kept, the overlap beonverges, and we have checked numerically that in the
tween the initial ground state and the completely relaxechigh-energy limit
ground state in the presence of a localized hole potential is
finite. In a quasi-boson treatment we have

” do=ajsp +2zg/\, (15

2 jw _a/3D(k'ZO;w) intr
i ®th

V3(zo)

w

(N3.0Ng,0)°=e"2, a=2
S

A partial summation of the perturbation expansiorvin(or Whereais"Dtr contains only the intrinsic part,

a cumulant expansiomgives

dt . o't 1 . o do
Pk(zo,w)=fze"“"exp< f a(k,ZO;w')—,dw’). a'3”D"=f Zs |V§D(ZO)|26(w—ws);.
®th

w
13

This expression correctly reproduces the edge singularityThe approach to the high-energy limit is quite sl¢of the
1w~ *k20:9 and also gives the second-order satellite termorder of ke\j, and in our estimates for Bi2212 we adopt the
in Eg. (8). In the high-energy limit and the plasmon pole expression
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, dt . functions is similar to the electron gas case with a flat portion
Pk(w)zexli—zo/)\—alanon)J ze_'“’t for small w followed by a plasmon pealcf. Ref. 17, pp.
663—667. However, the magnitudes are differeay(0) is
w elo't_1 fairly large (0.25-0.30) compared to metals while the plas-
XEX[{J’ asp(K,zp;0") ———do’ mon peak is much smaller and broader. When we change the
w

parametrization to make the 3D terms start at 0.1 a.u. the
a,p(0) values will increase by some 10%. Thgp func-

] (16)  tions have only a weak dependence on photon energy, while
the a3p curves have a much larger dependence. All curves in

) Fig. 5 are for the same photon energy of 1 a.u.
Equation(16) guarantees the correct dependence on the The |eft part of Fig. 6 shows the dominance of the intrin-

distancez, to the layer. While exp¢agy) may not give an sic contributions tar,p . As expected the contributions from
accurate scale factor, this is of minor importance since ithe extrinsic terms are larger for the layers further away from
does not affect the ratio between the threshold peak and thfie surface. The right part shows the approach towards the
satellite structure. Therp' values depend only weakly on bulk value of the intrinsic contributions fos,p and asp .
zo, and for the first four layers the values are This approach is considerably slower in the 2D case as might
0.243,0.252,0.260, and 0.261. Collecting our results wéde expected from the behavior of the fluctuation potentials
have (cf. Fig. 4. Comparing the intrinsiersp in Fig. 6 with the
full a3p in Fig. 5, we see that in the 3D case the extrinsic

_ —w (7l effects dominate. The differenegy)' — all'" is roughly pro-
azp(k,z0;0) = 77(277)3f0 dQZf dQ portional toz, that follows the trend in the high-energy sum
rule, Eq.(15). In Fig. 7 the contributions fron®,(zg,) in

© o't
+f agD(k,Zo;(D,) d(,!),
w

!
@th

Zof ; q 2 Eq. (16) from the first four CuO layers are shown. It is clear
1y (2)V(Q,,Q.2)dz Imx(42,Q @), that most of the asymmetry comes from the layers in the first
(17) 25
e o, (a)
asolkizoi0) =" "dq, [ do
m(2m)°Jo g 20=0.39c —
70 2 E wr gﬂ! 20=0.61¢ -~
X J f(z)F(q,,Q,2)dzl ImWy(q,,Q,). % it 20=1.39¢ -
0 Eol Il 20=161¢
= ] v =1.
(18 | \a Y
In Fig. 5 we plot results for different contributions to the sl
« functions in Eq.(16). The general shape of the,p(w) “
0.5 [ T T T T ] 0 [) 0.5 ; 15 2
0.8 , . : ; 04 A ] &Y
Q s LA 361c
13 Fi 2ote ’
full — 02r o ] ;
intrinsic 1 01 E AN\ oate . asr 1
INtninsic —-— E 39¢ B i
, /\& 03% A ' ( b)
| 0 2 4 8 8 10 i
E (eV) §I 20=0.39¢c —
=il B 20=0.61¢ -
[
0.25 et g : Jfl: z0=1.39¢ -
0z} E sl 1\ z0=1.61¢ -
Q Bl
D05 | T N, 1826 ﬂ.,\ |
20=0.61c ol / é:%?iT ] T
0.1 — 0.39¢ ]
0.05 F 4 05 - AL
20=0.39¢ F\
St 5 5w 0 0 20 30 4 50 60 70 & 0 b 0 P 30 S %
E (V) E (eV) E (eV)
FIG. 6. The left part shows a comparisonaif,(w) for the pure FIG. 7. The effective loss functioR,(w) including both 2D

intrinsic case with the full expression including the extrinsic ampli-and 3D contributiongcf. Eq. (16)]. The contributions from the
tude. The right part shows how the pure intrinsic contributions todifferent layers are displayed separately. The curves are convoluted
asp(w) and asp(w) converge towards their bulk values. The pho- with Lorentzians, in Fig. @ with '=10 meV, and in Fig. )

ton energy is 1 a.u. with I'=300 meV.
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unit cell. The alpha function for the first copper layer is quite 20 T T T T T T T
small (Fig. 6), but when the mean free path effects are taken
into account, Fig. 7 shows that the broadening contributions (a)
from the first and second layers are comparable. Figlng 7
shows an extended energy region to illustrate the relative
importance of the 2D and 3D contributions. The integral ef-
fect of the 3D contributions is much larger, but the peaks in
the loss function are smoothened out and the 3D contribution
is featureless. At higher energies we of course also have
contributions to the photocurrent from other states than the
quasi-2D ones in the Copper layers discussed in this paper.

