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1. Introduction

Many processes in industry are critical. They are often critical in the sense that
they have a limiting level. This can be either physical or artificial. Examples
of the former are such levels that cannot be exceeded without catastrophic
consequernces, e.g. explosion. One example on the latter is alarm levels, which if
they are exceeded will initiate emergency shutdown or a change in operational
conditions. Another example is quality levels, which if they are exceeded will
cause unsatisfied customers. Common to the critical processes are that they
enter their critical region abruptly as a signal exceeds a limiting level.

The distance between the limiting or critical level and the reference value
is normally not small, since otherwise the number of exceedances of the level
by the controlled signal will be intolerably high. However, there may be other
control-objectives that make it undesirable or impossible to choose the distance
large. An example of problems of this kind can be found in Borisson and
Syding (1976), where the power of an ore crusher should be kept as high as
possible but not exceed a certain level, in order that the overload protection
does not cause shutdown. Another example is moisture control of a paper
machine, where it is desired to keep the moisture content as high as possible
without causing wet streaks, Astrom (1970), pp. 188-209. Yet another example
is power control of wind power plants, where the supervisory system initiates
emergency shutdown, if the generated power exceeds 140% of rated power,
Mattsson (1984). Other examples can be found in sensor-based robotics and
force control, Hansson and Nielsen (1991), and control of non-linear plants,
where the stability may be state dependent, Shinskey (1967).

Previous Work
In a deterministic framework this type of problems could be solved by mini-
mizing

max |12/l

where z is the controlled signal and d is a disturbance acting on z. Prob-
lems of this type have been studied extensively. Assuming a linear process
and bounded energy on the disturbance gives the well-known H,-controller,
Vidyasagar (1986). Other types of disturbances have also been considered.
In Vidyasagar (1986) and Dahleh and Pearson (1987) the disturbance has
bounded supremum norm, and in Liu and Zakian (1990) it has bounded in-
crements.

Common to the deterministic criteria is the design for worst case dis-
turbances, which may seem somewhat too conservative. The classical way to
overcome this is to consider a stochastic formulation. This has been described
in Hansson (1992), where approximate solutions by means of the so called
Minimum Upcrossing (MU) controller has been obtained for minimizing the
criterion

P {nxg}cangz(k) > zo}

where 2, is the distance to the critical level. This criterion can also be approx-
imately minimized by Minimum Variance (MV) control, see Astrém (1970),
pp. 159-209, Astrém and Wittenmark (1990), p. 203, and Borisson and Syding
(1976). The gain of the minimum variance controller depends critically on the
sampling period. Too small a sampling period leads to large variations in the
control signal, Astrém and Wittenmark (1990), pp. 316-317. This problem
has been solved by introducing weighting on the control signal—LQG-design.
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However, there has been no good criteria for choosing the weighting. The MU
controller can be interpreted as choosing an optimal weighting in an LQG-
problem. In Hansson (1992) the MU controller and the MV controller are
compared with respect to the criterion above. It is seen that there exist exam-
ples where the MU controller has as much as 10 % better performance. The
continuous time version of this is described in Hansson (1991).

In the papers mentioned above only linear processes and controllers are
discussed. The problem of non-linear processes and controllers is to some ex-
tent addressed in Heinricher and Stockbridge (1991). There continuous time
full information optimal stochastic control of the running max is considered.
This has applications to e.g. optimal control of wear. The ideas presented in
this paper can also be applied to critical processes. This will be discussed
further in Section 2.

The papers mentioned above all deal with the case of a constant reference
value. The case of a varying reference value is more difficult. However, some
attempts have been made to address this question. In Hansson (1993) the
idea of optimally modifying reference values for critical processes utilizing the
information from alarm signals is proposed. The motivation for this problem
formulation is that most critical processes are equipped with supervision in
the sense that an alarm is given when a signal crosses a certain alarm level,
and then an operator, depending on the situation, either initiates emergency
shutdown or a temporary change of the operational conditions. This temporary
change could be to choose a new reference value in order to avoid that the
controlled signal continues to increase and thus preventing an exceedance of
a higher more dangerous level. This change of reference value is mostly done
in an ad hoc fashion, and it is of interest to make the modification in a more
controlled and automatic way.

Examples
In this report non-linear stochastic control of critical processes will be dis-
cussed. To get a feeling for what problem-formulations are relevant some ex-
amples will be investigated.

