
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Recovery of Uniform Samples and Spectrum of Band-limited Irregularly Sampled
Signals

Ghazaei, Mahdi; Johansson, Rolf

2016

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Ghazaei, M., & Johansson, R. (2016). Recovery of Uniform Samples and Spectrum of Band-limited Irregularly
Sampled Signals. (Technical Reports TFRT-7647). Department of Automatic Control, Lund Institute of
Technology, Lund University.

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/f9de71a5-dcfa-4f9b-b9b4-0f634cba15c3


ISSN 0280–5316
ISRN LUTFD2/TFRT--7647--SE

Recovery of Uniform Samples
and Spectrum of Band-limited
Irregularly Sampled Signals

M. Mahdi Ghazaei Ardakani
Rolf Johansson

Department of Automatic Control
Lund Institute of Technology

June 2016





1

Abstract

This paper presents a straightforward method to convert non-uniformly sampled data

to uniform samples in order to be processed by some off-line techniques such as system

identification. In such scenarios, we deal with a finite-length measurement sequence.

We assume periodic extension of the signals, which results in a simple system of linear

equations. Furthermore, we take into account a number of practical considerations for

solving the system of equations and dealing with issues such as loss of samples. Thanks

to the insights from the frequency domain, a non-integer delay element with respect to

discrete-time signals is introduced. This interpretation leads to iterative algorithms for

reconstruction of either time or frequency representations of the non-uniform samples.

We provide simulation results for the case of jitter in the sampling clock and/or drops.

Finally, our approach is compared with a few earlier works and the results are discussed.

Index Terms

non-uniform sampling, interpolation, spectral analysis, iterative methods, non-integer

delay.

I. INTRODUCTION

C
URRENT techniques for analysis and processing of digital signals are mainly

developed for the case of uniform sampling [1]. This applies to both off-line

techniques, e.g., spectral analysis and system identification, and on-line processing,

such as filtering and control applications. Although non-uniform sampling may

prove useful in some applications [2]–[4], usually unplanned variations or jitter in

sampling instants are considered troublesome.

Today’s control applications typically have elements such as computer networks

or radio links. Therefore, in addition to an unstable clock, we might experience

data drops and variable delays. In such scenarios, we encounter difficulties to apply

common system identification techniques. A natural solution could be transforming

the non-uniform samples to uniform samples. This problem can be treated as an

interpolation task where the missing data is to be estimated.

For interpolation, piece-wise linear or cubic spline approaches are commonly

used. The former provides an easy and quick way to evaluate values at the missing

data points and the latter is popular because it can approximate complex curves.

Spline of order n calculates piecewise-polynomial functions that pass through all

the existing data and is continuously differentiable up to the order of n − 1 at

these points [5]. While these methods try to smoothly interpolate data, they are

not able to incorporate some global information. Therefore, they fail to extrapolate

beyond the input interval or give a reasonable response where a number of samples

are missing. More importantly, to faithfully reconstruct a band-limited signal by a

spline, an infinite order spline would be required [6].

Recovering of a band-limited signal from its non-uniform samples has a long

history. The connection between band-limited functions and entire functions of

exponential type has made it possible to reuse many earlier results in this context.

In particular, the results by Paley-Wiener [7] and Kadec [8] on nonharmonic Fourier

bases can be directly applied in this area. The celebrated theorem due to the work

of Beurling [9] and Landau [10] has provided a necessary and sufficient condition

for the sampling density for stable reconstruction. The frame theory due to Duffin-

Schaeffer [11] is another influential work, which has laid the theoretical ground

for many iterative algorithms.
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In the classic work by Yen [12], various schemes of deviation from a uniform

grid have been considered. Explicit formulae for recovering a signal from such

perturbed grids has been proposed. Specifically, in the fourth theorem of this

work, the concept of minimum-energy signals has been introduced, which allows to

uniquely reconstruct a band-limited signal from a finite set of arbitrarily distributed

samples.

There are many iterative methods based on the well-known inversion of a lin-

ear operator by means of Neumann series, which reduce to Richardson’s method

[13, p. 22]. Among others, it has been shown that by successively applying a

combination of band-limiting and sampling operations, the original signal is recov-

erable for different types of sampling methods, e.g., sample and hold and natural

sampling [14]. Further results concerning the convergence of this method and a

comprehensive reference to the field can be found in [15].

A direct treatment of the discrete problem of irregular sampling with focus on

iterative methods has been given in [16]. In addition, the author has discussed a

closely related problem of interpolation of trigonometric polynomials. In [17], an

efficient frame based algorithm has been proposed. The main ingredients of their

approach are conjugate gradient method instead of Richardson’s, preconditioning

of data by adaptive weights, and utilizing Toeplitz structure of the system matrix. It

has been shown that a certain trigonometric polynomial fitted to the data converges

to the solution of an infinite-dimensional reconstruction problem [18]. To motivate

the proposed iterative algorithm, a uniform estimate of the condition number of

the reconstruction operator based on the maximum gap between samples has been

given. The earlier approaches have been nicely brought together and presented in

a unified framework for reconstructing a broader class of shift-invariant functions

in [19].

Projection Onto Convex Sets (POCS) [20] and its variants [21] offer an alternative

way for reconstructing signals than frame based iterative algorithms. The idea is

projecting an initial function sequentially to a set of convex sets, each containing

all of the functions coinciding at a sample with the function to be reconstructed.

Since, this iterative algorithm suffers from a slow convergence rate, a one-step

formulation has also been proposed. In a general case, the one-step formulation

requires the inversion of an unstructured matrix whose size grows with the number

of samples.

A direct approach for reconstruction of the digital spectrum of non-uniformly

sampled signal with periodic sampling structure has been suggested in [22]. A

spectrum with a desired resolution has been obtained by solving a system of linear

equations. In [23], it has been assumed that non-uniform samples lie on a fine

grid. Accordingly, a linear system of equations has been formed and solved for

uniform samples. The drawback of the method is that the performance decreases

as the resolution of the non-uniform grid increases. In another work, the more

specific case of periodic and band-limited signals has been considered [24]. The

authors provide explicit formulae for reconstruction from even or odd number of

non-uniform samples.

