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A DSP Implementation of an
Adaptive Controller

Karl Johan Astrém Jagannathan Kanniah
Department of Automatic Control Department of Electronics

Lund Institute of Technology and Communications Engineering
Box 118, S-221 00, Lund Singapore Polytechnic

Sweden Singapore 0513

Abstract. Limitations in computing speed have so far precluded the use
of adaptive regulators for controlling fast processes. The advent of digital
signal processors (DSP) has somewhat reduced the limitations, since they are
specially designed for fast computations. Furthermore, filtering operations
are quite straightforward to implement using a DSP. An adaptive regulator,
which samples at 3.33 kHz, is described in this report. Particular attention has
been given to prefiltering and post filtering in the algorithm. The prefiltering
requirements are different from standard digital filtering. Post filtering is
implemented as predictive first order hold (PFOH). The implementational
details, timing considerations, and test results are also presented.

1. Introduction

Adaptive controllers have mostly been implemented using microprocessors and
microcontrollers. The advent of microprocessors and microcontrollers reduced
the cost and development time drastically. This is due to the fact that micro-
controllers offered a whole bunch of additional hardware like ADCs, DACs,
RAM, EPROM, and even PWM features, which are needed for real time data
acquisition and control. Even with all these advancements, the sampling time
has to be rather large, since it is necessary to perform identification and con-
trol computations between control changes while implementing adaptive reg-
ulators. With the current technology, it is possible to get sampling rates up
to a few hundred Hz. These limitations are easing with the advent of digital
signal processors. Now it is possible to implement adaptive regulators with
substantially faster sampling rates.

Furthermore, the modern DSPs are capable of floating point computa-
tions without any additional overheads of programming, fast clock rates, and
parallel processing. Digital Signal Processors are specially designed for filter
applications. Hence while implementing an adaptive regulator, it is possible
to include a suitable adaptive filtering as an integrated part of the software,
by using multirate sampling techniques. In the following sections various con-
siderations regarding adaptive prefiltering and post filtering for implementing
an adaptive regulator are discussed. Actual implementational details and test
results are also presented.



2. Adaptive Pre-Filtering

The importance of prefiltering can not be overemphasised [1,2]. The quality of
control depends critically on the quality of the measured signals. In all digital
control applications, it is important to have a proper prefiltering of signals
before they are sampled. Because of aliasing problem connected with the
sampling procedure, it is necessary to eliminate all the frequencies above the
Nyquist frequency corresponding to the sampling rate. In adaptive systems
there is an additional difficulty because the aliased signals may give rise to
estimation errors. For high performance systems with fixed sampling rates,
it is common practise to design analog prefilters, since the required cut-off
frequency is known. For a general purpose systems, where the sampling rates
may vary significantly, a fixed prefilter matched with the fastest sampling
rate is typically used. Such a system may not have good performance at low
sampling rates. It is fairly complicated to implement an analog filter with
variable bandwidth. Such a filter is also costly.

Since filters are easily implemented in a DSP system, it is possible to
include adaptive prefiltering as a part of the adaptive controller. A possible
filtering scheme based on multirate sampling is shown in Figure 1. A fast
sampler with period & is combined with a fixed analog prefilter. The adaptive
prefilter which runs with sampling period h then performs digital filtering,
which is matched to the variable sampling period T of the controller.

Filter Options

Suitable choices of anti-aliasing filters are second or fourth order Butterworth,
IATE (Integral Time Asolute Error), or Bessel filters. While the effect of
delay in the filter can be ignored in the audio applications, it has to be taken
into account in control applications. All filters introduce additional dynamics
in the system, which complicates the model. The Bessel filter can be easily
approximated by a time delay, since the phase shift due to this filter is directly
proportional to the frequency of the signal. This implies that the sampled data
model can be assumed to contain an additional time delay compared to the
process.

Prefilter Design

The purpose of design described here is to reduce signal components in the
frequencies higher than the Nyquist frequency to negligible levels and to make
the signal transmission up to the Nyquist frequency as close to unity as pos-
sible. Let us consider the case of a continuous time prefilter. The properties
expressed above can be captured by finding a filter transfer function G that

DSP
Analog + |Adaptivel | Adaptive Adaptive
ti- ~filte . y
:Ealsing _!_‘\hl pre-filter _‘\T controller ] POSE filter % =| D/A || PROCESS
filter

L - |

Figure 1. The filtering set-up.



minimizes the loss function

J(G) = /]G’(iw)—l|2dw+/|G(z’w)|2dw

= / |G(iw) P dw — /(G(iw) + G(—iw))dw + wy (1)
=y =2 / Re{G(iw)}dw + / G iw)|dw

Now consider the case of a multirate prefilter. Let h be the fast sampling rate
and wy = 1/2T be the Nyquist frequency associated with the slow sampling
rate, corresponding to the control interval. If H is the pulse transfer function
associated with the fast sampling rate, the problem of finding the prefilter
coefficients can be stated as to find an H that minimizes

«/h
J(H) = / H(e") H (") dw

wy (2)
-2 / Re{H (e *")}dw + wy,

If H(iw)is an FIR filter, i.e.

H(Z) = bo + blz_l + b22_2 + -4 bﬂZ_n (3)
We get
n n “N
e 2
J(H) = 7 (2 by ) - 2Ebk / cos(kwh)dw + wy
k=0 k=0 0 (4)

T

n n 1
o 2 _ . o
=S z_% b, — 2 kz_% by i sin(wykh) + wy

n
The coefficients that minimize J(H) are given by

T sin(wy kh)
R*T T kR
The filter coefficients are thus given by

_ th

bp = —

i ()

1
by = —ﬁsm(w}vkh) k=1,2,...,n

It is desirable that the prefilter has unit DC gain. In order to guarantee this,
we can minimize the criterion J under the constraint that

Zbk:l (6)



By introducing a Langrangian multiplier the criterion to be minimized then is

s 3 (30 1)
k=0

Letting the partial derivatives with respect to by equal to zero we get

™ 1
Ebk - % sin(wykh) + A =0

This gives
b, = i sin(w Ich)—{—z‘—}f
k= wk N T

Let by, be the values given by Equation 5. We then find that
bkl =b+a (7)

where the parameter a should be determined in such a way that the coefficients
sum up to one. Hence

1 n
/
— _E:b
by’ = b n 1k—0k (8)

DSP Filter Code

Since there is a C compiler available for the DSP, we choose to write the filter
code in C. The efficiency of such a program, measured in terms of time of
execution, depends on programming skill. Two kinds of programming were
attempted. The difference in performance differences were quite surprising.
The filter output is given by the difference equation,

y(k) = bo S(k) + by S(k — 1) + - - + by S(k — n) (9)

where S(k),S(k—1),...,S(k — n) are the measured signals, b, by, . .., b, are
the filter coefficients, and n is the order of the filter. The software gets a
new measurement each sampling time and shifts the data through the filter
storage array. Then the filter output can be readily calculated. It is quite
tempting to implement the filter as shown in the flowchart given in Figure 2.
This filter program was implemented for a filter of order 100 and a timing test
was conducted. While the system throughput was 33 Megaflops, one filter
output computation took 240 ps. This can be compared with the time for
200 floating point operations which is 6 us. When an optimizer was run on
the C-code, the time taken reduced to 140 us. One can easily see that large
amount of time is spent on shifting data through the filter array.

An alternate approach is to reserve data buffer of double the size of filter
array length to store the data vector, avoid the shifting the data, but only
manipulate an address pointer. The method is shown in Figure 3. Whenever
one data is taken in, the pointer is used to write it in two locations with
addresses namely, the (database+i) and (database+n + i), Initially the value
of ¢ is zero. When ¢ reaches a value equal to n — 1, the data is written in the
two locations and pointer is reset to zero.

When the first data is taken in, the point A has data and other locations
below it up to and excluding A will have zeros. When the second sample is
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Figure 2. C-program filter flowchart.

4 2n-1
TP j—A
duplicate —_—
n+i
N n
n-1
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data i <+——B
0 =+————base address
RAM

Figure 3. Fast FIR filter memory map implementation.

taken (¢ = 1), data at point A (which has moved one address higher) has the
most recent data and the one below is one sample older. When this happens
and i reaches the value (n — 1), the locations from A to B will contain valid
data, the most recent at A and the oldest just above location B. After this i is
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write data to
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base address+n+i

g

1 compute
y=E b * ( base address +n+i-k)
k=0

Figure 4. Fast FIR filter flowchart.

reset to zero. Then A moves back to location n and B moves back to location
0. Now again a scan from A to B will give the n most recent. The flowchart of
this filter implementation is shown in Figure 4 The shifting process is avoided
by this procedure. The update is to be done every sampling time. The filter
output may be calculated as and when required.

Even though it may be implemented in C-language, it could be tricky to do
it without any overheads. With some of knowledge about frame page pointers
and calling mechanism involved while a C-routine calls an assembly routine,
it is straightforward to implement it in assembly code. Such a code listing is
given in Section 1 of the Appendix. Please note that the multiplication and
addition are performed as parallel instructions, thus utilizing the TM$320¢30
processor’s ability for parallel processing. A 100th order filter took only 30 us
for computing one filtered output, thus improving the speed by a factor of 5.
This shows that the choice of a proper algorithm is essential even while using
a fast processor.

3. Adaptive Post-Filtering

In the traditional implementation of a digital controller the controller output
is computed and written to a buffer/port connected to a digital to analog con-
verter. The output is held constant between the consecutive control intervals.
This causes the control variable to change in jumps. Such jumps will excite
the high frequency modes in the controlled process, which results in inferior
performance [3]. A simple analog pre-filter with response time of about one
fourth of the control interval may somewhat alleviate this problem, but will
not solve it. Intuitively speaking, a control output smoothing system, which
gives a piecewise linear output, is more desirable.

Figure 5 shows two ways of doing this, with the same control sequence.
Figure 5a can be easily implemented with any control strategy. This obviously
produces a time delay in control. In Figure 5b, the u(k + 1) is computed at

6
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Figure 5. Smooth control changes.

instant k and control is intrapolated. This is called the predictive first order
hold (PFOH). Such a hold circuit has been rejected as physically unrealisable,
citing the violation of causality condition [4]. Let us assume that the control
law to be implemented is given by

R(q)u(q) = T(q)uc(q) — S(9)y(q) (10)

In [5] it is shown that the PFOH is realizable if the following conditions hold.

deg R >deg§S+1

11
deg R >degT +1 (11)

Process Model to Implement PFOH

In zero order hold sampling the control signal is piecewise constant. The pulse
transfer function obtained by zero order hold sampling is

G(z)=(1-2z1HzL™! (@> (12)

8

With a predictive first order hold the control signal is continuous and piecewise
linear. Such a signal can be thought of as obtained from an integrator driven
by a piecewise control signal, see Figure 6. The pulse transfer function of such

7
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Figure 6. The physical interpretation of PFOH.

a system is

13
17 (Cl) )
- Tz 52
The input-output relation corresponding to this has the form
y(k) = —a1y(k—1) —ay(k —2) - --- — an y(k — n) (14)

+ bou(k) +byu(k—1)+ -+ by u(k — m)

Notice that u(k) appears in the right hand side.

PFOH Implementation

The digital implementation of PFOH can be implemented using timer inter-
rupts. Divide the control intervals into several smaller intervals. It is preferable
to make the data sampling interval equal to the control smoothing intervals.
Then a control staircase can be built bridging u(k + 1) and u(k). At j:th
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interrupt between major control intervals, the smoothing function is given by

u(j) = o (u(lk +1) — u(k)) 5 (15)

where h is the smoothing interval and T is the major control interval. The
integer j is reset every major control interval. The control changes are in
minute steps, thus producing a good approximation of the PFOH. A flow
chart of the implementation is presented in a later section.