We now give a qualitative discussion of the effective 0
broadening functio®, (w) in Eq. (16). Since the 2D and 3D
contributions add in an exponent we can wiRg(w) as a
convolution,

e
(S}
T
1

full solution

rectangular model -------

INTENSITY

w
T

Pi(zy,0) (b)

0.6 | full solution

=exq—20/)\—ai3“[§r)J PEP(0—0")PP(0')do'.

For PP we make a Taylor expansion, and keep only the first 0.4 F rectangular mode} ------- .

term, PEP (o) = 8(w) + asp(w)/ w. We have then omitted the
multiple quasi-boson excitations startinga@t 2w, . Since 02
P2P is normalized to unity, and consists of a peak that is
sharp compared te;n, we can write 0 ;

INTENSITY

Pk(Z0,0)) E (eV)

FIG. 8. The effective loss functioRZ°(w) obtained with only
the 2D contribution from the second layer. The full drawn curve in
w Fig. 8(a) shows the full solution obtained with the "2” curve in Fig.

T icall luat®2° d the int | 5(c), while the dashed curve shows the result using the rectangular
o numerically evaluat®j~(w) we use € integral equa- approximation fora,p(w) with wy=0.08 anday=0.255[see text

tion  wP(w)=[Fdw’ axp(e)PP(0—w’) which is 4 Eq. (19] In Fig. 8b) we showwl*~*©Ip,(w). The photon
easier then to evaluate the exponential expression in E@nergy is 1 a.u.

(16). If we approximatea,p(w) by a rectangular function,

azp(w) = apf(wo—w), and broaden with a Lorentzian of  p20(4) is the function that broadensafunction peak in
width I" (full Wi.dth at ha...|f maximum=2F), we have for JﬁD(w). If JiD(w) has a Doniach-Sunjic singular shape the
< wy the Doniach-Sunjic expressidf, broadening withPZ°(w) still gives Eq.(19) but with anay
that is the sum of the alphas #° and inPZ° (). This is so
because the time transform of a power-law singularity
o~ (172 jst~%, and a convolution in frequency space is a
product in time space.

: asp(Kk,zp;m)
=exp(—zy/\—ajgp' PED(zo,wH&.

cos magl2— (1— ag)arctafiw/T") |
[1+(w/l-*)2](17a0)/2

PZP(w)=C(ayp)

e~ 790 The a,p functions in Fig. 5 show clear peaks due to the
Clag)= P — , (19 plasmon excitations. The peaks are, however, not strong
(o= 1) 0T “osin may] enough to give more than a small bump in B functions.

This is illustrated in Fig. @) that shows the fulPZ° curve
and the rectangular approximation in E@.9 using «g
=0.255 andwy=0.08 a.u=2177 meV. In Fig. &) the rect-
angular approximation is illustrated by taking out the singu-

wherey=0.577 is the Euler constant. The coeffici€tx)
in Eq. (19) was derived in Ref. 1Tsee Eq.(162]. For w
> wq PZP(w) only has a weak tail with less than 10% of the

norm (for ay<<0.4). Let wya be the w value for which larity and plottingPED(w)w[lfaZD(O)]_ The simple rectangu-

Pi°(w) has its maximum, and, andaw, the values where it |, approximation without plasmon peak should be useful as
takes half its maximum value. We define an asymmetry iy gide when other broadening effects are at work. In Fig. 9
dex yas(ao) = (w2~ wmay/(wmax—w1). AN approximate ex- e show the sum for the first four layers of the 2D contri-
pression foryas is butions exp{zy/\—al)PZ°(w) broadened with different
w Lorentzians. The 3D terms are not included except for the
2 ®max_ 1+O.79ao+l4.54a§. (20) (all importan} mean free path factor. In the first three panels

w
Yas(@o) = — . o '
Omax— @1 with a limited energy regioriup to 500 meY we have used
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120 : — — T T Tt 250 T T T T T

5 meV I 10 meV 1 200 |

150 |

100 |

INTENSITY
38

ol unbroadened hump

INTENSITY

50

20

L g
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FIG. 10. The loss functio®Z® for a gapped spectrum using the
s} . | | simple parametrization in Eq21). The Lorentzian broadening is
'=15 meV.