In this article, the reconstruction of bandwidth-limited one-dimensional signals

from time-stamped non-uniformly sampled data is investigated. Specifically, we

would like to find the equally-spaced samples and the spectrum of a band-limited

signal that coincides with the samples taken at known sampling instants. We

introduce a novel view point based on the periodic extension as well as new

algorithms. Our sampling model is compatible with any arbitrary sampling scheme.
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Therefore, we make no implicit assumption regarding the sampling pattern in

advance. We provide an explicit formula for the Inverse Discrete Fourier Transform

(IDFT) of non-uniformly sampled data and present an efficient way to compute their

Discrete Fourier Transform (DFT). The basis functions for uniform periodic signals

cover both even and odd number of samples. For recovering uniform samples

and spectrum, we propose two approaches; one-stage and iterative. The one-stage

method allows trade-off between accuracy and other smoothness criteria and our

batch-mode iterative algorithm offers more favorable convergence properties than

the generic Jacobi method [13].

The remainder of the paper is organized as follows. In Section II, we make a

reformulation of the Nyquist ideal reconstruction for periodic signals. Subsequently,

Section III deals with one-stage approach to estimate uniform samples. In Sec-

tion IV, we revisit the properties of our interpolation basis in the frequency domain.

This leads to the definition of a non-integer forward shift element. Consequently,

we develop iterative algorithms under the light of this interpretation. Section V

presents simulation results for both approaches under various conditions. We discuss

the results and link our approaches to some of the earlier works by pointing out

similarities and differences in Section VI. Section VII presents our conclusions.

II. MODEL OF NON-UNIFORMLY SAMPLED DATA

It is well known that a band-limited signal can be ideally reconstructed if it

is uniformly sampled at a rate not less than the Nyquist rate. Otherwise, without

any prior information, aliasing effect can distort the frequency content of the signal

beyond recovery [25], [26]. Fortunately, most practical systems have a limited band-

width. This is especially true for a closed-loop system, where good robustness and

measurement noise rejection are achieved by limiting the high-frequency content

of the control loop [27].

Assuming the conditions of the Nyquist theorem hold, according to the Whittaker–

Shannon interpolation formula, we can calculate the original signal from its samples

by [25], [28]

y(t) =
∞∑

k=−∞

y(kTs) · sinc

(
t− kTs

Ts

)

, (1)

where sinc(x) = sin(πx)/πx and Ts ∈ R is the sampling period. This is in fact an

interpolation of uniform samples with sinc (t/Ts − k) as an orthogonal basis which

can perfectly evaluate a signal at any time instant.

Since we deal with a finite measurement interval, we are only interested in a

finite number of uniform samples covering the measurement period. However, the

recovery of a sample according to (1) requires the knowledge of all the uniform

samples. To address this problem, we assume periodic extension of y[k] beyond

the measurement window. This means that we project the signals into the space of

band-limited and periodic signals. Let us denote this space by BN where N is the

number of the samples. According to [29], [30], this space can be expanded by

the following bases:

psincN (x) ≡







sin πx

N sin π
N
x

N odd

sin πx

N tan π
N
x

N even.
(2)
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Note that the function defined above is periodic with period of N . Moreover,

lim
N→∞

psincN(x) = sinc (x) . (3)

Given (2), we can express the signals in the space of BN by

y(t) =
N−1∑

k=0

y[k] · psincN

(
t

Ts

− k

)

, (4)

where we have defined y[k] ≡ y(kTs).
Assume that we have a set of distinct measurements at

{tn = nTs + τnTs : n ∈ {0, . . . , N − 1} ∧ τn ∈ R} . (5)

By substituting the expression for tn into (4) and denoting the estimates of the

actual y[k] by ỹ[k], we obtain

y(tn) =
N−1∑

k=0

ỹ[k] · psincτnN [n− k] , (6)

where we have introduced the following notation

psincτN [n] ≡ psincN(n+ τ). (7)

Note that τ is unitless and describes the amount of deviation from a uniform grid

in proportion to the sampling period Ts.

According to (6), every y(tn) imposes an affine constraint on the underlying

uniform samples ỹ[k]. These constraints can be conveniently arranged in a square

matrix to be solved for ỹ[k]:

y = Aỹ (8)

Aℓ,k = psincτℓN [ℓ−k] , 0 ≤ l, k < N. (9)

Theorem 1: The matrix A ∈ RN×N defined in (9) can be factorized as

A = WV, (10)

where W, V ∈ RN×N . If N is odd,

W =
1

N









1 · · · w
⌊N−1

2
⌋

0 w
−⌊N−1

2
⌋

0 · · · w−1
0

1 · · · w
⌊N−1

2
⌋

1 w
−⌊N−1

2
⌋

1 · · · w−1
1

...
. . .

...
...

. . .
...

1 · · · w
⌊N−1

2
⌋

N−1 w
−⌊N−1

2
⌋

N−1 · · · w−1
N−1









(11)

where wn = ei2π(n+τn)/N . For an even N , the matrix description is similar, but

an additional column should be inserted in the middle of the matrix. Namely,

(N/2 + 1)-th column will be

WN/2 =








1
2
(w

N/2
0 + w

−N/2
0 )

1
2
(w

N/2
1 + w

−N/2
1 )

...
1
2
(w

N/2
N−1 + w

−N/2
N−1 )








. (12)
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The matrix V is the Discrete Fourier Transform (DFT) expressed as a Vandermonde

matrix,

V =








1 v10 · · · vN−1
0

1 v11 · · · vN−1
1

...
...

. . .
...

1 v1N−1 · · · vN−1
N−1








, vn = e−i 2π
N

n. (13)

Proof: Note that

psincτN [n] =







1

N

⌊N−1

2
⌋

∑

k=−⌊N−1

2
⌋

ei2π
k

N
(n+τ) N odd

1

N

⌊N−1

2
⌋

∑

k=−⌊N−1

2
⌋

ei2π
k

N
(n+τ) N even

+
1

2N

(
e−iπ(n+τ) + eiπ(n+τ)

)

(14)

The proof follows directly from (9) and the definitions of W and V.

Remark 1: Theorem 1 provides an important interpretation for matrix W, which

is the IDFT of the non-uniform samples. Note the similarity between this matrix

and the uniform IDFT where τn equals to zero for all n. In view of this, we write

y = WỸ, (15)

where Ỹ denotes the DFT of ỹ.

