LUND UNIVERSITY

OmSim and Omola Tutorial and User's Manual
Version 3

Andersson, Mats

1993

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Andersson, M. (1993). OmSim and Omola Tutorial and User's Manual: Version 3. (Technical Reports TFRT-
7504). Department of Automatic Control, