LUND UNIVERSITY

The Dominant Pole Design Toolbox

Persson, Per

1992

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Persson, P. (1992). The Dominant Pole Design Toolbox. (Technical Reports TFRT-7497). Department of
Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/594190ff-faac-41aa-b9c6-7f6783629cdf

ISSN 0280-5316
ISRN LUTFD2/TFRT--7497--SE

The Dominant Pole
Design Toolbox

Per Persson

Department of Automatic Control
Lund Institute of Technology
December 1992

P.O. Box 118

Department of Automatic Control
Lund Institute of Technology

S-221 00 Lund Sweden

Document name

Date of issue

December 1992

Document Number

ISRN LUTFD2/TFRT--7497--SE

Author(s)
Per Persson

Supervisor

Sponsoring organisation

Title and subtitle

The Dominant Pole Design Toolbox

Abstract

IE = [e(t) dt.

functions, etc.

This report describes the Matlab routines that were used in the thesis Persson, P.:

“Towards Autonomous

PID Control.” The routines are used to compute PID controllers based on placement of a few dominant poles.
The user must specify a transfer function of the plant to be controlled and the desired degree of stability of
the closed loop system. The stability is expressed as the maximum of the sensitivity function of the plant.
From these specifications are the PID controller parameters computed, by minimizing the cost functional

The routines can also be used for computing frequency responses, amplitude and phase margins, sensitivity

A method of connecting Matlab and Simnon is also briefly described. By this connection, Simnon can be used
as a computation engine for Matlab. Simnon commands can be given from Matlab, parameters can be set,
values in Simnon can be retrieved to Matlab, and simulation results can be taken from Simnon into Matlab.

Key words

PID control, Controller Design, Controller Tuning

Classification system and/or index terms (if any)

Supplementary bibliographical information

Security classification

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes
English 28

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
5-221 03 Lund, Sweden, Fax 446 46 110019, Telex: 33248 lubbis lund.

1. Introduction

Ever since the publication of the famous articles [Ziegler and Nichols, 1942]
and [Ziegler and Nichols, 1943] there has been an interest in systematic tun-
ing methods for PID controllers. This interest has increased recently due to
research on automatic tuning of controllers. See, e.g., the article [Astrom
and Hagglund, 1984] and the book [Astrdm and Hagglund, 1988]. Several
controllers with automatic tuning are commercially available.

The PhD thesis [Persson, 1992b] describes methods for the tuning of PID
controllers based on pole placement. During the work with the thesis a num-
ber of routines for computation of PID controllers were written. This report
presents an improved version of these routines as a Matlab toolbox. For read-
ings on Matlab, see [MathWorks, 1990]. The toolbox will be called the DPD
Toolbox (the Dominant Pole Design Toolbox). This report is intended to be a
manual for the DPD Toolbox, but also to further illustrate the computations
carried out in [Persson, 1992b].

The methods require that the transfer function of the process is known.
The toolbox contains design routines and also some utility functions of gen-
eral interest. Apart from using the routines in the toolbox for computing
controllers there are also routines for computing frequency responses, ampli-
tude and phase margins, sensitivity functions, etc.

This report also describes a way to connect Matlab and Simnon. By
doing this Simnon can be used as a computing engine for Matlab. There are
routines for giving Simnon commands from Matlab, to set Simnon parameters
from matlab, to retrieve Simnon values to Matlab, and to get time signals
from Simnon to Matlab.

2. Design Methods

This chapter will give a brief review of the results and methods presented in
the thesis [Persson, 1992b]). We also give references to the implementation of
the different methods.

Design of PID controllers

All methods that are presented here are based on the placement of a few (two
or three) of the dominant poles of the closed loop system. We will use the
parallel form of the PID controller

8Ty
1+ s%‘

U(s) = K(BY(9) - Y (8) + g (1(o) Y () - ¥ (), (21)

where u(t) is the controller output, y(t) is the plant output, y,(t) is the refer-
ence signal, 8 is the set point weighting factor, N is a filter constant, and k,
T;, Ty are the controller parameters. The parameter 8 will affect a zero of the
closed loop system, but does not affect the stability of the system. Notice that
the derivative only acts on the output from the process, y(t). The parameters
B and N are not determined by pole placement. For computation of the poles
of the system the transfer function

1 k;
Gc(s) = k(]. + E + sTd) =k + -;' + Skd (22)

will be used. The transfer function of the plant will be denoted Gy(s), and is
assumed to be known.

We will require that the characteristic equation, 1 + G.(8)Gp(8) = 0, has
roots in specified locations. For controllers with two parameters we specify
poles in the locations p; 2 = wo(—{o £i4/1 — (Z) and for controllers with three
parameters we specify poles in the locations p; 2 = wo(—{o £ i4/1 — (%) and
pa = —apwo. The equations 1+ G¢(p;)Gp(pi) = 0 are then solved with respect
to the controller parameters. The controller parameters will be functions of
wo, (o, and ag. The design routines will accept {o > 1 which corresponds to
two poles on the negative real axis.

The control error is defined as e(t) = y,(t) — y(t). It is easy to show that

% 1
IE = / e(r)dr = (2.3)
0 k:

when the input to the closed system is a step on the input of the plant. The
integrated error, IE, can be used as an optimization criterion. This is advan-
tageous because we have a simple analytical expression of the cost functional.
Since the distance of the poles from the origin is closely coupled to the per-
formance of the system we have chosen to determine wo by maximizing k;.

For a well damped closed system IE ~ IAE = [|e(r)| d7, which is the
conventional optimization criterion.

To determine a suitable value of (o we will specify a value of the maximum
of the sensitivity function M,, defined as

M. = 1
¢ =080 1 + Go(iw)Gp(iw)|

This way of determining (o gives good control of the shape of the closed loop
step responses. A small value of M, will give a well damped system and a
large value will give an oscillatory system. Normally a value in the interval
1.5...2.0 is recommended. It is not recommended to choose a value of (o
directly, since the result of design with (o directly will vary much depending
on the process.

The parameter ag must be chosen for the design of PID controllers. Nor-
mally ag = 1 is a good choice. For resonant processes it is necessary to choose
ap smaller, ag = 0.2...0.5.

Design of PI controllers I case of a PI controller the formulas for k and
k; become

V1-CGA+ (B (2.4)
\/ITQ}i(Az +B?) '

R)
where A = Re Gp(wo(—Co + iy/1— (2)) and B = Im Gy(wo(—Co +i/1 = (3)).