Theorem 2: The matrix A defined in (9) has full rank provided that there are

N distinct measurement points. If N is even, it is additionally required that for all

k ∈ Z
∑N−1

n=0 τn 6= (2k + 1)N/2.

Proof: See Appendix A.

Corollary 1: If |τn| < 1/2, ∀n, then matrix A has full rank.

Based on the relations in this section, we develop two approaches in the next

two sections to solve for ỹ[k] given y(tn) values.

III. ONE-STAGE APPROACH

The matrix A projects uniform samples to non-uniform samples according to

a prescribed sampling scheme. Theorem 2 ensures that matrices A and W are

invertible, hence we can solve for uniform samples and the spectrum using (8)

and (15), respectively. Note that solving (15) amounts to calculating the DFT of

the non-uniform samples. Although it is possible to find an explicit and fairly

compact formula for non-uniform DFT exploiting the Vandermonde structures (see

the derivation of the determinant in the proof of Theorem 2), using fast algorithms

for inversion of Vandermonde matrices such as [31] is more efficient than the

explicit formula.

A difficulty with the inversion of A is that the resulting matrix for large N with

a large variation in τn tends to be nearly singular (see the proof of Theorem 2).

Moreover, it may not always be desirable to strictly limit the upper bandwidth

because of the additional knowledge about the underlying process. A standard

solution to address these problems simultaneously is to relax the constraints while

penalizing the deviation from the ideal solution by a cost function. This technique

is also known as Tikhonov regularization [32].
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For a generic system of linear equations

Ax = b,

a quadratic cost function can be defined as

C = ‖Ax− b‖2 + ‖Γx‖2 .

An explicit solution to this minimization problem is given by

x̃ =
(
ATA+ ΓTΓ

)−1
ATb. (16)

Based on the prior knowledge, a wide variety of matrices for Γ can be chosen.

Note that this approach is equally applicable to (8) as well as (15). Furthermore,

knowing that DFT and IDFT are expressible as matrices, one can convert the cost

matrices between these two representations. We give a few examples for choosing Γ

in the following subsections.

A. Time-Related Cost

Often, we are interested in interpolated signals that satisfy some smoothness

criteria. To ensure this, one can minimize the difference between the values of two

consecutive samples or minimize its variation across the samples. The former as-

sumption favors constant signals and the latter means that the next sample should lie

on the line extended from the two previous points. These assumptions resemble the

behavior of Zero-Order Hold (ZOH) and First-Order Hold (FOH) signals between

consecutive samples, respectively. Hence, we denote the associated Γ matrices by

ZOH and FOH, such that

ΓZOH =









1 0 · · · 0 −1
−1 1 · · · 0 0
0 −1 · · · 0 0
...

...
. . .

. . .
...

0 0 · · · −1 1









, (17)

ΓFOH = ΓZOHΓZOH. (18)

Finally, we substitute Γ with αΓZOH or αΓFOH in (16).

B. Frequency-Related Cost

Although the proposed fitting approach inherently limits the frequency content,

the time-related regularization tend to spread the spectrum. Thus, even if a lower

bandwidth hypothesis for the underlying signal exists, we may not obtain it. This

is evident in case of long drops because the algorithm, depending on the choice of

Γ, tends to find a constant or a piecewise linear solution in that range. One would

run the algorithm in an iterative manner, i.e., after identifying the highest frequency

from the spectrum of the first run, readjust Ts to achieve a lower bandwidth.

Alternatively, this behavior can be controlled by introducing a cost for higher

frequencies.

Several frequency-related cost formulations are possible. For example, using (15),

the cost formulation for different scenarios is straightforward. Furthermore, we may

use the fact that lower frequency signals could be represented by fewer samples over

the same period. In other words, decreasing frequency corresponds to posing new

constraints on y[k] so that 0 = cỹ for some c. These constraints can be calculated
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using (8). We can form a non-square matrix that relates two sets of uniform samples

at different sampling rates. By eliminating the variables corresponding to the lower

sampling rate, the additional constraints can be found. Consequently, Γ in (16) can

be set to αc. As a concrete example, we see that in case of down-sampling by a

factor of two, every odd or even sample can be represented by the other set, which

results in N/2 null constraints.

IV. ITERATIVE APPROACH

The one-stage approach requires inverting a possibly large matrix. To circum-

vent this, a variety of iterative methods such as Richardson, Jacobi, and Gauss-

Seidel [13] can be used. Instead of generic iterative methods, in this section we

develop algorithms that take advantage of a non-integer delay element with respect

to discrete-time signals.

Consider a signal evaluated at tn = (n+ τ)Ts, 0 ≤ n < N . Substituting τn with

τ in (6) results in

y = hτ ∗ ỹN , (19)

where ∗ denotes the circular convolution and hτ is a sequence of length N taken

from the periodic sinc function defined in (7),

hτ [n] = psincτN [n] . (20)

Denoting the modolu operator by mod, ỹN [n] = ỹ[nmodN ].
The resulting signal y is a shifted version of the original signal with τTs.

Therefore, the operation can be interpreted as a non-integer forward shift element,

where τ specifies the amount of shift as a fraction of the sampling period.

Now, we consider (19) in the frequency domain

F{y} = F{hτ ∗ ỹN} (21)

⇒ Y = Hτ · Ỹ, (22)

where F denotes the DFT and Y, Ỹ,Hτ ∈ CN are the results of the transformation.

From the definition of the IDFT, we know that

hτ [n] =
1

N

N−1∑

k=0

Hτ
k e

i2π k

N
n, n = 0, . . . , N − 1. (23)

Comparing (23) with (14), it is possible to find an explicit solution for Hτ . Namely,

Hτ
k = ei2πkτ/N ·







1, k = 0, . . . , ⌊
N − 1

2
⌋

e−iπτ cos(πτ), k =
N

2
N even

e−i2πτ , k = ⌊
N

2
⌋ + 1, . . . , N − 1.

