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We present spectral and optical properties of the Hubbard model on a two-dimensional square lattice using
a generalization of dynamical mean-field theory to magnetic states in a finite dimension. The self-energy
includes the effect of spin fluctuations and screening of the Coulomb interaction due to particle-particle
scattering. At half-filling the quasiparticles reduce the width of the Mott-Hubbard “gap” and have dispersions
and spectral weights that agree remarkably well with quantum Monte Carlo and exact diagonalization calcu-
lations. Away from half-filling we consider incommensurate magnetic order with a varying local spin direction,
and derive the photoemission and optical spectra. The incommensurate magnetic order leads to a pseudogap
which opens at the Fermi energy and coexists with a large Mott-Hubbard gap. The quasiparticle states survive
in the doped systems, but their dispersion is modified by the doping, and a rigid-band picture does not apply.
Spectral weight in the optical conductivity is transferred to lower energies, and the Drude weight increases
linearly with increasing doping. We show that incommensurate magnetic order also leads to midgap states in
the optical spectra and to decreased scattering rates in the transport processes, in qualitative agreement with the
experimental observations in doped systems. The gradual disappearence of the spiral magnetic order and the
vanishing pseudogap with increasing temperature is found to be responsible for the linear resistivity. We
discuss the possible reasons why these results may only partially explain the features observed in the optical
spectra of high-temperature superconducti®6163-18209)04632-9

. INTRODUCTION Recently it was showtf’ that the effective Hubbard
model has to include hopping beyond nearest neighbors. The

In the past decade interest in the physical properties o$econd-nearest-neighbor hopping changes the dispersion of
correlated electronic systems has greatly increased. One rethe quasiparticléQP) states, and is therefore crucial for un-
son for this is the strong local correlations on transition-derstanding angular-resolved photoemissi&RPES data
metal ions in cuprate superconductors and manganites, arfl the antiferromagneti¢AF) insulator SsCu0,Cl,.% Both
the corresponding unusual properties of these compoundsecond- and third-neighbor hopping parameters follow from
The parent undoped compounds are Mott-Hubbard ofhe down-folding procedure in  electronic —structure
charge-transfer insulators, while doping leads to Co”e|ate€alculations7, and influence the shape of the Fermi surface.

metals in which the kinetic energy of charge carriers com-rhey have a particular relation to the value of the supercon-
petes with magnetic ordérOne of the most spectacular con- ducting transition temperature at optimal dopfng.

sequences is the onset of high-temperature superconductivity The superconductivity occurs in the cuprates under dop-

in the cuprates. It is believed that a satisfactory description o{n 5=1—n of a half-filled ("=1) AF insulator, and is ac-
the normal phase properties is a prerequisite for the undef-9 '

standing of the microscopic mechanism of pairing in high_companied by a gradual modification of the magnetic order.

temperature superconductors. The electronic states irnp Cthe nature of magnetic gorrelatlons in doped materials is
planes of cuprate superconductors are usually described Pﬁefefore a central issue in the theory of the cuprate super-
terms of the Emery model, which includes hybridization be-conductors. Undoped L&UQ, is a commensuraté\F insu-
tween Cu(&,2_,2) and O(Dy)) state€ However, hole lator, while doping by Sr_mFo Lga.XSrXCuO4 results in short—
doping leads to the formation of local Zhang-Rice singfets, 'ange  AF - order within incommensurate magnetic
and the essential excitations in the cuprates within a windovgtructures:*® Such an incommensurate magnetic order was
of a few eV around the chemical potential are well repro-indeed found analytically;*?in Hartree-FockHF)**** and
duced using an effective two-dimensionéD) Hubbard  slave-boson approximation&:*’ However, in order to un-
model with extended hoppificand a large local Coulomb derstand the transport properties, one has to go beyond an
interactionU, as shown by various numerical studies of theeffective single-particle description and include the dynam-
t-J and Hubbard modef. ics due to local electron correlations.
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A sufficiently accurate treatment of local electron corre-tation spectra in the spin spiral states is developed in Sec. lll.
lations remains one of the challenging problems in moderiNext we analyze the numerical results for the one-particle
solid-state theory. Although important progress in thespectral properties in Sec. IV, where we show how they
present understanding of strongly correlated fermion system@hange with doping and with increasing temperature. The
occurred recently due to numerical methods, such as qua@ptical properties are presented in Sec. V; there we discuss
tum Monte CarlodQMC) and exact diagonalizatiofED), an  €ffects in the optical conductivity, scattering rate, and effec-
analytic treatment that maintains local correlations is needelive mass which arise due to extended hopping and by in-
to investigate the consequences of strong correlations in tHg€asing the value of Coulomb interactionSection VI pre-
thermodynamic limit. An attractive possibility is the limit of S€nts a short summary and conclusions.
large spatial dimensiondE «), where the diagrams in the
perturbative expansion collapse to a single site, and the fer- Il. DYNAMICAL MEAN-FIELD THEORY
mion dynamics is described by lacal self-energy® This FOR SPIN SPIRAL ORDER
allows a mapping of lattice models onto quantum impurity
models, which can then be solved self-consistently using dy-
namical mean-field theorgDMFT).*® We consider the spectral and optical properties of the

DMFT was quite successful for the Hubbard model withminimal model for strongly correlated electrons in high-
nearest-neighbor hoppingat half-filling, where it predicts temperature superconductors, the Hubbard model with ex-
the Mott transition to the insulating state<1).2° This was  tended hopping,’
also found by Logan, Eastwood, and TuScfor the d=
case using an analytic method. Attempts to use DMFT at
arbitrary filling, however, made it clear that the local self- H:_Z fi
energy becomes particularly important in systems with mag-
netic long-range ordefLRO), which are easily destabilized wherea is a creation operator of an electron with spirat
when the correlation effects are overestimated. The selfsitei, andn;,,= ai’f(rai‘r, The hopping elements; =t, t’ and
energy therefore plays a decisive role, and has to be de” stand for the nearest-neighbor, second-nearest-neighbor,
scribed beyond second-order  perturbation theory and third-nearest-neighbor hopping on a 2D square lattice,
(SOPT).?##This has made the application of DMFT to mag- and serve to model the electronic states of the charge-transfer
netically ordered systems notoriously difficult. Recently wetype in the cuprates. For convenience we chobse the
have shown that the screening of local Coulomb interactiorenergy unit.
by the particle-particle diagrams plays a crucial role in sta- |t js interesting to note that hopping beyond nearest neigh-
bilizing the incommensurate magnetic LRO in dopedhors contributes to the energy and other properties not only
systems™* in a 2D model, but also in the limit ofl—o. The energy

The advantage of using DMFT becomes clear by lookingcontributions due to more distant neighbors are finite due to
at the single-hole problem, which can be solved exactly inhe scaling of the hopping parameters on a hypercubic lat-
the d—o limit.>®> The method becomes exact because thejce. |t is given bytide—Hi—JHIZ (see Refs. 18 and 30where
quantum fluctuations are of higher order in the &kpansion i —j|| is the distance betwedrand]j defined by the “bond
than the leading potential term which originates from themetric,” and gives the scaling factors-1/\/d for first-

Ising part of the superexchange interactibndt®/U. There-  peighpor hopping and-1/d for second- and third-nearest
fore, applying DMFT to thel=2 case might still capture the npeighbor hopping, as the latter sites are two bonds apart.
essential features that result from the coupling of a moving  As mentioned above, we adopt the limit of infinite dimen-
hole to local spin fluctuations. We will show below that in sjons to determine the spectral properties of the Hubbard
fact such quantities as the spectral function, the QP banqjamiltonian on a square lattice in the thermodynamic limit.
and the size of the QP spectral weight are well reproduceg order to simplify the numerical evaluation of the self-
within DMFT, which for a single hole includes only those energy, we introduce an ansatz for the modified magnetic
processes which are present in thé, model. Although this  order in the doped systems, and assume incommensurate SS
approach becomes exact only in thesc limit,**it gives a  structures with a large but finite periodicity. This approach
sufficient accuracy of the one-particle spectral function evezaptures the essence of the competition between the weak-
in a finite dimensiond=2?® DMFT allows us to calculate ened short-range AF order, and the kinetic energy induced
the optical conductivity in thel=c limit of Metzner and  py hole doping:* and allows us to treat the systems in the
Vollhardt'® from the knowledge of the local self-energy thermodynamic limit at low temperature. The spiral states

without further approximation. The studies performed in are characterized by the amplitude of the local magnetiza-
this limit for nonmagnetic systems already allowed a qualijon,

tative reproduction of such experimental observations in the
cuprates as the increase of the Drude peak with doping, and mo=|{n;; —n; )|, (2.2
a temperature- and doping-dependent midinfrared p&&k.

This paper is organized as follows. The self-consistenwhich is independent of the site indexThe direction of the
procedure to determine a local self-energy within DMFT ismagnetic moment at each siteis specified in theglobal
introduced in Sec. Il. It consists of the HF potential and thereference framéy two spherical angle€);=(¢;,6;), and,
dynamical part due to spin fluctuations which uses a Coutherefore, the original fermion operator@’:l;rT ,aiTl}, are
lomb interaction renormalized by particle-particle scatteringtransformed to fermions quantized with respecttte local
The formalism to calculate the one-particle and optical exci-quantization axisat each sité?

A. Dynamical mean-field equations

J'aiTo'ajU—i_UEi niTnily (21)

ijo
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. . whereo. = o, *ioy, is given by the individual hybridiza-
Civ_; ap[R(Q) o 2.3 tion elements in the global reference framey
) ) =>,e'* Riy_;. Hamiltonian(2.6) is quadratic irc,,, and the
whereR(Q;) = e~ (#o2g-i(8i2)ay 5 the rotation matrixg; ~ Path of conduction electrons can be integrated out giving rise

. : ; - to an effective action of the impurity electrons which is of
and ¢; are polar and azimuthal angle, respectively, and (}he usual forne

and o, are Pauli spin matrices. This transforms the Hubbar
Hamiltonian(2.1) to the following form: B . 0
Seti= =3, | Ardr Y (16 (7 ) Moo (7)

He= 2 el IR (Q)R()] e Cjor + U Mgy, ,
ij,o0’ ‘ ;
| (2.4 +Uf0 d7 ng(T)Ng (7), (2.8

In the SS states we take the polar angle to be site indepewhere{%w(ﬂg ,} are Grassmann variables for theslec-
dent, ;= 6, and the azimuthal angle is given by the wave, oo TheWeisUs effective fielg® (r—7') is a 2x2 ma-
vector Q of the spiral;¢;=Q-R;. Using the periodicity of tix in Spin Space Qoo’
the R "R matrix in Eq.(2.4), after a Fourier transformation pin space,
one finds that the kinetic energy takes a simpl2matrix

form, @g(iwv)*lziwy—sf—%‘, Vo(K)[iw,—To(k)] 1 VE(k).
(2.9

) R R For a plane spin spiral with= /2, the Weiss effective field
+ %8k+(Q/2)(1— cosf o, +sinfoy), (2.5 becomes a diagonal matrix in spin space:

To(K)=3ex—(qy(1+cosd o,—sind ay)

where g, = — 2t(cosk,+cosk,)—4t’cosk,cosk,—2t"(cos X, ggw,(i W)~ Oyt . (2.10
+cosXk,) is the electron dispersion in a noninteracting _ _
systemin the global reference frame. Here we limit our-Note that this result only depends on the functional form of
selves to plane spirals, and choose /2. Therefore, the Eds.(2.5—(2.7), and not on the parameters, except that it
order parameter rotates in thea,b) plane, (S) holds for a plane spiral. This implies that the local spin fluc-
=(Mo/2)[ cos@R;),siN(@QR;),0]. Double spirals were shown tuations are decoupled from the local charge fluctuations,
to be unstable in the 2BJ model*® and we have no reason and simplifies the present self-consistent calculation for SS
to believe that they might be stabilized by further neighborstates within the DMFT approach, as all local quantities in-
hopping. cluding the self-energy}., are diagonal.