The first example will be a simple continuous-time linear first order pro-
cess controlled with a proportional controller. Let the process be given by the
stochastic differential equation

dz(t) = [az(t) + bu(t)]dt + odw(t) (1)

where z is the state of the process and where w is a standard Wiener-process.
Assume that the controller has full information, i.e. that the control signal
u(t) is a function of z(t). Now, consider a simple proportional controller u(t) =
—kz(t). The closed loop system is then governed by

dz(t) = (a — bk)z(t)dt + odw(t) (2)

If k is chosen such that @ — bk < 0, then the closed loop will be stable. Then,
for any initial value, it is easy to show that the solution to this equation
in stationarity is a Gaussian process with zero mean and covariance P =
o?/[2(bk — a)], Astrdm (1970). By letting bk go to infinity it follows that z(t)
can be made equal to zero in mean square. Notice that there is no problem
with respect to stability in doing this. However, the variance of the control
signal is k%0 /[2(bk — a)] and converges to infinity as bk goes to infinity.



In the next example it will be shown that in order to prevent the closed
loop system to enter a critical region infinite gain only has to be applied at
the boundary of the critical region. Consider the same process as before, but
let the controller be u(t)dt = —a/bz(t)dt + dg(=(t)), where g = g* — g, and
where gt and g~ are defined as in Karatzas (1983)

{ 97 (t) = max[0, maxoc,<.[—2(8) + 97 (s) — zo]] (3)
97(t) = max[0,maxog,<:[z(8) + 97(5) — 2o]]

The closed loop system will now be governed by
da(t) = dg(a(t)) + odu(?) @)

This equation and similar ones were studied already in Astrém (1961), where
it was found by solving the Fokker-Planck equation, assuming the initial value
z(0) to be in I = (—&zo,zo), that the density function p(t,z) of z(t) has
compact support on I and that it is given by

plt, o) = 2%/% iw exp H (5= + n)] (5)

where T' = 2z?/0?. This density converges, as t approaches infinity, to a uni-
form distribution on I. Thus the probability of z(t) being in the critical region
R\ I is zero for each ¢. In Astrdm (1961) no equations or explicit expressions
for g were given. It was only assumed that there existed a g such that the
density of «(t) would have compact support on I. It was later shown that such
a g indeed existed, and that it was uniquely given by the above equations. The
total variation of g is given by g* + ¢g~, and it is bounded for all . Had g been
differentiable, which is not the case, then u(t) = —a/bz(t) + §(t) and the total
variation of g would have been

[ 1ats)ias ©)

Hence, formally, the control signal above is such that the integrated absolute
value of it is bounded. This type of control problems are known as singular
stochastic control problems, since the control signal is not absolutely continu-
ous with respect to Lebesgue measure, see Karatzas (1983) for a good survey.
In fact g behaves lake a Wiener-process when it is not constant. Thus since a
Wiener process is a.s. nowhere differentiable, formally, it holds that § is either
0, +00 or —oo. The deterministic counterpart to this type of control is known
as impulse control.

From a practical point of view it seams strange that such good perfor-
mance can be obtained. This is due to the fact that infinite control signals may
be applied to the process without causing instability. In order to get more inter-
esting problems different approaches can be taken. Considering discrete time
problems often removes the pathological behaviour encountered in the exam-
ples above. This is due to the fact that high gain usually will cause instability.
When considering continuous time problems one attractive way of ruling out
infinite control signals is to limit the control signal to a certain set. Another
way is to consider optimal control problems with sufficiently large weighting on
the control signal, e.g. quadratic weighting. Sometimes, as in Heinricher and
Stockbridge (1991), non-trivial problems can be obtained by considering non-
controllable processes. Another way of obtaining well-formulated problems is
to consider the case of partial information.