20 meV

6o 1 sof 5meV —

INTENSITY

using the same values fafy andwg as in Fig. 8. For the gap
wsc We takew,.=70 meV. In Fig. 10 we show the corre-
spondingPZ°(w) broadened with a Lorentzian of widfh
=15 meV. Our choice of parameters is only made to illus-
! trate the qualitative behavior to be expected. The curve
N R clearly shows the peak-dip-hump line shape found experi-
E (meV) mentally (for a recent reference see, e.g., Ref).19
Recently it has been possible to obtain very accurate tun-
25 3 neling data from Bi2212, and it is of interest to compare
these data with the PES satellit8since the tunneling data
FIG. 9. The effective loss functioy(w) convoluted with @ISO show peak-dip-hump structuféRES and tunneling are
Lorentzians of different width& (5, 10, and 20 me)/ All the 2D basically different spectroscopies. There can, however, be
contributions P2°(w) in Eq. (19) from the first four layers are qualitative similarities since in both cases the electrons
summed weighted with expzy/\—alll). The 3D terms are not Ccouple to 3D quasi-boson excitations such as phonons,
included. In the first three panels we have used the rectangul&lectron-hole pairs, plasmons, magnons, etc. In our treatment
approximation, while in the last panel the full evaluation from Eq. of PES we take the states of a particular 2D layer as given
(16) was done. Also the Lorentzians are shown. The photon energgnd study the effect to low order of the sudden appearance of
is1a.u. a hole in the 2D system on the quasi-bosénginsic exci-
tationg as well as of the coupling of the photoelectron leav-

the rectangular approximation for the different, contribu- g this layer to the quasi-bosofxtrinsic excitationg and
tions. In the last panel with a larger energy range the fulheir interferencécf. Egs.(8)—(10), or equivalently Eq(26)
evaluation from Eq(16) was done since it is superior to the N Appendix Al. We found that the intrinsic contributions
rectangular model for energies above 0.5(e¥k Fig. § The  dominate for small excitation energies.

numerical accuracy at the peak is, however, lower in the full  Tunneling is traditionally described by the spectral func-
calculation. Also the Lorentzians are shown to ease the estfion that involves matrix elements of the electron annihila-
mate of the size of the asymmetries. It is clear that we hav8on operator between the initial state and the excited
a sizeable line asymmetry, and also a long tail extending ovettatesi®?*The excited states consist of a 2D layer state with
several eV. The artificial step in the rectangular approxima@ Nole, and some state of the quasi-bosons in the presence of
tion at about 3 eMFig. 8) is of little consequence since the & localized hole. In lowest-order perturbation theory the
intensity is small at this energy. The asymmetry index isProbability for a final state with excited quasi-bosons is
slightly dependent on the Lorentzian broaderlihgince we ~ 9iven by the first term in Eq(10). This means thathe in-

have summed contributions from different layers with differ- trinsic contribution to PES and the tunneling currents are the
ent « values. The index is about 2.6 that according to EqSame except fothe mean free path effect in PES shown in

(20) corresponds to an effective of about 0.3. Eq. (8), and t'he summation over momenta in tunneligiy-
In the superconducting state the loss function should havi'd the density of states, DQ8ontra momentum conserva-

a gap. We mimic this gap by using a rectangular alpha function from the di_pole_matrix e_Iement in PES. As mentioned
tion above, we modify this analysis valid for the normal state, by

simply assuming that the loss function should have a gap in
the superconducting state.
asp(w)=agb(w— ws) O wy— ), (21) In Bi2212 we have a van Hove singulari(yHS) at the
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Fermi level, which makes the difference between DOS andayers.? With a photon energy of 1 a.u. the maximum elec-
momentum conservation of less importangBere might tron energy(inside the soliglis 1.15 a.u=31 eV if we take
actually even be two VHS's if the two CuO pla8 A apart  the bandwidth as 0.15 a.u. Our energy loss calculations give
produce a significant splitting More important is that in  \ =17.8, (Fig. 2). The exp{-z,/\) factor then is 0.53, 0.37,
PES the electrons come from a thin surface redimithe  0.10, and 0.07 for the first four CuO layers. We thus expect
order of the mean free pathwhile in tunneling they may |arge photoemission contributions only from the first unit
come from an extended region that can be hundreds of ange||.
stroms, and that the coupling functiok’¥z) are stronglyz To obtainP,(w) we use a previously developed method
dependent. Additionally, there are two energy gépsper- based on a quasi-boson model, where the electron-boson
conducting gap and pseudogaphich further complicates coupling is given by fluctuation potentials related to the di-
the picture. There is thus no way that PES and tunnelinglectric response functioli. We find that the energy loss
structures can be quantitatively the same, but since the samgnction, which we take from experimental data, can be re-
quasi-bosons are involved, there may well be qualitativated to the screened potential that we need to calculate the
similarities even though the coupling strengths can be quitgntrinsic and extrinsiglosses in photoemission. The fluctua-
different. It should also be noted that we take the spectrajion potentials related to the electrons in the layers are uni-
function for the 2D system as a sharp pedhe function  versal functions, which are easily calculafgghs. (11) and
often calculated by theoreticians using sayamode), and  (12)]. They have some resemblance to a surface plasmon
have no means to estimate the relative strengths of the trysotential, but penetrate the whole solid and have the Bloch
2D spectral function relative to the loss structure analyzegvave symmetry. We use the real p&dr equivalently the
here. imaginary parnt of a phase-shifted bulk potential to get a
In our analysis we have only treated the plasmons for theotential that is zero at the surface, and mimics the potential
simple reason that the experimental loss data at hand did ngfe have in a finite solid. The fluctuation potential is inte-
have resolution enough to show phonons and other lowgrated overz together with a propagation functidiz) [Eq.
energy excitations. If suchq=0) data appear showing ad- (10)] that takes the photoelectron out of the solid. This inte-
ditional quasi-bosons one is faced with introducing reasongral is in turn integrated with the loss functigtaken from
able dispersions, and finding reasonable extrapolations of théxperimeny, Ime ~%(q,Q,w), to give functionsa,p(w) and
bulk coupling function to account for the presence of they,,(w) that are simply related to the effective loss function
surface. P(w) [Eq. (16)]. When we use plane waves instead of
Bloch functions in the propagation functidkz), all specific
materials properties are embodied in the loss function. The
propagation function has both an intrinsic and an extrinsic
This paper is concerned with effects of external losses irtontribution that interfere.
photoemission, and the extent to which the commonly used From Eq.(16) we see thaP,(w) is scaled down wittz,,
sudden approximation works for strongly correlated layeredhe distance of the layer from the surface, while the fluctua-
materials. We have earlier found that for a strongly corretion potentials increase with The reason for that increase is
lated localized system the sudden approximation is reachedhat the boundary condition forces the fluctuation potential in
rather quickly, at about 10 e\For a weakly correlated sys- the first unit cell to be much weaker than the bulk potential
tem, on the other hand, like asp-metal or semiconductor, (cf. Figs. 3 and L The contributions to the functions from
the sudden limit is approached very slowly, on the keVexcitations in different layers are shown in Fig. 5 for photo-
scale® The slow approach is connected with strong destrucemission from different layers.
tive interference between the intrinsic and extrinsic mecha- The mean free path is found to be considerably longer
nisms for plasmon production. The cancellation is particuthan obtained by Normaet al,* about 12 A rather than 3 A,
larly strong for small-momentum plasmons where the long-at say 20 eV (Fig. 2. Measurements by the ITR-2PP
wave plasmons are excited by the average potential from thechniqué® give a lifetime ofr=10 fs at an energy=3 eV
core hole and photoelectron, which is z&t@he asymmet- above the Fermi surface. The mean free path=a 7. Con-
ric line shape in core electron photoemission from metals isyerting energy to velocity bynv?/2=¢ gives a mean free
on the other hand, hardly affected by the external lospath =103 A as compared to our result of about 17 A at
processes. that energy. This is an indication that our values rather are on
We are interested in energies where the sudden limit ishe low side. It is, however, hard to know what is the correct
reached for the strongly correlated layer from which the phoconversion between energy and velocity at such low ener-
toelectron comes, and derive an expression for photocurrefies, which makes a comparison very uncertain.
as a convolution of the sudden approximation for the current From Fig. 1 we see that the 2D losses occur only for small
from the layer with an effective loss functio®, () [Eq.  energies, at 5 eV the bulk losses take over. The 2D losses go
(7)]. We assume, as far as the loss properties are concerned,zero quite slowly, just like the bulk losses, but on another
that the photoelectron comes from a localized position. Irenergy scale. If we only had 2D losses, the minimum mean
our specific example, Bi2212, tleevalue is 15.4 A(neglect-  free path would be long, about 20 A. The general behavior of
ing crystallographic shegr and almost all contributions the 3D mean free path follows a well-known pattern. The
come from the first unit cell. The two first CuO layers are atmean free path has a minimum of ab&uA at anenergy of
0.3% and 0.6t from the surfacéwhich is between two BiO  3-4 times the energy where the loss function has its center

