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Abstract

A new optimal stochastic control problem that minimizes the probability of a
signal to cross a high level is solved. This type of problems has previously been
solved by minimum variance control, which is known to have a badly behaved
control signal. To overcome this, weighting on the control signal—LQG—has
been proposed, but no good criteria on how to choose the weighting has been
known. The solution to the new problem can be thought of as finding such
optimal weightings.

1. Introduction

There are a lot of control problems where the goal not only is to keep the
signal that is controlled near a certain reference value, but also to keep it
below a dangerous level—dangerous in the sense that if the signal crosses the
level, the controller has failed. The distance between the critical level and
the reference value is normally large, since otherwise the failure rate will be
intolerably high. However there may be other control-objectives that make it
undesirable to choose the distance too large. An example of problems of this
kind can be found in [4], where the power of an ore crusher should be kept as
high as possible but not exceed a certain level. Other examples can be found
in sensor-based robotics and force control, [7].

This type of problems has previously been solved by minimum variance
control, [2] p. 169 and [3] pp. 159-209—the intuitively best controller. It
is well-known that minimum variance control causes large variations in the
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control signal. This problem has been solved by introducing weighting on the
control signal—LQG-design. However there has been no good criteria on how
to choose the weighting. The controller designed below can be interpreted
as chosing optimal weighting-matrices in a LQG-problem, and it is obtained
by minimizing a criteria that better captures the control-objectives in the
problems described above than the minimum variance criteria does.

In Section 2 the control problem is formulated. It is an optimal stochastic
control problem. In Section 3 the problem presented in Section 2 is solved for
the stationary case. In Section 4 the optimal controller found in Section 3 is
compared with the minimum variance controller on a second order process.
It is seen that the optimal controller gives a variance that is close to that of
the minimum variance controller, causes a lower upcrossing intensity of high
levels, and has a control signal that is better behaved. Finally in Section 5
the results are summarized.

2. Control Problem

The problems mentioned above are captured in the following simple problem
formulation:

minP {sup 2(t) > zo} , (1)

u(t) [0,T]
where z(t) is a signal that should be kept well below zy, and where u(t) is
a control signal that in some way influences z(t). The minimization is of
course constrained to a stable closed loop. To be able to solve the problem it
will be assumed that z(t) is a stationary Gaussian process with mean m, =
E{z(t)} that should be equal to a predescribed reference value, and covariance
r,(7) = E{(2(t + 7) — m(t + 7))(2(t) — m.())}. It must be required that 2(t)
is continuous with probability one for (1) to have any meaning. A sufficient
condition for this can be found in [5], p. 170. The assumptions above hold if
the plant to be controlled is linear, the disturbances acting on it are stationary
Gaussian processes, the controller is linear, and the closed loop is stable and
has a covariance function that is continuous. Thus these are the constraints
under which the minimization above will be done.

3. Regulator Design

The problem stated in Section 1 will be solved approximately for large values
of zgp — m,. This is the interesting case for the type of problems discussed in
the introduction.

In the first subsection some results from the theory on extremes in random
processes are given, and then in the second subsection the problem is rephrased
to minimization over a set of solutions to LQG-problems parameterized by a
scalar. The equations for solving the LQG-problems are given in the last
subsection.

Some Results from the Theory on Extremes in Random Processes

To simplify the problem in Section 2 an upper bound for the probability in
(1) will be given.



THEOREM 1
If »,(7) has a finite second derivative for 7 = 0, then the probability in (1)
can be bounded as

P {sup () > } <P {2(0) > 70} + T, (2)
[0,T]
where
_loa; (z0 — m;)?
K= oro, €xp (-—203 ) (3)
and where o2 = r,(0) and o2 = —r¥(0).

Proof: The proof can be found in Theorem 7.3.2 (Rices’s Formula) and The-
orem 8.2.1 in [9], but a rough outline of it will be given below. Let N be the

number of upcrossings of zp by 2z in [0,T]. Then it follows by Rice’s Formula
that E{N} = Tu. Further

P {sup z(t) > zo} =P {2(0) > 20UN >1}
[0,7]

<P {2(0) > 20} + P{N > 1}
<P {z(0) > 2} + E{N}

ad

If 29 — m, is large, then the first term on the right hand side in (2) is

neglectable. Under this assumption it can also be shown that the number of

upcrossings of 29 by z is approximately a Poisson process with intensity u, see
Theorem 9.2.1 and Corollary 9.1.3 in [9].

Solution

It is obvious from the previous subsection, that the problem in (1) can be
approximately solved for large values of 29 — m, by minimizing g in (3). Let
z be defined by

dz =Azdt + Bidu + Badv

dy =C,zdt + Dde 8 (4)

z 2022

where v and e are zero-mean Wiener-processes with EdvdvT = R, dt, EdedeT =
Rdt and EdvdeT = 0. The signal y is the measurement, which the control
signal is constrained to be a function of.

