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1. Introduction

We will study a classical result for stability analysis of linear systems with
time-varying parameters. The main theorem in [Sundareshan and Thathachar,
1972] gives conditions for L,-stability of a feedback system consisting of a
linear time invariant and stable convolution operator G in the forward path
and a time-varying parameter §(t) in the feedback path. It is assumed that é
satisfies the following conditions.

~2ab(t) < TH(1) < B6(1), V>t

This means that there is a bound on the time-variations. Sundareshan and
Thathachars stability result states that the feedback system is stable if there
exists a multiplier M = M, + M, where M; and M, are bounded operators on
L,, which are causal and anti-causal, respectively such that there exists § > 0,
g1 > 0 and ¢; > 0, such that

ReM(jw)G(jw)< -6, VweER
ReM;(jw—-8)> €, YweER
ReM;(jw+a) > €, VweER

€E=¢€6+€ >0

In the first inequality we have assumed a positive feedback loop. The last
inequality is needed to ensure a certain factorizability condition.

The purpose of the report is twofold. Firstly we give a multivariable exten-
sion of Sundareshan and Thathachars result. The means for doing this is the
use of stability theory based on IQCs as presented in [Rantzer and Megretski,
1994],[Megretski and Rantzer, 1995]. Secondly we give an method for comput-
ing the multipliers M; and M, by using LMI algorithms. We will apply these

ideas for LMI computations in two examples.

Notation and Mathematical Preliminaries

e R denotes the real numbers. R"*™ denotes all n X m real valued matrices.

o I denotes the identity matrix or the identity operator. We sometimes
define the size if I explicitly by writing I,,, for the m X m identity operator.

e |- |; denotes the usual norm on R”, defined as |z|, = v2Tz.

e L3(—00,00) is the Hilbert space of measurable functions R +— R" satis-
fying

1718 = [ 17t < oo

e L7[0,00) is the closed subspace of Lj(—o00,00) consisting of functions
which are zero for almost all ¢ < 0.

o The Fourier transform of functions f € Lj(—o00,00) (f € L3[0,00)) is
defined as

o~ T .
flw) = Jim [ e ts(e)at



e The inner product on L} (—o0, 00) (L3[0, 00)) is defined as
(u,v) = / u® (¢)v( = / "(jw)v(jw)dw
where the last equality follows from the Parseval theorem.

o L™*" is the Banach space of measurable n X n complex valued functions
that are essentially bounded on the imaginary axis and satisfy F(—iw) =
F(jw) for almost all w € R. RL™ C L™ is the subspace consisting of
proper real rational functions with no poles on the imaginary axis.

e H™™™ is the Hardy space of n X n complex valued functions of a complex
variable which are analytic and bounded in the open right half plane.
Every F € H"™" is defined almost everywhere on the imaginary axis as
the limit F(iw) = lim, o4 F(jw + @) and satisfy F(—iw) = F(jw) for
almost all w € R. RHY™ ¢ H"*" is the subspace consisting proper real
rational matrix functions with no poles in the closed right half plane.

o The norm of functions F € H**™ and F € L™ is defined as
SUP Tmax(F(jw))
o H"*"(qa) is the set of functions having the property that H(s—a) € H**".
RHT*™(a) is defined similarly.
e The projection operator Pr is defined as

e F(0) = {f(t), t<T

0, t>T

An operator M : Ly(—00,00) — Lj(—00,00) is causal if PrH Py = PrH
VT € R.

o The convolution operator with kernel m(t) corresponding to a transfer
function M € H™ ™ is causal.

e The Hilbert adjoint of an operator H : Ly(—o00,00) +— Lj(—00,00) is
defined as the operator H* : L}(—00, 00) = Lj(—00, 00) satisfying
(u, Hv) = (H*u,v), Vu,v € Lj(—o00,00)
o If M € H™", then M*(s) = MT(—s) is a anti-causal operator since
the kernel m*(t) = L~Y{M*(s)} = mT(~t). If My, M, € H"™", then
M = M, + M} is in L™, and M is noncausal.

e The Hilbert adjoint reduces to the Hermitian conjugate on the imaginary
axis,

2. The Main Stability Theorem

We will consider uniform exponential stability of the system

%m(t) = Aw(t) + Bu(t), 2(to) = 2o
y(t) = Ca(t) + Du(t) (1)
u(t) = A(t)y(t)

Where z(t) € R", y(t) € R™, and u(t) € R™. It is assumed that A is a Hurwitz
matrix. Uniform exponential stability is defined as



/Lf
u y
G(s) )

A(t)

Figure 1. Block diagram representation of the system

DEFINITION 1
The system in (1) is uniformly exponentially stable if there exist m,a > 0
such that

|2(t)] < me™*0t)|ag|

for all initial conditions ¢y € R,z, € R" and for all possible A(t) (in the class
of A under consideration).