IV. CONCLUDING REMARKS
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of gravity. We have used the Born approximation to evaluatgerconducting state. The main peak sharpens and a peak-dip-
the mean free paths. This may seem a very crude approxirump structure develops. This effect has been interpreted as
mation at low energies. However, the Born scattering expresa coupling of the 2D state to ther(s) collective modé?®
sion with a basis of Bloch waves and Bloch energies ratheHere we find that this effect also can arise from the gapping
than plane waves and free electron energies agrees with th the loss function caused by the lack of low energy exci-
GW approximation, which is commonly used also at lowtations in a superconductor as shown in Fig. 10. Without a
energies. Further it was shown by Campgioal.” that plane  more accurate model we find it difficult to decide which is
waves and free electron energies was not that bad, as long 8% correct explanation, possibly it could be a combination of
the energies in the dle_lectrlc functlpn are well approxmatedboth mechanisms. Since the gapping of the loss function is
Our main concern is the behavior of the effective broadg|ated to the superconducting gap, also with our mechanism
ening function at small energies where it is dominated by thene hump will scale with the gap. It is clear that the experi-
2D Iqsses. The .3D contributions set in at som(_ewh_at highefental peak-dip-hump structure rides on a background that
energies, and give a rather structureles; contribution. Whag not predicted by our expressions, nor by anyone else’s.
we here for convenience call 2D losses is of course actuallyyyr theory is however rather schematic with its strict sepa-
also a 3D effect since it comes from excitations of a coupleqation of a 2D and a 3D part, while in reality the bands are
set of 2D layers. To allow a qualitative discussion we reprenybridized. If we extend our approach to a more detailed
sent thew,p functions by a rectangular distribution. Looking treatment of the underlying bandstructure, the background
at Fig. 5 this may seem rather crude, but Fig. 8 shows thatoyid well be strongly changed. Such an extension represents
the correspondin@, () functions are not too different. The 3 very large numerical task but with the present pilot treat-
rectangular distribution allows an analytic solutiéu. (19]  ment we can at least start thinking seriously about the diffi-
valid out to the cutoffwo(wo=0.1 a.u=3 eV). Py(w) has  cylt background problems in photoemission.
only a fairly small tail beyondbv,. In Fig. 9 we plot the total In recent papers Joynetal® discussed a broadening
Pi(w) function (sum over the four first layers, properly mechanism due to the interaction between the photoelectron
mean free path weightgdcalculated with the rectangular when outside the solid and the electrons in the solid. This is
approximation and broadened with Lorentzians of differenty different mechanism than in this paper, which adds addi-
widths. We note the marked asymmetry. The asymmetry igional broadening. Their discussion only involved the energy
described by an index,s, defined in Eq(20). WhenPy(»)  |oss part and not the elastic contribution and can thus not be
derives from only onérectangular a function y,sis a func-  directly compared to experiment. We hence find their claims
tion of the singularity indexxg, yas(@o). The indexyasis  regarding pseudogaps uncertain.
then independent of the amount of Lorentzian broadehing It should be stressed that we cannot claim any high quan-
If the J,p function has a power law singularity with singu- titative accuracy. We have put in dispersion in the loss func-
larity index «/ , the asymmetry index contains the sum of tion using a crude approximation. Since, however, dispersion
the two indices,y,s(ag+ @\ ). is very important we think our predictions are substantially
In Fig. 7 we plot contributions to the loss functiéf(w) better than if dispersion had been neglected. We have only
from different layers. It is interesting that the first two layers considered normal emission where the electrons come from
give about the same contribution, while the contributionsthe I' point, while the interesting experiments concern elec-
from the next two are tiny. In the left part of Fig. 6 we show trons from the Fermi surface. However, there is no reason
the importance of the intrinsic contributions te,;. The  that the effective loss function should change qualitatively
behavior here is thus similar to what was found previouslywhen we go away from normal emission. The behavior of
for metals® In the right part of Fig. 6 we show the approach the loss function whem—0 has been disputed. Most au-
to the bulk limit curves. This approach is very slow @5,  thors seem to believe the approach is linear, but there are
while, like in metals, it is fast forsp . The slow approach also claims that it should be quadratfdf it were quadratic,
for a,p of course comes from the slow approach to the bulkthe corresponding function would start linearly rather than
limit of the 2D fluctuation potentialgFig. 4). with a constant. Howevet(w) would have to rise very fast
In a paper by Liu, Anderson, and Allen from 1991they  to reproduce the behavior of the loss function for theite
discussed the line shapes of,8i,BaC,0Og along thel’-X  small) energies where it is known to be approximately linear.
direction obtained by Olsoet al?® for 22 eV photons. They Thus the pure power-law behavior Bf(w) would be lost,
concluded that neither the Fermi liquid nor the marginalbut Lorentzian broadened curves would probably not differ
Fermi liquid theories could fit the slow falloff of the spec- much. Our fluctuation potentials are obtained by phase-
trum at higher energies. Our results offer a possibility thatshifting bulk potentials to make them zero at the surface, and
the slow falloff may be due to intrinsic creation of acoustic define them as zero outside the solid. This procedure turned
plasmons in a coupled set of CuO layers, an effect nobut to be fairly good in the metallic case, where we could
present if only one CuO layer is considered. This broadeningheck with more accurately calculated fluctuation potentials.
is mostly intrinsic, i.e., if we treat a 3D system we have anAgain this approximation is crude, but we believe it to be
almost intrinsic effect. However, most theoretical discussiongundamentally better than if we had used a step function on
concern an isolated 2D system, compared to which we finéhe bulk potential. Since the phase of the bulk potential is
an appreciable extra broadening from the coupling betweearbitrary, such a procedure would anyhow have been arbi-
the layers. trary. To calculate more accurate potentials is a very large
The PES spectra change strongly when we go to the surumerical undertaking.
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One may also question the use of a bulk expression to 2
estimate of the mean free path at the fairly low energies that
we are concerned with, after all we found strong effects

Vi

wg|

[(Ng ,0[Ng)|?=€"*,

when modifying the fluctuation potentials for surface effects.Also thes+#0 terms in Eq(A1) have the expfa/2) factor,
It does not seem easy to make a strong statement here, aifhen we go beyond first order M.

we can only refer to “the state of the art,” that bulk mean

We use plane waves for the parallel components of the

free paths are successfully used in low-energy electron diffjyctuation potentialvs(r)ze‘QRV(qz,Q,z). Neglecting the
fraction and also in low-energy lifetime calculations that arereflected component, we similarly write the photoelectron

compared with time-resolved two-photon PEBR-2PPE
experiments?
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APPENDIX A: DERIVATION OF THE PHOTOCURRENT
EXPRESSION

We will here derive Eq(7). The 2D and 3D parts in Eq.
(5) factor,

7(k,$182)= 2 (Nop = 1526i[Non) 70k, s1,1),
where
P(Kk,s;,i)
=(k|(Ng ,s4]

1
E('\I’Bc ,Sl)+8k_HQB_h_V

x| 14V INg)AJi).