In order to construct the leading local part of the self- In the spirit of the DMFT approach, we approximate the
energy, we use DMFT and consider the impurity modelGreen function using tcal self-energi*®
coupled to the lattice by the effective figltbr more details, . . . .
see Ref. 19 The Anderson model of a magnetic impurity Goltkiiw,)=iw,+ u—To(k) —2F~38(iw,),
coupled to a conduction band with SS order consists of a (211

nondegen(Terate impurity orbital” at site, with the fermion where=—¢ is the chemical potential. The lattic&nite)

operators{f,, ,fo,}, and the conduction electron bath as 4N jimensionality enters via the one-particle enerdf k)
“effective SS conduction band” described by the operators . 1y P gleg g
and gives rise to th& dependence of the spectral function.

{Cl” (Cico'} The lattice one-particle Green functi¢2.11) is described by
a 2X2 matrix GQ(k,iwy) in spin space, where, are fer-
HimngfZ fl foot 2 clg[’rQ(k)]w,ckg, mionic Matsubara f[equencies. The Acorresponding local lat-
7 koo' tice Green functionGo(iw,) =N"12,Go(K,i®,) % 8,5y, is
diagonal in spin space due to the parity of the kinetic energy
+ Z/ [£1 4 [Vo(K) ]y Chor + H.C]+UNG NG, To(k).
koo The self-energy consists of the HF paifi,=U(ng,),
with o= — o, and the spin-fluctuationSP partE%’Z(iwv),

which is determined by the many-body effects. Using the

whereg; is an impurity energy level, anﬁQ(k) is an effec- ) . . B "
tive one-particle energy of the same functional form astaVity methotf for a hypercubic lattice ad =2, we verified

- o o that the dynamical Weiss fieIQOQ'U(iw,,) can be computed
-elz—se(rlfge(?r.g)rﬁlhe hybridization X2 matrix in the local ref- from the Dyson equation of the Anderson impurity model

(2.6) with broken spin symmetry,

(2.6

6 . . 6. 20 A 1. &SFE-

cos; (1+0,) —sinzo. Go(iw,) 1=Ggliw,) '+ (iw,). (212
Equations2.11) and(2.12 are fundamental in the DMFP,

2.7 and can be solved self-consistently, provided an expression

for the self-energy is known.

R 1
Vo(k)= 5 Vk-(Q12)

0 . . 6.
co§(1—az)+sm§a_

1
+ 5 Vk+(QR2)
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B. Thermodynamic potential at finite temperature . — o) . O)r;
The calculations at finite temperatuFeequire the knowl- ¢L=F % In[1=Uxii(to)]+ B @ Xir(io,)
edge of the free energ¥(T,N), being a thermodynamic L
potential for a system dfl,=Nn electrons. It has to be mini- P T (0),; )
mized to find a stable SS state which determines the system * 2’8 v E,L: Xiro)xipliou), (219
properties. The free energy may be found from the grand
canonical potentiak) (T, w), using the standard approach for 1 _
quantum many-body systemB(T,Ng)=Q(T,u)+ uNg.3t ‘/’\\253_12 IN[1-U2x (i) xQw,)]

For a translationally invariant lattice model witbcal self- m

energyone finds the functional form of the grand canonical 1 o o o
potential, + 5,8*1U2§M: X0 )xViw,), (2.20
QT 1) =Qo(T,u) + D[ Gol - " where
A0y i S S/
x% Indef1-G3(k,iw,)3(w,)] ¥ (i0,) =B 68 (10,02, (1w, +iw,)
(2.21

— BN, T 35fiw,)Go(iw,)], (2.1
A 21:‘ [2Qw)Goliw))], (213 is the noninteracting particle-hole susceptibility. Self-

. consistency would require thdISF=<DSF[GQ]; here instead
with 8=1/kgT, and ESF(in) is the self-energy discussed we apply the non-self-consistent procedure introduced by
below. Functional(2.13 is stationary, i.e.8Q=0 ensures Bulut, Scalapino, and Whit&, and approximateIJSF[GQ]
that the minimum of the grand canonical potential has been—><I>SF[g%]. It has been shown that this procedure may be
found, and determines the self-energy from the Luttingerregarded to be a reasonable approximation as the thermody-
Ward functional, namic potential(2.13 is stationary and one expects not to

move too far away from its minimum.

SFrA 1 —
Eaa[GQ]_ N 5GQ o : (2.14 C. Self-energy with local spin fluctuation

) ) ) It is known to be notoriously difficult to obtain an analytic
Our perturbative expansion is constructed around theynression for the self-energy, and so far an ansatz within the
symmetry-broken HF state, hence the grand canonical poteftarative perturbation schemédPS) based on SOPT has
tial of the “noninteracting” reference system includes a COr-mostly been uset? The ansatz introduces an approximate

rection term to avoid double counting, and reads form of self-energy which starts from the SOPT and allows
one to reproduce the exact results in certain limits. Although
R ; it 22
Qo(T, ) =81 Indef&Y(k,iw,)]—UN(ny;)(n, ). thls_ approach reprodupes the correct lathémit, << it over-
ol T) =5 % (G )] (No1)(Moy) estimates the correlation effects in the nonmagnetic states,

(2.15 and thus becomes uncontrollable in the intermedihtee-
. ) . gime. Therefore, it cannot be applied to investigate the phase
The spectrum which define€lo(T,u) is given by the  giapility and dynamics in the magnetic states of the Hubbard
Green's function in the HF approximation, model. We have verified that the AF LRO disappears in the
o g R o HE 2D Hubbard modelt( =t"=0) at half-filling for U=5t for
Gokjiw,) "=iw,+u—To(k)—2g5 . (216 t'=t"=0, if the formula introduced by Kajueter and
Kotliar?? is used(see Sec. IV A
The Luttinger-Ward functiona®>TGq] in Eq. (2.13 is The SF part of the self-energ¥,3(iw,) follows from
defined via the diagrammatic expansionXf in terms of  the Kadanoff-Baym potential2.13 containing a class of
the full Green’s functiorGq, . The self-energy of the infinite- diagrams up to infinite order:
dimensional Hubbard model is a local dynamical quantity,

and involves only the local component of the Green'’s func- u?

tion (2.11). This implies thatbSTG]=N® I [G],** mean- Sin)=—2> Xégq(iwﬂ)gg;(iwy—iwﬂ)

ing that the functionadP S G] can be approximated by some "

infinite subset of the one-particle irreducible closed Feynman 02

diagrams of the Anderson impurity mod@.6). We take for +—> Xoo.oli w#)ggg(i w,~iw,).

®STG] we take the sum of all particle-hole diagrafisind B

the effective particle-hole interactidn,3*3° (2.22
DSF=N(dp+ ¢, + b)), 2.17 Here we approximate®[G] by 3[G°] and avoid self-

consistency. The transverse part in E2122 resembles the
1 self-energy derived by the coupling of the moving hole to
P ) (0)¢i (0)¢; transverse spin fluctuations, as derived using the spin-wave
) lw lw,), 2.1
¢z 2'8 % Xireuxiiio,) 213 theory®” However, the longitudinal part is not included in
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the latter approach, and we find that it cannot be neglected iGreen’s function for strongly correlated systems has not yet
the relevant regime of parameters for high temperature siproven feasible. However, some aspects of the problem can
perconductors. be discussed in terms of the one-electron spectrum, provided
The self-energy in a magnetic system is calculated usinghat “final-state” or “particle-hole” interactions can be ne-
the Weiss effective fiel@2.12 in the symmetry-broken mag- glected. Under this assumption the problem simplifies, and

netic state. The transverse, the PES spectrum may be determined using the one-particle
Green function alone. Such an approach which neglects
_ _ [XfT—O;(i a)M)]2 final-state and particle-hole interactions has been applied
Xooll®,) =U———G——, (2.23  with success to interpréthe dispersion found in the ARPES
1=Uxoo(iw,) data of the copper oxidé&:**
and longitudinal, Here we shall derive the relation of the PES spectra to the
one-electron spectral function within the “sudden” approxi-
xf,‘i)(i ®,) mation, where final-state interactions are negle¢tetb be
Xoollw,)=——= : - , (2.29 specific, let us consider a transition from a statg with
U le)x i, energyE, i . in whi
gyE, into a state of the fornd,|m), in which we treat

susceptibilities in Eq(2.22 are found in the random-phase th? ph?r:o?eﬁtron in ;ta(jtkI{)taS d)tl'namicfatlhl dGICOlthled,_ bltl;[]
approximation with renormalized interactidd. Here the &N e Tull many-body interactions ot the electrons in the
noninteracting susceptibilitie§(° (iw,) are calculated from .bUIk d_escnbed by the Hu_bbard mode_l Hamll_tonlan. The PES

. o oo i intensity for the magnetic system with an incommensurate
the dynamical Weiss field Green functi¢®.12). 4 . - e

We would like to emphasize that the renormalized imer_magnetlc el nontrlylal within the DMFT approac_h, as

R o . one cannot use a Bogoliubov transformation to establish the
actionU is not a fitting pe_xrame_té’ﬁ but results from static  g|ation between the measured electrons and their local states
screening by particle-particle diagrams, which lead§® i the SS state. The outgoing photoelectron is observed in the
— global reference systemvhereas the quantum states of the

U=U/[1+Ux"P(0)], (229 pulk [n) have to be considered within tHecal reference
where the particle-particle vertex is again determined by théysterfor the spin degrees of freedom. For clarity we write
Weiss field, in the following the operators for the scattered states in capi-

tal letters, and the operators for the electronic states of the
solid described by the present model Hamiltonian in lower-
XPP0)=8"12 G(i0,)G2 (—iw,). (226  case letters.
K At finite temperaturel we consider the probability den-
This screening effect gives the magnetic structure fattor sity of the absorption of a photon with frequenayin a
and the self-enerdy calculated from Eq(2.22 in good grand canonical ensemble, and obtain
agreement with the QMC results, and depends on the under-
lying mggnetig orde[. It is largest in the paramagngtic states W(k,w)zz—lz e P12 128( 4+ K= Kpy— o),
and vanishes in the Néstate an=1 for U—, and is thus mn
very important when the magnetic phase diagrams are (3.9
considered® The proposed self-energ@.22 expresses the
spin-fluctuation exchange interactimwith an effective po-
tential due to particle-particle scatteriffy.

