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Abstract.

A new optimal stochastic control problem that minimizes the probability that a

signal upcrosses a level is solved by rewriting it as a one-parametric optimization problem
over a set of LQG-problem solutions. The solution can sometimes be thought of as finding

optimal weightings in an LQG-problem.
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1. Introduction

There are a lot of control problems where the goal is
not only to keep the controlled signal near a certain
reference value, but also to prevent it from upcrossing a
level. The distance between the level and the reference
value is normally not small, since otherwise the upcrossing
probability will be intolerably high. However, there may
be other control-objectives that make it undesirable or
impossible to choose the distance large. Examples of
problems of this kind can be found for example in sensor-
based robotics and force control, [7].

The controller obtained below is obtained by solving
a one-parametric optimization problem over a set of LQG-
problem solutions, and it can sometimes be interpreted as
choosing optimal weighting-matrices in an LQG-problem.

In [5] and [6] the problem was solved in the continuous
time case; here the discrete time case is treated. The con-
tinuous time case has also been accepted for publication
in IEEE Transactions on Automatic Control.

In Section 2 the control problem is formulated. It is
an optimal stochastic control problem. In Section 3 the
problem presented in Section 2 is solved. In Section 4 the
optimal controller found in Section 3 is computed for a
first order process and different values of the critical level.
Finally in Section 5 the results are summarized.

I would like to thank Professor Karl Johan
Astrdm , Dr Per Hagander and Professor Bjérn Wittenmark for

Acknowledgements

encouraging enthusiasm and support, and valuable criticism.

2. Control Problem

Let z be a stationary Gaussian process defined by

z(k + 1) = Az(k) + Byu(k) + Bzv(k)
y(k) = C1z(k) + De(k) (1)
2(k) = Cqz(k)

where v and e are Gaussian white noise sequences with
Evv?T = R;, EeeT = R; and Eve’ = R;; = 0. The
signal y is the measurement, which the control signal u
is constrained to be a linear time-invariant feedback of. It
is assumed that the mean m, = E{z} of z is equal to a
predescribed reference value. It is possible to consider more
general process models than (1), but to not get swamped
with technicalities they will not be discussed here.

Let D be the set of linear time-invariant stabilizing
feedbacks of (1), and let D, be the set of linear time-
invariant stabilizing feedbacks of (1) for which o, < 2z —
m, holds, where o2 is the variance of 2.

The control-problems mentioned in Section 1 are
captured in the following problem formulation:

o e @)
where
p=P{z(k) <zoNz(k+1)> 20} (3)

and where 2 is the level that should not be upcrossed.
The quantity g is called the upcrossing probability. The
restriction on o, will exclude the trivial solution o, = oo
for minimizing .



The following lemma gives an expression for the
upcrossing probability g in (3) in terms of a double
integral.

LemMa 1
It holds

p=P{z(0) < 20N z(1) > 20}
[T ig(x) ML (2)
—/0 0p¢ (Uﬁ) -/2u—y oot \7a ) =W
where o2 and a'g are the variances of
a(k) = z(k + 1) + 2(k) @)
B(k) = z(k + 1) — z(k)

and where ¢(z) = lz,r exp(—z?/2) and u = 2z — m,.

Proof: Since o and 8 are independent, the result follows
immediately. O

3. Regulator Design

In the first subsection the problem of minimizing the
upcrossing probability is rephrased to a one-parametric
minimization over a set of solutions to LQG-problems. The
equations for solving the LQG-problems are given in the
second subsection. In the last subsection the results are
summarized.

Solution

It will be seen that the minimization of u in (3) over D,
can be done by first minimizing

J =E{(1-p)a® + pB} ()

for p € [0,1] and m, = 0 over D, and then minimizing u
over the solutions obtained in the first minimization, i.e.
over

Vi = {(ca(H),00(H)) €V,

HEDJ}

where

V. = {(0a(H), 0p(H)) € B|H €D, }

Dy = {H GDIH = argmin J(H, p), p € [0, 1]}

and where 0% and 0‘2, are the variances of a and . Note
that it is only assumed that m, = 0 when J is minimized,
not when u is minimized.

In the following lemma J is rewritten to fit into the
usual LQG-problem formulation.

LEMMA 2
The loss function J in (5) can be written

J =J+E{+T BT cTC,B;v}

where
J = B{zT Q12 + 22T Q12u + uT Qu}, (6)
and where

Q1 =CICr+ ATCTCLA+2(1 - 2p)CT C 4
Q12 = (AT + (1 — 2p)1)CT C, B, (7)
Q. = BTcTc,B,

Proof: The result follows immediately by using the def-
initions of z in (1), and of a and 8 in (4) and by noting
that v is uncorrelated with z. O
Remark. For p = 0.5 the controller that minimizes J is
the minimum variance controller, since J = E{z(k +1)? +
z(k)?} for p = 0.5.