We will at first consider the case when A(t) = §(t)I, where § is a real-valued
and differentiable parameter satisfying

0<k<8(t)<K<oo, Vt>to

d
~206(t) < —8(t) < 288(t), Wt

for some a, 8 > 0. We will derive a stability condition for the case above with
only one time-varying parameter in the next two sections. It is then easy to
generalize this stability condition to the case when we have a block-diagonal
uncertainty. This is the topic of Section 4.

Remark 1. The system in (1) can be represented as in Figure 1, with G(s) =
C(sI — A)"'B+ D e RH*™ and where f represent the response due to the
initial condition of the system, i.e. f(t) = Ce*'z,.

Remark 2. An equivalent problem formulation is to require input/output
stability of the system in Figure 1. Here input/output stability means that
the system equations

y=Gu+f

u= Ay

(2)

define a causal map from f to (u,y), and that there exists a ¢ > 0 such that

/OT(uz(t) + y2())dt < C/OT Py, YT >0

A is here considerd as an bounded multiplication operator on L,. Exponential
stability and input/output stability are equivalent stability concepts for the
linear systems under consideration, see for example [Vidyasagar, 1993].

We have the following stability theorem, which is a multivariable gener-
alization of a result in [Sundareshan and Thathachar, 1972].



THEOREM 1
Assume that the system in (1) is well posed. If there exists M € L™, on
the form M = M, + M;, where

1. M; € H™™(8), with M;(jw — 8) + M;(jw - pB) >0, Vwe R.
2. M, € H™™(a), with M(jw — a) + M3 (jw—a) >0, YweR
and € > 0 such that

(G(:‘w))*( 0 M*(jw)) (G(J'w))<_d Vo 220
I M(jw) 0 r - -

then the system in (1) is uniformly exponentially stable.
|

Remark 2. Well posedness here means that (I — A(t)D)™* is well defined and
bounded for all possible realizations of A(t). This well posedness condition also
implies that the system is well posed in the meaning of for example, [Desoer
and Vidyasagar, 1975] and [Megretski and Rantzer, 1995).

The proof of Theorem 1 is given in the next section.

Remark. An imortant result from the proof in the next section is that the
multiplication operator §(t)1,,, where § is defined as above, satisfies the IQC
defined by

o 0 M; (jw) + Ma(jw)
T09) = | by () + M; () 0

where M; € H™™(8) and M, € H™™(a) satisfies

My (juo— B) + M(jw—B) >0, VweR
My(jw—a) + My (jw—a) >0, YweR

This has several implications as explained in for example [Megretski and
Rantzer, 1995].

3. Proof of the Stability Theorem

Let us first define the term IQC (Integral Quadratic Constraint) more ex-
actly, see [Megretski, 1993], [Rantzer and Megretski, 1994] and [Megretski and
Rantzer, 1995]. Suppose the matrix function IIL2™*?™ is Hermitean on the
imaginary axis. Then the operator defined by multiplication with A(t) is said
to satisfy the IQC defined by II if

/°° [ﬁ(iw)}*ﬂ(jw) [a(jw)] do > 0

—o0 | B(jw) v(jw)

for any 4,7 being the Fourier transforms of u,v € Lj[0,00) with v(t) =
A(t)u(t).

If we have proven that A(t) satisfies the IQC defined by some II then we
can apply the following Proposition, which is the main result of [Rantzer and
Megretski, 1994] and [Megretski and Rantzer, 1995].



PROPOSITION 1

Assume the system in (1) is well posed. If the operator A(t) satisfies the IQC
defined by II(jw), then the system in (1) is uniformly exponentially stable if
there exists ¢ > 0 such that

[G(;'“”]'n(jw) [G(}"")} <-el, Vw20

O

In order to prove Theorem 1 we will use the derivative bound of §(¢) to
prove that § satisfies the IQC defined by

0 M*(jw)l
(jw) 0

for arbitrary M = M, + M}, where M; € H™ ™ () is such that M;(jw— )+
M;(jw—-B8) >0, Vwe R and M, € H"™(a) is such that M,(jw — a) +
M;(jw—a)>0, VYw € R. Then Theorem 1 follows from Proposition 1.