4, Identification

The process model used for identification is taken as

H(g) = % (16)

Knowing the fact that PFOH control is to be implemented, A(q) and B(q)
should be compatible with to Equation (14). The square root algorithm is
used for identification [2].

5. Controller Design

Two types of controller designs are described in this section. In one design,
no time delay is considered. In the second design the delay due to the filter is
taken into account and a robust controller with integral action is implemented.

Plant with No Time Delay

The control law to be implemented is given in Equation (10) and the condition

which it should satisfy for PFOH implementation is given in Equation (11).

In order to evaluate the coefficients of the polynomials in Equation (10), the

DAB (Diophantine Aryabhatta, and Bezout) equation has to be solved. It is
given below.

BT  Bjh4,

AR+ BS — AnAp

To find a solution to the above equation the additional conditions to be satis-
fied are [5]

(17)

deg A,, — deg B,, > deg A —deg B +1 -
deg Ag > 2deg A — deg A4,, (18)

The response model can be chosen such that the process zeros are included in

the model

B(g) Am(1)
Am(q) B(1)
Factorizing the polynomial B as B~ B*, where B~ consists of the poorly the

damped zeros and Bt consists of the well damped zeros, the DAB equation
can be rewritten as

Hm(g) = (19)

B¥*B-T B Bl A
BT(AR'+ B-S5) _  Amd

(20)



where B = BYB~, B,, = B! B, and R = Bt R'. Here it is assumed that no
process zeros are cancelled. This is a safe practice, since zeros may drift from
favourable positions to unfavorable position and may cause control oscillations.
Hence we make

- An(1)
=B; Bn=—p 21
B ! s B(1) (21)
This gives
T(q) = BpAo;  AR'+B™5=And (22)

For example, if deg A = 2 and deg B = 2, then acceptable design will yield
deg A, =3; degdo=1; Ap=¢g (23)
The degrees of the controller polynomials are then
degR=degR' =2; degS=1; degT =1 (24)
The DAB equation must be solved in real time.

Robust Controller for System With Delay

A robust controller that includes integral action is described in this section.
The time delay introduced by the filtering process is also taken into account.
The aim is to test a reasonably complex controller on the DSP based system.
When there is a time delay in the plant, degree of A(q) increases. Then,

degA=3
From Equation (18), we obtain
deg Am > 4 (25)

The R(q) polynomial must, however, include a (g — 1) term for integral action
and the S(¢) polynomial must include a (¢+1) term, for achieving robustness.
The DAB equation can be written as

(¢° + a14® + a29)(¢ — 1)Rim(q) +

: (26)
(bog® + b1g + b2)(q + 1)Sm(q) = Am(q)Ao(q)

To satisfy Equation (18) one must choose deg A,, + deg Ao = 8. Hence the
degrees of the polynomials can be obtained as

deg R, = 4 ; deg Sy = 3 (27)

and

deg A, =5 deg Ao =3 (28)

After the modified controller polynomials R,,(¢) and S,,(g) are solved, the
actual controllers are given by

R(q) = (¢ —1)Rm(q)
S(q) = (¢ +1)Sm(q) (29)
T(q) = B1,, 4o

10



6. Overall Software Structure

The primary tasks to be performed by the real time software are

1. data sampling

prefiltering

vector updating

control vector updating
composite data vector updating
identification

controller design

control computation

9. post filtering

® No TR N

The data sampling is done at the fast rate. The filter computations are needed
when the data vector is to be updated. But the post filtering is to be more often
for achieving a smooth variation in control. To make software less complex, the
post filtering instants and the data sampling instants are made to coincide.
The most time consuming segment of software is the identification and the
least time consuming segment is the post filtering. There are several ways
to implement the different functions. The data structure that represents the
state of the controller are

wvectT = [uref(k) uref(k—1) ...... |

yveet? = [y(k) y(k—1)..coovn.... ]

uconT = [u(k) u(k—1) ............ ] (30)
o7 =[y(k) y(k—1)...u(k) u(k-1)... ]
0T =[-a; —ay...bo by... ]

Note that u(k) is included in the ucon vector in order to implement the pre-
dictive first order hold. When there is additional time delay due to filtering,
the first term in ucon vector would be u(k — 1). The lengths of the vectors
depend on the number of the terms in the A and B polynomials. A constant
named ‘int interval’ is used to initialize the timer-0 for interrupt generation.
The clock takes § us to count each time. This determines the duration between
the timer-0 interrupts, upon which the data sampling and control smoothing
are performed. A variable, ‘int count’ counts the number of such interrupts
and keeps track of the time. The control computation is performed when the
variable reaches a specified number, ‘int count max’. Then the data sampling
time is given by

h = (int_interval) - § (31)

The control interval is given by
T = (int_count_maz) - h (32)

Operation of the software is centered around the timer-0 interrupts of the pro-
cessor board used. It is obvious that the ¢ vector update, the identification
and the DAB solution would have to be done in a sequence. These computa-
tions will take comparatively long time. The data sampling and the control
smoothing have to be done at the exact instances, marked by the timer-0 in-
terrupts. The data vector is updated every control interval. The filter output

11
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Figure 7. The overall flowchart of the software.

needs to be calculated only when the data vector is updated. In this imple-
mentation, however, the filter output is calculated every time data is read into
the filter array for simplicity. For a 10:th order filter the additional time spent
for calculation is small. The ¢ vector is updated by transferring data from the
yvect and ucon vectors, just before the identification routine is entered.

The overall system flowchart is shown in Figure 7. Initially several hard-
ware and software initializations need to be done. Other details like outputting
a nominal control are also done, before entering the main loop. There is a
‘Time count’ to keep track of the number of control intervals. This is needed
in laboratory situation. The first box in the main loop is used to synchronize
the starting of the execution with the specific interrupt where the ini_count
changes from 0 to 1. Then the process starts executing the slow routines,
while being interrupted by the timer. The interrupt service routine is shown

12



ulast = unext

update
yvector
ucon

timecount >
control switch
time ?

no

\

‘ compute compute
pid unext adaptive unext
i)
increment
int count

compute and output
smooth control

read raw data into filter
array and compute output

intcount =

intcountmax
2

yes

intcount =0
read uref
inc timecount

RTI

Figure 8. Interrupt service routine flowchart.

in Figure 8. Reading Uref can not be done in the main loop, since it might
cause an interrupt during interrupt. Computing unezt which is u(k + 1) may
be in the main loop. We prefer to keep it in the interrupt service routine to
keep ‘what happens when’ clear to understand. Data sampling and control
smoothing is done every occurrence of the timer-0 interrupt.

Please note that when int_count changes from (int_count.maz —1) to
(int_count_maz) it is reset to 0. Immediately upon entering the interrupt
service routine, the next step in control staircase is computed and sent to the
control port. Since the reading of the data takes a certain delay (40 ps in the
hardware used), this is postponed until after the control smoothing. This is
just a compromise.

13



Timing Considerations

By looking at the two flowcharts, one can see that it will be desirable that
the interrupt during which int_count changes from (int_count.maz —1) to
(int_count_maz)and then rest to (0), occurs at the end of the main loop. Then
the processor should arrive at the first statement of the loop to wait for the
interrupt in which int_count changes from 0 to 1. This is the ideal timing
situation.

If a larger control interval is required, the variable int_count_maz may be
increased. Let us assume that a shorter control interval is required and the
int_count_maz is correspondingly reduced. The interrupt in which int_count
changes from 0 to 1 would have occurred even before loop is executed once.
In this case the ucon and yvect vectors are updated at the right instants. But
the identification is completed without disturbing ¢, even as further interrupt
operations continue. Then synchronization with the beginning of the loop
occurs when the interrupt in which int_count changes from 0 to 1 occurs again.
The ¢ vector is updated by transferring ucon and yvect vectors to it. Now the
next identification calculations are performed. This technique of keeping ucon
and yvec vectors which are updated regularly, and a separate ¢ vector, which
is updated with the most recent coherent data when required, adds a flexibility
and avoids time conflicts. The price paid is that the parameter update is done
only when it is possible, resulting in a compromise of tracking.

///_f
" u(k+1)

|

|
je—— A —pla—— B —t
|

a) long control interval

u(k+2)

u(k+1)

|
u(k) :
|
r-—A—-r-!—| B —»=— A

b) short control interval

Figure 9. The time distribution.

Figure 9a shows the time taken by the identifier as duration A and the waiting
time at the main loop’s first instruction as duration B. In this case the control
interval is sufficiently large. This is the case when a moderately fast process
is controlled. During both periods interrupts continue to occur and control
smoothing is done each interrupt.

14



Routine Analog_In | update vector s & (change phi | Id_filter | DAB | filer others
compute unext size=100

time'taken 40 20 5 230 40 30 15
in microsec

Figure 10. Time taken by individual routines.

When a fast process is being controlled, the control interval is shorter.
The situation is shown in Figure 9b. The duration A is larger than the control
interval. The waiting time B is chosen to synchronize with the next start of
the control sweep.

The filtering routine is listed in section 1 of the Appendix. The identifi-
cation and control routines are given in Sections 2, 3, and 4 of the Appendix.
The routines for data input and data output routines are given in Section 5 of
the appendix. The other routines required for initializing and I/O operation
etc are given in Section 6. Timer control support software is listed in Section
7 of the Appendix.

The time taken by each routine is listed in the table given in Figure 10.
Even when the identification is done every control interval, the control interval
can be as short as 400 us, without PFOH. The filtering time depends on the
order of the filter. Every interrupt causes an overhead of 15 us in addition
to the actual service time. The control rate can, however, be even faster, due
to the flexibility of the software described earlier. This results in an adaptive
controller whose data sampling is around 10 kHz and control speed is around
4 kHz.

7. Development Environment

The Hardware Setup
The hardware used for this project consists of:

a) The National Instruments Board NB-M10-16 which provides 16 channels
of analog input with 12 bit resolution and 2 channels of analog output [6].

b) The National Instrument Board NB-DSP2300, which has the TMS320¢30
digital signal processor [7].

c) The Macintosh IT computer, which is the host for development. The items
a and b are installed in the mother board slots of the host.

Development Tools

The software development tools used for this work consists of the following

[8,9]:

a) A C-compiler which produces TMS320c30 assembly code. A ‘shell’ pro-
gram and an ‘interlist’ utility are included in the compiler package. This
compiler comes with a set of ‘Tools’, which consists of the batch files
needed to run the compiler and ‘header’ files(.h files) needed for run time
support, and ‘libraries’ which consists of support object and source li-
braries.

b) An assembler which translates assembly code into machine code (COFF)
object files.

15



¢) The archiver which enables a collection of files to be grouped into a single
archive library. An rts.lib consists of standard run time support routines,
compiler utility routines, and mathematical routines.

d) The linker which combines the object files, into a single executable ob-
ject module, performing the relocation and resolution of external refer-
ences. Such development produces a module that can be executed on a
TMS320c30 target system.

e) The Debug2300 is the real time debugging program for the object module.

The compiler package runs on the Macintosh-II under the Macintosh Pro-
grammers Workshop (MPW). The above tools can not be run on a Macintosh
without the MPW.

8. Experiments

The DSP based adaptive regulator has been used to control two different
processes, one a moderately fast process (a servo) and the other a fast process
(an analog mock up), to evaluate the performance. Experimental results are
presented for both process.