(24)

Before we further discuss the interpolation technique, it is worth mentioning

some of the properties of Hτ

H0 = 1 (25)

H1
k = ei2πk/N (26)

Hτ ∗ = H−τ , (27)
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Fig. 1. Transformation of a signal by H
τ , where τ varies between 0-100%.

where the star denotes an element-wise complex conjugate. Furthermore, for k 6=
N/2

H−τ
k = (Hτ

k )
−1

(28)

Hτ1+τ2
k = Hτ1

k ·H
τ2
k . (29)

According to (24), Hτ introduces phase shifts to each frequency component pro-

portional to the frequency and the amount of τ . This is evidently a generalization

of the delay element where (25) represents no shift and (26) is exactly the usual

one sample forward shift. Figure 1 shows the transformation of a signal by Hτ

with several τ :s.

Let us introduce the following notation,

xτ [n] ≡ x (nTs + τTs) . (30)

Consequently, in the space of BN we can write

Xτ = Hτ ·X. (31)

Proposition 1: If we assume s ∈ BN , and x are uniform samples of s, then

∀N ∈ N the effect of transformation by hτ is cumulative, i.e.,

xτ1+τ2 = hτ2 ∗ xτ1 . (32)

Proof: We use (32) to write,

hτ2 ∗ xτ1 = F
−1{Hτ2 ·Hτ1 ·X} (33)

= F−1{Hτ1+τ2 ·X} (34)

= xτ1+τ2 . (35)
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Since the space of BN is strictly band-limited, XN/2 = 0 when N is even. To

conclude (34), we have considered this fact and (29).

Corollary 2: The transformation by Hτ is reversible.

Proof: Use τ2 = −τ1 = −τ in Proposition 1. Accordingly,

xτ ∗ h−τ = xτ−τ = x. (36)

A. Sequential Mode Algorithm

Here, we present an algorithm based on the idea that each sample of y(tn) is

a result of filtering the uniform samples, y[k], with corresponding Hτn . Therefore,

we can recover y[k] by applying the inverse transform of these transformations.

Since, the exact value of y(kTs + τnTs) is only known at k = n, we formulate an

iterative algorithm to make use of this information:

1. ỹ← y {Initialize}
2. repeat

3. for all m ∈ {0, . . . , N − 1} do

4. ỹτm ← F
−1{Hτm · Ỹ}

5. ỹτm [m]← y (tm) {Correct sample m}
6. ỹ← F−1{H−τm · Ỹτm}
7. end for

8. until maximum iteration has reached or the remaining error is less than a

desired value

In order to prove the convergence, we show that the energy of the error (sum of

the squares of its elements) is constantly decreasing before the algorithm stops. The

following Lemma proves that the energy of a signal transformed by Hτ is equal

to or less than the original signal. Provided that the signal is strictly band-limited,

the energy is preserved.

Lemma 1: Let yn denote the result of transforming signal xn by Hτ , i.e., in the

discrete Fourier domain Y = Hτ ·X, then

N−1∑

n=0

|yn|
2 ≤

N−1∑

n=0

|xn|
2 . (37)

Proof: We use Parseval’s theorem to derive

N−1∑

n=0

|yn|
2 =

1

N

N−1∑

k=0

|Yk|
2 =

1

N

N−1∑

k=0

|Hτ
kXk|

2
(38)

=
1

N

N−1∑

k=0

Hτ
kH

τ
k
∗ |Xk|

2
(39)

≤
1

N

N−1∑

k=0

|Xk|
2 =

N−1∑

n=0

|xn|
2 . (40)

Equation (40) is concluded from (39) by using properties (27) and (28) and the

fact that for k = N/2, Hτ
kH

τ
k
∗ = cos2(πτ) ≤ 1.

Theorem 3: If the conditions of Theorem 2 hold, then the sequential mode

algorithm converges to the solution of (8).
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Proof: As a result of Theorem 2, there is a solution to (8), i.e., there is a

ỹ such that y = Aỹ. Accordingly, we can write the estimated samples at each

iteration as the sum of the uniform samples of the reconstructed signal and an

error

ỹ(k) = ỹ + e(k), (41)

where superscript k denotes the iteration number.

Now, we show how the energy of the error in each step of the algorithm evolves.

As a result of step 4,

ỹ(k)
τm =

(
ỹ + e(k)

)
∗ hτm , (42)

ỹ(k)
τm = ỹτm + e(k)τm . (43)

Step 5 results in

ỹ(k+1)
τm = ỹτm + e(k+1)

τm , (44)

where

e(k+1)
τm [n] =

{

e(k)τm [n], n 6= m

0, n = m.
(45)

Assuming sample m is updated,
∑

n

∣
∣e(k+1)

τm [n]
∣
∣
2
<
∑

n

∣
∣e(k)τm [n]

∣
∣
2
. (46)

According to Corollary 2, we find

ỹ(k+1) =
(
ỹτm + e(k+1)

τm

)
∗ h−τm = ỹ + e(k+1). (47)

Using Lemma 1, (46) results in
∑

n

∣
∣e(k+1)[n]

∣
∣
2
<
∑

n

∣
∣e(k)[n]

∣
∣
2
. (48)

This means that as long as a correction is made, the energy of the error is decreasing.

Since the energy is bounded from below by zero, the algorithm will eventually

converge to ỹ.

B. Batch Mode Algorithm

The sequential mode algorithm makes use of only one sample at each iteration

and therefore its convergence rate is slow. To improve the situation, we try to make

use of all samples in a batch fashion. The following algorithm shows the procedure:

1. ỹ← y {Initialize}
2. repeat

3. Ỹτ ← F
−1{H · Ỹ}

4. for all m ∈ {0, . . . , N − 1} do {Replace the diagonal elements}
5. Ỹτ (m,m)← γy (tm) + (1− γ)Ỹτ (m,m)
6. end for

7. Ỹ ← F−1{H−1 · Ỹτ}
8. ỹ← diag(Ỹ) {Extract the diagonal}
9. until maximum iteration has reached or the remaining error is less than a

desired value
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Here, all the DFTs are row-wise and H, Ỹ, Ỹτ ∈ CN×N are defined as

H =







Hτ0

Hτ1

...

HτN−1







, Ỹ =








Ỹ

Ỹ
...

Ỹ








, Ỹτ = F{Ỹτ}. (49)

The relaxation parameter is in the interval 0 < γ ≤ 1.

