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Real-Time Trajectory Generation using Model Predictive Control∗

M. Mahdi Ghazaei Ardakani1, Björn Olofsson1, Anders Robertsson1, and Rolf Johansson1

Abstract— The problem of planning a trajectory for robots
starting in an initial state and reaching a final state in a
desired interval of time is tackled. We consider Model Pre-
dictive Control as an approach to the problem of point-to-
point trajectory generation. We use the developed strategy to
generate trajectories for transferring the state of the robot,
fulfilling computational real-time requirements. Experiments
on an industrial robot in a ball-catching scenario show the
effectiveness of the approach.

I. INTRODUCTION

Trajectory generation is an inherent problem in motion

control for robotic systems, such as industrial manipulators

and mobile platforms. The motion-planning problem is to

define the path, and the course of motion as a function

of time, namely the trajectory. In many applications, the

trajectory generation is desired to be performed such that

the time for executing a task, or the energy consumed during

the motion is minimized. Hence, motion-planning problems

are often formulated as optimal control problems [20]. For

solving a trajectory-planning problem, it is usually beneficial

to solve the path-planning problem first and then find a

trajectory by assigning time to each point along the path [32].

Nevertheless, for the specification of the problem, such

separation is unnecessary in the optimization framework.

Therefore, as long as there is no computational constraint,

both path planning and trajectory planning can be solved in

an integrated approach. Ultimately, this leads to a motion

planning where the full potential of the system is utilized.

In the motion-planning procedure, various modeling as-

sumptions have to be made. The major difference with

regard to this is if a kinematic or a dynamic model of the

system is considered. Although dynamic models are required

for achieving the highest possible performance, a kinematic

model suffices in many applications, given conservative

constraints on the kinematic variables—i.e., on the position,

the velocity, and the acceleration [10].

A desired characteristic of the motion planning in uncer-

tain environments is the ability to react to sensor inputs [17].

In this paper, we study a scenario with a ball-catching robot

[21], where the estimates of the contact position of the

ball are delivered online from a vision system. As more

vision data become available, the position can be estimated
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with lower uncertainty. Thus, a new trajectory needs to be

computed when new estimates are delivered. Our approach

to trajectory generation is based on Model Predictive Control

(MPC) [26], [24] and the receding-horizon principle. By

employing a final-state constraint in the MPC formulation,

it is possible to solve fixed-time motion-planning problems

where analytic solutions are not available. In contrast to

the typical application of MPC for reference-tracking prob-

lems, we adopt a trajectory-generation perspective. In our

experiments, we use the aforementioned strategy to compute

reference values (joint position and velocity reference values)

for an underlying motion-control system.

A. Previous Research

Methods for trajectory generation based on polynomial

functions of time were already developed in the 1970s [28],

[31]. Time-optimal path tracking for industrial manipulators

was suggested in the 1980s [5], [30]. An overview of

trajectory-generation methods for robots is provided in [17].

There are many methods for online trajectory generation

with the objective of time-optimality based on analytic

expressions, parametrized in the initial and final states of the

desired motion and certain constraints [7], [23], [12], [18].

The difference between these methods is in their generality

with respect to the initial and final states and constraints.

The major advantage of the existing analytic solutions is

that nearly time-optimal or time-optimal trajectories can be

computed extremely fast. While the minimum-time trajecto-

ries are of interest for defining an upper bound for productiv-

ity of a robotic system, they put the system under maximal

stress. Hence, the solution to fixed-time problems with a cost

function motivated by the application may prove valuable

by reducing the wear of the robot. A sub-optimal solution

to the fixed-time trajectory planning for robot manipulators

was proposed in [9]. In another approach, the fixed-time

optimal solution in the space of parametrized trajectories was

found [33].

Trajectory generation based on optimization using a kine-

matic model has been proposed in [3] for ball-catching

robotic systems. Methods for catching flying objects with

robots were also considered in [22], [19]. In the latter, a

dynamic model was employed and machine-learning algo-

rithms were used in the online execution. MPC has been

proposed for control and path tracking for mobile robots; see,

e.g., [14], [15], [16]. In [29], MPC is used for tracking of

linearly interpolated way-points. A two-layer architecture is

proposed in [27] with a generic optimal-control formulation

at the high-level and MPC at the low-level for tracking the

solution generated by the high-level planner.
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Fig. 1. Schematic description of trajectory generation using MPC; r is
the reference signal, u is the control signal, y is the output signal, and w

is the output disturbance. The feedback from the output to the MPC is not
present if an open-loop strategy is used.