Servo System

A simplified model of the servo is given by

Ka
G(s) = ——
O (33)
The pulse transfer function of the process with PFOH implementation is
B(q) bog® + biq + b,
Gl(q) = = 34
(q) A(q) qz _ (1 + e_GT)q + e_aT ( )
where
po L b1 a
T @k "2 4 a’h
(20—-2) h(l—a)  (1+4a)
b = 35
1 a?h + 2 + a (35)
by = (1-a) a_bha
27 Tath a 2
and T is the control interval. The model for the desired behaviour used for
control is B(q) ( )
q 1+ p1+p2
H,(q) = . 36
(@) q(g® + p1q + p2) B(1) (36)

The values of the model parameters p; and p, are selected to give { = 0.7 and
w = 8, corresponding to a sampling time of 0.1 sec. The controller polynomials
are given as
R(g) = rog’ + r1g + 72
S(q) = s0q + 51 (37)
and T(q) = tog
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NB-MIO-16 > SERVO
NB-DSP2300 SYSTEM

Figure 11. Experimental setup for servo.

For the purpose of experimental verification the plant parameters for the trans-
fer function given in equation (33) were measured. The approximate values
are K = 31, and a = 0.62. With these values, the parameters of the difference
equation including the gain factors become

a; = -1.94 by = Kbo = 0.0315
a; = +0.94 by = Kby = 0.1242 (38)
by = Kb, = 0.0305

By referring to Equation (31) and using the fact the clock period § = 0.24
micro-seconds the timing control variables can be set as

int_interval = 576; int_count_maz = 723 (39)

The experimental setup is shown in Figure 11. A prefilter of order 100 with a
cutoff frequency of 180 Hz was used, since there was very little low frequency
noise. The filter delay was only (100 - 576 - 0.24 = 6.92ms). This is negligible
in relation to the control interval of 0.1 sec. The parameters converged to the
values given below.

a = —1.945 bo = 0.017
a; = 0.914 b; = 0.122
b, = 0.057

It can be noted that they are quite close to their true values. The results
obtained are shown in Figure 12. The top part shows the servo output and
the lower figure shows the input voltage to the servo. The output is accor-
dance with the specifications, w = 8, and { = 0.7. The controller parameters
converge to

ro = 1.000 so= T.116
r1 = 0.860 s; = —4.905
ry = 0.303 to = 1.863

t; = 0.000

In this case the high frequency gain of the controller is approximately 27. The
effectiveness of the prefilter is clearly seen in Figure 12. With the noise level at
the measured signal, the control signal would saturate without the prefilter.
The effect of the PFOH for a few control intervals are shown in Figure 13.
Since the number of smoothing steps is very large (723), the outputs appears
linear without visible steps.
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Figure 12, Test results of servo control.
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Figure 13. PFOH effect-723 steps between control changes.

Fast Process

In order to test the viability of controlling fast processes using the DSP based
adaptive controller, a fast process using OP-Amps was built. The process
transfer function is given by

27.03 270.3

Cs)= =~ 7 2103)

(40)
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Figure 14. Response of the fast process.

The process has a time constant of 3.7 ms and an integrator. A desirable
sampling period is 0.5 ms. Hence by referring to the Equations (31) and (32),
the smoothing and control interval parameters are as given by

nt_tnterval = 417; tnt_count_maz =5

The desired model behaviour is chosen as in Equation (36), with { = 0.7
w = 600. No zeros were cancelled. The controller and process polynomials
identified are similar to the servo control described before. For this plant the
parameters of the difference equation are

a; = —1.8736
az = 0.8736
by = Kby = 0.29441-1073 (41)

by = Kb, =1.13890-1073
» = Kby = 0.27518 - 1073
The identified parameters converged to the following values.
ay = —1.789 bo = 0.651-1073
az = 0.789 by =2.940-1073
by =1.114-1073

The controller parameters are

ro = 1.000 so = 50.522
ry = 0.171 s1 = —35.003
rg = 0.049 to = 15.624

t; = 0.000
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Figure 15. Effect of PFOH-5 steps between control changes.

The experimental results are shown in Figure 14, which shows the process
input and output. The control smoothing effect is shown in Figure 15. The
steps are visible, since 7' = 5h.

3.33 hHz Controller

It is possible to decrease the control interval further. If int_count.maz is fixed
to 3, the control interval would be 0.3 ms. The model parameters are

a; = —1.922 bo = 0.107-1073
as = 0.922 b, = 0.421-1072
by = 0.103-1073

The identifier parameters converge to the following values.

a; = —1.868 bo = 0.251-1072
as = 0.868 by = 0.771-1072
b, = 0.732-1072

The controller parameters are

o = 1.000 o= T77.450
r1 = 0.100 s = —61.123
r9 = 0.052 to = 16.316

ty = 0.000

The response of the controller for this case is shown in Figure 16. The soft-
ware setup is such that the identifier skips an update if the computation time
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Figure 16. 3.33 kHz controller response.

exceeds the control interval. This is achieved by keeping a separate ¢ vector
independent of control and output vectors and by updating it only when next
identification begins. This allows the controller to work even at 4KHz. If it is
pushed any further, the tracking process and hence the controller performance
will deteriorate.

Fast Process Control with Filtering

In this section the test results of robust control with integral action and fil-
tering is described. A filter with 10 coefficients is used to filter the data. The
data sampling is done 8 KHz. The control interval is fixed to 0.5 ms. The
delay due to filtering amounts to 1 control interval. The controller design is
described in the last part of Section 5. The interval control parameters are set
as

int_interval = 521; int_count_maz = 4

Hence control smoothing interval is 0.125 ms, which is same as the data sam-
pling interval. The performance specification are taken as

w=200; (=0.7
The observer poles are fixed to
¢1=0;¢=02; ¢g3=0.1

The solution of the DAB equation requires the inverse of a [9 x 9] matrix in
real time. Due to the absence of lower degree terms in the polynomial product
Am(q9)Ao(g), the matrix could be nicely partitioned into [3 x 3] and solved in
real time. The actual parameters are given in Equation (41). The identified
parameters converge to the values given below.

a; = —1.869 bo = 0.327-1073
as = 0.871 by =1.269-1072
by = 1.504-1073
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It can be seen that the parameter tracking has improved due to filtering. This
is achieved in spite of the difficulty in tracking very small b-parameters. Also
notice that the model structure used in the identification is not correct in
this case. With the filtering there should actually be more b-parameters. A
consequence of this is that there is more variability of the estimates. This is
due to the fact that there is no set of parameters that will match all operating
conditions. The parameters will change to make the best fit in each case. One
set of controller parameters corresponding to the identified values given above
are

To = 1.0000 ri = —0.2914

rqo = —0.0085 rg3 = —0.1841

rq = —0.3332 rg = —0.1828

so = 124.623 81 = —104.748

s9 = —123.54 s3 = 105.830

84 = 0.000 to = 3.010

t;y = —0.903 ty = 0.060

i3 = 0.000

Another set was
ro = 1.0000 ry = —0.390
ro = —0.065 rg = —0.190
ra = -—0.239 rs = —0.115
sp = 63.616 sy = —49.157
sy = —62.859 s3 = 49.914
sg = 0.000 to= 2.070
t, = —-0.621 t, = 0.041
t3 = 0.000
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Figure 17. Response of the robust controller.
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This gives an indication of the variability.

The high frequency gain of the controller is zero. The response is shown
in Figure 17. It can be seen that the response of the process is good and
according to specifications.

9. Conclusions

DSP implementation of an adaptive regulator has been described in this
report. Since DSPs are specially designed fast fast filter computations, an
adaptive prefilter can easily be incorporated as a part of the software. The idea
of predictive first order hold has also been implemented. Multirate sampling
is required to implement all the these features and it is achieved using the
timer-0 available on the NB-DSP2300 system board. To keep the hardware
and software systems simple, the adaptive filter sampling and the control
smoothing required for the PFOH are both done at the same high frequency
of around 10 kHz and control and identification calculations are done at a
slower rate. It has been demonstrated that adaptive controllers operating at
the rate of 3.33 khz can be easily achieved, even while performing adaptive
prefiltering and post filtering and identifying 5 parameters. A higher rate
of 4kz is possible. This opens up the possibility of implementing adaptive
controllers for a variety of fast processes, which so far could not be controlled
adaptively.

10. References

[1] AsTrOM, K. J. and B. WITTENMARK (1984): Computer Controlled
Systems: Theory and Design, second edition, Prentice Hall International
Inc.

[2] AsTrOM, K. J. and B. WITTENMARK (1989): Adaptive Control, Addi-
son-Wesley Publishing Company.

[3] Rour, C., Varavani, L. S., ATHANsS, M., and STEIN, G. (1985):
“Robustness of continuous-time adaptive control algorithm in the presence
of unmodelled dynamics,” IEEE Transactions on Automatic Control,
AC-30, 881-889.

(4] Kvo, B. (1977): Digital Control Systems, SRL Publishing Company,
Tllinois.

[5] BERNHARDSSON, B. (1990): “The Predictive First Order Hold Circuit,”
Proceedings of the 29th IEEE Conference on Decision and Control,
Honolulu, pp. 1890-1891.

(6] ANoNYMoUs (Aug 1990): NB-DSP2300 User Manual, National Instru-
ments Corporation, Austin, Texas, USA.

(7] ANoNYMoUs (Nov 1989): NB-MIO-16 User Manual, National Instruments
Corporation, Austin, Texas, USA.

[8] ANoNYMOUS (Aug 1990): TMS320c30 Reference Guide, Texas Instru-
ments Corporation, Texas, USA.

[9] ANoNYMmous (1986): Digital Signal Processing with TMS320 family.,
Texas Instruments Corporation, Texas, USA.

23



Appendix

The various routines developed for this project are listed in the following
subsections. The support routines supplied by vendors are included in the
last section, for completion

1. Filter

The ’firfilt.asm’ is the assembly language routine that calculates the filtered
output.

%

*firfilt (current sample,filterlength,coefficients,sample arrray)
* -FP(2), -FP(3), -FP(4), ~FP(5)

*

FP .set AR3

.globl _firfilt

_firfilt:
PUSH FP
LDI SP,FP ;RO,R1,R2,R3,AR1,AR2 used; no need to preserve them

LDF 0.0,RO

LDF 0.0,R2

*

shere we update AR6 to point the current sample by using sampleshift variable
*

LDI *-FP(5),AR1 ;beginning address of sample array in AR1

ADDI @sampleshift,AR1 ;point to the current sample fillup location
*

*fill in the sample

*

LDF #-FP(2),R3 ;take the sample

STF R3,*AR1 ;£ill the current sample

*

*here we update AR1 to point the current duplicate using the sampleshift
¥

ADDI #-FP(3),AR1 ;shift your pointer up by filter length

*

* £ill duplicate

*

STF R3,*AR1 ; sample from R3 to duplicate area

*

* prepare address of first coefficient in AR2

*

LDI *-FP(4),AR2 ;address of first filter coefficient in AR2

*

* calculate the filter output

*

LDI #-FP(3),RC ;load repeat counter filterlength

SUBI 1,RC ;reduce by one

RPTS RC

MPYF3 #*AR2++(1) ,#AR1--(1),R2 ;multiply and move increment pointer
Il ADDF3 R2,RO,RO

lastadd: ADDF R2,R0 ; last product added and filter output is in RO
*

* update sampleshift to point next location

*
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LDI @sampleshift,AR1

ADDI 1,AR1

CMPI *~FP(3),AR1

BNZ not_through; if sampleshift reaches filterlength,reset to 0
LDI 0,AR1

not_through:

STI AR1,@sampleshift

*

* restore registers

*

POP FP

RETSU

ok ko o ook koo sk ook ook ook o ko ke ok ok ook ks okl ok o

* define initialised variable '"sampleshift"
ok ok Aok o ok R sk K Ao R s o KR AR R o ok ke Rk ok o
.bss sampleshift,1

.sect ".cinit"

.word 1,sampleshift

.word 00000000h

.end

2. Servo Control Routine

The ‘filt pfoh SLOW.c’ is the C-language programme that is used to control
the servo system. This programme implements a controller with a filter of
order 100 and the predictive first order hold. The programme listing is given
below.