Equationg2.11), (2.12, and(2.22 represent solutions for
the one-particle Green function within DMFT. They have  !mn=(M|Aw, > AL TAQ(P.D )]0 Cpr - (0i2).0 ).
been solved self-consistently, and an energetically stable spi- pp',
ral configuration was found. This procedure is further justi- 77 (3.2
fied by the sum ruf€

with K,=E,— uN, and the partition functioZ =3 ,e~ #n,
The amplitude of the transition,

is determined by the optical matrix element

1 I
— 2 3.(iw,)G,(iw,)e® =U(nyng,), (2.2 ~ 1 0 . . 0.
28 % (l0,)G,(iw,) (Noingy), (2.27) Aolp.p ):EA""" co%(l—az)+sm§a,

which is well fulfiled in the present approach with

— 1 0 . . 0.
U(noiNg,)=U{ng;}{no,).** We also show below(Sec. + 585, —q| €085 (1+ ) —sinzo,
IV A) that the local self-energy2.22) leads to an overall

satisfactory agreement with QMC and ED data. 3.3

and can be calculated using the Bloch wave functions in the

lIl. EXCITATION SPECTRA global reference system

A. Photoemission at finite temperature

A complete theory of photoemissidRES would require Ao =32 (PooleKlihy ), (3.9
an analysis not only of the one-particle Green'’s function but 7
also of the three-particle Green'’s functions. We would like towhere € is the polarization vector. The operatkr= —iV
point out that quantitative calculations of the three-particleconserves total momentum in the scattering plane, so that
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'+k » whereK is a 2D lattice vector, ang is the Finally, we also calculate the total densities of states in the

Appr*p p ; :
AF and SS states using the derived spectral functiGri3,

photoelectron momentum component in the 2D plane.
For solids the outgoing wave solution is the “time-
inverted low-energy electron diffractiofLEED) state.”
The LEED state consists of an incoming plane wave, re-
flected plane waves, and a combination of Bloch waves in-
side the solid which fulfill the matching boundary conditions.
In lowest order we have onglamped Bloch wave traveling
away from the surface. In the time-inverte@bmplex conju- We derived the complex optical conductivitsy,(w) for
gated state the Bloch wave travels toward the surface, andhe spiral magnetic order following the formalism introduced
goes over in a plane wave outside. The LEED scatterely Shastry and Sutherlafand by Scalapino, White, and
waves become incoming waves on time inversion, and giv&hang?® Their derivation has to be generalized to the case of
no contribution to the photocurrent. The photoelectron isextended hopping. Moreover, as the symmetry is locally bro-
usually detected at energies which are much higher than thieen in a magnetic system with local quantization axes, the
typical energy regime described by the Hubbard model, andalculation of the optical conductivity is not straightforward.
therefore the Bloch waves occupy high-energy quantunThe Hubbard Hamiltoniar§2.4) within the local reference

1
N(w):NEK: AK, ). (3.11)

B. Optical conductivity

states which are initially unoccupied, system for the spin quantization axis and first-, second-, and
third-nearest-neighbor hopping elemertts=t, t’, andt”,
Ay,/n)=0. (3.5  respectively, has an electron kinetic energy

Hence for the plane SS staté@= =/2) we obtain
K== 2 " ti{cl IR Q)R]0 Cio

H !
il,oo

1
Wk, w)=—= >, |Ak k>N ex— o) :
T oo’ +¢| [RT(Q)RQ) ] 6Ci}s (3.12

XIMG,, (K—Ql2,6,— w), 3.6 S . . .
oot (K= QI22— @) 3.6 whereX indicates a restricted sum, witR=R;+||i —1//,x

whereng(w) is the Fermi function, and the following iden- +|i—I[yy around a given lattice sit¢, and x=(1,0), y
tity, valid only for plane spirals §=#/2), has been used =(0,1) are unit lattice vectors. We introduce a directed
(\,=1,-1foro=1,]); “bond metric” [|i —1,, Which is a distance between two
sites, i and I, on the lattice and counts the number of
E B _z x(y)-oriented bonds that connect sitewith site |, respec-
: Coor(k=QI20)= : AN/ Goor(K+QI20). tively, e.g.,[i —I[x=2 and||i —1||,=0 if the electron hops to
77 77 (3.7 @& third-nearest-neighbor with amplitud¢’ along an
x-oriented link. HereR(€);) is the unitary matrix which
Within the “sudden” approximation the measured PEStransforms the original fermionfﬁaiﬂ ,aiTl} into the fermions
spectra near the Fermi energy can therefore be related to tlygiantized with respect to local quantization axes at each site,
one-electron spectral functidiiq. (3.6)] of the system with {cfT ,c;‘l}, introduced in Eq.2.3). In what follows we are
local spin-quantization axes, defined by interested in the current response to a vector potential along
the x direction of the 2D square lattic&,(1,t). In the pres-

__ T t ence of a vector potential, the hopping term is modified by
MG, (k,w)= Zne(w) %:q (nley,|m) the Peierls phase factdt,either exg+ieA(lt)i—I|l} or
o exp{—ieA(l,)[i—I|}, for t; ort;, respectively. Expanding
X(mlc, nye  Pns(w—Ky+Kp) these phase factors in the usual manner up to second order
3.9 ~AZ? one finds
Therefore, the total one-particle excitation spectra is de- o e
scribed by the spectral function Ka= K—Z e (i =DAD+ ki —DHA()?].
I
1 Q (3.13
Ak,w)=—=2 IMGg | k= =, 0+i€|, (3.9 b _
T o ' 2 Herej, (i—1) is thex component of the paramagnetic cur-

t it
whereGq ,, (k—Q/2,w+i€) is given by Eq.(2.11), and a rent density,

numerical broadening>0. The electron occupation number
(ny) normalized per one spin, equal to the one-electron re-  jP(i—1)=i>, [li —I|ti{c) [R T (Q)RQ) 0 Clor
moval sum, can be obtained without analytic continuation of oo’

the Matsubara Green’s functi@®.11) by performing a direct

_of t . )
summation over the Matsubara frequencies, €1, [RI(QIRQL) T oCiot (3.19

1 Q and k,(i—1) is the kinetic-energy contribution due to the
(Y=~ 2 eiwy()*GQ W,( K— —,iw,,). (3.10 x—oriented links, weighted by the metric factor connecting
2p ‘ 2 sitei with sitel,

’
V,00
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(i =)= =3 i =13t {cl, LR (ORI Ly Cio 2| “do ofy(w)= (k) (3.22

+Crol[R*(Ql)R(Qi)]U,UCiU}_ (3.15 is always fulfilled within the numerical accuracy, in contrast
to the approaches which cannot be derived in a diagrammatic

After performing a Fourier transformation one finds theWay. Equation(3.29 is also used to define the plasma-

average contribution of kinetic energ$.15 per one site,  frequencyw,,
1 ~ 2:8fwd ’ ) 3.2
(ko=g 2 (cholixoW]loeCir), (316 ©p=8 |, doma(w) 323
k,oo'

For the discussion of the complex conductivity function, it is

with the coupling between the transformed elements at Mogqnyenient to introduce the following parametrization by the
mentak —Q/2 andk+ Q/2 due to the magnetic order, scattering rate, 7(w)"!, and the effective mass

m* (w)/me (M, is the electron magys®
(1+ &, cos6— o, sin )

- 1
tX,Q(k)zisx(k—g

_ 9 1 a0
Q. . ) a’xx(cu)—ﬂ - T (o) (3.29
+§sx k+ 5)(1—0'ZCOS¢9+0'XSin0), 7 H(0)~iw Me
(3.17 From the real part of the optical conductiv(tig. (3.18],
we find, in the limitw—0, the static conductivity
ande, (k) = — 2t cosk,—4t’cosk,cosk,—8t"cos X;.
As usual, the optical conductivity in long-wavelength ) ) , 1
limit g—0, o)=L (w)+icl(w), is determined by Ty @=0)=e"mD+elim—Im A, (q=0w),
the current response to a vector potential along xhe =0 (3.25
direction®® and one finds using the Kubo linear-response ’
theory with the Drude weightD which may be obtained from the
zero-temperature extrapolation of the current-current correla-
L(—k) = A(G=0,0+i0") tion function in the upper complex plafig,
o(w)=—¢€ . : , (3.18
o i(w+i0") D=lim[{—k,)—ReA,(q=0,27iT)]. (3.2
T—0

where A,,(q,iw,) is the current-current correlation func-

tion, The optical conductivity allows us to determine the in-plane

static resistivity

Axx(q’iw“):%foﬁdTeiw“T“x(q’T)jx(_qao»- Pxx(T)z"'),(x(“’:OaT)ﬂ: (3.27)

(3.19  Wwhere the static conductivity,,(w=0,T) ! is obtained as
in Eq. (3.25. We present the results obtained for the optical
The latter correlation function is given exactly by the conductivity and static resistivity in Sec. V, and show that
particle-hole bubble diagrafi;” where, forq—0, the magnetic order in the doped compounds has directly
measurable consequences for these quantities.

L t s
= o K)loo'Cko » 3.2
Ix k% kol x.Q(K) oo G (3:20 IV. ONE-PARTICLE SPECTRA
and for the present SS state, A. Quasiparticles at half-filling
1 0 The ground state of the Hubbard model with nearest-
2 T R4 P e N w neighbor hopping t(( =t"=0) on a square lattice is an AF
= +
Ixq(k) ij(k 2)(1 72080 0 Sin6) insulator. The insulating behavior and the gap develop
o gradually at half-filling with increasing) starting fromU
+2jd k+~=|(1—0o,cos6+a, sinb), =0 due_to the perfect nesting instability, leading to a Slat_er
2 2 gap. This gap changes into a Mott-Hubbard gap under in-

(3.21) creasingd, and the system approaches the limit of a Heisen-
berg antiferromagnét. This regime of largeJ was found to
with j, (k) = 2t sink+4t'sink,cosk, +4t"sin ;. The advan-  be difficult for a quantitative description within DMFT
tage of using DMFT with the local self-energy is that the approache$’ as an accurate determination of the energy
vertex corrections to the current-current correlation functiongains due to AF long-range order is there of crucial impor-
(3.19 disappear, and the optical conductivity can be calcutance. Therefore, the attempts to describe the AF order based
lated without further approximatiorts. on the SOPT within the IPS failed and the magnetic order
We have verified for large variety of doping levels and disappeared at largés.?? In contrast, the QMC calculation
temperatures that the optical sum rule in thed—o limit gave a stable AF state for largé> 4t.2948
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FIG. 2. One-particle excitation spectra as obtained in the AF
state ath=1 and T=0.0% for the Hubbard model withU
=8t (t'=t"=0).