It will be seen that the minimization of p in (3) can be done by first
minimizing

J = E{2? + p*#%} (5)

over u for p > 0, and then minimizing p over p. In the following lemma J is
rewritten to fit into the usual LQG-problem formulation.

LEMMA 1
If CoB; = 0, then J in (5) can be written

J = E{zT Q2 + 22T Q1ou + uT Q,u}, (6)



where
@1 = CICy + p?ATCTCLA
Q12 = p*ATCT C. By : (M)
Qz = sz{Cg‘CzBl

Proof: The result follows immediately by using the definition of z in (4). O
The following lemma gives conditions under which there exist a unique
solution to the LQG-problem of minimizing J in (6).

LEMMA 2
Suppose that (4, By, C4) is SIMO, (4, By, C,) is SISO, (A4, B,) is stabilizable,
(C1, A) is detectable, and CyB; = 0. Let Q; be factorized into

Q1= CQ,C7,
where C and Q, have full rank. Further let BleBg' be factorized into
Bng].Bg1 o8 BR]_BT,

where B and R; have full rank. If pC3B; # 0 or C(sI — A)7!B; is full rank,
and if DR, DT is positive definite or Ci(sI - A)~ 1B is full rank and R; has
rank greater than or equal to the number of measurements y, then there exist
a unique feed-back control that minimizes J in (5).

Proof: If pCyB; # 0, then @3 > 0 by (7) in Lemma 1. Lemma 1 also implies
that Q1 — nglesz = CT (4, which is nonnegative definite, and that Q, is
nonnegative definite. Thus it follows by [1], pp. 56-57, that the deterministic
optimal control problem has a unique solution. If pCyB; = 0, then Q3 =
@2 = 0 by (7) in Lemma 1, but then it follows by [10] that the deterministic
optimal control problem has a unique solution, since C(sI — A)~1B; is full
rank. If DR, DT is positive definite or Ci(sI - A) 1B is full rank and R; has
rank greater than or equal to the number of measurements y, then it follows
by [10] that the optimal filtration problem has a unique solution. Since both
the optimal deterministic control problem and the optimal filtration problem
has a unique solution, there exist a unique feedback control that minimizes J
in (5). O

The next lemma gives a parameterization of all jointly minimal variances
o2 and az?.

LeMMaA 3

Suppose that there exist a unique feed-back control that minimizes J in (5)
for m, = 0 and p > 0. Then all pairs of minimal values, i.e. all pareto optimal
values, of o, and o; are obtained and parameterized by p by minimizing J.

Proof: Let

Py, Py _ (Cz(sf— A)']'Bz 0) Cz(sI— A)_lBl
<P21 Pzz) h <(Cl(sI— A)F']'Bg D) Cl(SI— A)-lBl)

and let Py = N, D! = Dy 1N, be right and left coprime factorizations of Py,

with
V. -U. D, U\ _ (I 0
-N;, D N, i/ \0 I/’



Then by Theorem 1 p. 38 in [6] all stabilizing controllers U = HY of (4), where
U and Y are Laplace transforms of 4 and ¢, can be written H = H; H, !, where

() - (i =) (o)

H 2 B I/I -N r Q

with @ being a stable transfer-function matrix. Thus the minimization over
u constrained to a stable closed loop system can be rephrased to a minimiza-

tion over (), where @) belongs to the linear space of stable transfer-function
matrices. By Theorem 1 p. 43 in [6]

vV
Z = (P11 + P13D, U, Pyy — P13D,.QD; Pa) (E) j

where Z, V and F are Laplace transforms of z, ¥ and é. It is seen that the
transfer-function matrices from V and E to Z are affine in @), and since the
variances of z and # are convex in the transfer-function matrices, it follows
that the variances are convex in @. Then, since there exist a unique feed-
back control that minimizes J in (5), it follows by Theorem 2.1 in [8] that all
pareto optimal values of ¢, and o; are obtained and parameterized by p by
minimizing J in (5). g

It will now be shown how the minimization of x in (3) can be rephrased
to finding optimal weightings in a LQG-problem.

THEOREM 2

If o, < zp — m;, and the conditions in Lemma 2 are fulfilled, then the mini-

mization of p in (3) can be performed in two steps. First J in (6) is minimized

over u for m, = 0 and p > 0. Then g = p(o.(p),o:(p)) is minimized over

p, where o,(p) and o;(p) are the values of o, and o; obtained when J is

minimized.