Outline

The remaining part of the report is organized as follows. In Section 2 contin-
uous time problems will be investigated. The models used for the open loop
system will be stochastic differential equations. The controls will be state-
feedbacks obtained by solving an optimal stochastic control problem with full
information of the states. It will be seen that sufficient conditions for optimal
solutions similar to the ones obtained in Heinricher and Stockbridge (1991)
will apply to critical processes as well. In Section 3 discrete time problems will
be investigated. In this section the focus will be on linear stochastic difference
equations. The criteria that will be considered are related to the discrete time
version of the running max. First the full information case will be investigated.
This can be solved by considering the Bellman-equation. In a special case ex-
plicit solutions will be obtained. Then the partial information case will be con-
sidered. This problem can be split up into two problems—the filtering problem
and the control problem. The filtering problem will be nonlinear, and the con-
trol problem can still be solved via the Bellman-equation, but this time the
argument is an n-dimensional density function, and not only an n-dimensional
vector. Thus to get computationally tractable problems approximate nonlin-
ear filtering will be discussed in order to obtain simple parametrizations of
the density function. Finally, in Section 4 some conclusions will be drawn, and
suggestions for future research will be given.

2. Continuous Time

In this section full information optimal stochastic control for critical processes
will be treated. The processes considered will be stochastic differential equa-
tions. For an introduction to these see e.g. Oksendal (1989). A more complete
treatment is given in Karatzas and Shreve (1991). In order to address critical
processes the notion of the running max will be introduced as in Heinricher
and Stockbridge (1991). Different relevant control objectives will be discussed
by considering fairly general optimization problems. Sufficient conditions for
these problems in terms of Hamilton-Jacobi-Bellman (HJB) equations will be
obtained. It will be seen how it is possible to solve the HIB-equation explicitly
for an example.

Model
Let the open loop system be modeled by the following stochastic differential
equation:

da(t) = F(2(t), u(t))dt + o(=(t), u(t))du(t), 2(0)== (7)

where w is a standard n-dimensional Wiener process, and where f and o are n-
dimensional vector functions and n X n-matrix functions of the n-dimensional
state (t) and the m-dimensional control u(t). The assumptions that have to
be imposed on f and o for (7) to have a well-defined solution can be found in
e.g. Fleming and Soner (1993).

In order to be able to address critical processes, introduce the running
max of g(z(t)), which is defined as

y(t) = max{g(z(s)):0<s<t}Vvy, y(0)=y>= (8)



where g is a real-valued differentiable function of the n-dimensional state z(t).
By defining the set A = {t € R : g(z(t)) = y(t) N dg(z(t)) > 0} it is possible
to express dy as

ay(t) = LEED (100, w(e))at + o(e(t), u®)du)]  (9)

In the sequel (7) will be augmented with this equation. The augmented state
(z(t)T y(t))T is a strong Markov process, but it is not a diffusion due to the
fact that I, is not adapted to the o-algebra F(t) = o{w(s) : 0 < s < t}.
Notice however, that y(t) is adapted to F(t); it is also increasing. These facts
will be used later in Section 2.3.

Control Objectives
One control objective inspired by Section 1 is obtained by considering the
following criterion function

Iy(e,,u0)) = B { | hate) o), e + W(T,zu’),y(T))} (10)

where h and ¥ are real-valued functions of the state, the running max and
the control. Another possible control objective is the so called discounted cost
criterion

Ta(e, () = B{ [ e P ha(t),u(t), u(e))dt (1)

where 8 > 0. The set of controls over which the minimization of the crite-
rion functions is to be performed will be the set of admissible controls as
defined in Fleming and Soner (1993). The former criterion function will result
in time-dependent control laws, whereas the latter will result in control laws
independent of time. The conditions that have to be imposed on A and ¥ for
the control problem to be well defined are given in Fleming and Soner (1993).

The Hamilton-Jacobi-Bellman Equation
Now sufficient conditions for optimality in terms of HIB-equations will be
given. The results are variants of the result in Heinricher and Stockbridge
(1991), and they follow the path of standard verification theory as presented
in Fleming and Soner (1993).

First consider the problem of minimizing J¢. Introduce the following par-
tial differential equation, called the Hamilton-Jacobi-Bellman (HIB) equation

Vi + mjn{Vsz + %trVMJJT + h} =0 (12)

forV=V(t,z,y)on Dy = {(t,2,y) € R?: g(z) <y, 0 <t < T} with terminal
condition V(T,z,y) = ¥(T,=,y) and boundary condition V,(t,z,y) = 0 for
g(z) = y and 0 < t < T. Assume that this equation has a solution V on D;
that fulfils all the assumptions for a classical solution as defined in Fleming
and Soner (1993).