<2.5. The discrepancy between SOPT and DMFT results
increases with increasing, with the gap and the magneti-
un zationm being too small, and finally the AF order disappears
and the gap closes &l=7t. This shows the very limited
—1: (a) magnetizatiorm (4.1), and(b) the AF gapA/U in the 2D applicabilit%/ of_ approaches using the self—energy ba_sed on
Hubbard model, as obtained using the HF approximatiom-=a0 the SOPT2 which a_re known to und_erestlmate the region of
(dashed lingsand the DMFT approach dt=0.0% (full lines). The stability of mggnetlc states and falil .at large dug to the
data points in(a) are QMC results reproduced from Ref. 51. The Uncontrolled increase of the correlation energy in nonmag-

diamonds show the results of the IPS with the self-energy calcuDeliC states. ' .
lated in SOPT. The spectral functions found within the DMKEQ. (3.9)]

are dominated by the lower Hubbard bahdiB), i.e., PES

Here we treat the range of large=W (W=8t) asatest Part ato<pu, and the upper Hubbard baitdHB), i.e., in-
case for our analytic method. The calculations were perVerse photoemissiollPES part atw>u, separated by a
formed at a low temperatuf®=0.0% which allows one to large gap(Fig. 2). Both the PES and IPES spectrum show
describe the magnetic excitatiorB€J=4t%/U). They gave two distinct energy regimesi) narrow QP peaks at low
an AF ground state at= 1, which reproduces correctly the €nergies, i.e., at the edge of the Mott-Hubbard gap; @nd
localization of electrons in the limit 0 — . The magneti- incoherent and more extended features at higher energies
zation m, (2.2) is only slightly reduced by the dynamical |@|>5t. The overall shape of the density of statdéw)

H 2
effects with respect to its HF value, and approaches the HRgrees very well with the ED data for a4 cluster2 The
limit at U—c. The ground state is the WEAF state, as SPectra have a characteriskcdependence with the overall

found in the d— limit.*® Thus, we reduced the self- Weight moving from the PES to IPES part along he-M
consistently obtained values of the mean-field magnetizatiognd I'-M directions, wherel’=(0,0), X=(w,0) and M
m, (2.2 by a factor 0.606 in order to simulate the known = (7, 7), in qualitative agreement with QMC data.The

reduction ofm, by intersite quantum fluctuations in a 2D SPectra obey the particle-hole symmetry of the model, with
lattice >° spectra symmetric with respect =0 at theX and S

= (m/2,7/2) points. The spectrum at th@ point is a mirror
m=0.606m,. (4.1 image of the one at thE point.
The QP maxima near the Mott-Hubbard gap resemble
After this reduction the calculated valuesmafapproach the those found in thet-J model in ED or within the self-
value of 0.606 in the limitJ—o [Fig. 1(a)]. One finds also consistent Born approximatiotin spite of using a local self-
a very good agreement with the QMC ddtat U/t=2 and  energy in the present scheme. This shows that the local
4, and a reasonable agreementat=8. many-body problem solved within DMFT suffices to capture
In contrast, the AF gap is significantly reduced from its the low-energy scale relevant for the QP propagation. More-
HF value[Fig. 1(b)]. This reduction follows from a drastic over, unlike in thet-J, model, which results in the ladder
change of the one-particle spectra by dynamical effectsspectrum for a single hof¢;>® the QP’scan propagateas
which lead to QP states at the edge of the Mott-Hubbard gafhey couple to the spin flips of the mean-field bath around
which are accompanied by a large incoherent part at highesite i=0 at which the many-body problem is being solved.
energies. Also the reduction of the gap found in BRef.  The QP dispersion is-2J [Fig. 3@)], with the maxima
52), comes out correctly, as shown in Ref. 24. For examplealong the AF Brillouin zonéBZ), and remains very close to
we found a gap of 4.93at U/t=8, while the corresponding that found in thet-J model®
gap in the HF calculation is 7.14This gap reduction can In the HF approximation, the electron occupation factors
also be captured by the leading dynamical correlations deqn,) are larger for the states which belong to the AF BZ than
scribed within the SOPT, but only in the regime bf  for the remaining states outside the AF zone. On comparing

FIG. 1. Antiferromagnetic state for the Hubbard modelnat



5232 FLECK, LICHTENSTEIN, OLES AND HEDIN PRB 60

-4.5
o 55+t 1
e =
R =
= E
W 65 | 1 w
(a)
-7.5
1.0
1.0 T T T
~
Ef 08 + a(n/2,1t/2)+0.2 a A A
- A N
g 0.6 - A A a b
© ~ U A
'%:; A « 2 °
04 A ® 0
A s °
02t e 8 <a(k)>BZ
r M X r ?
0.0 1 1 1
FIG. 3. Momentum dependence in the main directions of the 2D 0.1 0.3 3/? 0.7 0.9

BZ, as obtained for the PES spectrum of the Hubbard model at
half-filling with t'=t"=0, U=8t, andT=_0.05: (& QP dis_persion FIG. 4. Quasiparticles in the AF staterat 1: the minimum of
[E(k)—.,u]/.]; (b) tota} electron occupatiofn,) (dashed lingand QP bandE,;,/t (upper pait, and the QP weigha(k) at k
QP weighta(k) (full line). =(w/2,7/2) and averaged over the Blbwer par} as functions of

J/t. Filled and empty symbols stand fafk) found in the present
the weights of the electronic states with momektand k DMFT approach and in the SCBA of Ref. 55. The inset in the upper
+Q, one finds that also in the DMFT the electron weightspart showsE;,/t for 0<J/t<10; the value ofl/t at which the AF
are much larger within than outside of the AF Bzig. 3(b)].  order vanishes is indicated by an arrow.
The overall PES weight is smoothly distributed in the 2D
BZ, with the maximum(minimum) at theI" (M) point, re-  in the Hubbard model at larger values Iit, where the ex-
spectively. This result agrees well with a QMC simulations,citations to the UHB become important. An equally good
and the present data show the same steplike behavior of ti&greement between the self-consistent Born approximation
electron occupation factgin,) when crossing theX point ~ and ED data and the present DMFT approach is found at
along thel’-X-M direction as the QMC data &1 =4t and individual k points; the values o&(/2,7/2) are shown in
8t.53:56 Fig. 4, while a very good agreement with ED data at ¥he

A similar steplike behavior is also found in the QP weight point was presented earlier in Ref. 24.
a, along the same line, determined by integrating the spec- The energy at the minimum of the polaron band found at
tral functions(3.9) in an energy window of 2 which ex-  the S point follows the power-law behavior found by Mar-
hausts the range of the QP band in the density of stateinez and Horsctt in the range ofl/t<0.4 (Fig. 4),
N(w). Thek dependence of the QP weight is more complex
than that of(n,) as two competing effects contribute along Emin(Ks) _ J) o0z
the'-M andT'-X directions when the Mott-Hubbard gap is - 3:20v2.94 ¢
approached{i) the QP pole moves to lower energies and
thus the weight increase&i) the overall PES weight is larg- This power law supports the string picture, but is again
est at thel" point, and gradually decreases coming closer tccloser to the full single-hole problem in the) model, where
the AF BZ. Therefore, the maxima in the QP weight arethe data obtained from finite cluster diagonalization could be
found close tok=(w/2,0) and between thd and S fitted to the relatiorE,,,/t=—3.17+2.93Q/t)% " (see Ref.
=(m/2,7w/2) points, while the(identica) weights at theX  58) than to thet-J, model, which gives insteadE,,/t
andSpoints are lower. The lowest QP weight is found at the= — 2/3+2.74(J,/t)? (see Ref. 59 It is also quite close to
M point, but here instead a distinct QP exists in the IPEShe exact solution of thet-J model in the infinite-
part, in agreement with ED resuRs. dimensional lattice, given byE,/t=—4+2.34Q/t)%3,
The QP weightsa(k) increase with increasing/t and  which interpolates to the Nagaoka stéte.

agree surprisingly well with the self-consistent Born approxi- Finally, we comment on the modifications of the spectra
mation and ED data for theJ model in the regime o9/t introduced by the changes in the parametdrsand t;; .
<0.7, as shown in Fig. 4. The average weight first increaseRealistic parameters for La,Sr,CuO, and YBgCu;Og ., «
somewhat faster than the numerical results of Ref. 55, buwvere estimated using both the cell method in the multiband
then flattens out abow#t=0.6, and saturates indicating that charge-transfer modéland the down-folding procedure in
thet-J model does not represent faithfully the hole dynamicsthe electronic structure calculatioh$lere we use the latter

4.2
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TABLE |. Values of the model parameters used for the pre- TABLE Il. Values of magnetizatiom, (2.2) and the renormal-
sented calculations; the parameter sets chosen for,5aCu0,  jzed interactionU (2.25, as obtained for the Hubbard model (
and YBaCu;Og.. follow from the down-folding procedure of Ref.  =t"=0) atT=0.0%, §=1—n, for different magnetic states: anti-
7. ferromagnetidAF), spin spira[SS1,1) and S$1,0)], and paramag-
netic (PM) states.

Model parameters  t'/t t"/t U/t Jit

Hubbard model 00 00 80  0.50 Groundstate 5 Ut m UMl
La, ,Sr,CuO, —-0.11 0.04 10.0 0.40 AE 0.0 8 0.871 0.899
YBa,CusOs.. —-0.28 018 120 0.33 AF 0.125 8 0.689  0.755
S91,) 0.125 8 0.675 0.735
. . . SS1,0 0.125 8 0.657 0.733
parameters as given in Table I, but the sets do not differ SL.0
P - . AF 0.250 8 0.390 0.491
significantly. By increasing the value bf, one comes closer
. . S91,) 0.250 8 0.571 0.614
to the limit of the Heisenberg model, and therefore the mo-
. . . I S91,0 0.250 8 0.525 0.589
mentum densityn,) is more uniformly distributed over the oM 0.125 8 0.0 0.327
BZ [Fig. 5(b)]. This quantity depends mainly on the ratio of : ' :
PM 0.125 4 0.0 0.494

U/t, and thus a similar result is obtained at the same value of
U with t" andt” nonzero.