The expressions for {, > 1 look similar, but require that G,(s) is evaluated
twice. The functions k(wog, (o) and k;(wo, (o) are implemented in the function
‘dppi’. The recommended design method is to choose a (o, then maximize
ki(wo, (o) with respect to wq, giving k*({o) and k(o). The parameter (o
should be chosen such that the system gets a prescribed M,-value. This means
solving a nonlinear equation with respect to {o. The equation becomes

(2.5)

M, = max . (2.6)

“>0 |1+ (k*(Co) +) Goliw)|

This is an approximate, but often sufficiently accurate computation method.
This is implemented by the function ‘pidesms’.
Another possibility is to determine a function (o = {o(wo) from the equa-

1
M, = . 2.7
w0 |1y (k(wo, Co(wo)) + Xleefol@olya (iw)| (21)

and then maximize k; = k;(wo, (o(wo)) with respect to wg. This is implemented
by the function ‘pides2’. This is computationally very demanding, but gives
the controller with maximal k; for a specified M,. The approximate method
usually gives results very close to the true optimum. For systems with poorly
damped poles it is necessary to use the exact design method.

Routines for design of PI controllers with (o chosen to get specified values
of A,, and ¢,, are also available, ‘pidesam’ and ‘pidespm’. Their implementa-
tion is very similar to the one of ‘pidesms’, (o is chosen to get the prescribed
value of A,, or pn,.

tion

Design of PD controllers In case of a PD controller the formulas for k
and k4 become

-‘lean‘l*CoB (2.8)
T VI- G4+ BY) '
B

oo/ 1= A+ B’

kg = (2.9)

where A = Re Gp(wo(—Co + iy/1 — (2)) and B = Im Gp(wo(—Co + iy/1— (3)).
The expressions for (o > 1 look similar, but require that Gp(s) is evaluated
twice. The functions k(wo, (o) and k4(wo, (o) are implemented in the function
‘dppd’.

In the PD case it is natural to maximize the controller constant k, to get
minimum offset to a load disturbance. Design with specified value of M, is
implemented in the function ‘pddesms’ in the same way as in ‘pidesms’.

Design of PID controllers In the case of a PID controller the formulas
for k, k;, and ks become

V1 = (—2a0lo(A? + B?) + (1 + a)AC) + (aj — 1)(eBC

oo (1 - 2C'OCO + ag)ﬂ(/ﬂ + Bz)C {2'10)
b = — g, (20— G)BC + V1- G(AC - A* — B?) (2.11)
l (1_25'50(0*}‘(10)\/1—CO(A2+Bz)C .
by = (2000 ~1)BC + a0 y/T—((AC — 4° — BY) (212)

wo(l . 2a0(0 + a%)\; 1-— Co(Az + B2)C
where A = Re Gp(wo(—Co +iv/1 — ¢2)), B = ImGp(wo(—Co +iy/1 - Co))a and

C Gp(—awp). The expressions for o > 1 look similar, but require that
Gp(s) is evaluated three times. The functions k(wo, (o, @), ki(wo, (o, @), and
k4(wo, o, @) are impiemented in the function ‘dppid’.

The recommended design method is very similar to the one for PI con-
trollers. The only difference is that we must also have a term iwk}(o) in
the equation for M,. The recommended design method is implemented in the
function ‘piddesms’.

A second method for PID controller design is described in [Persson, 1992b]
on pages 97 — 101. The method consists of modifying a well tuned PI controller
by increasing the derivative gain kq, until the M,-function reaches a specified
value. This design method is implemented in the function ‘piddesm2’. In
general this method is inferior to the one implemented in ‘piddesms’.

3. Implementation

In this chapter the Matlab implementation of the design routines will be dis-
cussed. The data structures will be described, and the structure of the design
and utility functions will be presented.

3.1 Hardware and Software

The implementation which is described here works under Matlab 4.0 on a
SPARC. Versions of the routines for Matlab 3.5j on SPARC, PC 386, and
PC 486 are also available, but are not described here. All function names
have been limited to eight characters to make it possible to use the functions
unchanged on PC systems.

3.2 Data Structures

The only data structure available in Matlab is the matrix. Everything in
Matlab must be expressed with matrices. In this section the conventions used
in the DPD Toolbox will be described.

Transfer functions Transfer functions are described as strings, where the
‘s’ is the Laplace transform variable. All Matlab math operators and functions
are allowed in the transfer functions strings.

The design routines require that these strings can be evaluated when
‘s’ assumes the value of a vector, hence the multiplicative operators ‘*’, ‘=7,
‘/’, and ‘\’ must be replaced by the operators ‘.*’, .~’, ‘. /’, and ‘.\’. The
function ‘convert’ does this transformation.

ExaMmpPLE 3.1

The transfer function
—8

G(s) = (sL-I-l? (3.1)
can be described as a string as
pstr = ’exp(-s)./(s+1)./(s+1)’
or
pstr = ’exp(-s)./(s+1)."2’
or
pstr = ’exp(-s).*(s+1).7(-2)". a
ExXAMPLE 3.2
The transfer function i
G(s) = m (3.2)
is described as
pstr = ’(s+1)."(-8)’ or pstr = ’1./(s+1).78". m]

In Matlab Version 3, it is possible to use global variables in the definition
of transfer function strings. This is not possible in Matlab Version 4, without
changes in the code. To use global variables in the transfer function strings,
the variables should be declared ‘global’ in the routine ‘evals’.

The Controller Data Structure The design routines return a row vector
describing the controller. The vector has the content

c=[wo o ao k ki T; ka Ta N,] (3.3)

The parameter wp is the distance of the dominant poles from the origin, (o is
their relative damping. In case that the design routine uses a third pole —aowp,
the value of ap is returned, in other cases NaN is returned. The controller
parameters are returned as k, k;, T;, k4, and Ty. The parameter N, tells
which of the fundamental pole placement routines has computed the controller.
This parameter is never used. This data structure should be accessed by the
access functions ‘getw0’, ‘getz0’, ‘geta0d’, ‘getk’, ‘getki’, ‘getti’, ‘getkd’,
and ‘gettd’. The routine ‘con2str’ converts the controller data structure to
the controller transfer function expressed as a string.

Frequency responses Frequency responses generated with ‘sfrcol’ are

stored as

[(4.)1 G]_(wl) o) Gm(wl)
T : (34)
Wn Gi(wn) ... Gm(wn)]

This data structure is also used in the toolboxes described in [Gustafsson et al.,
1990a] and [Gustafsson et al., 1990b], which are recommended for plotting.