Since y(t) is adapted to F(t) and increasing, it follows by the Ito-formula,
Karatzas and Shreve (1991), Theorem 3.6, that

V(T,z(T),y(T)) = V(0,2,9)



+ [ [t 20,500

+ VE(t,2(t), y(8) F(2(2), u(t))

+ gtV 2(8), 9(0)o(a(2),u())o™ (2(), u(t))
+ LV, (t, 2(8), u(t)g% (2(2)) F((2), u(t)) ] dt

b [ e, u00)

+ L4V (8, 2(t), 5(t))92 (2(2)) | o(2(2), u(t))dw(2)

Noting that V,(t,z,y) = 0 for g(z) = y and 0 < t < T, and that
VEI(t,z(t),y(t))o(x(t), u(t)) is adapted to F(t), it follows by taking expec-
tations that

E{V(T,=(T),y(T))} = V(0,2,3)

+ 5] [ [t 200, 500)
+ VI (¢, 2(t), y(t)) f(=2(t), u(t))
+ %t%(t, 2(t), y(t))o(2(2), u(t))o?(2(2), u(t))|dt }

Now, by adding and subtracting h(z(t),y(t),u(t)) in the integral, using (12),
and noting that V (T, 2(T),y(T)) = ¥(T,z(T), y(T)) it holds by (10) that

V(Oﬂ'”;y) < J(-'E,y,u(')) (13)

with equality for the u(-) that solves (12). This shows that the optimal control
can be obtained by solving the HIJB-equation under the condition that this
solution fulfils the assumptions that justifies the calculations above, i.e. has a
classical solution in the sense of Fleming and Soner (1993). Notice that the
differentiability assumption on g is not necessary, since I, V,(t, z(t),y(t)) = 0.

Similar techniques as above can be used to show that the existence of a
classical solution to

— BV + min {fo + %teraaT + h} =0 (14)

for V.= V(z,y) on Dy = {(z,y) € R? : g(z) < y} with boundary condition
V,(z,y) = 0 for g(z) = y and terminal condition

lim e B {V(s(2),y(t))} = 0 (15)

is a sufficient condition for minimizing J;. In Heinricher and Stockbridge
(1991) a stopping problem is considered where the sufficient condition is the
same as the one for the discounted const criterion above with 8 = 0 and with
the additional assumption of V(y,y) = 0.

Example

It turns out that the time-independent HJB-equations are much easier to solve
than the time-dependent. Thus a discounted const criterion problem will be
considered. Let the process be linear, i.e. let

dz(t) = [az(t) + bu(t)]dt + odw(t) (16)



and let the criterion be given by

B{ [T e L 0+ i) dt} (17)

which is a type of discounted Linear Quadratic (LQ) control problem, but not
in the state z as is usual, but in the running max y. Assume that g(z) = =.
Easy calculations show that the optimal control is given by u = —b/pV;, and
that the HJB-equation for this control becomes

b2 2 1 2 1 2 __
—ﬂV+asz—§;Vz +§U sz+5y =0 (18)

Inspired by the solution to the to the standard discounted LQ problem the
solution V = K2 4+ K,zy + Kay? + K, for K;, ¢ = 1,...4 being some
constants, will be investigated. Some calculations show that this is indeed a
solution, if @ = 0, and it is given by

__PB
17 7 op2
Kzz —2K3
«.  —P8— VBT A
3 4b2
0.2
Ki=-55

The resulting control signal is given by

ult) = Zat) - LEAOEL I (19)

and it is always negative. Strangely enough bu is increasing as a function of
the state. It is interesting to note that the standard discounted LQ-controller
is given by, Fleming and Soner (1993)

u(t) = L2E e ’ff LT (20)

Hence the discounted L.Q-controller for the running max just replaces.the state
in the standard problem with the running max and adds a new feedback from
the state. If 8 = 0, which corresponds to the average criterion

.1
A = Js(z,y,u) (21)
then the state feedback is not present and the controller is given by
sign(b)
u(l) = —=y(t 22
(t) /p (t) (22)

The assumptions that justifies the use of the HJB-equation to derive the op-
timal controller for the discounted cost problem has to be shown to hold for
the solution obtained. The only assumption that is difficult to verify for the
discounted cost problem is

Jim e~ E{V (2(t),y(t))} = 0 (23)

where (z(t),y(t))T is the state obtained by applying the candidate optimal
control law above. This is, however, not easy.