The next lemma shows how all jointly minimal vari-
ances of a and § can be obtained by minimizing J in (6)
for p € [0, 1]. But first a precise definition of jointly mini-
mal will be given.

DEFINITION 1—Pareto optimality

Let X denote an arbitrary nonempty set. Let f; : X —
Rt, i € s be s nonnegative functionals defined on X.
Then a point z° is said to be Pareto optimal with respect
to the vector-valued criterion f = (fi, f2,-- -, fs) if there
does not exist z € X such that f;(z) < fi(z°) for alli € g,
and fi(z) < fi(z°) for some k € s. O

LEMMA 3

Suppose that (A, B;) is stabilizable, and that (Cy, 4) is
detectable. Let 02 and o be the variances of o and
B defined on D. Then the set Dp of Pareto optimal
controllers with respect to (03,073) is a subset of D;.

Proof: The proof follows from chapters 6.5.2, 7.2 and 12.2
in [3] and Theorem 1 in [8], but a rough outline will be
given below. By Lemma 2 J can be considered instead
of J. Further by using the so called Q-parameterization
of all stabilizing controllers it is seen that the variances
are convex in @, [3]. Since @ belongs to the linear space
of stable transfer-function-matrices the result follows by
Theorem 1 in (8]. O

Remark 1. All controllers obtained by minimizing J for
p € (0, 1) are Pareto optimal by Lemma 17.1 in [9]. If the
solutions obtained for p = 0 and p = 1 are unique, then
they are also Pareto optimal by Lemma 17.2 in [9].

Remark 2. Remark 1 and Definition 1 implies that V;
can be parameterized by a scalar. This is not necessarily
the case for Dy.

Remark 3. Remark 1 implies that if the controllers
obtained by minimizing J for p € [0, 1] are unique, then a
parameterization of Dp = Dy by p is obtained, [8], p. 16.
LEMMA 4

If 0o < 2(20 — m,), then the upcrossing probability p in

(3) has strictly positive partial derivatives with respect to
oq and og, i.e. -8%‘: > 0 and %‘; > 0.

Proof: See Appendix O



It will now be shown how the minimization of x in
(3) can be rephrased to a minimization over a set of LQG-
problem-solutions.

THEOREM 1
Suppose that (4, B,) is stabilizable, and that (Cy, A) is
detectable. Then

i o K ) K)) = i a
Jin p(oa(K),0p(K)) (,a,'i‘;ilev,“(” 108)
if it exists.
Proof: 1t is obvious that
i a K ’ K)) = i ay
min p(0a(K),05(K)) (a,,.r?:?ev."(” ap)

so that it only remains to be shown that the minimization
on the right hand side can be restricted to V;. Let

Ve = {(¢a(H),05(H) € V;|H € Dp}

and let V, be the closure of V,. Since V, is a compact set,
since the inequality o, < 29 — m; is equivalent to that
05 + 05 < 4(20 — m,)?, and since p is differentiable and
by Lemma 4 has strictly positive partial derivatives with
respect to o, and o on V,, the minimum of x on V,is
attained on the boundary 8V, of ¥,. If the minimum exist
on V,, then it is attained on 8V, NV, . Further by Definition
1 the minimum is not attained on (6V. N V,)\Vp, since
there are points to the left ore below these in the (oq,08)-
plane in V, for which u attains a smaller value. Since by
Lemma 3 Vp C Vj, the result follows. a

Remark 1. Note that the problem of minimizing over Vy
is a one-parametric optimization problem by Remark 2 of
Lemma 3.

Remark 2. If for each p € [0,1] the minimum of J is
unique, then by Remark 3 of Lemma 3 the minimization

of u can be thought of as finding optimal weightings in an
LQG-problem.

LQG-equations

For short reference the equations for deriving the solution
that minimizes J in (6) in Lemma 2 when the controller
H is allowed to have a direct-term are given below. The
transfer function from measurement to control is

H(q)=—Ls(¢I -~ A+ B1L; + KC1)"'K, — Ly (8)

where Lz, L, and K are given by

I,=L-L,C
L, = LK,
= (Q2+ B SB1)"}(B{ 54+ Q)
K, =K - ByL,
K = AK;

K; = PCT(DR; DT + C,PCT)™!

where S and P are the solutions to the Riccati-equations,
Chapter 11.4 in [2], and [4],

ATSA -5+ Q1 — (ATSB:1 + Q12)
(@2 + B SB1) 1 (QT; + B{ SA) =0
APAT — P+ B;R BT
—APCT (DR, DT + C,PCT)~1C1PAT =0

(9)

and where Q1, Q2 and Q;z are given by (7) in Lemma 2.
To calculate o;, ou, 0q and og the following Lyapunov-
equation for the closed loop system should be solved, [1]
p- 49,