3.3 Utility Routines

The transfer functions represented as strings are evaluated with the function
‘evals’,

EXAMPLE 3.3—The use of evals
To evaluate the transfer function G(s) = e~*/(s + 1)?, use the following com-
mands.

>> pstr = ’exp(-s)./(s+1)./(s+1)’;

>> w=1[0.10.20.3];

>> evals(pstr, i*w)

ans =

0.9461 - 0.2920i 0.7964 - 0.5388i 0.5825 - 0.7088i
O

There are routines for computing the maximum of the sensitivity function,
‘mscl’, amplitude margin, ‘amarg’, and phase margin, ‘pmarg’. The routines
for computing amplitude and gain margins are based on the general routines
‘asolveol’ and ‘psolveol’ which solve the equations

a1 = |Gp(iw)G(iw)| (3.5)
az = arg Gp(w)G.(iw) (3.6)

6

with respect to w for given a; and as.

All these routines require the process and the controller expressed as
strings. There is a conversion routine that converts the controller data struc-
ture to a string, ‘con2str’.

The function ‘makep’ returns one of a number of standard processes with
parameters given as arguments to the function. The following processes are
provided

p1e” P2

= 3.7
ops £ 1 (3.7
1
G2 = w (3.8)
_(1—sp)

G3 = T 1) (3.9)
G e 3.10)
47 (sp2 + 1)(spa + 1) 3.

‘pge"""
Gg = 3.11
: (82 + 2spaps + P2) ()
3 —ap1
Dapace
Gg = 3.12
i (8 + p2pa)(s? + 28paps + p3) (3-12)
1
Gr = 3.13
T (s+1)(spy + 1)(sp? + 1) (3.13)
1
Gg = 3.14
8=) (em T D(epl + DR + 1) (3.14)
(1-sp1/2)
Gy = 3.15
8T (1 + sp1/2)(1 + sp2) (3.15)
G B 3.16
0= (1 + sp2)(1 + sp3)(1 + sp4) (3.16)
e_"pl
Gii=— 3.17
L. s(sp2 +1) ()
e_‘pl
(3.18)

Gi3 = .
2= Slopa + D(eps + 1)

Many of the routines require a tolerance for the solution of an equation or
an optimization. When a tolerance is required in a function it can be given
as a parameter to the function. If the tolerance parameter is omitted the
tolerance is taken from the global variable ‘GTOL’, and if ‘GTOL’ is not defined
the tolerance is given from the function ‘deftol’. Normally the tolerance is
given from ‘deftol’ and is set to 10™* as default.

The optimization is carried out with the functions ‘opt’ and ‘optg’. These
functions implement a golden ratio optimization algorithm.

The solution of an equation is carried out by the functions ‘solve’ and
‘solveb’. In these functions a simple bisection method is implemented. The
function ‘solveb’ is specially implemented for solving phase equations to get
the correct phase value across nw borders.

3.4 Design Routines

The design routines are implemented in a number of layers, see Figure 3.1.

emM,
— pidesms || piddesms || pidespm
Tsolve |[solve |[solve
o » pides piddes pides2 piddes2
om M, N} o] AR | IS o) A— | S o)+ S— | o)] M
e

wolgag dptablel | ___dptable2 [l __dptables
woM, CIO = e
wogoar_

dpp dpi dppi dppd dppid dppid2

Figure 3.1 The structure of the design routines.

The lowest level consists of the basic pole placement routines, i.e., rou-
tines that compute controller parameters given wg, {o, and ag. The next level
consists of interface routines to the basic primitives. There may be several
of these interface routines. In this version four interface routines are avail-
able, ‘dptablel’, ‘dptable?2’, ‘dptable3’, and ‘dptable4’. In ‘dptableli’ con-
trollers are computed given wg, (o, and ag, we may be a vector. In ‘dptable2’
controllers are computed given wg, M,, and ap. This involves solving the
M,-equation with respect to (. The routine ‘dptable3’ takes the input pa-
rameters wy, Am, ag and ‘dptable4’ takes the input parameters wo, ¥m, Qo

The third level optimizes k;, given a (o or M,. Finally, the fourth level
solves equations with respect to {p such that some stability requirements are
fulfilled. These requirements may be M,, A, or @n,. These are the approxi-
mate, but recommended design functions.

4. Examples

This chapter will present a number of examples of the use of the design rou-
tines, and some discussions of the examples. All examples in this chapter have
been executed in Matlab Version 4.0 on an SPARC ELC, exactly as they are
written here.

4.1 Hints for the use of the routines

When design is carried out with M, as design parameter the default search
interval of {p is ‘linspace(0.01, 2, 10)’, this can handle most cases, but
requires a lot of computation. If the plant is well damped and we require a
moderate M, 1.6 to 2, say, then a smaller search interval can be supplied, e.g.,
Co =[0.10.50.9]

The wg should be chosen such that we are sure to detect a maximum.
The computations are relatively cheap, don’t use a too sparse discretization.

Normally a tolerance of 104 in the computations is sufficient. A larger
tolerance may cause errors in the routines.

Problems may also appear if the process transfer function is evaluated at a
process pole. To avoid this choose the initial guesses of wp ans ag ‘irregularly.’
For example, if the routine ‘piddesms’ is used for Gp(8) = e~*/(s + 1) choose
w0s = [0.11:0.1:3.0] rather than wos = [0.1:0.1:3.0] or alpha = 1.01
rather than alpha = 1.0.

Observe that the optimization is meaningless for processes of too low
order. For a second order process we can place the poles anywhere with a PID
controller, and get the closed system arbitrarily fast.

In Example 4.1 the function ‘polyadd’ is used. The function is defined
as:

function p = polyadd(pl, p2)

dn = length(pl) - length(p2);

P [zeros([1 -dn]) p1] + [zeros([1 dn]) p2];

4.2 Examples

In the following a number of examples of the use of the routines will be pre-
sented. The reader may need to consult Chapter 5 for a brief description of
the function.