B. Contributions

The major contribution of this paper is a method for fast

online motion planning, given an initial state of a robot and

a desired final state at a given time. The approach does not

rely on any predefined trajectory or path. To this purpose, we

have applied the MPC framework to point-to-point trajectory

generation. Compared to previous research, in our approach

it is possible to solve the trajectory-planning problem online

with application-specific cost functions and a broader class

of constraints on inputs and states. The algorithm relies

on convex optimization, such that real-time computational

constraints for modern robotic systems can be satisfied.

Further contributions are a complete implementation of this

approach to motion planning and an experimental evaluation

in a challenging scenario of ball catching.

II. PROBLEM FORMULATION

In many robotic applications, it is desirable to obtain a

certain state of the robot at a given time. This will result in

a reference-tracking problem if the desired state is specified

as a function of time during the whole execution. On the

other hand, if the desired state is unspecified during certain

intervals in time, we need to do planning between the points,

i.e., transferring the robot from an initial state to the next

state in the given time. In either case, the motion of the robot

must fulfill predefined constraints. Moreover, we wish to

specify a desired behavior, which is implicitly characterized

by the optimum of an objective function.

We propose to use the model predictive approach to solve

this type of problems. A central notion in MPC is using a

model to predict the behavior of a system. Accordingly, it is

possible to optimize the objective function over a receding

horizon, considering the predicted states and outputs. The

optimization is usually carried out at each sample. Then,

only the first sample in the computed control inputs over the

prediction horizon is applied [24], [26]. Figure 1 shows a

schematic of trajectory planning using MPC.

In the MPC framework, it is required to define a model of

the system, an objective function, state and input constraints,

and a prediction horizon. We consider linear models as

follows

x(k + 1) = Adx(k) +Bdu(k), (1)

y(k) = Cdx(k) +Ddu(k), (2)

z(k) = C̃x(k) + D̃u(k). (3)

Here, u(k), x(k), y(k), and z(k) denote the control signal,

the states, the measured outputs and the controlled variables,

respectively [24]. We consider a quadratic cost at time k as

Vk(U) =
k+N
∑

i=k+1

‖z(i)− r(i)‖2Q(i) +

k+N−1
∑

i=k

‖u(i)‖2R(i) , (4)

where UT =
[

uT (k), uT (k + 1), · · · , uT (k +N − 1)
]

, N is

the prediction horizon, the norm is defined ‖a‖2W = aTWa
for a positive semidefinite weighting matrix W , and the

reference signal is denoted by r(i). Additionally, Q and R
are time-dependent weight matrices. Linear constraints on

the control and the states are assumed as follows

FU(k) ≤ f, (5)

GZ(k) ≤ g, (6)

where ZT =
[

zT (k + 1), zT (k + 2), · · · , zT (k +N)
]

, F
and G are matrices whose dimensions are determined by

the considered system dynamics (1)–(3), the number of

constraints, and the prediction horizon.

Given the initial state x(k) of the system, the following

optimization problem is solved at each sample k [26]:

minimize
U

Vk(U)

subject to (1), (3), (5)–(6)

z(k +N) = rf (k), (optional)

(7)

where rf (k) is the constraint on the controlled variable at

the final time in the prediction horizon.

It is desirable to investigate how the MPC framework is ap-

plicable to trajectory generation for point-to-point problems.

Further, we wish to find a set of assumptions and methods

that allow for real-time solutions.

III. METHODS

In this section, we specialize the general linear MPC

framework in Sec. II to point-to-point trajectory generation.

We also introduce a kinematic model and a set of constraints

for our experiments.

A. Point-to-Point Planning

In the general objective function defined in (4), the desired

controlled states do not need to be specified at every sample.

This allows point-to-point trajectory generation. To make this

clear, assume that Ψ(k) ⊂ {k + 1, · · · , k + N} denotes

the set of indices where there are desired values for the

controlled states z. By assuming that r(i) = 0 when i 6∈
Ψ(k), we can rewrite (4) as

Vk(U) =
∑

i∈Ψ(k)

‖z(i)− r(i)‖2Q(i) +

k+N
∑

i=k+1

‖z(i)‖2Q̄(i)

+

k+N−1
∑

i=k

‖u(i)‖2R(i) , (8)

where Q̄(i) = Q(i) if i /∈ Ψ(k) and Q̄(i) = 0 if i ∈ Ψ(k).
For reference-tracking problems, usually the first and the

last terms are important. Provided that explicit constraints

for the desired controlled states are defined, the first term

can be ignored in the point-to-point trajectory generation.