#include "DSP.h"
#include "int_DAQ.h"
#include “Analog.h"

long *nb_page0 = (long *) 0x805000;
int32 slot_base = 0xfd000000;

/* we just want to use the PID controller initially #*/

float past_integral,integral,con_coef_0,con_coef_1;
float Kp=0.7500;

float Ti=0.9;

float Td=0.135;

/* filter sampling time, control interval,runtime specifications */
T */
float h;

/% filter sampling interval =(clock = 0.24 micro-sec)x int_interval */
int32 int_interval = 576; /* timer-0 parameter #*/

int32 int_count_max = 723;

/* this decides the major control interval %/

int32 run_time = 900; /* the total run time */

int32 control_switch_time =20;

/* when to switch from pid to adaptive control */

float ester;

float ester_min=0.00095; /* equation error low limit */

float ester_max=2.00;

float dynamic_max; /* variable upper limit for ester */
/* identifier forgetting factor covariance etc. */
/* i = === */

float lambda = 0.98;
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float covare = 20000.0;

/* adaptive controller performance specifications */

/% e */
float omega =8.0;

float zeta =0.7;

float am[5];

/* to check any value using analog channel-0 in real time */
float multiplier =1.0;

float probe=0.0;

int32 display_parameter =4;

typedef void (*funcpointer)(); /* define type function pointer #/
funcpointer *TimerOvector = (funcpointer*) 0x001000£8;

/%user timer0 interrupt */

int32 timecount; /% used for timing out the programme */

float £ir100[] = {

0.000512854372682206, 0.000516450462259756, 0.000518204762982123,
0.000515450080616448, 0.000504004154825930, 0.000478336804016702,
0.000431852158133572, 0.000357278064969900, 0.000247148811983553,
9.43617917041610e-05, ~0.000107216074233148, -0.000362120203258178,
-0.000672669271820524, -0.00103838733503633, -0.00145549925350262,
~0.00191653001825939, -0.00241003558951859, -0.00292048851294244,
-0.00342833599434955, -0.00391024150320646, -0.00433951359100031,
-0.00468671774693478, -0.00492045909327197, -0.00500831588420940,
-0.00491789645457208, -0.00461798579340490, -0.00407974259062006,
-0.00327790367905508, -0.00219195047381307, -0.000807191437446020,

0.000884284154197781, 0.00288282280617221, 0.00518063061306771,
0.00776143473774329, 0.0106004052421958, 0.0136643510817312,
0.0169121944326876, 0.0202957174770252, 0.0237605657005187,
0.0272474820682747, 0.0306937375059100, 0.0340347162960946,
0.0372056006176556, 0.0401431217742675, 0.0427872868837090,
0.0450830590554292, 0.0469819144235257, 0.0484432307925528,
0.0494354599825375, 0.0499370440382912, 0.0499370440382912,
0.0494354599825375, 0.0484432307925528, 0.0469819144235257,
0.0450830590554292, 0.0427872868837090, 0.0401431217742675,
0.0372056006176556, 0.0340347152960946, 0.0306937375069100,
0.0272474820682747, 0.0237605657005187, 0.0202957174770252,
0.0169121944326875, 0.0136643510817312, 0.0106004052421958,
0.00776143473774329, 0.00618063061306771, 0.00288282280617221,
0.000884284154197782, -0.000807191437446021, -0.00219196047381307,

-0.00327790367905509, -0.00407974259062006, -0.00461798579340490,
-0.00491789645457208, -0.00500831588420941, -0.00492045909327198,
-0.00468671774693479, -0.00433951369100031, -0.00391024150320647,
-0.00342833599434956, -0.00292048851294244, -0.00241003558961869,
-0.00191653001825939, -0.001455499256350262, -0,00103838733503633,
-0.000672669271820525, -0.000362120203258179,-0.000107216074233148,
9.43617917041610e-05, 0.000247148811983553, 0.000357278064969901,
0.000431852158133572, 0.000478336804016702, 0.000504004154825930,
0.000515450080616448, 0.000518204762982124, 0.000516450462259756,
0.000512854372582206

};

extern float firfilt(float j,int32 filterlength,float firi00[],

float samplebuffer[]);

int32 filterlength = 100;
float samplebuffer[200]; /* twice the size of filter length #/

/¥ Needed for Identifier routines : all are global variables */

float phil[6],thetal[6],eltrans[6][6],diag[6];
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float r[6],s[6],t[6]; /* more than necessary */

float yvector[b],uref[5],ucon[5],error[5]; /* more than necessary */
float uread,uout,ulast,unext,yraw,yfilt,ic,icmax,hm;

float hm; /* hm is the control intervel */ /* forgetting factor */
int32 int_count;/* tracks the number of interrupts that occured */
int na=2; /% number of a-parameters or al,a2 parametersk/

int nb=3; /* number of b-parameters or b0,bl,b2 parameters =/
int n; /* total number of parameters to be identified */

void c_int01();

main()

{
Init_MIO16(slot_base);
Reset_MIO16(slot_base);
Setup_MID16(5, 0, 5, 2, 0, 0, 0);

*TimerQOvector = c_int01; /* address of c_int01 placed in vector #*/
*(int*)TimerOvector |= 0x60000000; /% convert it to a branch instr */

n na+nb;
h = int_interval *0.24e-06;
init_uy_vectors();

init_ident_matrices();

compute_model();

/* first time operation */

Analog_In(InChannel_1i,gain_1,&yraw); /* servo position */
yfilt = yraw;
Analog_In(InChannel_0,gain_1,&uread);
uout= Kp *( uread -yfilt); /*first control is proportional */
ulast=uout;
Analog_Out(OutChannel_i,uout); /*control to plant */

/* precalculate the pid- controller coefficiants */

con_coef_0 = (Td + (int_count_max * h))/(int_count_max *h) +1.,0
+ ((int_count_max * h )/Ti);
con_coef_1 = -(Td + (int_count_max * h))/(int_count_max *h);
past_integral = 0.0;

/* setup and start the timer-0 and enable that interrupt */

Setup_Timer(0,0x000003c3,int_interval, 0x00000000) ;
asm(" OR 0100h,IE"); /#* enable Timer-0 interrupt */
int_count=0;
timecount=0;

/* The beginning of the main loop */

while (timecount < run_time) /* until timeout */

{

while( int_count '=1 ) {} ;
change_phi(); /* prepare consolidated data vectorx/
1d_filter(n); /* the identifier routine: */
solve_dab(); /# compute the controller-rst parameters:*/
probe=thetal[display_parameter]* multiplier;



Analog_Out(OutChannel_0,probe) ;
}; /* The main loop section */

time_is_up:
asm(" AND Ofeffh,IE "); /* disable timer-0 interrupt =/
Hold_Timer (0);

Analog_Out (QutChannel_1,0.0); /# output zero before quiting */

}
/* The Timer-0 interrupt service routine */
/¥ ___ */
void c¢_int01()
{

if (int_count ==0)
{ ulast=unext;
Update_vectors();
if( timecount < control_switch_time)
{ Compute_pid_unext(); }
else
{ Compute_adaptive_unext(); }
}

int_count++;

Smooth_control();
Analog_In(InChannel_1,gain_1,&yraw);
yfilt=firfilt(yraw,filterlength,fir100,samplebuffer);
if (int_count ==int_count_max )

{ Analog_In(InChannel_0,gain_1,&uread);

int_count =0;

timecount++;
}
}

/* The routine to calculate adaptive u(t+j.h) =/
I% e R¥u =T#u-S*y __ */
Compute_adaptive_unext ()
{

unext=t[0] * uref[0]-s[0]*yvector[0]-s[1]*yvector[1];
unext=unext - r[il*uconl0]-r[2]*ucon[1];

if (unext > 0.99) unext = 0.99;

if (unext < -.99) unext =-0.99;

}
/% The routine to calculate pid controller u(t+j.h) */
I* o - */
Compute_pid_unext ()
{

integral = ((error[0]+ error[1] )/(2.0 * Ti)) *(icmax * h);
unext = Kp *(con_coef_0 * error[0]+ con_coef_1 * error[1]);
unext = unext + Kp *( integral+ past_integral);

if (unext < -0.990 ) unext = -0.990;

if (unext > 0.990 ) unext = 0.990;

past_integral = past_integral + integral;

}
/* Smooth control */
/% = e */
Smooth_control()
{

icmax = int_count_max;

ic=int_count;

uout = ulast + ((unext-ulast)*ic)/icmax;
if (uout> 0.98) uout = 0.98;

if (uout< ~0.98) uout =-0.98;
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Analog_Out (OutChannel_1,uout);

}

/* Initialise uy vectors */
/* */
init_uy_vectors()
{ int i;

for( i=0; i<b; i++)

{ yvector[i] =0.0;
uref[i]
ucon[i]
error[il=
}

}

0
0
0;
0

0.
0.
0.0;
/#* initialise matrices needed for identifier */
) £ */
init_ident_matrices()
{ int i,j;
for(i=0; i<6; i++)
{ phil[i] = 0.0;
thetal[il= 0.001;
r[i] =
s[i] =
t[i] H
diag[i] = covare;
for(j=0; j<6;j++)
{ if(i == j)
eltrans{i][j] = 1.0;
else
eltrans[i][j] = 0.0;
}
}
diag[0]= lambda;
}
/* Update uy vectors */
/% e */
Update_vectors()
{ int i;
for( i= 2 ; i>0; i--)
{ uref{i] = uref[i-1];
}
for(i=2; i>0; i--)
{ yvector[il= yvector[i-1];
error[il= error[i-1];/* needed for pid control */

}

’

O O O
N =

for(i=3; i>0; i--)
{ ucon[i] = ucon[i-1];
}
error[0]= uread - yfilt;
uref[0] = uread;
yvector[0]= yfilt;
ucon[0]= ulast; /* control computed last time is ucon(t) now #/

/* the square root identification routine */
I¥ */
1d_filter( int en)
{ int i,j; /* local variables =*/
float e,w;

/* diag(6),eltrans(6) (6),theta(6),phi(6) are global variables */
/% lembda: global variable only used but not affected */
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diag[0]= lambda;
e = phil0];

for(i=1;i<=en;i++)

{e=e-thetal[i]*phili]l;

}

ester=e;

if(ester > 0)ester=ester;

if(ester < 0)ester=-ester;

if (ester< ester_min) return;

dynamic_max=ester_max*(10000.0+timecount)/(10000.+100.*timecount);
/*initially we accept large errors for correction; later we don’t*/

if (ester> dynamic_max) return;

for( i=1; i<=en; i++)

{ w = phi[il;

for(j=i+1; j<=en;j++)

{ w=w + phi[jl*eltrans[il[j];

}

eltrans[0] [i]

eltrans(i] [0]
}

for( i =en ; i>=1; i--)

0.0;
w;

dyadic_reduction(0,i,en);

/* called with i varying from en down to 1 */

/% cell involves and alters 0-th row and i-th row of [eltrans]*/
/* diag(0) and diag(i) are also altered by the call #*/

for(i=1; i<=en ; i++)

{ thetal[il= thetali] + eltrans[0][i] * e ;
diag[i] = diag[i] / lambda;

}
}

/* the dyadic reduction routine called by ld_filter =*/
/* — e A e S e */
dyadic_reduction(int i0, int i1, int i2)
{