ExAMPLE 4.1—Controllers with different (o
In the following example a number of PI controllers are designed with different
values of (ofor the process

1
MR T
The corresponding family of step responses and control signals are simulated
and plotted.

pstr = ’1./(s+1).74’;

b=1; a = conv([1 2 1], [1 2

tv = [0:0.1:40]; w0s = [0.1:0.

for ix = z0s,
con = pides(pstr, w0s, ix);
r = [1 0]; s = [getk(con) getki(con)]; t = s;
ysp = step(conv(b, t), polyadd(conv(a, r), conv(b, s)), tv);
usp = step(conv(a, t), polyadd(conv(a, r), conv(b, 8)), tv);
subplot(2, 1, 1); hold on; plot(tv, ysp); drawnow;
subplot(2, 1, 2); hold on; plot(tv, usp); drawnow;

end;

subplot(2, 1, 1);

grid; xlabel(’Time’); ylabel(’Output signal’);

subplot(2, 1, 2);

grid; xlabel(’Time’); ylabel(’Control signal’);

11);
1:2]; z0s = [0.1:0.1:0.9];

Output signal
- &

o
i

=

0 5 10 15 20 25 30 35 40

Control signal

Figure 4.1 Step responses of G(s) = 1/(s + 1)* controlled by PI controllers
designed with different (o.

Designing controllers with (o as the design parameter may produce very
different looking step responses with the same (o for different processes. For
this reason it is better to design controllers with specifications on M,.

In this case the simulation is carried out by computing the transfer func-
tions and using the standard function ‘step’. o

10

EXAMPLE 4.2—Computation of A,, and ¢m,
In this example we will design PI controllers for

e—aL

s+1

with different values of the design parameter M,. Phase and amplitude mar-
gins are then computed for the final systems as functions of M,.

dels = [0.1 0.5 1];
mss = [1.8:0.2:3.0]; ws = [0.1:0.1:20]; res = [1;
for jx = dels,

tmp = [1;

pstr = makep(1, 1, jx, 1);

for ix = mss,

G(s) =

con = pidesms(pstr, ws, ix);
tmp = [tmp;
amarg(pstr, con2str(com), ws) ...
pmarg(pstr, con2str(com), ws)];
end;
res = [res tmpl;
end;

cl = 1:2:cols(res); c2 = 2:2:cols(res);
subplot(2, 1, 1); plot(mss, res(:, c1));
xlabel(’Ms’); ylabel(’Am’);

text(mss(2), res(2, c1(1)), ’L=0.1)
toxt(mss(2), res(2, c1(2)), ’L=0.5’)
toxt(mss(2), res(2, c1(3)), L=1.0’)
subplot(2, 1, 2); plot(mss, res(:, c2));
xlabel(’Ms’); ylabel(’Pm’);

toxt(mss(2), res(2, c2(1)), ’L=0.1’)
toxt(mss(2), res(2, c2(2)), ’L=0.5?)
toxt(mss(2), res(2, c2(3)), ’L=1.0’)

8 2 22 24 26 28 3
Ms

Figure 4.2 Amplitude and phase margins for systems designed with different M,.
This example illustrates that a constant A,, or ¢,, as design parameter
may give very different M, in the closed system for different processes.]

11

EXAMPLE 4.3—A process with different parameters
In this example the process

l1—as
Gyp(s) = Grip

is controlled by a PI controller designed with M, = 2 for different values of
the parameter a. Load responses and the corresponding control signals are
simulated and plotted.

clg;

tv = [0:0.1:30]; alphas = [0:0.5:2]; wOs = [0.1:0.1:2];

for ix = alphas,
pstr = makep(3, ix);
b = [-ix 1];
a=[1331];
con = pidesms(pstr, wO0s, 2);
r = [1 0]; s = [getk(con) getki(com)]; t = s;
ysp = step(conv(b, r), polyadd(conv(a, r), conv(b, 8)), tv);
usp = step(-conv(b, s), polyadd(conv(a, r), conv(b, 8)), tv);
subplot(2, 1, 1); hold on; plot(tv, ysp); drawnow;
subplot(2, 1, 2); hold on; plot(tv, usp); drawnow;

end;

subplot(2, 1, 1); grid; xlabel(’Time’);

ylabel(’0Output signal’);

subplot(2, 1, 2); grid; xlabel(’Time’);

ylabel(’Control signal’);

Control signal

20 25 30

Time

Figure 4.3 Load responses for G,(s) = (1 — sa)/(s + 1)° for different values of
a with PI controllers designed with M, = 2.

The non-minimum phase character of the responses can clearly be seen
for large values of a. O

12

EXAMPLE 4.4—Nyquist curves from PI design on different processes
In this example we design PI controllers for a number of different processes.
The processes are described in the array ‘a’, which contains the process number

and the parameters of the process.

PI controllers are designed with constant (o and with constant M,. As
can be seen from the plotted Nyquist curves we get much more similarity of
different loop transfer functions with controllers designed with M, than with

constant (p.

W
a

1111
2400

3 00

412 2];
for ix = a’

pstr = makep(ix’);

i = =

cms = pidesms(pstr, [0.1:0.1:10], 2);

cz
f = sfrcol(pstr, con2str(cms), w);
resmns = [resms £(:, 2)];
f = sfrcol(pstr, con2str(cz), w);
resz = [resz f(:, 2)]1;

end;

nypl(resms); nygrid;

plotc(-1, 1/2, -pi/2, pi/2);

axis([-1 0.5 -1 0.5])

nypl(resz); nygrid;

plotc(-1, 1/2, -pi/2, pi/2);

axis([-1 0.5 -1 0.5])

04
._--"/

T
i

" 1 i
-1 0.8 0.6 0.4 0.2 0 02 04

Figure 4.4 To the left: Nyquist plots for processes designed with constant M,,

pides(pstr, [0.1:0.1:10], 0.5);

logspace(-1, 2, 200)’; resms = [w]; resz = [w];

{ Y

b

04 02] 02
Re

to the right: Nyquist plots for processes designed with constant (o.

04

13

EXAMPLE 4.5—Timing

In this example controllers are computed with different tolerance in the opti-
mization and equation solving routines, and the time it takes to compute the
different controllers are recorded.

pstr = ’exp(-s)./(s + 1)’; wO0s = [0.1:0.1:10]; res = []1;
for ix = 2:8
tic;
c = pidesms(pstr, w0s, 2, [1, 10~(-ix));
t1 = toc;
tic;
¢ = pidesms(pstr, w0s, 2, [0.2:0.2:0.6], 10~(-ix));
t2 = toc;
res = [res; t1 t2];
end;
Tes

Ires =

11.0203 9.1207
18.1734 15.8076
28.4095 25.4336
39.2039 35.6356
52.6931 48.4410
69.8643 65.0888
93.5680 83.4929

Some time can be saved by guessing a correct interval for (o instead of
relying on the default values from the algorithm. O

14

ExAMPLE 4.6—Computation of k;(k) curves
This is an example where we need to use the low level routines directly. We
compute the k and k; from Equations 2.4 and 2.5 as functions of wefor

Gp(s) = (4.1)

(s+1) +1)"