We will need some preliminary lemmas in order to prove that §(t) satisfies
the IQC defined by II in (3). We will use the notation

M(jw) = [M 3)

(Foyr = [ 1oty

in the lemmas that follow. We will also make frequent use of the fact that
401 is an self-adjoint operator. The first lemma follows from [Sundareshan and
Thathachar, 1972].

LEmMMA 1
Let M € H™™(3) be such that M(jw — B) + M*(jw — f) > 0, Vw € R,
then for all f € L3'[0, 00)

(f,e®*Mf)r >0, VT eR*

Proof:
(£, M f)r = (5, (m(t)e) x ("))
= o [ Be)( G - B) + M(jes - B) r(jw)de

where fr(jw) = F{Preftf(t)}, m(t) = F-*{M(jw)}, and where % denotes
convolution. Hence, the truncated inner product is positive for all T € R,
O
The proof idea for the next two lemmas can be found in for example [Sun-
dareshan and Thathachar, 1972] and [Desoer and Vidyasagar, 1975].

LEMMA 2 _

Let 6(t) be differentiable with k£ < §(t) < K, and §(t) < 286(t), where 0 <
k< K <ooand >0 andlet M ¢ H"™(B) be such that M(jw — 8) +
M*(jw—8) >0, VYw€R,then

(f,6Mf) >0, VfeLy0,00)



Proof:  First, note that

(f,0Mf) < K| M|l | f1I3

which follows from the Cauchy-Schwartz inequality. Let us investigate the
truncated inner product. We have

(£, 6Mf)p = (f,(e7P*8)(e*®* M f))r

If we use the notation §(t) = e~?#*6(t), then we have that 8(t) is positive and
non-increasing. Integration by parts gives

(5 e = NS, M Phr + [ (BN, 7 M )

which by Lemma 1 is nonnegative for all T € R*. The limit as T — oo is
finite and nonnegative.
O

LEMMaA 3 X

Let &(t) : RT + [k, K] be differentiable with §(t) > —2aé(t), where 0 < k <
K < oo and a > 0 and let M € H™*™(a) be such that M (jw — a) + M*(jw—
a) >0, VweR,then

(f,6M*f) >0, VfeLy

Proof: we have
(f,6M"f) = (f, M&f)
Let g = 6f and let k() = §-%(¢). Then k(t) is differentiable and such that

k(t) = k(t)e~2** is positive and nonincreasing. Since

(fyM&f) = (kg, Mg) = (g,kMg)

the proof follows from the proof of Lemma 2.

O
It is now easy to show that § satisfies the IQC defined by II in (3). We use the
following notation for the integral which defines the IQC

o (a@)\ ()Y, (u) [
L. (Fuuw)> o (@(z’m) W= <(6u) - (5u>>

We then have

((;;) 11 (;;>> = 2(u, § Myu) + 2{u, s M;u) > 0

since the first term is positive due to Lemma 2 and the second term is positive
due to Lemma 3.



4. Extension to Block-Diagonal Uncertainties

We will in this section extend Theorem 1 to the case when A(t) in (1) belongs
to the class of block diagonal time-varying uncertainties defined as

A(t) = diag[81(¢)Lm,, - - > O (t) Inn ] (4)
Here §;(t) is real valued and differentiable, with

E<&(t)< K, Vit
d
—20161(t) S a—té‘z(t) S 2,3161(t), Vit
where 0 < k < K < o0 and oy, B; > 0. For consistency among the dimensions,
we need Z{il m; = m. We have the following stability theorem

THEOREM 2
Assume that the system in (1) is well posed. If there exists M € Ly;*™, on
the form M = M; + M3, where
1. M, = diag[Mys,. .., Myy], where My € H™ ™ (), with My(jw — B;) +
M:(jw—B)>0, YweRforl=1,...,N.
2. M, = diag[Ma,, ..., May], where My € H™ ™ (ay), with My(jw — a;) +
Mu(jw—o)>0, YweRforl=1,...,N.

and ¢ > 0 such that

[G(]w)]*[ 0 M*(]w)] [G(jw)]<—sf Yw >0
r] |M@Ge) o L

then the system in (1) is uniformly exponentially stable.

Proof: For any u € Ly'[0, 00), we have

((Auu) ’ [J\(:I J\ﬁ*] (AtLU)) =2 ((ur, 6 Muw) + (w, 6 Mzu)

=1

which is positive by Lemma 2 and Lemma 3. Hence, the proof follows from
Theorem 1.