Summary

Optimal stochastic control problems for the running max have been treated.
Sufficient conditions in terms of HIB-equations have been given. For an LQ
type of problem for the running max, assuming an integrator process, the
HJB-equation has been solved explicitly. For more complicated processes the
solution is not known. This seems to be an inherent problem in control of the
running max, see Heinricher and Stockbridge (1991), where explicit solutions
also only are obtained for integrator processes.

The condition V,(z,y) for g(z) = y was imposed above in order to use It6-
calculus for obtaining the sufficient condition in terms of the HIB-equation. At
a first glance it seems to be interesting to instead try to obtain the backward
evolution operator for the Markov process (z(t)T y(¢))T and the corresponding
Dynkin formula to derive a sufficient condition for the problem. It, however,
turns out that the condition V,(z,y) for g(z) = y is a necessary condition
for the backward evolution operator to exist. Thus nothing is gained by this
alternative approach.

In this section only full information control has been treated. The partial
information case is much more complicated. For an introductory treatment
of partial information optimal stochastic control in continuous time see e.g.
Wonham (1968).

3. Discrete Time

In this section both full information and partial information optimal stochas-
tic control for critical processes will be treated. The processes considered will
be linear Gaussian stochastic difference equations. For a simple introduction
to optimal stochastic control in discrete time see Astrém (1977). A more rig-
orous treatment is given in Bertsekas (1978). As in the previous section the
running max will be introduced. In discrete time the running max will actu-
ally obey a difference equation. This will simplify things as compared to the
continuous time case. Some control objectives relevant to critical processes
will be discussed by considering different optimization problems involving the
running max. In a special full information case it will actually be possible
to solve the Bellman-equation related to the optimal control problem explic-
itly. The solution will be the full information MV-controller. In the partial
information case the problem can be split into one filtering problem and one
control problem. The filtering problem will be nonlinear, and the control prob-
lem can still be solved by solving the Bellman-equation. However, this time
the Bellman-equation is defined on the functional-space related to the filtering
problem and not on a vector space as in the full information case. Thus to
obtain computationally tractable solution procedures approximations of the
filtering problem will be discussed. This will result in parametrizations of the
density function for the filtering problem, and thus simplify the argument of
the Bellman-equation to a vector.

Model
Let the open loop system be modeled by the following linear stochastic differ-
ence equation:

z(k+1) = Az(k)+ Bu(k)+ v(k)
{ y(k) = Ciz(k)+ e(k) (24)
2(k) = Caz(k)



where v and e are sequences of independent Gaussian random variables with
zero means and covariances Ev(k)vT(k) = 02 = R, and Ee(k)eT(k) = o2 =
R,. The initial value 2(0) = z, of the state z is assumed to be Gaussian with
mean my, and covariance Ry. The signal y is the measurement signal, u is the
control signal, and z is the signal that is to be controlled. Define £ to be the
discrete time running running max of g(z(k)) by

(k) = max {g(=(i)) : 0 < i < k} (25)
Notice that

€0+1) = mlf8), ek + 1) = (8 o(Cudo(l) 4 Butl) + ()]

26
with £(0) = & = g(C,zo). Due to this difference equation for the running max
it is possible to describe the behaviour of the augmented system with state
z(k) = (27 (k) £(k))" by the nonlinear stochastic difference equation

{ z(k+1) Az (k) + Bu(k) + v(k)

§(k +1) max [£(k), 9(Cz(Az(k) + Bu(k) + v(k)))] (27)
y(k) = Ciz(k) +e(k)

This description will be used in the sequel. Depending on g different joint
initial distributions for the augmented state will be obtained. For the case

when g(z) = z it holds that distribution is Gaussian with mean (mZ C’zmo)T

and covariance R.CT
R, 003
( C3Ry C>RoCT ) (28)

It should be noted that the difference equation above defines a discrete time
Markov process. It will for later purposes be convenient to introduce the
transition densities for this process, assuming that they exist. The notations
p(z(k+1),&(k+1)|z(k)),E(k)), p(y(k)|z(k)), etc. with obvious interpretations
will be abused.

Control Objectives
The control objectives that will be considered can all be expressed in the
general form of

J(p(20,60),u(-)) = E {Z_: h(k, m(k),ﬁ(’c),u(’ﬁf))} (29)

where h is a real-valued function of time, the augmented state, and the control.
The admissible controls u, which J will be minimized over, will be functions
either of the augmented state—full information case—or of the sequence of
measurements y available when the control is to be applied—partial infor-
mation case. In this subsection the dynamic programming equation, or the
Bellman-equation, which gives a solution procedure for the minimization prob-
lem above will be derived. It should be noted that it is difficult to make this
derivation rigorous due to the fact that the minima computed in the sequel
may not be measurable. These questions will not be addressed here. For a
more complete treatment see Bertsekas (1978).