In the first case we choose constant (o. The curves k;(k) are shown with
solid lines in Figure 4.5. In the second case we choose (o such that we get a
prescribed M, value for all wg. The k;(k) are shown with dashed lines. (o is
chosen in the interval 0.0:0.1:1, and M, in the interval 1.5:0.5:3.5. As can be
seen a maximum of a dotted line corresponds reasonably well to a maximum
of a dashed line. This Matlab computation takes rather long time.
clg;
pstr = ’1./(s+1).75°; w0s = [0.01:0.02:1];
z0s = [0:0.1:0.9 0.999]; mss = [1.5:0
for ix = z0s,
= dptablel(pstr, ’pi’, wOs, ix);
hold on; plot(getk(c), getki(c));
end;
axis([-1 3 0 0.7])
for ix = mss,
= dptable2(pstr, ’pi’, w0s, ix);
hold on; plot(getk(c), getki(c),’--’);
end;
xlabel(’k’); ylabel(’ki’);

07

] \‘
"
o1k u, , vy
Vo
Vo
Vo
VoL
,// \ v
N RV |
-1

1.5 2 2.5 3

Figure 4.5 Plots of k;(k) for constant {o (solid lines) and constant M, (dashed

lines) for varying wo.

These kinds of curves are very useful to have to get a feel for how a system
react for choices of different (o and wp. a

15

EXAMPLE 4.7—Interface to Simnon

In some cases it may be desirable to use Simnon for simulation, for example
when we want to handle time delays or non-linearities. This example demon-
strates how easily it is done with the Simnon interface routines.

The routines ‘makep’ and ‘setsimnon’ are designed to accept the same
parameters describing a transfer function. This requires that all the necessary
systems are implemented in Simnon, or that Matlab can generate the necessary
Simnon code. In these examples the Simnon code is written by hand.

In this example we design a PID controller for the process

e—h

G(s) =

and simulate the step and load responses for different values of the set point
weighting factor 8. The plots show a family of step responses when 3 assumes
the values 0:0.2:1.

clg; wOos = [0.1:0.1:10]; alpha0 = 1.01; ms = 2.0;
betas = 0:0.2:1; ts = 30;
pstr = makep(1, 1, 2, 1);
con = piddesms(pstr, wOs, ms, alphaO);
setsimnon(1, 1, 2, 1);
par(’ti1’, ts/2); Y tl1 is the time when the load starts acting
setpid(con);
for ix = betas,
par(’b?’, ix);
y = simu(0, ts);
subplot(2, 1, 1); hold on; plot(y(:, 1), y(:, 2)); drawnow;
subplot(2, 1, 2); hold on; plot(y(:, 1), y(:, 3)); drawnow;
end;
subplot(2, 1, 1); grid; xlabel(’Time’); ylabel(’Output signal’);
subplot(2, 1, 2); grid; xlabel(’Time’); ylabel(’Control signal’);

15

a 1
8 05
0
25 .
2 :
3
? 15 ;
g,
S :
05 ;
0 5 10 15 20 25 30
Time

Figure 4.6 Step and load responses for different 8 in the interval [0 1].

16

5.

The Routines

Only a brief description of the routines will be given in this report. The
complete source code listing is given in [Persson, 1992a]. The help text of the
functions will also explain the meaning of the parameters.

Brief Description of the Routines

Design Routines

ides I controller with maximal k;.

pides PI controller with specified (o and maximal k;.

pides2 PI controller with specified M, and maximal k;.

pidesms PI controller with maximal k; and (o chosen to get specified M,.

pidesam PI controller with maximal k; and (o chosen to get specified A,,.

pidespm PI controller with maximal k; and (o chosen to get specified .

betades Design of the set point weighting factor.

piddeskd PID controller with specified (o and k4 and maximal k;.

piddes PID controller with specified (o and ap and maximal k;.

piddes2 PID controller with specified M, and ap and maximal k;.

piddesms PID controller with maximal k; and {p chosen to get specified M,.

piddesam PID controller with maximal k; and {p chosen to get specified 4,,.

piddespm PID controller with maximal k; and (o chosen to get specified .

piddesm2 PID controller with maximal k; and specified M,; and M,,.

pddes PD controller with specified {; and maximal k.

pddesms PD controller with maximal k¥ and {p chosen to get specified M,.

pddesam PD controller with maximal k and {o chosen to get specified A,,.

pddespm PD controller with maximal k and {p chosen to get specified @,.

znlpi PI according to Ziegler-Nichols oscillation method.

znipid PID according to Ziegler-Nichols oscillation method.

zn2pi PI according to Ziegler-Nichols step response method.

zn2pid PID according to Ziegler-Nichols step response method.
Computation Routines

amarg Computes the amplitude margin.

pmarg Computes the phase margin.

asolvecl Solves |L(iw)/(1 + L(iw))| = a, with L(iw) = G.(iw)Gp(iw)

asolveol Solves |G (iw)Gp(iw)| = a.

psolvecl Solves arg L(iw)/(1 + L(iw)) = a, with L(iw) = G.(iw)Gp(iw)

psolveol Solves arg G.(iw)Gp(iw) = a.

mpbeta Finds the M, value of the closed system as function of 8.

mscl Finds the M, value.

mshelp Help routine used in ‘piddesm?2’.

sfrcol Finds the frequency responses. For Bode and Nyquist plots.

17

Basic Pole Placement Routines

dptablel Interface to the pole placement routines. Argument wo{oao.
dptable2 Interface to the pole placement routines. Argument woM,aq.
dptable3 Interface to the pole placement routines. Argument wo A, ap.
dptable4 Interface to the pole placement routines. Argument wop,, ao.
dpi Pole placement of an I controller.
dpp Pole placement of an P controller.
dppd Pole placement of an PD controller.
dppi Pole placement of an PI controller.
dppid Pole placement of an PID controller.
dppid2 Pole placement of an PID controller with specified kgy.
Help Routines
closeit Computes z/(1 + z).
cols Returns the number of columns of a matrix.
evals Evaluates a string for a given value of ‘s’.
evalx Evaluates a string for a given value of ‘x’.
kdguess A guess of the maximal k4. Used in ‘piddesm2’.
locmax Finds a local maximum in an array.
phase Computes the phase of a vector of complex numbers.
plotc Plots a circle.
TOWS Returns the number of rows of a matrix.
Default Handling Routines

defprint Controls the printout form some of the routines.
deftol Gives the tolerance for the optimization and solving routines.