Nevertheless, if soft constraints are preferred, then all of the

terms might be used. In this case, the benefit is immediate

if the optimization problem with explicit constraints on the

controlled variables z(i), i ∈ Ψ(k), is infeasible.
Since the optimization in general runs at every sampling

instant, it is possible to account for the updates in the target

or deviation of the robot. If good tracking for the robot

is assumed, the loop can be closed around the model too,

providing an open-loop control strategy (cf. Fig. 1).

Although it is possible to introduce constraints on the

states at any sampling instant, we limit ourselves to con-

straints on z(k + N). This strategy is advantageous if no

information about the variations in the target is available

ahead in time, or if we do not want this information to impact

the current decision. In such cases, we can successively

reduce the sampling period while keeping the number of

discretization points constant—i.e., the prediction horizon in

discrete time remains constant while the prediction horizon

in continuous time gradually decreases. This allows for

improving the resolution of the solution as the system follows

the computed trajectory toward the target state.

B. Interpolation of Trajectories

Because of the real-time execution of the motion planning,

it is required to have a valid trajectory in every moment.

This is obviously the case even if the optimization algorithm

fails, for example as a result of an infeasible problem

specification. Thus, we consider piece-wise trajectories. The

previous trajectory is valid until the new one is ready to be

switched to. The robot remains still in its final position if no

other piece of trajectory for the current time exists.
Since MPC is formulated for discrete-time systems, we

need to interpolate between the computed trajectory points.

This makes it possible to have a lower sampling rate for the

optimization than for the controlled system. Assuming that

T is a vector of increasing time instants and that X is a

vector with the corresponding states,

T =
[

t1, t2, · · · , tn
]

,

X =
[

x1, x2, · · · , xn

]

,

we consider a linear interpolation such that

x(t) = xk +
xk+1 − xk

tk+1 − tk
(t− tk), tk ≤ t < tk+1. (9)

C. Discretization

In the MPC framework, the dynamics of a system is

described by difference equations. Assuming the following

continuous-time linear model

ẋ(t) = Ax(t) +Bu(t), (10)

y(t) = Cx(t), (11)

the discrete-time system obtained using the predictive first-

order-hold sampling method [2] with a sampling period h
is

x(k + 1) = Φx(k) +
1

h
Γ1u(k + 1)

+ (Γ−
1

h
Γ1)u(k),

(12)

y(k) = Cx(k), (13)

where

[

Φ Γ Γ1

]

=
[

I 0 0
]

exp









A B 0
0 0 I
0 0 0



h



 . (14)

Note that (12) can be rewritten in the standard form by

changing to a new state variable ζ according to

ζ(k + 1) = Φζ(k) +

(

Γ +
1

h
(Φ− I)Γ1

)

u(k), (15)

y(k) = Cζ(k) +
1

h
CΓ1u(k). (16)

The choice of discretization method is motivated by the linear

interpolation of the trajectories as defined in (9).

D. Model and Constraints

To illustrate the approach to trajectory generation, we

consider a robot model using only the kinematic variables.

Specifically, we consider multiple decoupled chain of inte-

grators as our model. Since robots have various structures, we

choose the generalized coordinates q for the representation of

the states. In this way, q may represent either the joint values

or the Cartesian coordinates depending on the application.

We choose the state vector as

x =
[

q1, q̇1, q̈1, · · · , qd, q̇d, q̈d
]T

,

where d is the number of Degrees of Freedom (DoF).

The continuous-time model (10)–(11), where each DoF is

assumed to be a triple integrator, is specified by the matrices

A = blkdiag
(

[Ã, · · · , Ã]
)

, B = blkdiag
(

[B̃, · · · , B̃]
)

,

where blkdiag(·) forms a block diagonal matrix from the

given list of matrices, A ∈ R
3d×3d, B ∈ R

3d×d, and

Ã =





0 1 0
0 0 1
0 0 0



 , B̃ =





0
0
1



 .

Assuming C̃ = I3d, the matrices for the discretized model

concerning the controlled states can be calculated as below

Φ = blkdiag
(

[Φ̃, · · · , Φ̃]
)

, Γ1 = blkdiag
(

[Γ̃1, · · · , Γ̃1]
)

,

Γ = blkdiag
(

[Γ̃, · · · , Γ̃]
)

,

where Φ ∈ R
3d×3d, Γ1,Γ ∈ R

3d×d, and

Φ̃ =





1 h h2

2
0 1 h
0 0 1



 ,
1

h
Γ̃1 =





h3

24
h2

6
h
2



 , Γ̃ =





h3

6
h2

2
h



 .