In contrast, the earlier studles, of the’-t"-J model have directions[Fig. 3(b)], respectively, is now removed. As be-
shown that the dispersion of QP’s at low energy are strongl)fore' the lowest QP weight is found at thé point, and a
dependent on the values of the extended hopping parametefgyin + op exists in the IPES part. Unlike t=t"=0, the
" and t". Th's_ strong dependence is also f°””‘?' In the]atter IPES spectrum is different from the PES spectrum at
present calculat!ons based on the DMFT approach; the QP eI’ point since there is no particle-hole symmetry at finite
at theSandX points are not degenerate any more as soon
t’#0. Here we present only the representative result for
larger values oft’'=-0.28 and t"=0.1& found in S
Sr,CuGQ,Cl,, with minima located close to th¥ point [Fig. B. Spectral properties in spin-spiral states
5(a)]. Although the QP weight is dominated by the same As suggested by earlier studi¥s!’ hole doping away
competition between the overall PES weidm,) and the from half-filling leads to incommensurate magnetic order.
position of the QP maximum with respect to the Fermi level,we found the same sequence of spiral phases with increasing
the consequences of sizalife= —0.2& are clearly visible:  doping as in the HF and slave-boson calculatifW$the AF
the QP weight at th&X point is reduced, and the degeneracyorder changes first into the SS wiQ=[7(1+27%),7(1
of the QP energies found before along theM and X-I' +27)] along the(1,1) direction[the S$1,1) statd, and then

at higher doping into the SS witQ=[7(1*+2%),w] along

-10.5 the (1,0) direction[the S$1,0) state, or an equivalent 8§1)
statd. SS states with the components of the characteristic
Q-vector shifted by+ 2% are physically equivalent and have
% -115 17 il the same energy. At fixed dopirione finds, however, these
. phase transitions at larger values Wfin the present ap-
j‘j 125 | 1 1 ] proach which includes local correlation effects, than in the
= " effective single-particle theori¢§!® This change of the
(a) phase diagram foIIows_ from the correlation effects which
-13.5 screen the value df to U (2.25), and strongly depend on the
10 magnetic order(Table 1. The highest value of effective
U/U is obtained in the AF state at half-filling, where the
0.8 BN 10 ] double occupancy is strongly reduced and the screening is
~ sl \ e | thus ineffective. The screening is stronger in the doped cases,
£ \ A 4] indicating that the moving electrons correlate and avoid each
£ o4\ AR 1 other, leading to much weaker effective repulsion, and is
@ s \ / particularly pronounced in paramagnetic states. We found
“r g 1 T ] here a surprisingly good agreement for the effective interac-
0.0 /\/\/\ /\ tion U=1.98 found atU=4t with the fitted value ofU
=2t in the QMC calculations®
r Mo X X S Y Two regions of phase separation which follow from the

4
FIG. 5. Momentum dependence in the main directions of the 2DMaxwell constructioff* were found for the Hubbard model at

BZ, as obtained for the PES spectrum of the Hubbard model aY/t=8 (t'=t"=0): a crossover regime from the AF to
half-filing with extended hopping parametets=—0.2g, t* S91,1 state for 0<6<0.11, and from the S8,1) to
=0.18, U=12, and T=0.08: (a) QP dispersior E(k) — x]/J; SH1,0) state for 0.22:5<0.25, respectivelyFig. 6). The

(b) total electron occupatiofn,) (dashed linpand QP weighta(k)  value of the chemical potential is U/2 at half-filling, and
(full line). drops abruptly at infinitesimal doping when it enters the
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FIG. 6. Chemical potential/t as a function of doping’, as
obtained aff=0.0% for three sets of parameters given in Table I
the Hubbard model witk) = 8t (full line) and the model parameters
of La, ,Sr,CuQ, (dotted ling and YBgCu;Oq., (long-dashed
line). The regions of phase separation obtained from the Maxwell
construction are indicated by dashed lines. The inset shows the free
energyF/t per site.
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LHB in a doped system. The doping dependence of the free FIG. 7. Spectral function#\(k,») in the main BZ directions
energy indicates a phase separation at low doping; this rd--X, M-X, andI'-M in the S§1,1) state at5=0.125 andJ =8t for
gion becomes gradually narrower with increasibg in ~ T=0.0% (top) and T=0.% (bottom. The spectra along thE-M
agreement with other calculatioff¥! In contrast, the tran- direction have been averaged over tiel) and (1,1) spirals, de-
sition to the S8&1,0) state moves to larger doping with in- fined byQ=m(1—2%)(1,1) andQ=m(1+27)(1,1), respectively.
creasingU, and finally disappears. Already at the model pa-A shadow band beloy in the M-X direction atT=0.0% is indi-
rameters of doped L&uUO, we found no region of stable cated by arrows.
SH1,0) state. It is worth noting, however, that in this case a
small region of almost flat chemical potentjalwas found the case of lower doping=0.125 (underdoped caeOne
for 6=1/8 which could be considered as a precursor effecfinds that most of the spectral weight at tkeoint is still at
for the phase separation. It might lead to a different magnetio<u, with a sharp QP peak ab=—0.44. Increasingk
state at still lower temperaturé$®’ as the stripe structures along the X-M direction gives a transfer of the overall
observed in the neutron experimefits. weight to higher energies, and the QP peak belogradu-
Thek-resolved spectral function(&igs. 7 and 8allow us
to identify the generic features of the doped antiferromagnets

— I I
described by the Hubbard model, in the regime of lage N | I n=0.75 '
First of all, the spectra are still dominated by the lakfett- < ! !
Hubbard gapwhich separates the LHB from the UHB. The ! |
Mott-Hubbard gap develops from the respective gap at half- > x =

filling and is considerably reduced frotd by the QP sub-
bands which occur next to the large gap both in the LHB and
in the UHB. This large gap is accompanied by a smaller
pseudogap- 2t between the occupiedPES and unoccupied o
(IPES part of the LHB at low temperaturé=0.05 (taking
t=0.4 eV it corresponds te-200 K). This pseudogap re-
sults from the SS order, and separates the majority and mi-
nority spin stategwith respect to the local coordinates at

each sitg¢ It is best visible along thé'-X and X-M direc-

tions at §=0.125, and becomes somewhat wider and less < s !
|
|

=
|
fi

ALk, o)

X

distinct in the S&L,0) spiral at higher doping=0.25. We
emphasize that the two features below and above the chemi- I

|
cal potentialu originate from the same QP peak at half- | :
L

— X = ,
-5 0 5 10 -5 0 5 10 -5 0 5 10
(-t (o)t (o)t

filling. This shows that the QP found in the spectral function
of one hole in thet-J (or Hubbard model cannot describe
the regime with finite doping as thdgid band picture
breaks down

The pseudogap is visible along theX direction starting FIG. 8. Spectral functionfA(k,») as in Fig. 7, but fors
from k= (7/2,0), and the maximum above the chemical po-=0.25 and1,0) spiral atT=0.0%. The conventions are the same as
tential « grows gradually toward th¥ point. Consider first in Fig. 7.
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ally loses intensity, while the peak abovye takes over
aroundk= (7, 7/3). However, the feature ab<<u is still

well visible as a “shadow” QP bandFig. 7), with a width

~2J. Thus the QP band of thteJ model is drastically modi-

fied at finite doping, and an energy scaldl.5 due to the
pseudogap accompanies the dispersive QP feature below the
chemical potential.

A similar situation is found also at higher doping x
=0.25 (overdoped regime and the pseudogap is quite pro-
nounced along th&-X and X-M directions(Fig. 8). How-
ever, except for the neighborhood of thigoint, more spec-
tral weight is found at high energies. Already at oint
one finds that the peak at=t has a higher intensity than the
one belowg. It becomes gradually weaker when tkepoint
is approached, and disperses in the energy rangé, while
me ;e:""g“;‘;gelo"w f/t\'/” hast at;"?'t'ﬁr d'Spe;S'OWZ.J asin  _ - 712) [with the step of (0z/6)], in SS1,1) state as obtained

€ : case. e. note that the pselu oggp |ncreases Fgr the model parameters of doped,LaSr,CuQ, (Table |) at dop-
~2.5. Moreover, one finds that the QP dispersion is broadef,g 5 0.125(left) and 5=0.25 right), and after averaging over all
at 6=0.25, indicating the gradual weakening of the localequivalent SS states with different values@fThe dispersive fea-
magnetic order with increasing doping. ture with the strongest intensity is indicated by vertical lines.

The spectra are drastically changed, in particular in the
low-energy range ofw— u|<2t when the temperature is the intensity at theX point does not cross the Fermi level
increased. AT=0.3t the SS order is unstable against the AFeven at§=0.25 for both parameter sets. In fact, takidg
order which we interpret as a crossover to the small regions-0.125 meV ¢/J=3), the QP state at th¢ point is found
of the short-range order with the preferably AF ordering ofat w=—0.56 eV, and does not change significantly as a
nearest-neighbor spins. The spectra found for dopéhg function of doping(Fig. 10. In contrast, in the ARPES ex-
=0.125 atT=0.5 consist of broad maxima which corre- periments for BjSr,CaCy the QP state aX point is found
spond to the LHB and UHB, respectively, and only a singleat energy=—0.20 eV (=—0.056 eV) in the underdoped
maximum is found inA(k,w) next to theX point. These (optimally doped compound?® This indicates that either an
data, and also the spectral functions for-0.33 reported  improved solution of the many-body problem is still re-
earlier?* agree remarkably well with the results of QMC quired, or the actual magnetic order in these compounds
calculation€? The spectra ab=0.25 andT=0.5 are quite might be different from SS states. However, the observed
similar to those at lower doping=0.125, with more weight increase of the onset of incommensurability with increasing
in the IPES part of the LHB. U andt’ is consistent with the observations made by Igarashi

We do not intend to present a detailed analysis of theand Fuldé’ and with QMC calculations of Duffy and
spectra obtained using the extended hopping parametekgoreo®
which correspond to the electronic structure of
La, ,Sr,CuO, and YBaCu;Og. «, respectively. Instead, we
point out the important similarities and differences to the
Hubbard model as far as the SS states are concerned. Con-We already pointed offta very good agreement between
sider first the effective parameters of,LaSr,CuQ,. First of ~ the calculated density of stat€3.11) and the results of ED
all, a narrow QP band is also found below the Fermi energy
(Fig. 9, but the measured dispersion between khand X
points is~0.8a (~2.5&) at §=0.125 (5=0.25), while it
amounts only to~0.3& at 6=0. Note that the energies of
the QP peak are much closer to each other for the present
parameters than in the Hubbard model witkt” =0, where
one finds instead the dispersion of 1.3(3.58) at &
=0.125 (6=0.25) atU=8t, while it amounts to 11lin the
undoped case. This gradual widening of the QP dispersion
with increasing doping may be understood as a consequence
of the admixture of ferromagnetic components with increas-
ing doping in the S&,1) states. The same trend is also ob-
served for the parameters of YEau;Og ., Where one finds ~
the QP states in the PES part separated H§.3%