/* eltrans[0-th row] and eltrans{ il-th row],diag(0),diag(il) are passed */

int j; /* local variables */
float wl,w2,bl,gama;
float mzero = 1.0e-10;

if( diaglil] < mzero)/+ diagl[il] is “beta" the ith element */
{ diag[i1] = 0.0 ;
}

bl = eltrans[i1][i0];
/* 0-th element of b-vector i-e ith row [eltrans] */
w1l = diag[i0];
/* "alpha", the top of the diagonal:i0 = 0 always */
w2 = diagl[il] * bl; /* w2 = beta * bl */
diag[i0] = diag[i0]+ w2 *b1;
if( diag[i0] > mzero)
{ diaeglil] = diagli1l+#w1l /diag[i0];

gama = w2 / diag[i0];

for( j=il; j<= i2; j++)

{ eltrans[ii]l[j] = eltrans[i1]l[j] - bl * eltrans[i0][j];
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eltrans[i0] [j] = eltrans[i0][j] + gama * eltrans[ii][j];

/* the dab equation is solved only for a 2nd order case */
/* = */

solve_dab()

{ float ex1,ex2,ex3,y1,y2,y3,al,a2,b0,b1,b2,bmprime;

al = -theta[1];

a2 = -theta[2];

b0 = theta[na+i];

b1 = thetalna+2];

b2 = thetalna+3];

exl = bl-ai*b0;

ex2 = b0-b2/a2;

ex3 = am[2] - a2 - aixam[1] + al*ail;

yl = b2 - a2*b0;

y2 = bl - ai*b2/a2;

y3 = -a2¢am[1] + a2#*ail;

s[0] = (ex3*y2 - ex2+y3)/(exi*y2 - yi *ex2);

s[1] = ( ex3 - ex1x*s[0] )/ ex2;

r[0]} =1.0;

r[1] = am[1]-a1-bO*s[0];

r[2] =-b2 * s[1] / a2;

bmprime = (1. + am[1] +am[2])/ (b0 + bl + b2);

t[0] = bmprime;

}
/* update the phi vector used by the 1ld_filter =*/
I*______ - —e */
change_phi()
{ int i;

for( i=0; i<=na ; i++)
{ phil[ i ] = yvector[i];
}
for( i=0; i< nb ; i++)
{ phi[na+1+i] = ucon[i];
}
}
compute_model()
{ hm = h * int_count_max;
am[1] = -2.0 * exp( -zeta * omega *hm)*
cos(sqrt(1.0-zeta*zeta)*omega*hm) ;
am[2] = exp(-2.0 *zeta *omega*hm);

}

3. Fast System Control Routine

The ‘nofilt pfoh FAST.c’ is the C-programme that is used to control the fast
system without filtering. The listing is given below.

#include "DSP.h"
#include "int_DAQ.h"
#include "Analog.h"

long *nb_page0 = (long *) 0x805000;
int32 slot_base = 0xfd000000;

/* we just want to retain the PID controller in the beginiing %/
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float past_integral,integral,con_coef_0,con_coef_1;
float Kp=0.7500;

float Ti=0.9;

float Td=0.135;

/* filter sampling time, control interval,runtime specifications */
V4 SO - */
float h;

/* filter sampling interval = (clock = 0.24 micro-sec) x int_interval */
int32 int_interval = 417;

/* timer-0 parameter */

int32 int_count_max = 3;/# this decides the major control interval */
int32 run_time = 120000;

/* the total run time */

int32 control_switch_time =250;/# when to switch to adaptive control */
float ester;

float ester_min=0.00095; /* lower limit for estimation error */

float ester_max=2.00;

float dynamic_max;/* variable upper limit for estimation error */

/* identifier forgetting factor covariance etc. */
[ FEEE—— */
float lambda = 0.998;

float covare = 20000.0;

/* adaptive controller performance specifications */
[*o___ = = */
float omega =600.0;

float zeta =0.7;

float am[5];

/* to check any value using analog channel -0 x/
float multiplier =10.0;

float probe=0.0;

int32 display_parameter =4;

typedef void (*funcpointer)();

/* define type function pointer */

funcpointer *TimerOvector = (funcpointer*) 0x001000£8;

/*user timer0 interrupt */

int32 timecount; /* used for timing out the programme */

/% Needed for Identifier routines : all are global variables */

float phil[6],thetal6],eltrans[6][6],diagl6];

/¥ to identify b parameters */

float r{6],s[6],t[6]; /* more than necessary */

float yvector[5],uref[5],ucon[5],error[5];/+ more than necessary */
float uread,uout,ulast,unext,yraw,yfilt,ic,icmax,hm;

float hm; /* hm is the control interval */

int32 int_count; /* tracks the number of interrupts that occured =*/
int na=2; /% number of a-parameters or al,a2 parameters*/

int nb=3; /% number of b-parameters or b0,b1,b2 parameters */

int n; /* total number of parameters to be identified */

void c_int01();

main()

{
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Init_MIO16(slot_base);
Reset_MI016(slot_base);
Setup_MIO16(5, 0, 6, 2, 0, 0, 0);

*TimerOvector = c_int01;

/* address of ¢_int01 placed in vector */
*(int+*) TimerOvector |= 0x60000000;

/* convert it to a branch instr */

n na+nb;
h int_interval *0.24e-06;
init_uy_vectors();

init_ident_matrices();

compute_model();

/* first time operation */

Analog_In(InChannel_1,gain_1,&yraw);
yfilt = yraw;
Analog_In(InChannel_0,gain_1,&uread); /* reference value*/
uout= Kp *( uread -yfilt); /*first control proportionalx/
ulast=uout;
Analog Out(OutChannel_i,uout);
/*control to plant via the out-channel-1 */

/* precalculate the pid- controller coefficiants: #/

con_coef_0 = (Td + (int_count_max * h))/(int_count_max *h) +1.0
+ ((int_count_max * h )/Ti);
con_coef_1 = -(Td + (int_count_max * h))/(int_count_max *h);

past_integral = 0.0;
/* setup and start the timer-0 and enable that interrupt */

Setup_Timer(0,0x000003c3,int_interval,0x00000000);
/* set up and start timer-0 %/
asm(" OR 0100h,IE"); /* enable Timer~0 interrupt */
int_count=0;
timecount =0;
/% The beginning of the infinite loop */

while (timecount < run_time) /* until timeout */

{

while( int_count !=1 ) {} ;
change_phi();
/* prepare consolidated data vector %/
1ld_filter(n); /* the identifier routine: */
solve_dab(); /* compute the controller-rst parameters:*/
probe=thetaldisplay_parameter]* multiplier;
Analog_Out(OutChannel_0,probe);

}; /* The main loop section #*/

time_is_up:
asm(" AND Ofeffh,IE "); /* disable timer-0 interrupt */
Hold_Timer(0);
Analog_Out(OutChannel_1,0.0);
/* output zero before quiting */

/* The Timer-0 interrupt service routine */
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L% */

void c_int01()
{ if(int_count ==0)
{ wulast=unext;

Update_vectors();
if( timecount < control_switch_time)
{ Compute_pid_unext(); }
else
{ Compute_adaptive_unext(); }

}

int_count++;

Smooth_control();

if(int_count ==int_count_max )

{ Analog_In(InChannel_1i,gain_1,&yraw);
yfilt=yraw;
Analog_In(InChannel_O,gain_1,&uread);
int_count =0;

timecount++;
}
}
/* The routine to calculate adaptive u(t+j.h) */
/% ___ R¥u =T¥u-S*y _ — —*/
Compute_adaptive_unext()

{

unext=t [0] #uref [0]-s[0] *yvector[0];

unext= unext-s[1]*yvector[1]-r[1]*ucon[0]-r[2]*ucon[1];
if (unext > 0.99) unext = 0.99;

if (unext < -.99) unext =-0.99;

}
/* The routine to calculate pid controller u(t+j.h) */
L X/
Compute_pid_unext ()
{

integral = ((error[0]+ error[1] )/(2.0 * Ti)) *(icmax #* h);
unext = Kp *(con_coef_0 * error[0]+ con_coef_1 * error[1]);
unext = unext + Kp #( integral+ past_integral);
if (unext < -0.990 ) unext = -0.990;
if (unext > 0.990 ) unext = 0.990;
past_integral = past_integral + integral;
}
/% Smooth control */
/* B S x/
Smooth_control ()
{
icmax = int_count_max;
ic=int_count;
uout = ulast + ((unext-ulast)*ic)/icmax;
if (uout> 0.98) uout = 0.98;
if (uout< -0.98) uout =-0.98;
Analog_Out (OutChannel_1,uout);

}
/* Initialise uy vectors */
¥ */
init_uy_vectors()
{ int i;

for( i=0; i<5; i++)

{ yvector[i] =0.0;
uref[i] = 0.0;
ucon[i] = 0.0;
error{il= 0.0

}
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/* initialise matrices needed for identifier */
/% __x/
init_ident_matrices()
{ int i,j;
for(i=0; i<6; i++)
{ philil = 0.0;
thetafil= 0.001;
rl[i] =
s[i] =
t[i] =
diag[i] = covare;
for(j=0; j<6;j++)
{ if(i == j)
eltrans[i][j] = 1.0;
else
eltrans[i] [j] = 0.0;
}
}
diag[0]= lambda;
}

.1;
.1;
.1

o O O

/* Update uy vectors */
/* [ */
Update_vectors()
{ int i;
for( i= 2 ; i>0; i--)
{ uref[i] = uref[i-1];
}
for(i=2; i>0; i--)
{ yvector[il= yvector[i-1];
error[il= error[i-1]; /* nedded for the pid */

}

for(i=3; i>0; i--)
{ ucon[i] = ucon[i-1];
}
error[0]= uread - yfilt;
uref [0] = uread;
yvector[0]= yfilt;
ucon[0]= ulast;
/* control computed last time is ucon(t) now */

}

/* the square root identification routine */
Ix____ = */
1d_filter( int en)

{ int i,j; /* local variables */
float e,w;

/¥ diag(6),eltrans(6)(6),theta(6),phi(6) are globalk/

diag[0]= lambda;
e = phil0];

for(i=1;i<=en;i++)

{e=e-thetalil#philil;

}

ester=e;

if(ester > 0)ester=ester;

if (ester < 0)ester=-ester;

if (ester< ester_min) return;

dynamic_max=ester_max*(10000.0+timecount)/
(10000.+100.*timecount);
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if (estexr> dynamic_max) return;
/* variable upper limit for ester #*/

for( i=1; i<=en; i++)
{
w = philil;
for(j=i+1; j<=en;j++)
{ w = w + phi[jl*eltrans[il[j];
}
eltrans[0][i]
eltrans([i] [0]
}

for( i =en ; i>=1; i--)

0.0;
LH

dyadic_reduction(0,i,en);

/* called with i varying from en down to 1 */

/* call involves and alters O-th row and i-th row of [eltrans]*/
/% dieg(0) and diag(i) are also altered by the call #/

for(i=1; i<=en ; i++)

{ theta[il= theta[i] + eltrans[0][i] * e ;
diag{i] = diag[i] / lambda;

}
}
/* the dyadic reduction routine called by ld_filter */
L */
dyadic_reduction(int i0, int il, int i2)
{

/% eltrans[0-th row] and eltrans[ il-th row],diag(0),diag(il) =/

int j; /* local variables */
float wi,w2,bl,gama;
float mzero = 1.0e~-10;

if( diaglil] < mzero) /# diagl[il] is “beta" the ith element#/
{ diag[i1] = 0.0 ;

}
bl = eltrans[i1][i0];
/* 0-th element of b-vector i-e ith row [eltrans] */
wl = diag[3io];
w2 = diag[il] * bl; /* w2 = beta * bl */

diag[i0] = diag[i0]+ w2 #bi;
if( diag[i0] > mzero)
{ diag[i1] = diagl[i1l#w1l /diag[i0];
gama = w2 / diag[io0];
for( j=il; j<= i2; j++)
{ eltrans[i1][j] = eltrans[i1][j] - bl * eltrans[i0][j];
eltrans[i0] [j] eltrans[i0][j] + gama * eltrans[i1][j];