We note that{N,p—15,|ci|Nyp) is the basic part in the

wave function agj,(r) =e'®yi°(K,z). We further replace

Im3, by —iT", and absorb RE in h. The photoelectron en-
ergy ise,=(K2+ kg)lz. We can now simplify the last term
in Eq. (A1) (cf. Ref. § to become,

PUK=QI(¥iIV(a,.Q,2)

X— Aliy,
K /Z_tz_[vcryst(z) — Vol

where

K (K-Q)?

wste— >

2 _V0+i1—‘l,

(A2)

Ii=—1m30%ky,k32), k32=we+e—Vo,

192

t,= 202

PW(K —Q| is a plane wave 2D function, we have neglected
the variation of the crystal potential in the lateral directions,
the inner potentialV, is some average oW s, and
39(k,w) is the electron gas self-energy. For the 1D Green’s
function we have approximatelgee Appendix §

1
K22~ t;—[Veryst(2) = Vol

(7 2y =A¢(z2) ¥ (z-).

SpeCtral function for the 2D System, and that the 2D and 3q—|ere l/l: and wi are damped Bloch function&j decreas-

parts are entangled through the index We have
used Eq.(6) to eliminate the indexs,, E—E(Nyp—1,5;)
=E(N§ ,S1) + &k

Expanding to first order iV we have®!

S

V
3D N h . s
P(k,s,i)= —ws(k|A|l>+<k|V o

1 Ali
P

(A1)

where %, is the self energy coming from a summation to

infinite order inV, and we have used the relations

S
(NG SINg)=— -
I} B (,U,

S

E(N* ,S):(l)s,

(Ng S| V[Ng)=V5(r).

The energy argument & is ws+ &y .

These results are only meaningful wheg+ 0. For the
moment we take the excitation spectrum to have a gap,
> wy, for all s excepts=0. Fors=0 we have

ing towards the surface, anif, decreasing towards the inner
of the crystalthe crystal is on the positive half of thzeaxis),
z.=max@gz), z-=min(zz'), and the coefficientA is
roughly A= (i x) " *. In our calculations we will use the sim-
plest possible approximationy, (z) =exp(xz), and ¢ (z)
=exp(—ik2).

The z part of the photoelectron wave function is

[lpfz(z)]*, with

k2 K2 , 2
E:§—V0+IF2, F2:—|m20(k2,k2/2),
K3/2=e,—Vo. (A3)

We note thafl’; andI’, are different.

We give a few comments on the relation between the
electron energy inside the solid and outsi\d@rgst(z) is de-
fined asV¢ys= Vi +ReS (w) + ¢°F, where ¢°F is the di-
pole contribution to the work functiog, with ¢ defined as
negative. For the argumentin ImX(e) we should choose
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the eigenvalue in the quasiparticle equatidn-Ve,ys(r)

Ve el (kK2
—e ]y (r)=0. For an electron gas this give¥ Pu(zg,0)=€"20772 5(w)+ >, _—
S

-t —
=Re3(k,e,) +¢PP sinceVy=0. The work function is by @s '«
definition =&+ ReX (ke &y ) +#°F. Since R&(k, &) - 2
varies fairly slowly withk out to about X, we can take Xf dzé®92v(q,,Q,2) 5(w—ws)>,
Vo=¢—er=—|¢|—er. When we leave the electron gas a 0
reasonable definition fov, is Vo= —| ¢| — W, wherew>0 (AB)

is the bandwidth. The maximum kinetic energy the photo- .
electron can have outside the solid is, by energy conserva¥neres=(dz,Q). We have included the=0 term and the
tion, wynor—| ¢|, corresponding to the energy,no+W in-  common factor expta). The photocurrent Jzy,®pn00)
» Wphot , phot - . . .
side the solid. In our calculations we have takeh =W thus is a convolution between the sudden approximation 2D

—0.15 a.u. Errors in this choice have a minor effect, and théurrent £°(zo, ), and an effective loss function, o, o).
relative error decreases with increasing photon energy. All
calculations are made for a photon energy of 1 a.u. APPENDIX B: DIELECTRIC RESPONSE