Let Y(k) be the sequence of information available to the controller at
time k. For the full information case this is {#(2), £(é) : 0 < ¢ < k} and for the

9



partial information case it is {y(z) : 0 < ¢ < k}. Further introduce

V(k, p(2(k), (k)| (F))) =  min E{;h(i,m(i),ﬁ(i),u(i))ly(k)} (30)

{u(i):k<i<N}
It is now obvious that

E{V(0,p(z0,£0|Y(0)))} = = min  J(p(20,&),u(")) (31)

* {u(k):0<k<N)
Further by the principle of optimality it holds that

V (k. p(a(k), €(k)IV(K))) = min E{h(k, o(k),£(k), u(k)
+V(k+1,p(a(k+ 1), £(k + DIk + 1)V(E)}

for 0 < k < N — 1 with final value

VN, p(z(N), §(N)IV(N))) = minE {h(N, 2(N), {(N), u(N))¥(N)} (2)

This equation is called the Bellman-equation and gives a recursion for the
optimal value of the cost function J. Notice that the argument is a density
function. In the following sections more specialized versions will be derived in
order to cope with the specific cases treated there.

The Full Information Case

In this subsection the full information case will be treated, i.e. Y(k) = {z(2), £(7) :
0 < ¢ < k}. For this case the argument of the Bellman-equation reduces from
a vector-valued function to a vector. In a special case an explicit solution of
this equation will be obtained.

The General Problem Since for the full information case p(z(k), £(k)|V(k)) =
p(z(k),{(k)|x(k),£(k)) is a degenerate distribution, it can be represented by
its mean, which is a vector. Hence the Bellman-equation can be written

V(k, 2(k), £(k)) = min E{h(k, z(), € (k), u(k))

+ V(k+1,z(k+1),€(k 4 1))|z(k), £(k)}
= ggg)l[h(k, z(k), €(k), u(k))

+ E{V(k +1,2(k + 1),£(k + 1))|=(k), £(k)}]
for 0 < k < N — 1 with final value
VN, 2(N), () = min E {h(N,o(N), EN),u(N))}  (33)

This simplifies the complexity of computing the recursion considerably. The
first step in computing the recursion is to evaluate the expectation

E(z(k),£(k),u(k)) = E{V(k + 1,z(k + 1),&(k + 1))|z(k),£(k)} and express

10



it in terms of z(k), {(k) and u(k). The second step is to perform the mini-
mization with respect to u(k). The expectation can be computed as

B(a(k), £(k),u(k)) = [ p(a(k +1), £(k + ja(k), (k)
CV(k+1,2(k + 1), €(k + 1))dz(k + 1)d¢(k + 1)

where the integration is to be performed over the value space of the augmented
state. This will be illustrated more in detail in the special case that follows.

A Special Case Consider the case when the loss function is given by
J=P{{N)> €} (34)

for the critical level £°. Further let g(z) = |z|. This is easily seen to be a special
case of the problem formulation above by taking h(k,z(k),&(k),u(k)) = 0
for 0 < k < N —1 and h(N,z(k),£(k),u(k)) = I{gn)>e0y For this case the
Bellman-equation becomes
V(k,2(k), (k) = min [ p(a(k-+ 1), &(k + Dle(k), £(k)
- V(k+1,2(k+1),E(k+ 1))de(k+ 1)dé(k + 1)

for 0 < k < N — 1 with final value
V(N,2(N),£(N)) = Tiewy>ey (35)
Assume that there exist a solution such that V' (k,z(k), £(k)) is not a function

of z(k). Note that this assumption holds for k = N. Then by integrating out
the state variable z(k + 1) the Bellman-equation reads

V(d,€(6)) = min [ p((k+ 1)Ja(k), £(8))
- V(k+1,6(k+1))dé(k+1)