}
}
}
/* the dab equation is solved only for 2nd order case */
e o */

solve_dab()
{ float exl,ex2,ex3,y1,y2,y3,a1,22,b0,b1,b2,bmprime;
al = -thetal1];

a2 = -thetal2];
b0 = thetalna+i];
bl = thetal[na+2];
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b2 = theta[na+3];

exl = bl-al*b0;

ex2 = b0-b2/a2;

ex3 = am[2] - a2 - al*am[1] + al*al;
yl1 = b2 -~ a2%bo;

y2 = bl - al*b2/a2;

y3 = -a2+am[1] + a2+al;

s8[0] = (ex3%y2 - ex2+y3)/(ex1xy2 - y1 *ex2);

s[1] = ( ex3 - exi%s[0] )/ ex2;
r{0] =1.0;
r[1] = am[1]-a1-b0*s[0];

r[2] =-b2 * s[1] / a2;
bmprime = (1. + am[1] +am[2])/ (b0 + bl + b2);
t[0] = bmprime;
}
/*# update the phi vector used by the 1ld_filter %/
/% — z */
change_phi()
{ int i;
for( i=0; i<=na ; i++)
{ phi[ i ] = yvector[il;
}
for( i=0; i< nb ; i++)
{ phi[na+1+i] = ucon[i];

}

}

compute_model()

{ hm =h * int_count_max;

am[1] = -2.0 * exp( -zeta * omega *hm)*
cos(sqrt(1.0-zeta*zeta)*omega*hm) ;
am[2] = exp(-2.0 *zeta *omega*hm);

}

4. Fast System control Routine with Filtering

The ‘“filt pfoh FAST .c’ is the C-programme that implements a robust controller
with prefilter and predictive first order hold. The programme listing is given
below.

#include "DSP.h"
#include "int_DAQ.h"
#include '"Analog.h"

long *nb_page0 = (long *) 0x805000;
int32 slot_base = 0x£d000000;

/* Wwe just want to use the PID controller in the beginiing */

float past_integral,integral,con_coef_0,con_coef_1;
float Kp=0.7500;

float Ti=0.9;

float Td=0.135;

/* filter sampling time, control interval,runtime specifications */

/e ___ —/
float h;/* filter sampling interval=(clock=0.24 micro-sec)xint_intervals/
int32 int_interval = B21; /* timer-0 parameter */

int32 int_count_max = 4; /* this decides the major control interval =/
int32 run_time = 180000; /* the total run time */
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int32 control_switch_time =2000;/% when to switch to adaptive control */

float ester;
float ester_min=0.00095;/% lower limit for estimation error */
float ester_max=2.00;

float dynamic_max; /* variable upper limit for ester */
/* identifier forgetting factor covariance etc. */
i s s s */

float lambda = 0.998;
float covare 20000.0;

/* adaptive controller performance specifications:3 delays */
/% G S e */
float omega =200.0;
float zeta =0.7;
float am([5];

/* observer polynomial with one pole at the origin =*/
/% */
float ao[]={1.0,0.0,0.0}; /* Ao(q) = q**3 + ao[1] q**2 + a[2] q #/
int32 polemod =1; /% if polemod =1 poles,are fixed for observer*/

float q[] ={ 0.2,0.10}; /* else omega specification is used */
float zobs=0.80;
float omega_obs=1200.0;

/* to check any value using analog channel -0 */
/% _*x/
float multiplier =0.100;
float probe=0.50;

int32 display_parameter =3;

typedef void (*funcpointer)(); /* define type function pointer */
funcpointer *TimerOvector = (funcpointer*) 0x001000£8;

/*user timer0 interrupt #*/

int32 timecount; /% used for timing out the programme */

float £iri10[J] = {0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1};

extern float firfilt(float j,int32 filterlength,float fir10[],
float samplebuffer[]);

int32 filterlength = 10;

float samplebuffer[20]; /* twice the size of filter length */

/* Needed for Identifier routines : all are global variables */

float phil[6],thetal6],eltrans[6][6],diagl[6];

float r[6],s[6],t[6],rm[6],sm[6];

float yvector[6],uref[6],ucon{6],error[6];

float uread,uout,ulast,unext,yraw,yfilt,ic,icmax,hm;

float hm; /* hm is the control interval */

int32 int_count;/# tracks the number of interrupts occured #*/

int na=2; /% number of a-parameters or al,a2 parameters*/

int nb=3; /* number of b-parameters or b0,bl,b2 parameters */
int n; /# total number of parameters to be identified */

/* some variables used for DAB solution */
float amod[3],rsegl(3],ahil[3][3],bhi[3][3],blo[3][3],al0(3][3]

,bhi_in[3][3];
float bhi_inahi[3][3],bba[3][3],abbal3][3],abba_in[3][3];
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void c_int01();

main()

{
Init_MIO16(slot_base);
Reset_MID16(slot_base);
Setup_MID16(5, 0, 5, 2, 0, 0, 0);

*TimerOvector = c_int01; /* address of c_int01 placed in vector #*/
*(int*) TimerOvector |= 0x60000000;/*convert it to a branch instr */

n = na+nb;

h = int_interval *0.24e-06;

init_uy_vectors();

init_ident_matrices();

compute_model();

/% first time operation */

Analog_In(InChannel_1,gain_1,&yraw);
yfilt = yraw;
Analog_In(InChannel_0,gain_1i,%uread); /* reference value */
uout= Kp *( uread -yfilt);/#first control is proportional */
ulast=uout;
Analog_Out (OutChannel_1i,uout); /*control to plant */

/* precalculate the pid- controller coefficiants: */

con_coef_0 = (Td + (int_count_mex * h))/(int_count_max *h) +1.0
+ ((int_count_max * h )/Ti);

con_coef_1 = -(Td + (int_count_max * h))/(int_count_max *h);

past_integral = 0.0;

/* setup and start the timer-0 and enable that interrupt */

Setup_Timer(0,0x000003c3,int_interval,0x00000000) ;
/* set up and start timer-0 */
asm(" OR 0100h,IE"); /* enable Timer-0 interrupt */
int_count=0;
timecount =0;

/+* The beginning of the main loop */

while (timecount < run_time) /* until timeout */

{

while( int_count '=1 ) {} ;
change_phi(); /* prepare consolidated data vector */
1d_filter(n); /* the identifier routine: #*/
solve_dab(); /* compute the controller-rst parameters */
probe= r[display_parameter]* multiplier;
Analog_Out(OutChannel_0,probe);

}; /* The main loop section */

time_is_up:
asm(" AND Ofeffh,IE "); /* disable timer-0 interrupt */
Hold_Timer(0);
Analog_Out (OutChannel_1,0.0); /* output zero before quiting */
}



/% The Timer-0 interrupt service routine */
J* — */
void c_int01()
{
if (int_count ==0)
{ ulast=unext;
Update_vectors();
if ( timecount < control_switch_time)
{ Compute_pid_unext(); }
else
{ Compute_adaptive_unext(); }
}

int_count++;

Smooth_control();
Analog_In(InChannel_1,gain_1,&yraw);
yfilt=firfilt(yraw,filterlength,fir10,samplebuffer) ;
if(int_count ==int_count_max )

{ Analog_In(InChannel_0,gain_1,&uread);

int_count =0;

timecount++;

}

}
/* The routine to calculate adaptive u(t+j.h) */
Y £ . Rxu =T#u-S=*y */

Compute_adaptive_unext ()

{ int 1i;

unext=0.0;

for(i=0;i<=2;i++)
{ unext=unext+t[i]*uref[i+1];}

for(i=0;i<=4;i++)
{unext=unext-s[i]l*yvector[i];}

for(i=1;i<=b;i++)
{unext=unext-r[il *ucon[i-1]; }

if (unext > 0.99) unext = 0.99;
if (unext < -.99) unext =-0.99;

}
/* The routine to calculate pid controller u(t+j.h) */
/* ______ —_— e */
Compute_pid_unext ()
{

integral = ((error[0]+ error[1] )/(2.0 * Ti)) *(icmax * h);
unext = Kp *(con_coef_0 * error[0]+ con_coef_1 * error[1]);
unext = unext + Kp *( integral+ past_integral);

if (unext < -0.990 ) unext = -0.990;

if (unext > 0.990 ) unext = 0.990;

past_integral = past_integral + integral;

}
/* Smooth control */
I* */
Smooth_control ()
{

icmax = int_count_max;

ic=int_count;

uout = ulast + ((unext-ulast)*ic)/icmax;
if (uout> 0.98) uout = 0.98;

if (uout< -0.98) uout =-0.98;
Analog_Out(OutChannel_1i,uout);
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}

/% Initialise uy vectors */

init_uy_vectors()

{ int i;

for( i=0; i<6; i++)
{ yvector[i] =0.0;

}

uref[i] = 0.0
ucon[i] = 0.0;
error[il= 0.0

)

/* initialise matrices needed for identifier */

L */

init_ident_matrices()

{

int 4i,j;

for(i=0; i<6; i++)

{

}

phili] = 0.0;

thetalil= 0.001;
r[i] =
s[i] =
t[i] =
diagl[i] = covare;
for (j=0; j<6;j++)

.1;
.
.1;

o O ©

{ it(1i == j)
eltrans(il[j] = 1.0;

else
eltrans[i][j] = 0.0;

diag[0]= lambda;

/* Update uy vectors */

I * —_— */
Update_vectors()

{ int i;

for( i= 5 ; i>0; i--)

{ uref[i] = uref[i-1];
}

for(i=5; i>0; i--)

{ yvector[il= yvector[i~1];

error[i]= error[i-1];
} /* necessary only for the pid #*/

for(i=5; i>0; i--)

{ ucon[i] = ucon[i-1];

1

error[0]= uread - yfilt;

uref [0] = uread;

yvectoxr[0]= yfilt;

ucon[0]= ulast;

/* control output last time is ucon(t) now %/

}

/* the square root identification routine */

J 4 e */

1d_filter{ int en)

{

int i,j; /* local variables */

float e,w;

/* diag(6),eltrans(6)(6),theta(6),phi(6) are global */
/* lambda: global variable only used but not affected */
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diag[0]= lambda;
e = phi[0];

for(i=1;i<=en;i++)

{e=e-thetal[i]*phili];

}

ester=e;

if(ester > 0)ester=ester;

if(ester < 0)ester=-ester;

if(ester< ester_min) return;

dynamic_max=ester_max#*(10000,0+timecount)/
(10000.+100. *timecount);

if (ester> dynamic_max) return;

for( i=1; i<=en; i++)
{
w = philil;
for(j=i+1; j<=en;j++)
{ w = w + phi[jl*eltrans[i][j];
}
eltrans[0][i]
eltrans([i] [0]
}

for( i =en ; i>=1; i--)

0.0;
LN

dyadic_reduction(0,i,en);

/* called with i varying from en down to 1 #*/

/* call involves and alters O-th row and i-th row of [eltrans]#*/
/* dieg(0) and diag(i) are also altered by the call */

for(i=1; i<=en ; i++)

{ theta[il= theta[i] + eltrans[0][i] * e ;
diegli] = diag[i] / lambda;

}
}
/* the dyadic reduction routine called by ld_filter =*/
[ _ _ L */
dyadic_reduction(int i0, int i1, int i2)
{

/* eltrans[0-th row] and eltrans[ il-th row],diag(0),diag(il)*/

int j;
float wi,w2,bl,gama;
float mzero = 1.0e-10;

if ( diag[il] < mzero) /# diag[il] is "beta" */
{ diag[i1] = 0.0 ;
}

bl = eltrans[i1][i0]; /* 0-th element of b-vector */

wl = diag[i0];

w2 diag[il] * bi; /* w2 = beta * bl */

diagl[i0] = diag[i0]+ w2 #*bi;

if( diag[i0] > mzero)