Optimization and Solving Routines
opt One parameter optimizer.
optg Computes the global optimum on an interval. Used in ‘mscl’.
solve One parameter equation solver.
solveb Solving routine used in ‘psolvex*’, to get the phase right. Inefficient.

Conversion Routines

con2str Convert the controller matrix to the PID controller string
convert Converts a transfer function string to accept vector arguments.
getal Access function to get ag.
getk Access function to get k.
getkd Access function to get kq.
getki Access function to get k;.
gettd Access function to get Tg.
getti Access function to get T;.
getwo Access function to get wp.
getz0 Access function to get (o.
makep Returns a number of standard systems as strings.
numtostr Converts a numerical value to a string.
par2con Converts PID parameter to the standard controller data structure.
gstring Returns a string with quotes.
sfun Implements the functions of ‘makep’.
tf2str Converts transfer function to a string,.

18

The function calls

An alphabetic list of the function with input and output arguments is also
given for reference. The following argument conventions have been used

am

con
contype
cstr

k, ti, td
ms

pm

pstr

str

tol

ws, w0, w0s

z0
zguess

= amplitude margin

the controller data structure (see Section 3.2)
= a string describing the controller type

a controller expressed as a string

PID controller parameters

the M, parameter

phase margin

a transfer function expressed as a string

a string

the tolerance for equation solving and optimization
= an array of frequencies

the (o parameter

= changes default value of (o search interval

The design routines return the controller parameters k, T, and Tg. If only
one output argument is present in a call of the design functions, the complete
controller structure is returned. For a complete description of the functions,
use the help texts of the functions. Parameters which have default values are
written in italics.

[am, wx]
wX
WX

b
res
res
str
str

dp

dt
con
con
con
con
con
con
con
con
con
con

a0

kd
ki

amarg(cstr, pstr, ws, tol)
asolvecl(cstr, pstr, y, ws, tol)
asolveol(cstr, pstr, y, ws, tol)
betades(pstr, con, mp, tol)

= closeit (f)

= cols(matrix)

= con2str(k, ti, td, n)
= convert(pstr)

= defprint

= deftol

= dpi(pstr, w0)

= dpp(pstr, wO0)

dppd(pstr, w0, z0)

dppi(pstr, w0, z0)

dppid(pstr, w0, z0, alpha0)

dppid2(pstr, w0, z0, kdO)

dptablel(pstr, contype, wOs, z0, pl)
dptable2(pstr, contype, wOs, ms, pl, tol)
dptable3(pstr, contype, wOs, pm, pi, tol)
dptable4(pstr, contype, wOs, am, pl, tol)
evals(str, s)

evalx(str, x)

getaO(con)

getk(con)

getkd(con)

getki(con)

19

td = gettd(con)
ti = getti(con)
w0 = getwO(con)
z0 = gatz0(con)

con = ides(pstr, wOs, tol)
kd = kdguess(pstr, wOs, z0)
res = locmax(array)

str = makep(sysnr, pl, p2, p3, p4)
mpr = mpbeta(pstr, k, ti, td, betas, tol)
[ms, ws] = mscl(estr, pstr, wx, tol)
str = numtostr(num, n)
[xsol, £x] = opt(str, x0s, tol)
[xsol, £x] = optg(str, x0s, tol)
con = par2con(k, ti, td)
[k, td] = pddes(pstr, wOs, z0, tol)
[k, td] = pddesam(pstr, wOs, am, zguess, tol)
[k, td] = pddesms(pstr, wOs, ms, zguess, tol)
[k, tdl] = pddespm(pstr, wOs, pm, zguess, tol)
phi = phase(g)
[k, ti, td] = piddes(pstr, wOs, z0, alphaO, tol)
[k, ti, td] = piddes2(pstr, wOs, ms, alphaO, tol)
[k, ti, td] = pidesam(pstr, wOs, am, alphaO, zguess, tol)
[k, ti, td] = piddeskd(pstr, wOs, z0, kd0, tol)
cons = piddesm2(pstr, wOs, msl, ms2, kdz, zguess, tol)
[k, ti, td] = piddesms(pstr, wOs, ms, alphaO, zguess, tol)
[k, ti, td] = pidespm(pstr, wOs, pm, alphaO, zguess, tol)
[k, ti] = pides(pstr, wOs, z0, tol)
[k, ti] = pides2(pstr, w0s, ms, tol)
[k, ti] = pidesam(pstr, wOs, am, zguess, tol)
[k, ti] = pidesms(pstr, wOs, ms, zguess, tol)
[k, til] = pidespm(pstr, wOs, pm, 2guess, tol)
plotc(z, rad, phil, phi2, I, ddeg)

[pm, wx] = pmarg(cstr, pstr, ws, tol)
wx = psolvecl(cstr, pstr, y, ws, tol)
wx = psolveol(cstr, pstr, y, ws, tol)
str = gqstring(str)
res = rows(matrix)
fr = sfrcol(cstr, pstr, wi, w2, n)

xx = solve(str, y, x0, fol, tol)
xx = solveb(str, y, x0, fol, tol)
str = tf2str(num, den)
[k, ti] = znipi(pstr, wOs, tol)
[k, ti, td] = znlpid(pstr, wOs, tol)
[k, ti] = zn2pi(kp, 1, t)
[k, ti, td] = zn2pid(kp, 1, t)

Interface to Simnon

Matlab is excellent for many kinds of numerical computations, but there exists
better tools for simulation of dynamical systems. When the systems contain
non-linearities or time delays Matlab is normally not adequate. The simulation

20

program Simnon is then a better suited program. Simnon is described in
[SSPA, 1990].

A facility has been written to run simulations in Simnon from Matlab,
with Simnon working as a ‘computation engine.” With this software it is
possible to issue Simnon commands from Matlab, to set Simnon parameters
from Matlab, and to get numerical results back from Simnon to Matlab.

It is now described how to use the interface functions. Matlab and Simnon
communicate via named Unix-pipes. In the following we assume that Mat-
lab will be run from the directory /home/nisse/matlabdir and that Simnon
will be run from the directory /home/nisse/simnondir. The file pipsimu is
located in the directory /home/nisse/1ib.

First we have to make two named pipes in Unix, the pipes will be called
ipipe and opipe, and will appear to the user as two files in the directory
/home/nisse/simnondir. The named pipes are created with the following
commands

% /usr/etc/mknod /home/nisse/simnondir/ipipe p
% /usr/etc/mknod /home/nisse/simnondir/opipe p

Open a new window, and give the following commands

% cd /home/nisse/simnondir
% /home/nisse/lib/pipsimu ipipe

This will start Simnon in the window and Simnon will now accept commands
from the named pipe ipipe.