Some calculations show that the conditioned density in the equation above is

p(E(k + 1)[z(k), £(k)) = %p (E(k + 13; m(k)) " %‘P (E(k + 13;+ m(k))
(36)

if £(k) < €(k + 1) and that it is zero if £(k) > £(k + 1), where

m(k) = Cy(Az(k) + Bu(k))
o? =C,R,C7

and where ¢ is the standardized normal density function. Some further cal-
culations show that the optimal choice of (k) is given by m(k) = 0 if there
exist a solution to this equation. It is easily seen that the resulting V (&, £(k))

11



is indeed independent of z(k). Thus by induction the optimal control law is
given by the equation above for all 0 < k < N. The existence of a solution to
m(k) = 0 is e.g. in the case of a single-input system equivalent to C, B # 0,
and for this case the solution u(k) is given by
C;A
- k
c, 55
If, however, C, B = 0, then u(k) can be taken arbitrarily, and the assumption
made above about V(k,£(k)) being independent of z(k) does not hold. It

should be noted that the resulting control law above is the same as the MV
control law for the full information case when minimizing the variance of z.

u(k) = (37)

Summary In this subsection the Bellman-equation for the full information
case of optimal control of the running max has been derived. In a special
case it was possible to solve the equation explicitly under the assumption
that the controlled process had relative degree one. The resulting controller
was the same as the MV controller. Nothing is known about the controller
for higher relative degrees. Probably the Bellman-equation can only be solved
numerically in these cases.

The Partial Information Case

In this subsection the partial information case will be treated, i.e. Y(k) =
{y(?) : 0 < i < k}. In this case the argument of the Bellman-equation is
a density function. This density function is the conditioned density of the
augmented state given the information available when the control signal is
to be applied. It can be obtained by solving a non-linear filtering problem.
Simulations of the filter will suggest approximations of the filtering problem
in terms of parametrizations of the density function by means of its mean and
covariance. This will reduce the complexity of the Bellman-equation, since the
argument may be taken to be the parameters determining the density instead
of the whole density. In this way a finite-dimensional argument will be obtained
just as in the full information case.

The Control Problem Remember that the general Bellman-equation of
Section 3.2 reads

V (k. p(z(k), £(k)|V(k))) = min E{h(k, 2(k), {(k), u(k))
+ V(k+1,p(2(k+1),£(k + 1)[Y(k + 1)))|V(k)}

for 0 < k < N — 1 with final value
V(N,p(z(N),E(N)IV(N))) = el (Gl z(N),E(N),u(N))V(N)} (38)

The wright hand side can be evaluated by computing the integrals

[ ke, 3(k), u(k))p(() Y (k) da(k) (39)
and
[+ 1,p(@k + DY+ D)p(a(k+ DYR)y(k+1)  (40)

respectively. Thus the only remaining question is how to express p(Z(k +
1)|Y(k + 1)) and p(y(k + 1)|Y(k)) as functions of y(k + 1) and u(k). This
will be answered by the filtering equations.
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The Filtering Problem Introduce the following operator

Ayirp(@R)V () = p(uk+1)[a(k+1)) [ p(@(k+1)]a(k)p((k) V(E))da(k)

(41)
Then it is well known that, see e.g. Astrdm (1977), that the conditioned density
obeys the following recursion

] _ Ayunp(ERIY(K)
A RSV () “2)
where
Pk + V0 = [Aop@ERYE)dE(k+1)  (43)

Notice that the right hand sides in the two above equations both are functions
of u(k). This will be more apparent later on. From the special structure of the
equations for the open loop system it follows that

p(y(k + 1)|2(k + 1)) = p(y(k + 1) 2(k + 1)) (44)
The filter-equation may now be written

p(y(k +1)lz(k + 1)p(2(k + 1)|Y(k))
p(y(k +1)[Y(k))

p(&(k+ 1)[V(k+1)) = (45)

where
p(2(k +1)[Y(k)) = /P(i'(k + 1)|2(k))p(2(k)|V(k))dz(k) (46)

Notice that the first factor in the denominator and the whole nominator is
easily computed from the Kalman-filter for the state z(k). Thus the only
difficult task in the non-linear filter equation above is the computation of
p(&(k + DIV(E)).