Theorem 4: The following iterative algorithm describes a computationally more

efficient counterpart to the batch mode algorithm,

ỹ(0) = Dy (50)

ỹ(k+1) = ỹ(k) + γD
(
y −Aỹ(k)

)
, (51)

where matrix D is a diagonal matrix that has the same diagonal elements as matrix

A.

Proof: We formulate the correction for the m-th sample at step 5 of the batch

mode algorithm,

∆τm (n) = γ
(
y(tm)− ỹ(k)τm [m]

)
δ (n−m) . (52)

Accordingly,

∆(n) = ∆τm (n) ∗ h−τm [n] (53)

= γ
(
y(tm)− ỹ(k)τm [m]

)
h−τm [n−m]. (54)

Now, if we evaluate (54) at m and build a new function out of its values, we

obtain

∆′ (m) = γ
(
y(tm)− ỹ(k)τm [m]

)
h−τm [0]. (55)

Therefore, a sample in the next iteration can be written in terms of the samples in

the previous iteration as

ỹ(k+1)[n] = ỹ(k)[n] + ∆′ (n) (56)

= ỹ(k)[n] + γ
(
y(tn)− ỹ(k)τn [n]

)
h−τn [0]. (57)

Writing (57) in a matrix form using the identities

ỹ(k)τn [n] =
∑

ℓ

ỹ(k)[ℓ]hτn [n− ℓ] (58)

hτn [0] = h−τn [0], (59)

completes the proof.

This reformulation is computationally beneficial since it scales with O(N2)
instead of O(N2 logN) at each iteration.

Corollary 3: The following algorithm recovers directly the spectral representa-

tion of non-uniformly sampled signals,

Ỹ(0) = F {Dy} (60)

Ỹ(k+1) = TỸ(k) +C, (61)

where

T = I− γF {DW} (62)

C = γF {Dy} , (63)
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and all the DFTs are column-wise.

Proof: This is the same as Theorem 4, expressed in the frequency domain

using (15).

Note that in case of oversampled signals, using the formulation of Corollary 3 is

beneficial. The reason is that we can remove the columns and rows corresponding to

higher frequencies than the Nyquist frequency. Therefore, the computation in each

iteration is reduced to O(M2), where M corresponds to the highest frequency in

the discrete Fourier domain.

Lemma 2: Using the algorithm in Theorem 4, the error at each iteration evolves

according to

e(k) = Bke(0), (64)

where

B = I− γDA. (65)

Proof: This is a direct consequence of (51). If we subtract both sides of (51)

from the fixed point of the algorithm, it results in

ỹ − ỹ(k+1) = ỹ− ỹ(k) − γD
(
y −Aỹ(k)

)

e(k+1) = e(k) − γD
(
Aỹ −Aỹ(k)

)

e(k+1) = (I− γDA) e(k). (66)

By repeatedly applying (66), the proof is completed.

A necessary and sufficient condition for the convergence of the error to zero

is that the spectral radius of matrix B is less than one, i.e., all the eigenvalues,

denoted by λi, lie inside the unit circle

ρ(B) = max
i

(|λi|) < 1. (67)

Let us parametrize matrix B by τ = (τ0, τ1, . . . , τN−1). It is difficult to calculate an

explicit solution to ρ(Bτ ) for a generic distribution of τn. However, we can show

that for a given maximum deviation τmax = maxn|τn|, τ = τmax1N , i.e., τn = τmax

for 0 ≤ n < N is a local maximum of ρ(Bτ ). See Appendix B for the proof.

Theorem 5: Assuming ρ(Bτ ) ≤ lim
N→∞

ρ(Bτmax1N
), the iterative algorithms of

Theorem 4 and Corollary 3 are convergent in the range of |τn| < 1/2 provided that

0 < γ ≤ min (2/tanc(πτmax), 1) ,

where τmax = max
0≤n<N

|τn| and tanc(x) = tan(x)/x.

Proof: See Appendix C.

Since according to Corollary 2 recovering a constant shift requires only one

iteration, in order to utilize the fastest rate of convergence, we can remove the

common offset of sampling instants before using the algorithms.

V. RESULTS

In this section, we present different simulation scenarios to demonstrate the

algorithms in practice. The scenarios cover the cases where there is only jitter

or jitter and drops are both present. Since the cubic spline is commonly used

for interpolation, we use it as a baseline for comparison. The iterative methods

converge to the same solution as the one-stage method when there is no additional

constraints. Therefore, we have not included any comparison between these two
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approaches on the same data set. We use the normalized Mean-Squared Error (MSE)

as the measure of accuracy. This is done according to

MSE =
‖yu − ỹ‖2

‖yu‖2
, (68)

where yu denotes the uniform samples of the original signal.

A random complex spectrum with length N = 128 was used to build the test

signals. We computed the time response by taking the IDFT. Thereafter, the signal

was sampled non-uniformly. The jitter was a random function uniformly distributed

in the range of ±50% of the sampling period.

In the first experiment, we used the one-stage method and filtered part of the

spectrum by a notch filter. A sample signal is shown in Fig. 2.a and the spectra

obtained without any preprocessing, using spline for interpolation and using the

one-stage method are compared in Fig. 2.b. The one-stage approach provides

solutions with an accuracy close to the machine precision.

Figures 3 and 4 correspond to a signal exploiting the whole spectrum recovered

by means of Theorem 4 and Corollary 3, respectively. Figure 5 demonstrates the

accuracy of the solution after each iteration of the batch mode algorithm (Theorem

4). The jitter was a random function uniformly distributed in the range of ±15%,

±30%, and ±45%. No oversampling was used and γ = 1 in all experiments.

For each range, the figure illustrates the results of one hundred experiments with

different random signals and jitter profiles. The average MSE per iterations as well

the worst and the best cases are shown.

In Table I, we present a numerical comparison between the batch mode algorithm

and the cubic spline. We limited the jitter spread to ±35% and the maximum num-

ber of iterations to 10. Each row is characterized by a different M corresponding

to the maximum frequency. The MSE values were averaged over one hundred

experiments.

Table II shows the performance of the batch algorithm when some additive

Gaussian measurement noise is present. The jitter spread was again set to ±35% and

the maximum number of iterations to 10. For each row the standard deviation of the

noise is σ‖yu‖/N . The MSE values were averaged over one hundred experiments.