The program pipsimu is a Perl script, which starts Simnon, reads com-
mands from ipipe and sends them along to Simnon. This seems unnecessary,
but Simnon refuses to read commands directly from a named pipe. For read-
ings on Perl, see [Wall and Schwartz, 1991). The Perl script is quite short and
simple:

#!/usr/local/bin/perl
$pipename = shift;
open(SIMNON, "|simnon") || die "cannot pipe\n";
select (SIMNON) ;
$1=1;
print "x\n";
#print "algor rkf45\n";
while(open(PIPE, $pipename)){
while (KPIPE>){

if (eof(PIPE)) {close(PIPE);}

print;

if ($_ eq "stop\n") {exit;};

}
}

Now open a window where Matlab will be run, and give the following com-
mands

% cd /home/nisse/matlabdir

% matlab
>> global inpipel outpipel simdir
>> inpipel = ’/home/nisse/simnondir/ipipe’;

21

’ /home/nisse/simnondir/opipe’ ;
’ /home/nisse/simnondir/’;

>> outpipel
>> simdir

Two Matlab variables ‘inpipel’ and ‘outpipel’ are now defined and have
values of the named pipes. The variables must have the full path names.
Simnon will now accept commands from Matlab. A typical command sequence
will be

>> gp = makep(2, 8); % Define a transfer function
>> cp = pidesms(gp, [0.1:0.1:5], 2); % Design a controller

>> setsimnon(2, 8); % Compile the correct model
>> setpid(cp); % Set the PID parameters

> r = simu(0, 100); % Simulate

> plot(r(:,1), r(:, 2)); % Plot the results

The functions ‘makep’ and ‘setsimnon’ must be written such that the param-
eters give Simnon commands to compile the correct model files. The function
‘setsimnon’ typically contains a number of Simnon commands as ‘syst’ and

‘par’.

Listing of functions for interfacing Simnon

In this section a few of the commands for the Matlab-Simnon interface will
be listed. Some of these functions must be modified to suit the the Simnon
models with which will be used.

The basic command is ‘remcommand’ which sends text strings to a named
pipe. The function ‘simc’ calls ‘remcommand’ but uses ‘inpipe1’ as default for
the named pipe, ‘simc’ also accepts several input parameters.

function remcommand(com, inpipe)

%REMCOMMAND Sends a command string to be executed in a remote
% process. The command is sent via the named pipe inpipe.

%Copyright (c) 1992 by Per Persson, Department of Automatic Control,
%Lund Institute of Technology, Lund, Sweden

%

%LastEditDate : Tue Dec 8 13:41:16 1992

eval([’!/usr/Ebin/echo * ???? com ’??? 2 >> ? inpipel);

function simc(pl, p2, p3, p%4, p5, p6, P7, P8, P9, pio0)

%SIMC A number of text strings are sent to a remote process (Simnon).

% The command is sent via a named pipe which name is in the
% global variable inpipel.

A

% SIMC(p1)

% :

%

% :

% sIMc(p1, p2, p3, p%, pb, p6, p7, P8, P9, p10)

%Copyright (c) 1992 by Per Persson, Department of Automatic Control,
#Lund Institute of Technology, Lund, Sweden

%

%ALastEditDate : Tue Dec 8 13:41:16 1992

22

global inpipel
for ix=1:nargin,

remcommand (eval(sprintf(’plg’, ix)), inpipel);
end;

The commands ‘getsimval’ and ‘getsimvec’ transfer Simnon variables, pa-
rameters and simulation results back to Matlab. ‘getsimval’ gets the value
of a variable or parameter, and ‘getsimvec gets the simulation result stored
in the file ‘store.d’ or any other file the user specifies. The Matlab user must
know what has been stored in ‘store.d’ and in which order the signals are
stored.

The communication goes via the named pipe ‘outpipel’ to get synchro-
nization of Matlab and Simnon. This way Matlab does not go on computing
until Simnon has provided the required value.

function res = getsimval(val, outpipe)

%GETSIMVAL Gets a value of a parameter or variable form Simnon.

%

% res = getsimval(val)

% val = the name of the parameter or variable as a string
%

% The value is sent back via a named pipe, outpipe, to

% synchronize the two processes.

%Copyright (c) 1992 by Per Perssom, Department of Automatic Conmtrol,
%Lund Institute of Techmnology, Lund, Sweden

%

%LastEditDate : Sat Dec 5 16:29:50 1992

if nargin==
global outpipel
outpipe = outpipel;
end;

simc([’disp * val ’/zztmp’]l);

simc(’write (dk zzfile FF)’);

simc(’write (dk zzfile) zztmp.’);
simc([?’$cat zzfile.t >>? outpipel);
delete(’zzfile.txt?);

eval([’!cat < ’ outpipe ’ > zzfile.txt’]);
load(’zzfile.txt?);

res = zzfile;

function res = getsimvec(file)

%GETSIMVEC Gets the simulation values from a file stored during a
% Simnon simulatiom.

%

% res = getsimvec(file)
% file = the store file where the values are stored.
% (default: ’stiore?’)

%Copyright (c) 1992 by Per Persson, Department of Automatic Control,
%Lund Institute of Technology, Lund, Sweden

%

YLastEditDate : Thu Jan 7 11:42:29 1993

23

if nargin==0, file = ’store’; end;
global outpipel

simc(’write (dk zzfile FF)?);

simc([’export zzfile <’ file * /0°]);
simc([’$cat zzfile.t >> ’ outpipell);
delete(’zzfile.txt’);

eval([’!cat < ' outpipel ’ > zzfile.txt’]);
load(’zzfile.txt?’);

res = zzfile;

The following two commands implement the Simnon commands ‘simu’ and
‘par’ in Matlab. If ‘simu’ has an output argument then a ‘getsimvec’ is
automatically given to get the simulation result back to Matlab.

function res = simu(t0, ti, dt)

%SIMU Makes the simu command in simnon. The simulation result is
% returned if there is an out parameter.