To further study the filtering equation assume that z(k) is a scalar and
that g(z) = 2. Introduce the less sloppy notation

w(k,z,€) = p(e(k) = z,{(k) = £|V(k)) (47)

Then some calculations give that p(z(k + 1), £(k 4 1)|Y(k)) is equal to

[ o (AEED=LO =B ok, o) 6+ 1)ak)  (49)

Ty Ty

if 2(k+ 1) < £(k + 1)/C;, and that it is zero if z(k + 1) > é(k + 1)/C;. From
the Kalman-filter for z(k) it follows that

pulk+D)la(k+ 1)) = 1 (UEED =GR ()
and that
ok + DY) = Sp (WEED =R BUBN)
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where

0'2 = C]_R]_C]T_‘ + Rz (51)
and where &(k) is the Kalman-filter estimate of z(k). These equations together
with the Kalman-filter explicitly give the expressions for the filter. Notice that
p(z(k),&(k)|V(k)) = 0 for (k) > £(k)/C2. Thus the integration in (48) only
has to be performed over the interval [—o0, {(k)/C2].

To get a feeling for how the filter performs a simulation has been done. The
parameters used were A = 0.5, B =0.04,C;, =C, =1, Ry = R, = R; = 1,
and mo = 0. The control signal was taken to be zero. The marginal density
functions for z(k) and £(k) as well as their joint density function has been
calculated numerically for 0 < k < 10. The results are shown if figures 1-11. It
is seen how the density for 2(k) is Gaussian as expected. Moreover the density
for £(k) also seems to be almost Gaussian. When z(k) is far from £(k) the joint
density is almost Gaussian, and z(k) are {(k) are almost independent. When
z(k) is close to {(k) this is not the case due to the fact that the joint density
is zero for z(k) > £(k). However, it seems to be very close to a truncated
Gaussian density.

06 Estimated density for x(0) 0.6 Estimated density for xi(0)
- 0.4} - & 04} g
8 g
[5) o
® o2t 4 7 o2} l
0 0
5 0 5 -5 0 5
X xi
Joint estimated density for x(0) and xi(0) 5C‘l:n'm:mr of the csii!nmcd joint density
% Of /
5 :
-5 0 5

Xi
Figure 1. k=0

Summary In this subsection the partial information case has been treated.
It has been seen how the problem can be solved by solving the Bellman-
equation. The argument of the Bellman-equation is for this case a density
function obtained by solving a nonlinear filtering problem. Simulations of the
filter has shown that the density function is almost a truncated Gaussian
density. This suggests that it can be approximately parameterized by its mean
and covariance. This will reduce the complexity of the Bellman-equation, since
the argument may be taken to be the parameters determining the density
instead of the whole density. In this way a finite-dimensional argument will be
obtained just as in the full information case.

Summary
In this section discrete time stochastic optimal control of the running max has
been discussed. Both the full information case and the partial information case
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have been treated. In a special case for the full information case an explicit
solution to the Bellman equation was obtained. For the partial information
case the argument of the Bellman equation is a density function and not only
a vector as in the full information case. This makes the partial information case
much more complicated. The nonlinear filtering problem, which determines the
argument of the Bellman-equation, has been studied in a simulation. It seems
to be possible to approximately parameterize the density with a truncated
Gaussian density. This will reduce the complexity of the Bellman-equation
considerably, since the argument of the equation then may be taken to be the
mean and covariance of the density instead of the whole density. In spite of the
simplification obtained by considering the parameterization of the density, it
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does not seem to be possible to solve the Bellman-equation analytically. The
resort seems to be numerical solutions.

4. Conclusions

In this report nonlinear stochastic optimal control of critical processes has
been treated. An overview of the current status of research in critical processes,
with focus on the stochastic case, has been given. Some simple examples have
been investigated to get a feeling for what problems are relevant from an
engineering point of view. The running max seems to be a fruitful concept in
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order to deal with critical processes in a stochastic context. Both continuous
time and discrete time have been addressed. Explicit solutions to some simple
control problems have been obtained.

Future Research

Numerical computations and simulations seem to be the approach to enable
more insight into stochastic optimal control of critical processes. In continuous
time numerical solutions of the HIB-equation would be of interest. The method
to use could be the one described in Kushner and Dupuis (1992). In discrete
time numerical solutions of the Bellman-equation would be of interest. Here, a
deeper investigation of the approximations of the nonlinear filtering problem
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would perhaps give further insight. It would also be interesting to compare the
solution obtained by the procedure suggested in this report with the certainty
equivalence solution obtained when making the very simple estimate of the
running max £(k) = max{#(¢) : 0 < ¢ < k}, where &(k) is the Kalman-filter
estimate of z(k). For this case no non-linear filter has to be implemented.
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