(~1.94) between thd” andX points at6=0.10(0.25 (Fig.
10), while this splitting is only~0.07 at half-filling. FIG. 10. The same as in Fig. 9, but for the model parameters of

Finally, the finite hopping elements to the second andjoped Y(Bi) superconductor§Table ) at dopingsé=0.10 (left)
third neighbors also stabilize the @Sl) state with respectto and §=0.25 (right), and after averaging over all equivalent SS
the S$%1,0) state at higher dopinsee Fig. 6 and therefore states with different values @.
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FIG. 9. Spectral function&(k,w) along the two main directions
in a 2D BZ: I'-X [with the step of /3,0)] and X-Z, whereZ
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FIG. 11. Total densities of stateN(w) as obtained within FIG. 12. Total densities of stateN(w) as obtained within
DMFT (full lines) for §=0 (AF state, 0.125[(1,1) spirall, and 0.25 DMFT at U =8t by calculating the self-energy either using an ana-
[(1,0 spiral] with U/t=8 and T=0.0%. The dashed lines show Iytic formula (2.22) (solid lineg, or by DMFT-QMC method
N(w) for the magnetic ground states found in the HF approxima-(dashed lines Different panels show the results obtained fr
tion. =0 (AF statg, 0.125[(1,1 spiral|, and 0.25(1,0) spiral], respec-

tively, at T=0.08.
by Dagottoet al®? Here we present instead a comparison

between the density of states obtained within the DMFT N
method and that foznd in the HF approximatitfig. 11). states, shown in Fig. 12. The QP peaks are very close to each

First of all, one notices a narrower gap of widtf2J which oth_er a_t half-filling, while the incoherent states at highe_r en-
separates the QP subbands in DMFT, instead of the HF on&'9i€s in the LHB and UHB have almost the same weights,
particle states, on the scale of2t. This part of the spectral PUt are moved to somewhat higher energies in the QMC
density might also be reproduced in effective single-particléf@lculation. The increase of the spectral weight close to the
approaches, as for instance in the slave-boson mean-fiefcermi level is well pronounced in the latter calculationsat
theory. However, the incoherent parts which extend on the=0.125, but one finds insteaal pseudogap smaller by a
energy scale down tdw— u|=9t result from many-body factor close to 5 However, one should realize that the
scattering, and can only be reproduced if the dynamical paeresent calculation performed at low temperatiire0.0%
of the self-energy is included. The overall width of the sub-corresponds in practice to the ground state, while the same
bands atw<u and o> pu is ~7t, respectively, as known temperature in QMC already includes thermal fluctuations
from the analysis of theé-J model in ED and in QMC which considerably reduce the size of the pseudogap. Indeed,
calculations’ using the ED method to solve the self-energy within DMFT,

It is evident that due to the changesNfw) in the range we find a pseudogap in the SS state~e®.7t. It might be
of |o— u|<1.5 with respect to the QP band in the undopedexpected that this reduction of the energy scale would result
system, the low-energy part of the spectrum cannot be repran a better quantitative description of the spectral functions
duced in a renormalized one-particle theory. The pseudogagnd the related excitations across the pseudogap, leading to a
in the doped systems is not visible in the HF densities ofeduced energy scale for the low-energy features of the op-
states, and it remains a challenge whether an effective onéical conductivity(Sec. \j. We also found a more extended
particle theory which captures this essential new energy scakenergy range of the incoherent states which belong to the
could be constructed. As expected, the agreement betwe&rHB in the QMC calculation. Altogether, the comparison
the HF and DMFT densities of states improves somewhat awith the DMFT-QMC calculation demonstrates that the ana-
higher doping 6=0.25, where the Mott-Hubbard gap is lytic method developed in this paper is very useful to gain a
gradually lost, and the system approaches the single-particgualitative insight into the possible changes of magnetic
limit. We note, however, that the gap between the LHB andstates under doping and their consequences for the properties
UHB relies on magnetic order in our approach, and a more@neasured in experiment.
accurate approach in the strongly doped regime at lafge
would instead have to include the scattering on local mo-

ments. V. OPTICAL AND TRANSPORT PROPERTIES
In spite of very good agreement between the present . S
DMFT approach and the ED datit is interesting to inves- A. Optical conductivity in the Hubbard model

tigate to what extent the analytic formula for the self-energy  The evolution of the spectral functioms(k,w) and the
(2.22) describes the hole dynamics in a doped system. Theretensity of state?N(w) with doping, reported in Secs. IV A
fore, we also performed a DMFT-QMC calculation of local and 11l A, motivates an investigation of the optical proper-
EQ(iw) for SS states, and the corresponding densities ofies. Here we make use of the theory introduced in Sec. Ill B,
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tively, while at higher dopings=0.25, a S8L,0) state (7,
=0) with »,=0.25 (0.23), or an equivalent %) state, is
found instead.

At half-filling one finds a large gap below=4.% at
U/t=8 and no Drude peak, which shows that the system is
in the insulating phas®. The conductivity atw>4.% is in-
coherent, and originates from excitations across the Mott-
Hubbard gap. This changes drastically when the system is
doped, and two new features occur at lower energy: the
Drude peak and the midgap state @t=2t, both with in-
creasing intensity betweefi=0.125 and 0.25 at low tem-
perature(Fig. 13. These features are accompanied by an
incoherent background of the excitations within the LHB.
The peak atw=2t corresponds to excitations across the
pseudogap; as such it is more influenced by the increasing
temperature in the underdoped regime, where thél, 35
state is less robust than the (3%) state in the overdoped
regime.

Below w=4.% the frequency dependent scattering rate

FIG. 13. Optical properties as functions of energit for the  1/7(w) and the effective masm* (w)/m, can also be di-
Hubbard model with) =8t at low temperaturd=0.0% for =0  vided into two regions{i) abovew=2t the scattering rate
(dashed lings 6=0.125 (full lines), and 6=0.25 (dash-dotted increases monotonically with increasing frequengi); be-
lines): (a) real part of the optical conductivity’(»); (b) imaginary  low w=2t it has a maximum at energy=1.1% (1.0t) for
part of the optical conductivity”(w); (c) scattering rate Hw);  §=0.125 (0.25), and drops to zero far—0 at finite dop-

(d) effective massn* (w)/m. ing. This behavior foro—0 and T—0 is consistent with

Fermi-liquid behavior, which follows from the local approxi-
where we have shown how the optical conductivity can bemnation to the self-energ§2.11). A finite value atw=0 is a
derived from the local self-energy in the present DMFT numerical effect due to finite broadening of the specia (
treatment. =0.1f).

As an illustrative example, we concentrate on the optical The frequency region in which the scattering is sup-
conductivity found for the Hubbard model with the nearest-pressed has a direct relation to the existence of a pseudogap
neighbor hopping t{ =t"=0) andU=8t. We present the region in the single-particle spectral functigx(k,w), re-
optical data in Figs. 13 and 14 at two temperatur€s: ported in Sec. IV B, and indicates that SS LRO reduces the
=0.08 and 0.2. While the magnetic order is AF at half- scattering of the charged carriers in the energy ramge
filing, the SS states characterized by tf@=[m(1  <1.15. Atthe same time, the effective mast (o) rises to
*2my),m(1+27,)] wave-vector change with doping and a maximum value of~5m, within the pseudogap region,
temperature. At a lower doping=0.125 we find a S&,1)  and is found to be rather independent of hole doping. As the
with 7,=7,=0.125 (0.09) alf=0.08 (T=0.2), respec- temperature increases To=0.2, the pseudogap disappears
and the region of suppressed scattering is filled up in the
underdoped regime witlh=0.125, while the low scattering
persists foro<1.0t at §=0.25 (see Fig. 14 At the same
time, the midgap state in the real part of the optical conduc-
tivity changes into a smooth feature which extends down to
the Drude peak fov=0.125, contrary to the case with
=0.25, where the spectral weights of the above two features
remain well separated. This is clearly related to the behavior
observed inA(k,w) with increasing temperature, where the
pseudogap along th¥-M direction filled up with spectral
weight asT increased ford=0.125.

These changes of the midgap state with temperature are
due to the changes of the magnetic correlations in the doped
systems included in our calculations, which do not distin-
guish between long- and short-range magnetic orders, but
treat local dynamical correlations. However, there are indi-
cations that the midgap feature results from an interplay be-
tween short-range magnetic order and electron correlaffons.
Therefore, the rather strong evolution of the low-energy
weight with increasing temperature shown in Figs. 13 and 14

FIG. 14. Optical properties as functions of energit for the =~ may be overestimated in the present treatment of the self-
Hubbard model withU=8t at intermediate temperatuife=0.2; energy, which does not allow one to obtain a metal-insulator
the meaning of lines is as in Fig. 13. transitionwithoutan accompanying magnetic LRO. We also
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Conversely, for large hole doping the system is a better
metal, hole spin correlations are gradually lost, and the in-
crease of resistivity is less pronounced in the temperature
regionT<0.8& at §=0.25. The maximum op,,(T) for §
=0.125 is located almost exactly dt~0.2& (~750 K
taking the experimental value of the superexcharge
=125 meV), where the pseudogap in the single-particle ex-
citation spectra opens, leading to a suppression of the effec-
tive scattering rate ¥(w,T), as discussed previously. This

defines the crossover temperatufé. Remarkably, the
change from a linear to a nearly linedr dependence,
pan(T)=TI € (>0), of the in-plane dc resistivity of
La, ,Sr,CuQ, was found to be aT* =600 K for x=0.13,
and was attributed to the opening of a pseudogap in the
electronic excitation spectrufi.However, the saturation of
the resistivityp,p(T) cannot be observed in a real system as
the carriers also couple to other bosonic excitations, e.g., to
phonons, which are neglected here.