In the drop scenarios, we limited the bandwidth to M = 40. The jitter was in

the range of ±35% of the sampling period. We used the one-stage method with

ΓZOH and α = 0.001. Figure 6.a shows a signal with a burst drop of length 5 while

Fig. 6.b presents a scenario with recurrent drops at the rate of 0.3 (drops/sample).
Table III summarizes the results for various lengths of drops and rates of drops.

The MSE values were averaged over one thousand experiments.

TABLE I

MSE OF THE BATCH MODE ALGORITHM AFTER 10 ITERATIONS COMPARED TO SPLINE

M
Batch Mode Alg.

MSE (mean ± std)

Cubic Spline

MSE (mean ± std)

63 (1.04± 1.28)e−6 (4.78 ± 2.09)e−2

48 (8.42± 15.9)e−7 (6.20 ± 4.27)e−3

32 (3.00± 4.24)e−7 (2.49 ± 1.45)e−4

16 (1.19± 1.96)e−7 (9.49 ± 6.85)e−7

4 (1.06± 1.26)e−8 (2.68± 2.24)e−11
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Fig. 2. Recovery of a signal by the one-stage approach (a) signals in the time domain and (b) the spectra.

‘+’ denotes the non-uniform samples, solid line the original signal, ‘x’ the computed uniform samples, dash-

dotted line the recovered signal, dashed line the interpolation by the cubic spline method, and dotted line no

processing. Note that with no preprocessing or the spline method, erroneous frequency components are spread

over the spectrum.

To give a better picture of the performance of the algorithms, we summarize a

few observations here:

• With dense samples and relatively small weights there is no significant differ-

ence between ΓZOH and ΓFOH.

• For long drops, ΓFOH produces a similar result to spline, which is not desirable.

• Erroneous frequency components are usually scattered in the whole spectrum

of a signal interpolated by the cubic spline method.
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Fig. 3. Recovery of a signal by the batch mode algorithm (Theorem 4): ‘+’ denotes the non-uniform samples,

solid line the original signal, ‘x’ the computed uniform samples, dash-dotted line the recovered signal, and

dashed line the interpolation by spline method.
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Fig. 4. Recovery of the spectrum by Corollary 3: solid line, dash-dotted line, and dashed line correspond to

the original signal, recovered signal, and interpolation by the cubic spline method, respectively.
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Fig. 5. Performance of the batch mode algorithm with respect to τ : The jitter is uniformly distributed in

each given range. The solid lines correspond to the average over one hundred experiments for each range and

the dashed lines correspond to the worst and the best scenarios.

• For larger N , the iterative methods reduce the error more quickly in the

initial iterations. However, the length does not have a significant effect as

the iterations proceed.

• Oversampling improves the performance of the algorithms as indicated in

Table I. Additionally, the signals become more resilient to the loss of samples.

• Cubic spline performs well when signals are oversampled. However, with a

higher frequency content our algorithms do significantly better. The spline

interpolation totally fails in extrapolation and misses relatively rapid changes

between two samples.

• For randomly distributed jitter, the condition number κ(A) is small, which

makes the algorithms robust to additive white noise.

TABLE II

RESULTS WITH ADDITIVE GAUSSIAN MEASUREMENT NOISE

σ
Batch Mode Alg.

MSE (mean ± std)

Cubic Spline

MSE (mean ± std)

0.01 (1.49± 0.84)e− 6 (5.09± 2.05)e− 2

0.02 (4.21± 3.19)e− 6 (5.24± 2.08)e− 2

0.05 (2.07± 0.29)e− 5 (5.34± 2.67)e− 2

0.1 (7.91± 0.93)e− 5 (5.06± 1.94)e− 2

0.2 (3.09± 0.33)e− 4 (5.00± 2.09)e− 2
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Fig. 6. Recovery of a signal with (a) burst drops and (b) recurrent drops: ‘+’ denotes the non-uniform samples,

circles the dropped samples, solid line the original signal, ‘x’ the computed uniform samples, dash-dotted line

the recovered signal, and dashed line the interpolation by spline method. Note that the spline method misses

rapid changes when the samples are dropped, while the one-stage method can recover them.
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TABLE III

RESULTS OF ONE-STAGE APPROACH FOR BURST AND RECURRENT DROPS

Burst Drops

No.
Batch Mode Alg.

MSE (mean ± std)

Cubic Spline

MSE (mean ± std)

0 (3.79± 0.87)e−5 (1.32 ± 0.90)e−3

1 (4.19± 1.22)e−5 (2.51 ± 2.22)e−3

2 (1.04± 1.25)e−4 (1.42 ± 1.84)e−2

3 (1.38± 2.18)e−3 (4.57 ± 5.81)e−2

4 (1.57± 2.225)e−2 (7.85 ± 8.64)e−2

5 (4.44± 5.92)e−2 (9.54 ± 9.65)e−2

Recurrent Drops

Rate
Batch Mode Alg.

MSE (mean ± std)

Cubic Spline

MSE (mean ± std)

0 (3.79 ± 0.87)e−5 (1.32± 0.90)e−3

0.1 (9.11 ± 3.78)e−5 (1.56± 0.76)e−2

0.2 (2.09 ± 1.02)e−4 (3.15± 1.26)e−2

0.3 (3.59 ± 1.74)e−4 (6.22± 2.50)e−2

0.4 (6.59 ± 4.33)e−2 (4.86± 5.43)e−1

0.5 (2.44 ± 0.67)e−1 (4.88± 3.45)e−1

VI. DISCUSSION

As expected, our formulation leads to perfect reconstruction of the signals in

the space of BN . In this case, our definition of digital fractional delay does not

involve any approximation. Therefore, for periodic signals it is the counterpart of

the perfect fractional delay defined in [33].

The periodic assumption has been explicitly or implicitly assumed in some other

works, e.g., [17], [18], [24]. If this assumption is not valid, because of the decay rate

of the sinc(·) function, reconstructed signals will have a more visible distortion at

the boundaries compared to the middles. Therefore, signals with short intervals can

suffer more while with an infinitely long period we expect no discrepancy according

to (3). It is suggested that applying window functions on non-uniform samples

can improve the performance [23]. Therefore, common windowing techniques [34]

might be adopted for this purpose.