5. Search for Multipliers Using LMI Computation

It will be demonstrated in this section how convex optimization over linear
matrix inequalities can be used in the search for suitable multipliers M, €
RH?*™(8) and M, € RH.*™(a) such that the conditions of Theorem 1
and Theorem 2 are satisfied. Our main idea is to introduce basis multipliers
in order to reduce the search to finite dimensional subspaces of RH.™(3)
and RH*™(a). It is then possible to formulate the stability conditions in
Theorem 1 and Theorem 2 such that the positive real lemma as given in the
next lemma can be applied. This gives us an equivalent finite dimensional
problem in the form of an LMI which can be solved with powerful numerical
algorithms.



LemMaA 4

Given ¥(s) = C(sI — A)~'B + D, where B € R"™, C € R”*", D € R,
M = MT € R”*? and where (4, B) is controllable, then the following state-
ments are equivalent.

1. O*(jw)ME(jw) < 0,Yw € [0, 0]

2. There exists a symmetric matrix P € R"*" such that

ct MiC D ATP+PA PB P
DT [ I+ BTP 0 |~

The corresponding equivalence for strict inequalities also hold. The control-
lability condition can in that case be exchanged with the condition that
det(jw — A) # 0 for all w € R..

Proof:  This follows from [Willems, 1971]. The last statement follows from
[Rantzer, 1994].

We will focus our discussion on the case covered in Theorem 1, but it is
easy to extend the ideas to the block-diagonal case covered by Theorem 2.

Introduce basis multipliers M; € RHY*™(8) and M, € RHY*™(a), and
let M, = UM, and M, = VMZ, where U € R™Y and V € R™M. The
stability condition in Theorem 1 can with this choice of basis multipliers be
stated as the question of existence of U,V defined as above such that

Gl 0 M:UT+VM,] [G
[ } [ _ P UV 2“ ](jw)<0, Yo € [0, 00]
1| \v¥, +ve 0 I

subject to the following restriction, which constrains U and V' such that M 1(s—
B) and M,(s — «) are positive on the imaginary axis.

UM, (jw - B) + M;
VM, (jw— a) + M; (jw— a)VT >0
for all w € [0, c0]. We can write the inequalities above as

U (jw)M(U,V)¥(jw) < 0

U (jw)M(U, V)T, (jw) < 0 (5)

for all w € [0, o0], where

I 0 -1 0
0 1 G(s) 0 I
¥, = e — | ~
° 0 Mz(S) I: I jl ! ‘pl M2(5 e a) 0
My(s) 0 0 My(s — B)
and
0 0 V 0
0 0 0 U
MU, V) =
(U, 7) vl 0 0 0
0o UT 0 0



Let us introduce controllable state-space realizations of ¥, and ¥,, such that
By(s) = Co(sI — Ag) "By + Dy and ¥y(s) = C1(sI — A;)"'B; + D;. Let ng
and n,; denote the dimension of Ay and A,, respectively. Then by Lemma 4
the inequalities in (5) is satisfied if there exists U € R™", V € R™M and
symmetric matrices P, € R™*™ and P; € R™*™ such that

cr Co ATP, + P,Ay PyB,
M(U,V <
(DoT) ( )(Do)+< Bi P 0 ’

Cf M(U V) Cl + A{P1+P1A1 PlBl <0
t"¥#\ D, BTP, 0o /=

We will apply these ideas to some examples in the next section.

6. Examples

This section will illustrate the method for finding suitable multipliers described
in Section 5, by two examples. All LMI computations are done with LMI-
lab, [Gahinet and Nemirovskii, 1993]. We start with a simple example from
[Sundareshan and Thathachar, 1972].

ExAaMPLE 1
We will consider a system as in Figure 1, where

(s? + 4s 4 11)(s® 4 200s + 20)
(s2 + 25 + 10)(s? + s + 16)

G(s) = -

and A(t) = §(t), where §(t) is a real, positive and time-varying parameter with
—8(t) < 8(t) < 68(t). We will use the ideas in Section 5 to search for suitable
multipliers M; € RH(3) and M, € RH(0.5). With the basis multipliers

—_ 1 1%
M, = |1, —
! [’s+4]
— 1 5 i
M, = |1
2 [’s2+4s+1ﬁ’32+4s+16

numerical calculations in LMI-lab, gives

U =(0.1667 0.1481)
V =(0.1667 0.1481 —2.5687)

The stability conditions of Theorem 1 is satisfied with the multiplier M =
M, + M;, where My = UM,, M, = V M,. Figure 2, 3 and 4 shows the Nyquist
curves of My(s — 3), M,(s — 0.5) and M (s)G(s), respectively.