Upon lowering the temperature beloW, at T<0.24 for
both 6=0.125 and 0.25, we observed a nearly lingéade-

note that midgap states are likely a bare consequence of tRENIENce 0py,(T). In this temperature range the SS wave

strongly correlated nature of optical and one-particle excitaYector, Q=[m(1x27,),m(1=27,)], becomes strongly

tions in the Hubbard modéf and it is still a challenge to tgmperature dependent, and maintains the d!rectlonal devia-

describe them better in a theory which would treat the AFtion from the AF wave vectorQag=(m,m), with 7,= 7,

and paramagnetic states with local moments on equal foot= 7(T) for 6=0.125 and»n,= »(T) (7,=0) for 6=0.25.

ing. In both cases(T) increases fromy(T*)=0 with decreas-
The frequency-dependent scattering rate allows us to finthg temperature, and saturates at its ground-state vg(iie

a crossover temperature*Tat which the pseudogap closes. =0)=26 below T=0.08&. In the linear regimeT<T*) the

We estimated thal* =0.2& for §=0.125, and observed a resistivity can be fitted quite well by a linedrdependence,

monotonic increase of #{w,T*) up to w~4.1t. At T  as expected for the SS statég"(T)=p™(0)+ Lped 'T,

=0.2 the effective mass increases up~+d0m, within the  with p;itx(O)/pOZ —1.05 (—0.25) for 6=0.125 (0.25), re-

pseudogap af=0.125. At half-filling andT=0.2, one finds  spectively, where the increase of the negative temperature

that the charge-transfer gap is only slightly reduced from itgoefficient p(0) is a further manifestation of the gradual

value atT=0.03, and the insulating behavior is accompa- |oss of local magnetic moments as doping is increased. Con-

nied by AF LRO. We estimated the Bletemperature for yersely, in the paramagnetic phase of the Hubbard model at

U=8t to beTy=0.62]. d=c, one findsp™(0)=05" Furthermore, the slope of

Further evidence of a characteristic crossover temperaturlgzxx(-l—) in the low-temperature regime is given ly=1.46,
T* may be found in the behavior of the in-plane dc resistiv-independent of hole density. This value is larger by about a
ity (3.27_). The_z resistivity has received a lot of attentlon IN factor of 2.5 than the respective slope found in the
connection with the observed normal state pseudogap in thetraceable-path approximati&hand in ED studies at finite
electronic excitation spectrufii,and from a theoretical point temperatur@® being {=0.55 and 0.60, respectively, and
of view.”*®"In fact, the physical origin of the lineaF de-  gemonstrates that the changes in the magnetic order with
pendence op(T) for samples of hight. compounds close  jncreasing temperature influence significantly the system re-
to the optimal doping level remains puzzling. sistivity. Unfortunately, such effects cannot be studied by the

The results fop,,(T) obtained for the Hubbard model at Ep method due to the small size of the considered clusters.
two doping levels$=0.125 and 0.25, are shown in Fig. 15. | order to further support our observation that the cross-
At low temperatures <0.08, the resistivity shows Fermi-  oyer temperatureT* is related to the pseudogap in the
liquid behavior for bath hole densities, L@u(T)=T% AS  gingle-particle excitation spectrum, in the inset of Fig. 15 we
usual in DMFT calculation$] the T* dependence af,,(T)  plot an average of the single-particle spectral weight within

originates from the low-frequency behavior of the imaginaryyp, energy windowx T around the Fermi energy=0, de-
part of the local self-energy. In the regime of high temperafineq 39

tures (T>0.9), the resistivity increases linearly with tem-

0.0 L 1 1 1
00 02 04 06 08 1.0

Th

FIG. 15. Resistivityp(T)/pg as a function of temperatuf@t as
obtained for the Hubbard model with= 8t for §=0.125(full line)
and §=0.25(dashed ling The inset shows the weight (T) (5.1)
found at theX point at §=0.125(full line), and averaged weights
over the Brillouin zone a¥=0.125 (dashed ling and at5=0.25
(dash-dotted line Arrows in the inset indicatd@™.

perature which is due to temperature independence of the 1 (e A(kg,w)
spectral functionsA,,.(k,w) at T—o, and the high tem- ?2 (T)Z_E, Gooolkx, 7=pl2)=3 ,mdwcosr(ﬂw/Z)'
perature limit of the derivativg(— dng(w)/dw)—1/(4T)], 77 (5.1)

thus leading tar,,(T) < 1/T, i.e., px(T) = T. As the tempera- o

ture is lowered, the magnetic moments gradually build upSimilarly, a measure for the temperature dependence of the
and a kink in the resistivity appears. Therefore, the increasélensity of states at the Fermi eneriy(0) is obtained from

in the resistivity as the temperature is lowered can be attribthe local Green’s function2.11), zj,(T)=—2,G,,q(7

uted to an enhancement in the scattering of electrons by locat 8/2). In the low-temperature limitN(0) can be obtained
spin fluctuations. from the relation N(0)=pz\ (T)/7,*® which gives
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FIG. 16. Optical properties as functions of energjt for the FIG. 17. Optical properties as functions of enekgit for the

Hubbard model with extended hopping parameters ofHubbard model with extended hopping parameters of
La,_,Sr,CuQ, (Table ) at low temperatureT=0.0% for §=0 YBa,Cu;04, « (Table ) at low temperatureT=0.0% for §=0
(dashed lings 6=0.125 (full lines), and §=0.25 (dash-dotted (dashed lines §=0.10(full lines), and 5= 0.25(dash-dotted lings
lines): (a) real part of the optical conductivity’ (w); (b) imaginary ~ the meaning of different panels is the same as in Fig. 13.

part of the optical conductivity”(w); (c) scattering rate I w);

(d) effective massn* (w)/m. weight and the midgap state appear in the conductivity

of doped systems. For the parameters of

=0.20 (=0.26) for 6=0.125 (6=0.25), respectively. La, ,Sr,CuQ, (YBa,Cu;Og.,), the region of suppressed
However, one finds that the one-particle density of states ajcattering extends up te&1.3 (=1.8) at §=0.125. This
the Fermi energy does not evolve smoothly to low-regime of loww gives an enhanced effective masgm, for
temperature values, but instead states are depleted from theth sets of model parameters. At larger dopéivg0.25 the
regionw=pu asT is reduced belowl*=0.2& (0.43) for  coherence of the charge carriers is enhanced’bgnd t”
0=0.125 (6=0.25), respectively. In particular, we ob- hopping, and one finds a significantly reduced effective scat-
served a faster loss of the QP weight with momentkyn  tering between charged carriers, extending with roughly no
=(m,0) for 6=0.125(Fig. 15. This shows that the opening structure over a rather broad energy range. Simultaneously,
of the pseudogap in the one-particle excitation spectrum ahe effective mass-1.5m, is only little enhanced at low
(7,0) coincides with the suppression of the effective scatterenergies.
ing rate 1f(w,T). The overall shape of'(w) (Fig. 16 shows a qualita-

Experimentally, the resistivity changes from a linear to atively similar behavior to the optical conductivity of
nearly linearT dependence at* of the order of 500 K. La,_,Sr,CuQ, reported by Uchidat al*® At low doping the
Although our calculations do not allow us to interpret themidgap band centered at=1.7t (corresponding to 0.53 eV
linear part ofp,,(T) at high temperatur&@>T* as only the for J=125 meV and the present parameters With0.4t) is
electronic degrees of freedom are included, we note that thelearly distinguishable from the Drude contribution. It moves
enhanced slope gf,,(T) at low temperatur@~100 Kand to higher energyw=2.2 (0.7 e\) at §=0.25. It is quite
the negative temperature coefficient agree qualitatively witlremarkable that our DMFT calculations qualitatively repro-
the experimental results for YBE@wO;_, in the under- duce the structures observed in the frequency dependent ef-
doped regimé? Our calculations confirm the conjecture of fective scattering rate #{(w) and in the effective mass
Shraiman and Siggia of a nearly linekidependence of the m* (w)/m, of La,_,Sr,Cu0,.*® In particular, the strong dop-
resistivity for a system with SS magnetic ordémhese fea- ing dependence of #(w) and m*(w)/m, show the same
tures can be seen as generic fingerprints of incommensurateends, namely, a pronounced reduction of scattering and ef-
magnetic correlations. fective carrier mass for the heavily doped systems, and fur-
ther justifies the importance of extended hopping parameters
in the cuprates. This behavior originates from an increase of
QP weight in the single-particle excitation spectrum induced

Similar changes in the optical excitation spectra as a funcby doping.
tion of hole doping were also found using effective single- Puchkovet al.’* reported extensive studies of the infrared
band models with parameters representative foproperties of YBaCu;Og. ,, Bi,Sr,CaCyOg.,, and other
La, ,Sr,CuQ, (Fig. 16 and YBaCu;Og.  (Fig. 17), re-  high-T; compounds. They found that the far-infrared effec-
spectively. Due to somewhat larger values of the effedilye tive scattering rate Z(w) and the effective mass* (w)/m,
the gap in the optical spectra increases-t6.5t and ~7.1t differ significantly between underdoped and optimally doped
in these two compounds. One finds again that the Drudeamples abovd .. The optimally doped samples show a

B. Implications of extended hopping

|7l
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06 ' ' 0.5 ' . dence in the regime of low hole doping, atd k,) changes

by a factor of~1.66 (1.22) with respect to half-filling in the
4089° 0.4 0 case of the YBgCwOg, « (La,_,Sr,CuO,) model param-

05 L 89 e ° eters; one finds a faster increase of the total spectral weight
< 000 R 0.3 ° in the case of stronger hopping to second and third neigh-
 ¢° °n"feg |5 ° g bors, as realized in YB&u;Og., .