Theorem 2 implies that without the periodic assumption the solution is not

unique. We may add homogeneous solutions, which are zero at the sampling points,

to the recovered signal. Since any deviation from the periodic assumption appears

as a perturbation of y in (8), the condition number κ(A), plays an important role

in the accuracy of the uniform samples in case of non-periodic signals.

Introducing minimum energy signals [12] is in fact another way to overcome non-

uniqueness. However, under the assumption that a signal behaves similarly outside

its measurement period, the periodic extension seems more appropriate. Moreover,

as a common practice with the Fast Fourier Transform (FFT), the original signal can

be padded with additional zeros or with mirrored data. Accordingly, the algorithms

developed in this paper are able to accommodate a variety of methods to extend

signals outside of their measurement window.

In the one-stage approach, the proposed methods for penalizing higher frequen-

cies can be advantageous compared to low-pass filtering of the result since they
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Fig. 7. Comparison of the convergence range of the Batch Mode algorithm and Jacobi iterative method for

a constant offset. The batch mode algorithm remains convergent for a wider range of τ .

allow for a direct trade-off between the accuracy at the sampling instants and other

desired properties. Assuming sparsity of the signals, it is possible to reconstruct

them with less number of samples than the Nyquist rate [35]. This can for example

be achieved by replacing the L2 norm of the signals in the one-stage approach with

L1 norm and solving the resulting convex problem.

According to the results, the improvement in the spectrum by the methods pro-

posed in this article is remarkable. Although the cubic spline improves the spectrum

compared to the case of no-preprocessing, there are still spurious components both

outside the frequency range and inside it. Therefore, a low-pass filter followed after

the interpolation will not be able to fix the problem. Moreover, such a combination

results in the loss of accuracy at the points where the interpolated signal is to

pass through. On the contrary, in our approach we directly trade off between the

accuracy and other smoothness criteria while keeping the bandwidth constant. Due

to the strict enforcement of an upper frequency in case of no regularization, we

do not expect that our algorithms do better than cubic spline for under-sampled

signals.

To the authors’ best knowledge, (2) and (24) have been stated in their most

generic form while most authors consider a spectrum in [−M,M ], which implies

that they restrict the analysis to odd numbers. For instance, our approach and in

particular (2) provides a new insight to Corollary 3 of Theorem 1 in [18].

It is possible to compare the performance of the assumed worst case of our

algorithm with the standard Jacobi iterative method (see [13] for the details of the

Jacobi algorithm). Following the proof of Theorem 5, it is also possible to find

|λmax| for Jacobi method. Accordingly, we find the upper limit for convergence to

be |τn| < sinc−1(0.5)/2 ≈ 0.302. This means that our algorithm converges in a

wider range. Furthermore, Fig. 7 shows that in the same scenario by maintaining

γ = 1, our algorithm has a better convergence property in the whole range. In

practice, we observe that for uniformly distributed τn:s the situation is much better

than the bound given in Theorem 5 and the algorithm remains convergent even

without reducing γ.

It is worth mentioning that a fundamental difference between our approach

and for example [24] and [12] is that instead of finding an explicit basis for the
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expansion of a function based on its non-uniform samples, we reuse the uniform

basis, but find new weights. The benefit with the latter approach is that it does not

make the basis functions overcomplicated.

Note that by multiplying both sides of (15) by a certain matrix, our formulation

becomes the same as the one in [22]. However, computing matrix W is more

convenient than matrix A in [22]. Moreover, there is no requirement for pre-

transformation of y in our approach.

If we similarly to Theorem 4 find out the equivalent form of the sequential mode

algorithm, it is not difficult to verify that it is basically the POCS algorithm [20] for

periodic signals where sinc(·) function has been replaced by psinc(·). This opens

up the opportunity to bring in the strategies introduced in [21] for improving its

convergence rate. Moreover, from this point of view, our batch mode algorithm is

a generalization of the POCS algorithm in the sense that it tries to satisfy all the

constraints at each iteration.

Here, we recite the condition of Theorem 1 in [16] for determining a signal by

its non-uniform samples by means of their frame based algorithm

2M(2⌊d/2⌋+ 1) < N, (69)

where d is the maximum distance between two samples and M is the bandwidth.

Theorem 5 tells us that given a right relaxation parameter, the batch algorithm is

convergent in the whole range |τ | < 1/2. Reformulating this in terms of (69) and

using the fact that oversampled signals can be resampled at a lower rate without

loss of information, we obtain the following condition

d < 2N/(2M + 1). (70)

From this perspective, our algorithm allows for larger d than Theorem 1 in [16]

for M < ⌊(N − 1)/2⌋.

VII. CONCLUSION

We have provided a formulation for recovering band-limited signals from a finite

set of irregularly sampled data. One-stage and iterative methods have been proposed

that allow us to recover signals either in the time domain or the frequency domain.

In our approach, non-uniform samples specify constraints on the recovered signals.

This framework enables us to introduce easily a variety of additional constraints.

For instance, one might wish to filter out a certain frequency range or fill in the

missing data.

An integral ingredient for the design of our iterative methods is the notion of

a discrete-time non-integer delay element. The delay element, which is a gener-

alization of a one-sample shift operator, is inspired by the frequency view of our

formulation. Thanks to this delay element, the iterative methods can shift signals

in time and satisfy the constraints imposed by non-uniform samples step by step.

Both iterative and one-stage approaches solve the same problem and without

additional considerations provide the same solution. Whereas it is easier to incor-

porate additional constraints in the one-stage algorithm, the iterative methods do no

need to carry out computationally demanding operations such as matrix inversion.

Moreover, the iterative methods are able to handle a large variation in the sampling

instants (up to ±50% jitter). Therefore, they scale up better for longer measurement

sequences.

In accordance with our initial motivation, these algorithms can constitute an

effective preprocessing stage in system identification. Nonetheless, the application
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is not limited to this area and they might as well be considered in other areas such

as image processing or asynchronous transmission.
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APPENDIX A

PROOF OF THEOREM 2

In order for a square matrix to have full rank, it is sufficient that its determinant

and hence its factors be non-zero. According to Theorem 1, A = WV. Therefore,

det(A) = det(W) det(V). (71)

Matrix V is a Vandermonde matrix and hence its determinant is

det(V) =
∏

0≤i<j<N

(vj − vi) . (72)

It is also possible to derive the determinant of W based on the determinant of

a standard Vandermonde matrix. Let us define a diagonal matrix such that

Dnn = w
⌊N

2
⌋

n . (73)

If N is odd, W′ = NDW is a Vandermonde matrix with permuted columns.