A.XAT + B.RBT =

M _(A—BlL B,L, )
T 0 A-KC;

(Bz —BlLyD)
B, =
B, —-KD

(5 x)
R =
0 R;

Then o4, 08, 0; and oy are given by

(10)

where

a5 =(C2 0)

((A: + D)X (4. +I)T + B.RB])(C; 0)"
oz =(Cz 0)

((Ac = X(A. - )T + B.RBT)(C; 0)F (1)
o2=(C, 0)X(C; 0)T

T
=(-L L;)X(~L Lg) +L,DR,DTLY

Due to the triangularity of A, it is possible to split up (10)
into three equations, where one of the solutions is P in (9),
which reduces the complexity of the problem.

Summary

It has been shown how the minimization of the upcrossing
probability can be rephrased to a minimization over a
set of LQG-problem solutions parameterized by a scalar,
regardless of the uniqueness of the solutions to the LQG-
problems. However, if the solutions to the LQG-problems
are unique, then the problem of minimizing the upcrossing
probability can be thought of as finding optimal weightings
in an LQG-problem. Note that the Lyapunov equation (10)
is linear, and thus does not add any significant complexity
compared to an ordinary LQG-problem.

4. Ewvaluation

To evaluate the performance of the optimal controller
obtained by minimizing (3) a first order process will
be investigated. The set of LQG-solutions is calculated
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analytically, and then u(p) is calculated numerically and
plotted.
Let the process be given by

z(k+ 1) = z(k) + 0.04u(k) + 0.2v(k)
(k) = 2(k) + e(k)
2(k) = z(k)

and Ry =1, R; =1 and R;2 = 0. The weighting-matrices
in (7) are

Q1=4(1-p)
Q12 = 0.08(1 — p)
Q2 =0.16

and the solutions to the Riccati-equations in (9) are

S =2v/p(1 - p)
0.04 + /40016

=
2
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Figure 8. The optimel values of p as function of z

Some more tedious calculations will give the controller

H(q) in (8) to be

809
H(g) = —2 _
(9) i

where

30 = 2v/p(1 — p) +2(1 — p))(0.04 + vV4.0016)
ro = 0.04(24/p(1 — p) + 1)(50.04 + v/4.0016)
r1=2(1-2p)

The probability p and the variances of ¢, 8, z and u
have been calculated numerically for values of p in steps
of 0.01 in the range of 0.01 to 0.99, m, = 0, and 2y = 2,
3, 4, and 5. The results are shown in figures 1 and 2.

In Figure 3 it is seen how the optimal value of p
decreases as zp increases. This indicates by the remark
of Lemma 2 that the optimal controller and the minimum
variance controller are approximately the same for large
values of zg.

5. Conclusions

A new optimal stochastic control problem that minimizes
the probability that a signal upcrosses a level has been
solved.

The new controller is obtained as the solution to
a one-parametric optimization problem over a set of
LQG-problem solutions, and thus the complexity is not
significantly larger than for an ordinary LQG-problem.
Further it can sometimes be thought of as finding optimal
weightings in an LQG-problem.

The new controller has been computeed for a first
order process for different values of the critical level.
It has been seen that the optimal controller approaches
the minimum variance controller as the distance to the
critical level from the reference value increases. However,
for moderate values of the critical level, which is the
interesting case for the examples in Section 1, the optimal



controller outperforms the minimum variance controller,
since the upcrossing probability and the variance of the
control signal are significantly lower.
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Appendix

The proof of Lemma 4 is tedious but simple. Let u =

2zo — m,. By Lemma 1 and by integrating by parts

al‘r B 0o 1 ¢ )/2u+y __1— i
E_[) op 98/ Jou-y o Oa
-2y (i) )dzdy
03" \0a
1 2u+ 2u+
= [ o () (2t ()
o 78 os Oa Oa
2u — 2u —
+ 20 (220) ey
atx Oa

Let

o) = -2ty (2E2)

a a

2u—y, fu—y
(%)
o Oa

Since f(0) = 0 and since, if 0, < 2u and y > 0,

= () ()
(gt (52)

it follows that 5%% > 0. Further
_ [ 1 y v oy
L) 3@
0 aﬂ og ap o3
2u+ty 1
L7 )
2u—-y Oq Ca
0 q 2u+ty 1
[ () L et () e
0o 9 99 2u-y %a Oa
2u+ty =
@) L ()=
ﬁ a, 21‘ -y Oq T o
[o) 1 2uty 1
() (L 2 (3)
o 05 \0g 2u—y Ta \Oa
1

O
60’5

d [ 1

+ty ¢( )dz)dy
YJ2u—y Oa Oa
[Ty (v 2uty
=[ % () & (52
+¢(2u—y))dy>0

Oa