L 4" 0.2 °°n':'o° The calculated total optical spectral weights are-k,),
04 g 1 0 g°° following the optical sum rul€3.22, and we made a quan-
To 0.1 og® titative comparison with the experimental data. The doping
I (@) 30 (o) dependence of the total integrated spectral weight below the
03 . . 0.0 charge-transfer band edge at 1.5 eV, reported by Cooper
00 01 5 02 03 00 0.1 5 02 03 et al.”? for La,_,Sr,CuQ,, is strikingly similar to the nu-

merical data of Fig. 18. The model reproduces a rapid in-
crease of spectral weight up t610% Sr doping, and a
rather doping-independent spectral weight in the range of
0.1=x=<0.2. The increase of{—k,) with increasing doping

is faster for the parameters of YBau;Og ., With the inte-
grated spectral weight increased byl.7 at 6=0.18 with
structureless and lower effective scattering rate{@)j, and  respect to its value ai=0. This value compares again very

a nearly constant and unrenormalized masgw). Con-  Well, taking the simplicity of the effective single-band Hub-
versely, in underdoped samples the scattering between tHggrd model, with a factor of- 1.8 found by Orensteiat al.”
charged carriers below=0.12 eV is strongly suppressed, in the compound with highest, .

andm* (w)/m, is enhanced in the low-energy region. These At §=0 we find a vanishing Drude weight for all three
observations are in remarkably good agreement with ougets of model parameters, and the system is an insulator. This
findings, and support our conclusion that the observed dops of course an expected result at half-filling, but in the
ing dependence of #{w) andm* (w)/m, originate from an present context it serves as a test of the internal consistency
increased coherence of the one-particle excitation spectra réf theory, like the kinetic-energy termi—k,)#0 in Eq.
ported in Sec. IV B, and experimentally observed in ARPES(3.26), and has to be compensated for by the current-current
spectra of BjS,CaCyOg,, by Kim et al*! The suppres- correlation functiom\,,(q=0,27iT) in the limit of low tem-

sion of 1/ (w) beloww=0.12 eV originates from the open- perature. At small hole doping we observed an almost per-
ing of a pseudogap in the one-particle excitation spectrunfect linear increase of the Drude weight wighfor all three
Using J=125 meV and the value aJ=t/3, adequate for sets of model parameters, which is an indication of strong
YBa,Cu;0q.,, We find the energy threshold below which €electron correlations near the Mott insulator at
QP scattering is strongly suppressed in the weakly dopebalf-filling.*"*Such a behavior is compatible with a picture
system at=0.68 eV. Unfortunately, this is about a factor of of a dilute hole gas in a background with SS LRO which
5 larger than the experimental value for underdopedcontributes to the optical response. However, the crossover
YBa,Cu,Og. 4 being ~J. Similar discrepancies in the en- t0 a metal due to increasing doping has been analyzed re-

ergy of the QP state with momenturar0) were reported in  cently using scaling theoryy, and ED technique combined
Sec. IV B. with scaling theory? which give Do 62 for a small doping

concentrations in a 2Dt-J model. This last result is in sharp
contrast to the present picture of a dilute hole gas in an AF or
SS background, and might indicate that other correlations are
Finally, we compare the Drude weigbt[Eq. (3.26] and  realized in the spin background when the system is doped,
the kinetic energy density associated withoriented links  namely, that the dilute hole gas is unstable toward micro-
(—ky) [Eq.(3.16] for the three model parameter sets in Fig. scopic phase separation, such as realized in polaronic solu-
18. DMFT gives(—k,)=0.4@ for the Hubbard model at tions or stripe phases.
half-filling (5=0) with U=_8t, which is smaller by a factor The present results demonstrate a substantial transfer of
~1.81 than the HF result, and is in excellent agreement witlspectral weight to low energy in the doped systems. We al-
the value of( —k,)=0.42 obtained in QMC calculatior®.  ready pointed out earli&t that the spectral weight trans-
We also found an overall satisfactory agreement-ok,) as  ferred into the LHB in the one-particle spectra agrees with
a function of doping with ED data of Dagotiet al®>®> The the predictions of perturbation theory in the strongly corre-
kinetic energy —k,) increases with doping not only because lated regimé? In the optical spectra for the Hubbard model
the actual carrier density changes, but also as a consequereteU/t= 8, one finds that the weight transferred into the re-
of changing wave vector in the SS sta@=[w(1 gion below the Mott-Hubbard gap is increased by a factor
+27),m(1*=27)] with a gradually increasing pitchy al-  ~1.3 with respect ta5=0.125 when the system is doped to
lowing for coherent electronic transport through the system$=0.25. This change is significant as the total weight ob-
In agreement with QMC daff,we observe that increased tained from Eq(3.22) via (—k,) remained roughly constant
extended hopping amplitudes accelerate the SS formatidsee Fig. 183)], indicating a spectral weight transfer from
and result in a stronger increase ¢fk,) with & for  the high- to low-energy region in the single-particle excita-
YBa,Cu;0g., than for Lg_,Sr,CuO, model parameters. tion spectrunt’ In particular, the weight transfer is in favor
The x-directed kinetic energy shows a linear doping depenof the Drude weigh{Fig. 18b)], which increased in the

FIG. 18. Kinetic energy along the direction(—k,)/t and the
Drude weightD/t as functions of the hole dopingfor representa-
tive values of parameters given in Table I: Hubbard mddietles,
La, ,Sr,CuQ, (squares and YBgCu;Og , (diamonds.

C. Drude weight and spectral weight transfer
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same doping range by a facter2.15 although the hole den- the underdoped regime, and almost no enhancement of the
sity increased only by a factor 2. These changes in the cceffective mass in a broad energy range in overdoped systems,
herent optical weight are consistent with the observatiorare in remarkably goodjualitative agreement with the ex-
made in Sec. IV B that the single-particle excitation spectrgerimental findings in the cupraté&’® This is consistent

becomemore coherenas the hole density increases. with the reduced density of statBg ) at the Fermi energy
at low temperature. With increasing temperature the value of
VI. SUMMARY AND CONCLUSIONS N(u) increases, which could not be explained in paramag-

netic calculations performed within the DMFT approach. It
We reported a generalization of the DMFT to magneti-should be realized that such a strong temperature dependence
cally ordered states, and showed that this method allows fasf N(«) should have important consequences for several
a very transparent study of spectral properties of the Hubbargheasurable quantities in the normal phase, as for example
model at and close to half-filling. The crucial step is thethe Knight shift.
derived formula for the self-energy using the Here we limited ourselves to the qualitative consequences
Berk-Schrieffe?® spin-fluctuation exchange interaction with of the extended hoppinty andt” for the one-particle and
an effective potential due to particle-particle scattefthg/e  optical spectra. First of all, the QP dispersion is strongly
have demonstrated that this treatment of many-body effecti&fluenced by these parameters, and at half-filling reproduces
reproduces the leading dependence on doping and tempeitite experimental width and dispersion of the QP band in
ture, and gives a very favorable comparison with the avail-Sr,CuO,Cl,.”® Second, the deviation of the characterisic
able numerical data obtained in the QMC and ED calculavector from the AF vector 4, ) increases as a function of
tions for a 2D Hubbard model. Although thkedependence doping in SS states, and this process is accelerated by a finite
of the self-energy was not included, the spectral functions forvalue of second-t() and third-neighbort(') hopping. This
a single hole in a Mott-Hubbard insulator agrees well withexplains why systems with extended hopping are more me-
the known structure for the-J model® and gives a PES tallic which is indicated by the low effective mass and larger
spectrum consisting of eoherentQP peak with a dispersion Drude weight.
~2J, and anincoherentpart of width~ 7t at lower energies. The dependence of the magnetic order on temperature has
We have verified that the QP weight agrees well with the EDalso rather drastic consequences for the measurable quanti-
data in the range of/t<0.7>° and supports the string ties. The onset of magnetic order below a characteristic tem-
picture/” Furthermore, the calculation reveals a nontrivial perature results in quite different one-particle and optical
relation between the electron occupation factorg and the  spectra at low temperatures from those obtained in a para-
QP weightsa, , and shows that the maximum af is shifted = magnetic phase. The changes of the spipalector with
away from the /2,77/2) point, in agreement with the ED decreasing temperature allow one to introduce a crossover
results of Eskes and Edef. temperaturel*, below which the low-lying excitations are
Our study has shown that doping of a Mott-Hubbard in-gradually modified along with the changes in local magnetic
sulator leads to an incommensurate magnetic order at lowrder. Such a modification gives a quasilinear resistivity, and
temperatures, which depends on the actual values of the hoperifies the conjecture of Shraiman and Sigdia.
ping parameters and the Coulomb interactibrThis kind of In spite of very good agreement for the undoped systems,
magnetic order induces pseudogap in the one-particle however, we identified several important features which do
spectra which is one of the generic features of the dopednot agree with the experiments in the doped cuprates even on
Mott-Hubbard insulators. The dependence of the pseudogag qualitative level, that might indicate that a more accurate
on the incommensurate magnetic order explains why it couldreatment of the many-body problem is necessary, or that
not be observed in ED data on small clusters at finitemore complex magnetic structures are stabilized in these
temperaturé&® or in the infinite-dimensional Hubbard model compounds:(i) The value of the pseudogap in the one-
in the paramagnetic staf®.This energy scale, due to a particle spectra, and the accompanying energy scale for the
pseudogap of magnetic origiemonstrates a combination suppressed scattering rate in the optical conductivity, are
of physics arising from the Slater picture and the Mott-overestimated by a factor close to 5 with respect to the ex-
Hubbard description of strongly correlated electron systemsperimental observationgii) The S$1,1) state obtained for
The coherent QP states survive in the doped systems, ie Lg_,Sr,CuO, model parameters leads to a different
agreement with QMC and ED results. However, the numerisplitting of the magnetic scattering peak in neutron experi-
cal studies suggest that a strokgdependence of the self- ments than the experimentally observéti0) and (0,1)
energy might be necessary to describe the spectra, as the ®plittings? (iii) The incommensurate order deviates too fast
dispersions change. This failure of the rigid QP band picturdrom the AF state for the model parameters of
here has quite a different explanatidhe changes of the QP YBa,Cu;Og., , Which results in different spin-spin correla-
dispersion follow from the incommensurate magnetic ordetions than those observed in experiment, and a QP peak at
which develops with doping, and the leading effects in thethe X point moving to too low energi€¥. (iv) The doping
hole dynamics are stitaptured by a local self-energy behavior of the pseudogap and of the related crossover tem-
The one-particle and optical spectra are interrelated, angeratureT* is opposite to the one observed in the cuprates.
the opening of a pseudogap at low temperatures leads tola these materials the pseudogap drfddecrease upon dop-
midgap state next to the Drude peak in the optical conducing, whereas here the corresponding quantities increase from
tivity, both with growing intensity under increasing doping. the §=0.125 to the§=0.25 case. With increasing doping
Such features, observed in SS states at low temperatures, @sarge fluctuations become more and more important, which
the suppressed scattering rate and the large effective massdives rise to the suppression of magnetic order, and conse-
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qguently the pseudogap closes. However, such correlationzopagation of a hole coupled to spin fluctuations, allows
areunderestimatedh the present treatment, and one insteadone to obtain stable magnetic solutions: AF ordering at half-
finds a persisting pseudoga) Finally, the spiral spin or- filling and SS in doped systems. Although it is likely that
dering in the(1,1) direction contrasts with experimental evi- better variational states, possibly with stripe orderfg®!
dence from neutron scattering in the cuprates, suggesting thaguld be found, it is expected that the presented spectral and
stripe ordering might play a prominent role in these systemgptical properties are generic for strongly correlated systems
at very low temperatures’® We have found a phase separa- yith an incommensurate order parameter. A better under-
tion at low doping levels, and therefore the presently studiedtanding of the cuprates, however, requires a further devel-
dilute hole gas in SS states is unstable toward magnetic p@spment of theory which should be able to capture the gradual

larons or stripe phases at doping levels lower tan0.1.  changes of local magnetic correlations in doped Mott-
This motivates a further search for more complex magneti¢juppard systems under increasing temperature.

ground states with incommensurate order, and more accurate
methods to describe them in theory.

Summarizing, we presented a successful formulation of ACKNOWLEDGMENTS
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