Since it has an even parity permutation, its determinant is equal to an ordinary

Vandermonde matrix. The determinant of D is simply the product of its diagonal

elements. Therefore, we conclude

det(W) =
1

NN

det(W′)

det(D)
. (74)

Similarly, we can define W′ when N is even. Thereafter, we build two matrices

W′
1 and W′

2 equal to W′, except their N/2-th column should sum up to the N/2-th

column of W′. Using the n-linear function property of determinants, we find

det(W′) =
1

2
det(W′

1) +
1

2
det(W′

2). (75)

By choosing the N/2-th column of W′
1 to be a constant vector with its all elements

equal to 1/2, W′
1 becomes a Vandermonde matrix with permuted columns. We

multiply W′
2 from the left by D′ to obtain another Vandermode matrix

W′′ = D′W′
2, (76)

where D′
nn = w−1

n . Putting all these together, we conclude

det(W) =







E
︷ ︸︸ ︷

1

NN

∏

0≤k<N

w−p
k

∏

0≤i<j<N

(wj − wi), N odd

(−1)p

2

(

1−
∏

0≤k<N

wk

)

E, N even,

(77)

where p = ⌊N/2⌋.
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Obviously, the factors of det(V) are non-zero. We observe that if tn are distinct

for all n ∈ {0, . . . , N − 1}, wn:s are also different. Regarding the case where N is

even, the following relation holds
∏

0≤k<N

wk = 1∠φ, (78)

where

φ =
N−1∑

n=0

2π

N
(n+ τn) + 2kπ

=
2π

N

(
N−1∑

n=0

τn +N(N − 1)/2

)

+ 2kπ

=
2π

N

N−1∑

n=0

τn + π(N − 1) + 2kπ

=
2π

N

N−1∑

n=0

τn − π + 2k′π. (79)

In (79), we have defined k′ = k +N/2. Setting φ 6= 2kπ results in

N−1∑

n=0

τn 6= (2k + 1)N/2, k ∈ Z. (80)

Let us assume |τn| < 1/2. It follows that
∣
∣
∣
∣
∣

N−1∑

n=0

τn

∣
∣
∣
∣
∣
< N/2. (81)

This implies (2k′− 1)π < φ < 2k′π and hence the last factor cannot be zero. This

proves the corollary. �

APPENDIX B

SPECTRAL RADIUS OF Bτ

Due to the symmetry of the problem, the eigenvalues of Bτ is invariant to any

number of the circular shift of τ . Additionally, flipping and negating τ does not

change the eigenvalues. Now, we consider the gradient of the spectral radius with

respect to vector τ . Using the first property, we conclude,

∇ρ(τ0, τ1, . . . , τN−1) =
∂ρ

∂τ0
î+

∂ρ

∂τ1
ĵ + . . .

∣
∣
∣
∣
(τ0,τ1,...,τN−1)

=
∂ρ

∂τ1
î+

∂ρ

∂τ2
ĵ + . . .

∣
∣
∣
∣
(τ1,...,τN−1,τ0)

= . . .

=
∂ρ

∂τN−1
î+

∂ρ

∂τ0
ĵ + . . .

∣
∣
∣
∣
(τN−1,τ0,...,τN−2)

Now assuming τ = c1N , i.e., τn = c for 0 ≤ n < N , the circular shift results in

the same vector. Therefore, on the line τn = c > 0 we have

∂ρ

∂τ0
=

∂ρ

∂τ1
= · · · =

∂ρ

∂τN−1
.
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Fig. 8. Eigenvalue of matrix Bτ : In the left figure, the vertical arc corresponds to τn = 0.15 for 0 ≤ n < 65,

the horizontal line to τn = (−1)n0.15, and the rest of the dots show the overlaid eigenvalues of randomly

generated matrices with τmax = 0.15. The other figures are generated similarly. The figure in the middle and

to the right correspond to τmax = 0.25 and τmax = 0.4, respectively.

This implies that starting from any point on this line and following the steepest

ascend direction, we will not leave the line. Since the spectral radius increases as

c increases (see (87) in Appendix C), we conclude that τ = τmax1N is in fact a

local maximum.

Fig. 8 illustrates several examples of the distribution of the eigenvalues for

N = 65. The blue dots correspond to the eigenvalues of many randomly generated

matrices Bτ for a given τmax. The horizontal line and the vertical arc show the

eigenvalues corresponding to τn = (−1)nτmax and τn = τmax, respectively. Note

that the spectral radius is determined by the point that lies farthest away from the

origin.

APPENDIX C

PROOF OF THEOREM 5

According to the definition of B in (65), we can write

det(B− λI) = 0⇒ (82)

det(γDA− (1− λ)I) = 0. (83)

Therefore, the eigenvalues of matrix B are related to DA through

λ(B) = 1− γλ(DA). (84)

For τn = τ = τmax, matrix DA becomes circulant. The eigenvalues of a circulant

matrix are equal to the DFT of any of its columns. We observe that the first

column of DA is equal to (DA)n,1 = hτ [0]hτ [n]. Consequently, the eigenvalues

are calculated as

λn = 1− γF{hτ [0]hτ [n]} (85)

= 1− γhτ [0]H
τ
n , (86)
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and

ρ(B) = max
n
|1− γhτ [0]H

τ
n|. (87)

From (24), we can verify that the maximum is obtained around N/2, correspond-

ing to high frequencies. In addition, as the number of samples tends to infinity the

spectral radius increases. Therefore,

ρ(B) < lim
N→∞

|1− γhτ [0]H
τ
n|, (88)

where n ∈
{
⌊N−1

2
⌋, ⌊N

2
⌋ + 1

}
. This results in

ρ(B) <
√

1 + γ2sinc2(τ)− 2γ cos(πτ)sinc(τ). (89)

The theorem is proved by equating the right hand side of (89) to one and solving

for γ. This provides us with an upper bound for γ. �
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