It is straightforward to include constraints on linear com-

binations of the kinematic variables. From a practical per-

spective, we consider limiting the coordinate positions, the

velocities, the accelerations, and the jerks. We form matrices

F , G and vectors f , g in (5)–(6) such that

|u(i)| ≤
[

u1
max, · · · , ud

max

]T
, k ≤ i ≤ k +N − 1

zjmax =
[

qjmax, vjmax, ajmax

]

, 1 ≤ j ≤ d

|z(i)| ≤
[

z1max, · · · , zdmax

]T
, k + 1 ≤ i ≤ k +N

z(k+N) = rf (k),

where rf (k) is the desired final state according to (7).

By assuming the objective function (8) with Ψ(k) = ∅
and Q̄(k +N) = 0, i.e., ignoring the first term and the cost



on the final state, we have a full specification of the MPC

problem for point-to-point trajectory generation. Note that

the desired target state is a constraint on the final state. This

implies that we can successively reduce the sampling period,

as described in the last paragraph in Sec. III-A.

IV. IMPLEMENTATION

The method described in Sec. III-D was implemented and

experimentally evaluated on an industrial robot system. The

system consisted of an IRB140 industrial manipulator [1],

combined with an IRC5 control cabinet. The control system

was further equipped with a research interface, ExtCtrl [4],

in order to implement the proposed trajectory-generation

method as an external controller. The research interface

permits low-level access to the joint position and velocity

controllers in the control cabinet at a sample period of 4 ms.

More specifically, reference values for the joint positions and

velocities can be specified and sent to the joint controllers,

while the measured joint positions and velocities and the

corresponding reference joint torques were sent back to the

external controller from the main control cabinet with the

same sample period. The implementation of the trajectory

generation was made in the programming language Java and

the communication with the external robot controller was

handled using the Labcomm protocol [8].

The inverse kinematics of the robot was required in order

to transform the desired target point in Cartesian space

to joint-space coordinates that can be used in the motion

planning. The required kinematics were also available in Java

from a previous implementation [21]. For implementation of

the solution of the MPC optimization problem, the CVXGEN

code generator [25], [6] was used. The generator produced

C code, which subsequently was integrated with the Java

program using the Java Native interface. The generated C

code was by default optimized for performance in terms of

time complexity. It enabled solution of the required quadratic

problem in the MPC within 0.5 ms—i.e., each optimization

cycle including overhead required approximately 1–4 ms (for

the four DoF used in the considered task and a prediction

horizon of 20 samples) on a standard personal computer with

an Intel i7 processor with four cores. In order to preserve the

numerical robustness of the solver also in the case of short

sampling periods, i.e., when the current position is close to

the target, a scaling of the equations, the inputs, and the

state constraints was introduced in the optimization. This is

important, considering the fact that the matrices might be

poorly conditioned when close to the final time.

For evaluating the performance of the trajectory-

generation method in a challenging scenario, we considered

the task of catching balls with the robot. We employed the

computer-vision algorithms and infrastructure developed in

[22], [21] for detection of the balls thrown and prediction

of the target point. Two cameras detected the ball thrown

toward the robot, and the image-analysis algorithm estimated

the position and velocity, which provided the basis for the

model-based prediction of the target state. A photo of the

Fig. 2. The experimental setup used for evaluation. The task is to catch a
ball in the box attached to the end-effector; two cameras (not visible in the
figure) were used for detection of the ball.

experimental setup is shown in Fig. 2. A movie showing the

ball-catching experiment is accessible online [11].

V. EXPERIMENTS AND RESULTS

The proposed approach to trajectory generation following

the details in Sec. III-D was evaluated in three different

experiments. The experiments concerned trajectory genera-

tion on joint level. The first experiment was performed in

simulation, whereas the second and the third experiments

were executed on the robot setup described in Sec. IV.

In the experiments on the robot, the open-loop strategy to

trajectory generation was employed—i.e., no feedback from

the robot measurements was used. The prediction horizon

was set to 20 samples. We assumed that the DoF can be

independently controlled. For each DoF, we employed the

constant weighting matrices Q = blkdiag ([0, 1, 1]) and

R = 0.001. This means that we penalize a quadratic function

of velocity, acceleration and jerk according to (8). In contrast

to the jerk, which is the input to the adopted model, we

used the computed joint velocity and position values as the

reference inputs to the robot.