{ diag[il] = diagl[i1l*w1 /diag[i0];

gama = w2 / diag[ioO];
for( j=il; j<= i2; j++)
{ eltrans[i1]1[j] = eltrans[i1][j] - bl * eltrans[i0][j];
eltrans[i0][j] = eltrans[i0][j] + gama * eltrans[iil[jl;
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}
}
}

/* the dab equation is solved by partitioning [9x9] matrix */

L% —

solve_dab()

{ float ai,a2,a3,b0,b1,b2,b3,bmprime,mag,sum,coff[3][3];

int i,j,k;

al = -thetal[1];

a2 = -theta[2];

b0 = thetalna+1];

bl = thetal[na+2];

b2 = theta[na+3];

bmprime = (1. + am{1] +am[2])/ (b0 + b1 + b2);

t[0] = bmprime;

+[1] = bmprime*ao([1];

+[2] = bmprime*ao[2];

ad = -a2;

a2 = a2-al;

al = al-1;/# coefficients of A(q)(g-1) to include integrator */
b3 = b2;

b2 = b2+bl;

bl = bi+b0;/#coefficients of B(q) (g+1) for robust controller */

/* easy values */
rm[0]=1.;
rm[1]=am[1]+aoc[1]-al;
sm[3] = 0.0;

amod[0]=am[2]+ao[1] *am[1] +ac [2]-a2+rm{0]-al*rm[1];
amod[1])=ao[1]*am[2] +ao[2]¥am[1]-a3*xrm[0]-a2+rm[1];
amod[2]=ao[2] *am[2]-a3*rm[1];

for (i=0;1i<3;i++)
{ for(j=0;3j<3;j++)
{ ani[i]l[j]=0;
bhili][j1=0;
alo[i][j1=0;
blo[il1[j]1=0; } /* clear coefficient matrices */

}

for(i=0;i<3;i++)

{ alofil([i] = 1.0;
blof[i) [i] = bO;
bhil[i} [i] = b3;
ahi[i][i] = a3; }

alo[1][0] = ai;

alo[2][1] = ai;
alo[2][0] = a2;
blo[1]1[0] = bi;
blo[2][1] = bi;
blo[2] [0] = b2;
bhil0][1] = b2;
bhil[1]1[2] = b2;
bhi[0][2] = bi;
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ahi[0][1] = a2;

ahi[1][2] = a2;

ahi[0][2] = al; /% non-diagonal elements */

/% bhi_in = inverse of bhi; by hand computation #/

mag=bhi[0] [0]+bhi[1] [1]#*bhi[2] [2];

bhi_in[0][0] = bhi[1][1]*bhi[2][2]/mag;

bhi_in[1] (1] = bhi[2] [2]*bhi[0][0]/mag;

bhi_in[2][2] = bhi[0][0]*bhi[1][1]/mag;

bhi_in[0][1] = - bhi[0][11/(bhil0] [01*bhil[1][1]);
bhi_in[1][2] = - vhil[1][2]1/(bhi[1][1]*bhi[2][2]);
bhi_in[0][2] = (bhi[0][1]#*bhi[1] [2]-bhi[0] [2]#bhi[1][1])/mag;

bhi_in[2][0] = 0;
bhi_in[1][0] = 0;
bhi_in[2][1] = 0;

/% bhi_inahi = bhi_in * ahi #/

for(i=0;1i<3;i++)
{ for(j=0;j<3;j++)
{ sum= 0.0;
for (k=0;k<3;k++)
{sum = sum + bhi_in[i] [k]*ahi[k][j];}
bhi_inahil[il[j] = sum;
}
}

/* bba = blo * bhi_inahi */

for(i=0;i<3;i++)
{ for(j=0;3<3;j++)
{ sum=0.0;
for (k=0;k<3;k++)
{ sum =sum + blo[i] [k]*bhi_inahil[k][j]; }
bbali]l[j] = sum;
}
}

/* abba = alo - bba */

for(i=0;i<3;i++)

{ for(j=0;j<3;j++)

{ abbalil[j] = alo[il[j] - bbalil[jl; }
}

/* abba_in = inverse of abba ; by hand compuation */

cof£[0]1[0] =abbal[1][1]* abba[l[2] [2]~-abbal2] [1]*abbal1]1[2];
cof£[0] [1] =-abba[1][0]* abba[2] [2]+abbal[2][0]*abbal[1][2];
coff[0] [2] =abba[1] [0]* abba[2] [1]-abbal2] [0]*abba[1][1];
coff[1] [0] =-abbal[0][1]* abba[2] [2]+abbal[2] [1]*abbal[0] [2];
coff[1]1[1] =abbal[0] [0]* abba[2] [2]-abbal[2] [0]*abbal[0][2];
coff[1][2] =-abba[0] [0]* abba[2] [1]+abba[2] [0]*abbal[0] [1];
coff[2] {0] =abba[0][1]* abba[1][2]-abba[1][1]*abba[0][2];
cof£[2] [1] =-abba[0][0]* abba[1] [2]+abbal[1][0]*abba[0] [2];
coff[2][2] =abbal0] [0]* abbal[1][1]-abbal1] [0]*abba[0] [1];
mag =abbal[0] [0]*coff[0] [0]+abbal[0][1]*coff[0] [1]+
abba[0] [2]*coff [0] [2];

for(i=0;i<3;i++)

{ for(j=0;3j<3;j++)

abba_in[i][jl=coff[j1[i]l/mag;
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}
/* rseg = abba_in * amod */

for(i=0;i<3;i++)
{ sum=0.0;
for (k=0;k<3;k++)
{sum = sum+abba_in[i] [k]*amod[k]; }
rseg[i]=sum;
rm[i+2]=sum;

}
/* s = - bhi_inahi* rseg */

for(i=0;i<3;i++)
{ sum =0.0;
for (k=0;k<3;k++)
{ sum = sum - bhi_inahili] [k]*rsegl[k]; }
sm[i] = sum;

1

/* r-parameters including integrator */

r[5]=-rm[4];
r[4]= rm[4]-rm[3];
r[3]= rm[3]-rm[2];
r[2]= rm{2]-rm[1];
r[1]= rm[1]-rm[0];
r[0]= rm[0];

/* s-parameters including (q+1) */

s[4]=sm[3];
s[3])=sm[3]+sm[2];
s[2]=sm[2])+sm[1];
s[1]=sm{1]+sm[0];
s[0]=sm[0];

}
/% update the phi vector used by the ld_filter */
/* = = = i */
change_phi()
{ int i;

for( i=0; i<=na ; i++)
{ phi[ i ] = yvector[i];
}
for( i=0; i< nb ; i++)
{ philna+1+i] = ucon[i+1]; /* we take delay into account #/
}
}
/% compute the model and observer as per specifications %/
/% — __*/
compute_model()
{ hm=h * int_count_max;
am[0] = 1.0;
am[1] = -2.0 * exp( -zeta * omega *hm)*
cos((sqrt(1.0-zeta*zeta))*omegathm) ;
am[2] = exp(-2.0 *zeta *omega*hm);
if (polemod > 0)
{
ao[0]=1.0;
ao[1]= -(q[0]+q[1]);
ao[2]=(-q[0]1)*(-q[1]);
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}
else
{
ao[0]=1.0;
ao[1] = -2.0 * exp (-zobs * omega_obs* hm)*
cos(sqrt (1.0-zobs*zobs) *omega_obs*hm) ;
ao[2] = exp(-2.0 *zobs *omega_obs*hm) ;
}
}

5. Input and Output Routines

Analog.c and Read One Sample.c are the C-language subroutines used to get
data in and out, Analog.h is the support file. The ‘float and Scale.c’ routine
is used for converting data. The programs are listed below.

5.1 Analog I/0:

#include "DSP.h"
#include "int_DAQ.h"
#include "Analog.h"

extern int32 slot_base;

void Analog_In(enum InChannel channel, enum Gain gain, float* value)
{
int32 intvaluse;
Send_NuBus ((gain | channel), slot_base + Mux_Gain);
Read_One_Sample(slot_base, &intvalue);
float_and_scale(Zintvalue, value); /* convert to floating point */

}

void Analog_Out(enum OutChannel channel,float j)
{
int32 i,Dac;
Dac = slot_base + channel;
j=j*(2048%0x010000); /* scale it back */
i=j; /* convert back to integer */
i += (2048%0x10000); /* add the offset to suit DAC */
Send_NuBus (i, Dac);

5.2 Read One Sample.c

/*
Read_One_Sample(board_firstadd,sample)

Read one sample from the ADFIFO of the MIO if no error
12-18-90 DL DSP Group

05-09-91 DL overRunErr, ADClear

*
*
*
*
*
*
* National Instruments

*/

#include "DSP.h"
#include "int_DAQ.h"

Read_One_Sample(board_firstadd,sample)
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int32 board_firstadd,*sample;
{
register int32 status, StartConvert;
int32 temp;
StartConvert = board_firstadd + 0x10;
;Send_NuBus (0, StartConvert);
while (((status = Get_NuBus{(board_firstadd)) & 0x20000000) == 0);
if ((status & 0x03000000) = 0) {
temp = ((status & 0x01000000)!= 0) ? overRunErr : overFlowErr;
Send_NuBus (0x0,board_firstadd + ADClear);
return(temp) ;
}
*sample = Get_NuBus(board_firstadd + AD_FIFOQ);
return(0);

}

5.3 Analog.h:

#ifndef _ANALOG_H_
#define _ANALOG_H_

enum InChannel { InChannel_0 = 0x00000, InChannel_1 = 0x10000,
InChannel_2 = 0x20000, InChannel_3 = 0x30000 };
enun OutChannel { OutChannel_0 = DACO, OutChannel_i = DAC1 };
enum Gain { gain_1 = 0x000000, gain_10 = 0x400000,
gain_100 = 0x800000, gain_600 = 0xc00000 };

void Analog_In(enum InChannel channel, enum Gain gain, float#* value);
void Analog_Out(enum OutChannel channel,float j);

#endif

5.4 Float and Scale.c:

#include "DSP.h"

#include "int_DAQ.h"

/* this routine floats and scales the value read from the ADC */
/* to make any further processing convenient#*/
float_and_scale(int32 #i,float *j)

{

*j=*i;

*j=+3/(2048%0x10000) ;

1

6. Support Routines for I/0

Programs given files Init MIO16.c, Send Nubus.asm, Get Nubus.asm, and
Setup MIO16.c are required to support the I/O operations. The ‘timer.c’ is
the C-programme needed for timer initialization and control.

6.1 Init MIO16.c

7Rk ok ok ok ARk sk ok ook s ok sk sk ook ook Aok ok ok Rk kR Ao ok Rk

* Initialize the board according to NB-MIO-16 User Manual p3-35
* Board must be in factory setting !