We consider only forward propagation for the Green'’s

function from the excited layer to the surfate. Ref. 32, Dielectric response is usually treated in the random-phase

approximationRPA), and RPA has indeed proved extremely

and have, . . :
useful in many case$.For, e.g., highf, materials RPA may,
Vi however, not be good enough, and we will derive formal
P(k,s,i)=——(Kk|Ali) expressions without resorting to RPA. These expressions al-
@s low us to connect the energy loss results to the screened
1 (= - potentials needed to discuss photoemission. The energy loss
+ i—J ¥ (Z')V(q, Q.2 ¢ (2')dz data are then taken from experiment. Some of our results can
KJo = be found in Griffin’s classic papéf,but not those that are
o . crucial to our treatment.
X f 'dz"zﬁj(z”)f dRe '(K-QRA(R,Z") The response functiong’, x, ande ~* are defined from
z (in a schematic notation
X$i(R,Z"), . .
pdeXOVtOt:)(VeXt, Viot= Upmd+vext: 8_1VeXt.
or
This leads to the relations
e i— Y il
T (k,S,I)Z—w—S<kz,K|A|I> e t=1+vyx, x=x"+x%yx.
1 (0 Sincep'™¥ and V®*! are exactly defined, no approximations
+ ﬁf dzyr (2)V(9,,Q.2) ¥ (2) are involved in the definitions of°, yx, ands 1.
0 We now specialize to two layers per unit cell. We choose
X (k,K—Q|Ali). the origin of thez coordinate at the center of the cell such

that we have two layers &= *=d. We write the response
If we approximate they functions with plane waves the functions as
dipole matrix elementgk,,K|A|i) and (x,K —Q|Ali) de- 1
penqvon the pOSIt.IOI’] of the excited layer through.th@T fac.tors =SS w(z—em—dnw(z' —cm—dn)
exp(k,zg) and expikz,). We note that the electron lifetime is m n
7=1/(2I') and from Eq.(A3) we have 2 Ink,=2T",/[k,|

T D_D/
=1/A wherex=v 7 is the mean free path. Neglecting the XX (R=R7),
recoil momentumQ picked up by the quasi-bosors™ the -
entanglement between the 2D and 3D parts disappears and N < P VR
we have the intuitively expected result, xr.r )_n%, %: w(z—cm—dnw(z'—cm’—dn’)

Wi z0,0pne = | I(20,0)Pu(20 00— ), o (MEMERERY.
(A4) We have assumed translational invariance in the layers, and
. that there are no transverse excitations, i.e., that the electrons
with always stay in the lowest transverse statg(z),w(z)
) =|¢o(2)|2. We have taken the overlap betweetiz) and

z (Nop—1.55|¢i| Nop )k, K|Ai) W(_z+c) as zero, and neglected interlayer couplingyih _

i This latter neglect probably has no effect. Interlayer coupling
in x° is absent in any one electron theory with a local poten-
tial, and thus, e.g., in RPA. It is also absent in the static (

IP(zp,0)=2,
S2

X 6w+ Esz—sk),
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=0) case since this case can be described by density func-

tional theory transform where the potential is local.

We Fourier transform with respect B, and separate into

contributions from different layers

XO(Z,Z’;Q)=; xA(z.2';Q),

X(2.2:Q)= 2 xnw(2.2Q), (BD)

where

x2(z,2';Q)=2, w(z—cm—dnw(z' —cm—dn)x%(Q),

Yo (2,2':Q)= 2, w(z—cm—dn)w(z' —cm’ —dn’)

mm'’

X’;(nn’(m_ m’ rQ)
The integral equatiory= x°+ x%v x can be written agsup-
pressing theQ variable,

)(nnr(Z,Z')=)(2(Z,Z/)5nnr

+2 | X2z.20)0(21,2) X (22,2 )d 2, d 2.
n!l

(B2)

This is the same result as in E@) in Griffin's paper’*
We Fourier transforn)(ﬂ(z,z’) with respect toz and z’,
using discrete q, values and

{L~exp(q,2)}

1 ~ H ’
X2(0,,03) = Sw(a)w(gy) X% 4 9,

where it is understood that, andq, differ by a reciprocal
lattice vectorG, L is the length of the sample, ardthe
lattice constant. Similarly we have far,,/(d;,9,)

1 ~ . P ’
X (0z,87) = W(G2)W(Q,) Xnm () €96 92,
(B3

where

}nn’(qZ) = 2 ;(nn’(m_ m’)eiqzc(m—m’).
m

We note thaty,,(q,) is a periodic function ing,,
Xnn(92) = xnn (0, +G). Equationsg(B1) and(B3) give

1 B _ o
X(07,67) = SW(T)W(D;) 2 Yo (0,)€' %190,
nn’
(B4)

We can separate out the factors in Eq.(B2) to obtain an
equation fory,n(d,)

the orthonormal set

PHYSICAL REVIEW B64 115109

~ ~ 1 ~n o~ ~
Xnn’(qz):)(gnr'l' E E Xgnlvnlnz(qz)ann’(QZ)1
niny
(B5)

wherex? ,=x°6,, andV is a 2x 2 matrix periodic inq,,
Vin (0= 2 0(z+ G)w(dz+G)

Xexd —i(q,+G)d(n—n")].