A. Single Target Point

In the first experiment, a single target state was provided

to the trajectory generator. Starting at rest at q = 0 rad, the

desired state to reach was q = 1 rad at time t = 1 s with

v = 0.5 rad/s and a = 0 rad/s2. The constraints were chosen

as qmax = 2 rad, vmax = 1.2 rad/s, amax = 100 rad/s2,

and umax = 250 rad/s3. The results of the experiment are

provided in Fig. 3. Initially, a trajectory with comparably

low time-resolution was computed, as an approximation of

the true trajectory for transferring the system from the initial

state to the final state. With a period of 200 ms, the same

target state was sent to the trajectory generator. A new

optimal trajectory was computed with the initial state being

the state at the current time obtained from the previously

computed trajectory. This resulted in a new trajectory with

increased time-resolution. Considering that this procedure

was repeated during the execution, a sequential refinement
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Fig. 3. Results from a simulation where the same target point was sent to
the trajectory generator at the time instants indicated by the vertical, dashed
red lines. A clear increase in the time-resolution of the trajectory is observed
when moving closer to the target. Also, it is obvious that the constraint on
the velocity is active during a major part of the motion.

of the trajectory was achieved as the system moved closer

to the target state where accuracy was required, see Fig. 3.

B. Sequence of Target Points

In the second experiment, a sequence of different target

states with 2 s between each new target state was provided

to the trajectory generator. The different target points were

located at the perimeter of a rectangle centered at the

home position of the robot end-effector in the workspace.

Thus, these targets required motion along different Cartesian

directions of the robot. Each target state was desired to be

reached after 200 ms, with zero velocity and acceleration.

The constraints in the optimization were chosen based on

physical properties of the joints [1] with some margin, ac-

cording to qmax = 2 rad, vmax = π rad/s, amax = 45 rad/s2,

and umax = 1500 rad/s3 for all joints. Each target state

was sent with a sample period of 20 ms, resulting in the

successive refinement of the trajectory as described in the

previous subsection. Once the robot reached the target state

and paused there for 50 ms, a new trajectory for returning

to the home position was computed and executed. Figure 4

shows the trajectories for the angle, velocity, and acceleration

of joint 1 and 2.

In order to further evaluate the performance of the trajec-

tory generator, a detailed view of the position reference given

by the optimal trajectory and the corresponding measured

position for joint 2 is illustrated in Fig. 5. The figure indicates

the time instants at which the target state was sent and
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robot. The good tracking of the computed optimal trajectories is clear from
the experiments with a sequence of target states, corresponding to different
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Trajectory Generation for Joint 2

Fig. 5. A detailed view of one of the motion segments for joint 2 in
Fig. 4. The time instants when the target state was sent to the trajectory
generator are indicated by the vertical, dashed red lines in the figure. The
delay between the reference and the actual trajectory is approximately 8 ms.

consequently a new trajectory generation was performed. The

computation time for each trajectory generation was below

the sample period of the robot controller, which meant that

the optimal trajectory could be executed immediately. Further

analysis of the computation time is presented in Sec. V-C.

C. Ball-Catching Experiments

The most demanding evaluation performed was the com-

putations of optimal trajectories for the robot to catch balls

thrown toward it. The time period from the release of the

ball until it reached the robot was distributed in the interval



[200, 800] ms. Hence, the success rate of the task depended

on the satisfaction of the real-time constraints for computing

a trajectory for transferring the robot from the home position

to the desired final state at the predicted arrival time. During

the flight of the balls, as soon as new data from the vision

sensors and image-analysis algorithms were available, the

estimated contact point (and the corresponding arrival time)

of the ball was updated, leading to recomputations of the

optimal trajectory. Since not all DoF of the robot were

required for the task, joints 4 and 6 were not used during

the experiments. The trajectories were generated such that

the robot should be at the target point with zero velocity

and acceleration at the predicted arrival time with a pre-

defined margin. After reaching the final target, the robot

paused there shortly in order to catch the ball, and finally

returned to the home position. In the case that the estimated

arrival time was already passed, no optimal trajectory was

computed. If the robot, given the velocity, acceleration,

and jerk constraints, could not meet the arrival time—i.e.,

the optimization problem was infeasible—we still computed

a trajectory for the robot to reach the target position at

an estimate of the minimum required time. This improved

the ball-catching performance since the initial target-point

estimates exhibited larger uncertainty. By moving toward

the target point, there was a higher chance of catching the

ball later when more accurate estimates were obtained. The

constraints were chosen in the same way as in Sec. V-B.