*

47



* 05-06-91 DL
* National Instruments

*/

#include "DSP.h"
#include “int_DAQ.h"
int32 cmd2Reg, cmdiReg;

Init_MIO16(board_firstadd)

int32 board_firstadd;

{

int32 AMCommand,AMData,NBadd,MIOstatusReg;
int32 Status,ADFifo,i;

int32 MIOstatus;

asm(" AND OFFFDh, IE ");/+disable interrupt*/
AMCommand = board_firstadd + AMC;

AMData = board_firstadd + AMD;

ADFifo = board_firstadd + AD_FIFQ;

MIOstatusReg = board_firstadd + STAT;

cmdiReg = 0x0;
Send_NuBus(cmdiReg,board_firstadd + Commandl);
cmd2Reg = 0x0;
Send_NuBus(cmd2Reg,board_firstadd + Command2) ;
Send_NuBus (0x0,board_firstadd + Mux_Gain);

/* 4- initialize RTSI bus switch */
for(i=0;i<56;i++) Send_NuBus(0x0,board_firstadd + MIO_R_SH);
Send_NuBus(0x0,board_firstadd + MIO_R_ST);

/* 6- initialize Am95134 %/
Send_NuBus (0xf££f£0000, AMCommand) ;
Send_NuBus (0xf£fef0000, AMCommand) ;
Send_NuBus (0x££170000, AMCommand) ;
Send_NuBus (0x£f0000000, AMData) ;

for(i=1;i<=5;i++){

Send_NuBus (0xff000000+i<<16, AMCommand) ;
Send_NuBus (0x00040000, AMData) ;

Send_NuBus (0x££080000+i<<16, AMCommand) ;
Send_NuBus(0x00030000, AMData);

}

Send_NuBus (0xf£5£0000, AMCommand) ;

for (i=0;1<1000;i++);
Send_NuBus(0x0,board_firstadd + ADClear);

/% 6- initialize analog output circuitry */
Send_NuBus (0x0, board_firstadd + DACO);
Send_NuBus(0x0, board_firstadd + DAC1);

/* 7- initialize digital output register */
Send_NuBus(0x0, board_firstadd + digOut);
}

6.2 Send Nubus.asm

* Send_NuBus(value,NuBus_Address) sends value to a NuBus
* address expressed

* in the 32-bit format (example:0x0£99000000)

*

* 12/15/90 by DL, DSP Group



FP .set AR3
.globl _nb_page0
.globl _Send_NuBus

_Send_NuBus:
PUSH FP

LDI SP,FP
PUSH ARO

LDI *-FP(3),R1
ASH -22,R1

AND 03ffh,R1
LDI @_nb_page0,ARO
STI R1,*ARO

LDI *-FP(3),R1
ASH -2,R1

AND QCONST+0,R1
OR OCONST+1,R1
LDI R1,ARO

LDI *-FP(2),R0
STI RO,*ARO

POP ARO
POP FP

RETS

e 3 2k ok 3k ok ok 3 K o 3K ok ok sk ok 3K ok ok ok 3k ok 3k ok sk sk Rk sk K ok ok ok 9k 3k o 3k ke sk o ok ok ok ok ok ok ok ok
* DEFINE CONSTANTS *

ks ok ook ok ok ok ok o ok Kok sk ok o Kok ok sk o ok ok ok o ok sk ook ok ok ok ke ek sk ok sk ko
.bss CONST,2

.sect ".cinit"

.word 2,CONST

.word Offfffh ;0
.word 0c00000h 31
.end

;#include "DSP.h"

;extern int32 *nb_page0;

;Send_NuBus (value,nb_addr)

;int32 nb_addr,value;

il

;register int32 #r0;

;*nb_page0 = (nb_addr >> 22) & 0x000003ff;

;x0 = (int32%) (0xc00000 | ((nb_addr>>2) & 0x000fffff));
;*r0 =value;

;return(0);

i}

6.3 Get Nubus.asm

[NuBus_Address] = Get_NuBus(NuBus_Address) returns
the content of a NuBus address

11/7/90 by DL, DSP Group

* #* ¥ ¥ *®

FP .set AR3
.globl _nb_page0
.globl _Get_NuBus

_Get_NuBus:
PUSH FP
LDI SP,FP
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PUSH ARO

LDI *-FP(2),RO
ASH -22,R0

AND 03f£fh,R0O
LDI Q@_nb_page0, ARO
STI RO,*ARO

LDPI *~-FP(2),RO
ASH -2,R0

AND QCONST+0,RO
DR QCONST+1,RO
LDI RO,ARO

LDI *ARO,RO

POP ARO

POP FP

RETS

e o o ok oo o s o sk o ok ook o K o o R R o o K SRR s ko o o R R o K K
* DEFINE CONSTANTS *

e e s oo ook ok s kol sk o sk o st ook ok Kok ko K ok ok ok ok koK ko ok ok ok ok e ok o ok e ok
.bss CONST,2

.sect ".cinit"

.word 2,CONST

.word Offfffh ;0
.word 0c00000h 71
.end

;equivalent C code:

;#include "DSP.h"

;extern int32 *nb_pagel;

;Get_NuBus (nb_addr)

+int32 nb_addr;

1

;register int32 *ro0;

;*nb_page0 = (nb_addr >> 22) & 0x000003ff;

;0 = (int32%) (0xc00000 | ((nb_addr>>2) & 0x000fffff));
;return(*ro) ;

i}

6.4 Setup MIO16.c

~
*

Setup_MIO16 (board_slot,gain,timebase,interval,channel,samples,RTSInt)

Set up the MIO for data acquisition. Init_MIO16 and Reset_MIO016 must
be run previously (Init defines globals)

Continuous sampling: the MIO 16 is set up for continuous

sampling if samples <=0 or samples >65535

(see NB-MIO-16 User Manual p 3-40):

Gain: 0 to 3 in the bit 6 and 7 of Gain_Mux

Timebase: 5 (100Hz) to 1 (1MHz) in Counter 3

Interrupt service (NB-MIO_16X p 3-79):
set CONVINTEN in Commandl if RTSInt != 0
set NBINTDIS in Command2 : MIO16 doesn’t assert interrupt on NuBus

12-02-90 DL DSP Group

12-17-90 DL Setup_AD_MIO, channel selection
12-18-90 DL continuous sampling selection
(LabDriver:Data_Acq.c:SetUpSampCtr)
12-23-90 DL take samples parameter out

LR R R N R 2 B IR BN K BER R NN CNEE R R
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* 12-25-90 DL board_slot instead of board_firstadd
% 06-10-91 DL Send_NuBus, RTSInt, cmdiReg,cmd2Reg.

* National Instruments

*/

#include "DSP.h"

#include "int_DAQ.h"

extern int32 cmdiReg,cmd2Reg;
int32 Alloc_Mem();

Setup_MIO16 (board_slot,gain,timebase,interval,channel,samples,RTSInt)
int32 board_slot,gain,timebase,interval,channel,samples,RTSInt;

{

int32 err,n,m,AMCommand,AMData,NBadd,timeout;

int32 i,delay,board_firstadd,temp;

board_firstadd = (board_slot * 0x01100000) + 0xF8800000;
if(gain >3 || gain < 0) return(outOfRangeErr);

if (channel>15 || channel<0) return(outOfRangeErr);

if (interval<2 || interval>65535) return(outOfRangeErr);
if (samples == 1) return(outOfRangeErr);

/*¥x* 1- Select channel and gain ***

*/

Send_NuBus (0x0,board_firstadd + Mux_Count);
Send_NuBus ((gain<<22) | (channel<<16),board_firstadd + Mux_Gain);

/*%%% 2- Program Sample-Interval Counter **#%/

AMCommand = board_firstadd + AMC;
AMData = board_firstadd + AMD;

Send_NuBus (0xFF030000,AMCommand); /#* select Counter 3 Mode Register */
switch(timebase){

case 1 : temp = 0x8b250000;break; /* 1 MHz */

case 2 : temp = 0x8c250000;break; /+ 100 kHz */

case 3 : temp = 0x8d4250000;break; /% 10 kHz */

case 4 : temp = 0x86250000;break; /* 1 kHz %/

case 5 : temp = 0x8£250000;break; /* 100 Hz =x/

default: return(outOfRangeErr) ;break;

}

Send_NuBus (temp,AMData); /% select timebase */

Send_NuBus (0xFF0B0000,AMCommand); /* select Counter 3 Load Register */
Send_NuBus (0x00020000,AMData); /* Counter 3 Load value */
Send_NuBus (0xFF440000,AMCommand); /* load Counter 3 #*/

Send_NuBus (0xFFF30000,AMCommand); /# step Counter 3 to 1 %/
Send_NuBus (interval<<16,AMData); /* select sample interval */

Send_NuBus (0xFF240000,AMCommand) ;

/*#*¥% 3- Program the Sample Counter

if (samples >0 && samples < 65536){

Send_NuBus (0xFF040000,AMCommand) ; /%

Send_NuBus (0x10010000,AMData) ; /%

Send_NuBus (0xFF0C0000,AMCommand) ;/*

Send_NuBus (samples<<16,AMData);

Send_NuBus (0xFF680000,AMCommand) ;/*

}

else{ /% set output CTR4 to low */
Send_NuBus (0x££040000, AMCommand) ;
Send_NuBus(0x0,AMData) ;
Send_NuBus{(0xf£0c0000, AMCommand) ;
Send_NuBus (0x00030000, AMData);

}

/* arm Counter 3 */

if non continuous *¥**/

select Counter 4 Mode Register */

store Counter 4 Mode value */

select Counter 4 Load Register */

arm Counter 4 */



/*

* 4- Clear tha A/D circuitry and enable continuous data acquisition.
* MIO-16 User Manual p3-43.

*/

Send_NuBus (0x0,board_firstadd + ADClear); /* clear ADFIFO #/

cmdiReg = (RTSInt) ? 0x00500000 : 0x00100000 ;
Send_NuBus (cmdlReg,board_firstadd + Commandi) ;

/* Commandil:
X x xxx x x DAQ INT CONV INT DMA DAQ SCAN SCAN 16*%-32 2SC#
EN EN EN EN EN DIV CNT ADCx*
0000000 0 1 0 1 0 0 0 0 =/

cmd2Reg = 0x00800000;
Send_NuBus (cmd2Reg,board_firstadd + Command?2);
/* Command?2:

x x x x x DOUTB DOUTA NBINT DMA DMA DMA A4 A4 A2 A2

EN EN DIS A2 Al A0 RCV DRV RCV DRV

00000 0 0 1 0 0 0 0 0 0 0 */

return(0);

1

6.5 Timer.c

/*************************************************#**********************

* Setup_Timer - call to set up timer’s control, period, and counter
* registers. Use either Setup_Timer or Start_Timer
* but not both.

*

* Start_Timer - resets and starts timer

* Hold_Timer - holds timer in present state

* Restart_Timer - restarts timer from previous count

* Timer_Count - returns 32-bit timer count

*

*  Copyright 1990 National Instruments Corporation.

*  All rights reserved.

*

*************************************************************************/

unsigned long *timer_O_control = (unsigned long *) 0x808020,
*timer O_count = (unsigned long *) 0x808024,
*timer_O_period = (unsigned long %) 0x808028,
*timer_1_control = (unsigned long %) 0x808030,
*timer_1_count = (unsigned long #*) 0x808034,
*timer_1_period = (unsigned long *) 0x808038;

Setup_Timer (timer,control,period,counter)
long control,period,counter;

{

if (timer) {
*timer_1_period = (unsigned) period;
*timer_1_control = (unsigned) control;
*timer_1_count = (unsigned) counter;
}

else {

*timer_O_period = (unsigned) period;
*timer_0_control (unsigned) control;
*timer_O_count (unsigned) counter;

}
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Start_Timer (timer)
long timer;
{
if (timer) {
*timer_1_period = (unsigned) Oxffffffff;
*timer_1_control = 0x03C3; /* zero and start counter */
}
else {
*timer_O_period = (unsigned) Oxffffffff;
*timexr_O0_control = 0x03C3;
}
}

Restart_Timer (timer)

long timer;

{
if(timer) *timer_1_control = 0x0383; /* restart counter */
else *timer_0_control = 0x0383;

}

Hold_Timer (timer)

long timer;

{

if (timer) *timer_1_control = 0x0303; /% hold counter */
else *timer_O_control = 0x0303;

}

unsigned long Timer_Count (timer)
long timer;

{

if(timer) return(*timer_1_count);

else return(*timer_0_count);
}
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