Equation(B5) gives the matrix solution

~ _|7o0
Xnn (qz) X 1—V(qz);(°/c -
We write
- )_( Vo(a,) Vl(qz)e‘¢(qz))
9TV (ge 1@ V(g )
where

vo<qz>=vl,1<qz>=§ v(d,+G)WA(q,+G),

Vi(g,) = |v151(q2)|,

and have
~ (q)_l X1t Xx2 (x1—x2)expi¢)
X327 21 (= xo)exp—i¢) X1+ x2
X° X°
X1 X2

1m0 Vot V)| P 1= (%) (Ve- Vi)

Here y, and y, are functions ofg,, Q, and . From Eq.
(B4) the energy loss function becomes
v(9;,Q)Im x(d;,0;;Q, )

_v(q,,QwA(q,)
B c

X cog2q,d+ ¢(q,,Q)}],

to be compared with the screened potential Wm
=v(Im x)v. From Egs.B1) and(B3) we have

IMm[x1+ x2+(x1— x2)

=1 1 wlc
mwQuwizz) =3, o[ ™ vQ.a,.2-dn)
nn’ —mlc

X}nn«Q,w,qz)

c V*(quZ1Z,_dn,)dqzv

(B6)

where
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V(Q,q;,2)= % v(g,+G,Q)w(q,+G)e (402
(B7)

There is thus no simple relation betweenW(z,z') and the
loss function unless the non-diagonal elementg;in ()
can be neglected. For typical valuesggfandQ it, however,
turns out thav/, /V, is 0.2—0.3. Taking; = x» and using the
symmetriesV(q,,—2z) =V(—0,,2)=V*(d;,2) and xy(d,)
=xn(—0,) we can write Eq(B6) as

2 =1
mwWzz)=S S —f Vi(dpz—dn)
i=1 n TJo

Im
XAy (g, 2 dnyda,

whereV; is the real and/, the imaginary part oV (q,,z)

PHYSICAL REVIEW 84 115109

having a complex potential. With a constant complex poten-
tial the equation (Imx>0),

1 2, d?
| 2 —
2 dz?

has the solutiorfas is easily verified by direct substitutign

G(z,2';k)=6(z—2'),

1 . ,
G(z,2'; k)= —exz=71,
i K
With « a function ofz the solution has the form,

G(z,2';k)=wWg-(22)9+(2>),
wherew is a constantcf., e.g., Arfker®),

W= 2 .
9-(2)94(2)—9°(2)9+(2)

and xo=(x1+ x2)/2. The real and imaginary parts turn out The boundary conditions arg_(z)—0 for z——< and

to give equal contributions to IW.

So far we have results for a set of coupled layers sitting in
vacuum. We can take account of the embedding electrons

(the 3D bulk excitations in our parametrizatjdoy using
0 ’. _ 0/ 1. 2 _
X (sz 1Q)_Xb(z z 1Q)+ = W(Z Cm)

Xw(z'—cm)x3(Q). (B9)

0.(2)—0 for z—o.
In a slightly more general situation

Kl,Z<O

y Im Ki>0’
K2,Z>O

K(Z)Z{
we have
g-(2)=e "1%0(—2)+(a_e'*2*+b_e '*2%) 6(z),

g.(z)=¢€'"2%0(z)+ (a, e 1*+b, e %) 4(—z),

This leads to a 3D bulk contribution in IWv(z,z'), and to 1 P 1 P
screening of the 2D susceptibility. The same screening, a_=§(1—— , b_=§(1+—),
however, appears also in the loss function, so we can forget K2 K2
about it in our problem. We note that the bulk screened po- 1 Ko 1 Ko
tential can be anisotropic sincpg(qz,Q) can depend on a+=§(1+ K—), b+=§(1—K—),
both g, andQ, and not only ory?= g2+ Q2. ! !
We derived the relation betwegnand x° by solving the 2
integral equationy= x°+ x% x. This equation can be writ- = m

ten as x=xzp+tx2ov3px, where X2D:X?+XOU2DX2D-
Here v;p contains no intralayer parts, whike,p only has
intralayer contributions. Sincg,p is available from many

sophisticated theoretical calculations, it is interesting to have

the relation betweep((’:)(gD and y,p . We write
X2D(Zaz/):W(Z)W(Z’);(2D ;

Xop(2,2") =W(Z)W(Z')X5p -

The equation x,p=x"+x%20x20 GiVES, X20=X%
~o ~

+ X20Woox2p - where Woo= JW(z1)v(zy

—25;Q)w(z,)dz;dz,. The desired relation is,

X20
1+Woox2p

~0 _
XD~

APPENDIX C: ON GREEN’'S FUNCTIONS
WHEN THE POTENTIAL IS COMPLEX

For high energies;= «, and the results reduce to those of
the first model withx = constant.
Finally we consider a model with,

K1,2<0
k(z)=

P>
ky(2), >0 e 0,

g_(2)=e "M%g(—z)+[a_y. (2)+b_y:(2)]6(2),

9. (2)=(2)6(2) +(a,e**+b, e '*1%) f(—2).

To see the difference betweer (z) and ¢ (z) we use the
WKB approximation for the case>0,

¢i(z)~exr{if:x2(z’)dz’

¢f(z)~ex;{ —i fsz(Z’)dZ’
0

Since k,(z) is complex, the two solutions are basically dif-

Green's function theory is usually developed using a reaferent, not just complex conjugates. For higher energies and
potential. Here we will shortly summarize the changes fromz>0 we haveg (2)=_(2),9.(2) = . (2).
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