Several experiments were performed with balls thrown

with random initial velocities and along different directions.

The results with regard to trajectory generation from one rep-

resentative experiment are presented in Fig. 6 for the joints

that were active in the robot motion. It is clear that the robot

tracks the position references (computed by the trajectory

generator) closely. In the lower left plot in the figure, the time

instants at which new sensor data arrived are also indicated.

During the motion of the ball toward the robot, the computer-

vision algorithm sent the current estimate of the contact

point and arrival time at an approximate sampling period

of 4 ms, initiating a trajectory generation with a possibly

updated target state. The online replanning is also visible in

the trajectory data shown in Fig. 6. The figure also shows

the time margin—i.e., the difference between the estimated

arrival time and the earliest possible time for reaching the

ball, given the constraints.

In order to verify that the real-time requirement of the

trajectory-generation method was satisfied in this task, the

computation times for all four DoF were measured for 100

cycles of optimization during a sequence of ball throwing.

The results are visualized in Fig. 7. It can be observed that

all the computation times except one are within the sampling

period of the robot at 4 ms, with the average and standard

deviation being 2.744±0.264 ms.

VI. DISCUSSION

As an alternative to previously suggested methods for

online trajectory generation with real-time constraints for

robots, we have proposed an approach based on Model

0 0.5 1 1.5
−0.05

0

0.05

0.1

0.15

0.2

 

 

0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.5 1 1.5
0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5
−100

−50

0

50

100

150

200

Time (s)Time (s)

Time (s)Time (s)

Time (s)Time (s)

A
n

g
le

(r
ad

)

A
n

g
le

(r
ad

)

A
n

g
le

(r
ad

)

A
n

g
le

(r
ad

)

Meas
Ref

Joint 1 Joint 2

Joint 3 Joint 5

New Estimates Time Margin

M
ar

g
in

(m
s)

Fig. 6. Results from a ball-catching experiment. As the ball moved toward
the robot, new estimates of the contact position and the arrival time were
obtained and thus the trajectory was recomputed. A new estimate was
obtained on the edge of the signal shown in the lower left plot. The lower
right plot shows the time margin as defined in the text.
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of the robot system.

Predictive Control. The main characteristic of this method is

that it allows generation of trajectories that are optimal with

respect to a quadratic cost function while satisfying linear

constraints on the input and state variables. In contrast to

earlier research, in particular [18], [12], and [23], our method

gives the solution of the fixed-time problem and adds more

freedom in the formulation of the motion-planning problem.

Note that there is an important difference between our

method and methods based on a fixed trajectory profile [28],

[31], such as a fifth-order polynomial, or time scaling [13]

of minimum-time solutions. In neither of these methods, it

is possible to guarantee that the solution will both fulfill the

state, the input, and the final-time constraints and result in

the lowest possible value of the objective function.



Another characteristic of our method is that it improves the

accuracy of the optimal trajectory as the system approaches

the desired final state, by increasing the time-resolution.

Hence, despite a small number of discretization points in

the initial trajectory generation, the trajectory is successively

being refined.

The considered MPC solution is based on linear systems

and linear constraints. This makes it possible to obtain a

convex problem, which does not suffer from local optima

and can be solved efficiently. Although we used a chain

of integrators in Sec. III-D, more complex linear models,

such as the ones modeling eigenmodes of the robot structure,

could be considered.

We expect an improvement of the computation time with

a more efficient implementation of the algorithms. In cases

where each DoF can be independently controlled, such as for

the model discussed in Sec. III-D, an efficient way to reduce

the time-complexity is to distribute the computation for each

DoF on a separate core of the CPU. This will allow scaling

of the described algorithm to a high number of DoF, since

the major part of the computation time is spent on solving

convex optimization problems. Reducing the computation

time allows an increased resolution of the discretization grid,

if prompted by the accuracy requirements of the task.

VII. CONCLUSION

Model Predictive Control can offer a framework for gen-

erating trajectories, which goes beyond tracking problems. A

subset of MPC problems—e.g., with quadratic cost functions

and linear constraints—has the potential of being efficiently

implemented. This fact allowed us to make a real-time imple-

mentation of point-to-point trajectory planning for the task of

ball-catching, with the feature of successive refinement of the

planned trajectory. In extensive experiments, the method was

evaluated in the demanding and time-critical ball-catching

task with online updates of the estimated target state from a

vision system as the ball approached the robot.
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