%4

% y = SIMU(t0, t1, dt)

%Copyright (c) 1992 by Per Persson, Department of Automatic Control,
%Lund Institute of Technology, Lund, Sweden

A

%LastEditDate : Sat Dec 5 16:29:50 1992

if nargin==2,
par(’dt[logger]’, (t1-t0)/100);
simc([’simu ’ num2str(t0) ’ ’ num2str(ti)]);
else
par(’dt[logger]?®, dt);
simc([’simu ’ num2str(t0) ° ’ num2str(ti) ’ ?’ num2str(dt)]);
end;
if nargout==1, res = getsimvec; end;

function par(pl, vi, p2, v2, p3, v3, p4, v4, pb, vb)

%PAR Set parameters in Simnon. The parameter name is given as a

% string and its value as a number.
%

% PAR(p1, v1)

% ‘

% 2

% PAR(p1, vi, p2, v2, p3, v3, p4, v4, pb, vb)
% pi = the parameter name expressed as a string
% vi = the numerical value of the parameter

%Copyright (c) 1992 by Per Persson, Department of Automatic Control,
%Lund Institute of Technology, Lund, Sweden

%

YLastEditDate : Tue Dec 8 13:39:30 1992

for ix=1:(nargin/2),
tmpl = eval(sprintf(’pig’, ix));
tmp2 = numtostr(eval(sprintf(’vig’, ix)));
simc([’par ’ tmpl * : ? tmp2]);

24

end;

Finally, a command for transferring the standard controller data structure to
the PID controller parameters in Simnon. This function is only given as an
example, in general a function like this is very dependent on how the controller
is implemented in Simnon.

function setpid(k, ti, td, p4, p5, p6, p7, p8, p9, P10, pil)

%SETPID Set the PID controller parameters in the controller in
% Simnon.

%

% SETPID(con)
% SETPID(k, ti)
% SETPID(k, ti, td)

%Copyright (c) 1992 by Per Persson, Department of Automatic Control,
%Lund Institute of Technology, Lund, Sweden

%

%LastEditDate : Sat Dec 5 16:30:53 1992

global simdir
if rows(k)>1,
disp(’More than one row in the gain vector, using the last.’);
kx = k(rows(k), :);
end;
if margin==1 & (cols(k) > 1),
tmp = k;
k = getk(tmp);
ki = getki(tmp);
ti = getti(tmp);
td = gettd(tmp);
elseif nargin==2,

i

td = 0;
end;
mn = -le4; mx = le4;
kX = max(mn, min(k, mx));

fn = [simdir ’pargen.t’];
delete(fn);

fd = fopen(fn, ’w’);
fprintf(fd, ’macro pargen\n’);

kcp = 1;
if ti==Inf | ki == 0, ti = 1; kci = 0; else kci = 1; end;
if td==0, kcd = 0; td = 1; else kcd = 1; end;

fn = [simdir ’pargen.t’];
delete(fn);

fd = fopen(fn, ’w’);

fprintf(fd, ’macro pargen\n’);
fprintf(fd, ’par k: Yg\n’, k);
fprintf(fd, ’par kcp: %g\n’, kcp);
fprintf(fd, ’par ti: Yg\n’, ti);
fprintf(£fd, ’par kci: %g\n’, kci);
fprintf(fd, ’par kcd: Y%g\n’, kcd);
fprintf(fd, ’par td: %g\n’, td);

25

for ix=4:2:nargin,
fprintf(£fd, [’par ’ eval(sprintf(’pYg’, ix)) * : ’ ..
num2str(eval (sprintf (’plig’, ix+1))) ’\n’]),
end;
fprintf(£d, ’end\n’);
fclose(£d);
simc(’pargen’);

26

6. Conclusions

The Matlab toolbox presented in this report implements a simple and system-
atic tuning procedure for PID controllers, with a good design variable. The
design routines are modular and has proven to be easy to extend to implement
new design ideas.

The design is built on a string representation of transfer functions, and
con in principle handle any transfer function. All optimization and equation
solution can be carried out with an arbitrary precision.

The design method computes a controller which is a compromise between
robustness (the condition on M,) and performance (the maximization of k;).
The method can handle a broad spectrum of dynamics uniformly in the sense
that the time and frequency responses of the controlled systems will look very
similar. It is, however, difficult to investigate the closed loop systems obtained
with the method analytically, except in the simplest cases.

Systems with poorly damped poles

Some care must be taken if the design method presented is used for systems
with poorly damped poles. The principle to maximize k; for a given value od
M, is still a fruitful one, but the routines ‘pidesms’ and ‘piddesms’ cannot be
used for systems with poorly damped poles. It may work for PID controllers,
but certainly not for PI controllers. The reason is that the approximations for
finding (o are not longer valid. Instead we must use the general routines in
‘dptable2’, but this gives rise to several computational problems. It is also
important to choose the design parameter ag properly for oscillating systems,
ag < 0.5. These problems are currently (December 1992) topics for further
research.

27

7. References

GusTarssoN, K., M. Liia, and M. Lunpr (1990a): “A collection of
Matlab routines for control system analysis and synthesis.” Internal
Report TFRT-7454, Department of Automatic Control, Lund Institute
of Technology.

GusTAaFssoN, K., M. LiLia, and M. LuNDH (1990b): “A collection of Matlab
routines for control system analysis and synthesis, the code.” Internal
Report TFRT-7455, Department of Automatic Control, Lund Institute of
‘Technology.

MaTtaWorks (1990): MATLAB - User’s Guide. MathWorks, Cochituate
Place, 24 Prime Park Way, Natick, MA 01760, USA.

PERSsON, P. (1992a): “The dominant pole design toolbox — the Matlab code.”

Technical Report TFRT-7498, Department of Automatic Control, Lund
Institute of Technology, Lund, Sweden.

PERssoN, P. (1992b): Towards Autonomous PID control, Part B: PID
Controller Design., Ph. D. Thesis. Department of Automatic Control,
Lund Institute of Technology, Lund, Sweden.

SSPA (1990): SIMNON User’s Guide for MS-DOS Computers. SSPA Systems,
Box 24001, S-400 22 Gétcborg, Sweden. Version 3.0.

WaLL, L. and R. ScawarTz (1991): Programming Perl. O'Reilly & Asso-
ciates, Inc., Sebastopol, CA.

ZIEGLER, J. G. and N. B. NicHoLS (1942): “Optimum settings for automatic
controllers.” Transactions of the ASME, 64, pp. 759-768.

Z1EGLER, J. G. and N. B. NicHOLS (1943): “Process lags in automatic-control
circuits.” Transactions of the ASME, 65:5, pp. 433—-443.

AstroM, K. J. and T. HAGGLUND (1988): Automatic Tuning of PID
Controllers. Instrument Society of America (ISA), Research-Triangle
Park, NC.

AsTrOM, K. J. and T. HAGGLUND (1984): “Automatic tuning of simple regu-
lators with specifications on phase and amplitude margins.” Automatica,
20:5, pp. 645-651.

28