ExaMPLE 2—Ship Steering

We will in this example consider ship steering dynamics as in Example
9.6 in [Astrém and Wittenmark, 1989]. The dynamics for the ship can, with
notation as in Figure 5, be approximated by the Nomoto model

#(2) = v(t)(~az(t) + bo(t)v(1))
d(t) = =(t)



Nyquist curve for M1(s-3)
0.45 T T T T T T

0.4+
0.35p
0.3f
0.25f

0.2y

i1 ] 1 ] i A i i
3.3 2.4 25 2.6 2.7 2.8 2.9 3 3t 3.2

Figure 2. Nyquist curve for Mi(s — 3)

Nyquist curve for M2(s-0.5)

2F

-8}

-8

14 L ' L L I
0 5 10 15 20 25 30

Figure 3. Nyquist curve for Ma(s — 0.5)

where 1 denotes the heading of the ship, v denotes the rudder angle and v is
the speed of the ship. It is assumed that v(t) > 0. We will as in [Astrém and
Wittenmark, 1989] study stability of the ship dynamics for an unstable tanker
with @ = —0.3 and b = 0.8, which is controlled by a PD regulator

v=—-K
K(s) = k(1 + sTy)

where k = 2.5 and T; = 0.86. The closed loop system can be illustrated as in
Figure 1, with §(¢t) = v(t)I, and G(s) replaced by

—afs b
G =
ofs) (—K(.s)/s2 0)
We will here study the particular case when v(t) = vo + %(t), where vy =
0.2 and 9(t) € [n,1 — 7] for some (small) > 0. It is easy to see that the closed

10



Nyquist curve for M(s)G(s)

1200
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Figure 4. Nyquist curve for M(s)G(s)

Y

. 1;J’VIl

Figure 5. Notation used to describe the motion of ships.

loop system is stable for a constant speed of Veonst > bnom/(@nomkTs) = 0.1744.
This means that we are quite close to the stability boundary when ¥ = 9 = 0.
We assume the time-derivative of ¥ is bounded as

—2ad(t)(1 - 5(t)) < = 5(2) < 285(2)(1 — (1))

&~

for some a, 3 > 0. We transform the system as in Figure 6 in order to obtain
the system on a form for applying Theorem 1. We get

6(t) = 5 f(;)(t) € [127’,1;"] ~ (0, 00)

—2a8(t) < %6(0 < 266(t)
and
G(s) = (I = vGo(s)) "Go(s) — I» € RE”

The characteristic loci for G(s) is given in Figure 7. Note that the largest
eigenvalue is much larger the smallest and that the plot only contains the
characteristic loci for the positve imaginary axis. We need to find a multiplier
M as in Theorem 1 such that the characteristic loci of MG is stricly in the

11



.

‘O“l‘/ Go (+)
[l |
—J
(—f\ v(t)]
—'qu
1]
L=
—
G
§(t)I
Figure 6. Loop transformation

left half plane. We use the ideas in the last section with M, =0 and

I

s+1

=
Il

(s+1)2

(+1)°

L (s+1)%

-1,
_8"_._}2
_n"_fz

-—’1—12_

If 8 = 0.085 then compuations in LMI-lab gives

[ 0.2815
—0.0451
0.1191
0.0774
—0.0821
0.1025
0.2987
—0.0188
—0.1485

| 0.1144

—0.05507]
0.0110
0.0013
0.0049
0.0214

—0.0019
—0.037
0.0117
0.0118

—0.0093 |

12
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Figure 7. Characteristic loci for G(s)

Figure 8. Characteristic loci for M1 (s)G(s)

and the resulting characteristic loci for M;G is given in Figure 8 and the
corresponding characteristic loci for K1 is given in Figure 9. We have thus
shown that the system is stable when

%ﬁ(t) < 0.175(t)(1 - #(t))

Note that we need no lower bound on the derivative of .

7. conclusions
We have given a multivariable extension of the stability result in [Sundare-

shan and Thathachar, 1972] together with an LMI method for computing the
multipliers. Two examples show the applicability of the result.
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Figure 9. Characteristic loci for Mi(s)
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