Proof: Since p is an encreasing function of ¢, and o; for o, < 29 — m;, the

solution is found among all pairs of minimal values of o, and ;. By lemmas

1-3 all such pairs are found and parameterized by p by minimizing J in (6).
(]

LQG-equations

For short reference the equations for deriving the LQG-solution when @, and
Rj are invertible are given below. The transfer function from measurement to
control is

H(s)=-L(sI - A+ B,L + KC1)"'K, (8)
where L and K are given by

L=Q;'(Q%; + BTS)

, 9
K =PCT R;! )

and where S and P are the solutions to the Riccati-equations, [1] p.56-58, and
p. 168,

(A- B1Q;'QT,)"S + S(A- B1Q37'QT,)
~5B1Q;'BT S + Q1 - Q12Q5QT, = 0. (10)
AP+ PAT 4 B,R,BT — PCTR;'C1P =0



To calculate o, and o; the following Lyapunov-equation for the closed loop
system has to be solved, [3] p. 66 and pp. 290-291,

A X+ XAT +R. =0, (11)

where

4 _(A-BL B
"\ 0  A-KC

R - (BleB;’ B;R,BY )
* \ByRBY B;R,Bf + KDR,DTKT

Then o, and o; are given by

o2=(C, 0)X(C2 0)T (12)
0'3202(A—B1L BlL)X(A—BlL BlI’)TC{

4. Evaluation

To evaluate the performance of the optimal controller obtained by minimizing
(3) a second order process will be investigated. The set of LQG-solutions is
calculated analytically, and then p(p) is calculated numerically and plotted.
The optimal controller is compared with the minimum variance controller—
the intuitively best controller. It is seen that the new controller gives a lower
upcrossing intensity of high levels, and that it has a control signal that is
better behaved.

In the first subsection the process is defined, in the second subsection
the LQG-controllers are computed, and in the last subsection the optimal
controller is compared with the minimum variance controller.

Process

Let the process be given by

01 by 0
d:r:-(0 0)mdt+ (bz)du-}- (l)dv

dy=(1 0)adt+de :
z=(1 0)=

Ri = 0% >0, and Ry = 02 > 0. As long as b, # 0 there will by Lemma 2
exist a unique solution to the LQG-problems.

LQG-Controllers

The solutions to the Riccati-equations in (10) are

#=(0 o)
0 0
P = 0’2\/2010’2 0109 '
N 7109 0'1\/20'10'2



By using (9) it is found that

and that
291
K = 72

a1
a2

Some more tedious calculations will give the controller H(s) in (8) to be

3 (V201045 + po1)s + o1
b1p0’232 4 (bla'z + blp-\/ﬁo'la'z + bzpd’z)s + bz(p\/20'10'2).

H(s)=

It is interesting to note that if b; # 0, then the controller is proper for all values
of p. For p > 0 the controller is strictly proper. When b, = 0 and b, # 0, the
controller is proper only for p > 0. It is also seen how an integrator can be
forced into the controller by having a Wiener process as load-disturbance, i.e.
bl;éOandbz:O.

Optimal Controller and Minimum Variance Controller

The intensity g and the variances of z and z has been calculated numerically for
values of p in the range of 1078 to 10®, m, = 0, 20 = 5and by = by = 0y = 05 =
1. The result is shown in Figure 1. The intensity has a minima for p = 0.1,
which is g = 1.1334-10~%. Note that the variance of z decreases rapidly, while
the variance of z only increases slowly for small values of p, ,(107%) = 1.1892
and ¢,(1071) = 1.2305. As p goes to zero—minimum variance control— the
intensity goes to infinity. This is easily seen also theoretically by noting that
with minimum variance control 7,(7) is not differentiable for 7 = 0. The
optimal controller is given by:

15.1421s + 10.0000

H = -
(8) =~ 21941425 + 11.4140

and the minimum variance controller is given by:

1.4142s + 1.0000
s+ 1.0000

H(s)=-

Bode-diagrams of the controllers are shown in Figure 2. It is interesting to note
that the difference between the minimum variance controller and the optimal
controller is that the optimal controller has much lower gain for high frequences
due to the optimal controller being strictly proper while the minimum variance
controller being only proper.

The Amplitude-diagrams for the closed loop transfer functions from V' and
E to Z are shown in Figure 3. The main difference between the two control
strategies are that the optimal controller causes a lower high-frequency gain
from E to Z than the minimum variance controller.

Plots of z as functions of time for the two control strategies are shown in
Figure 4. It is seen that the main difference is that the variance of z is larger
with the minimum variance controller than with the optimal controller.
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Figure 1. The variance of z—top, the variance of z—middle, and the crossing
intensity u—bottom as functions of log(p).

5. Conclusions

A new interesting optimal stochastic control problem has been posed. It
has been solved in the stationary case. The solution can be thought of as
finding optimal weighting-matrices in a LQG-problem. The new controller
has been compared with the minimum variance controller—the intuitively
best controller—for a second order process. It has been seen that the new
controller causes a lower upcrossing intensity of high levels, gives a variance
that is close to that of the minimum variance controller, and that it has a
relative degree that is larger. Thus the control signal will be better behaved
for the new controller.
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v to z—left, and é to z—right. The solid lines are the optimal controller and the
dotted lines are the minimum variance controller.
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Figure 4. The signal z(t) as function of time for the minimum variance
controller—left, and the optimal controller—right.
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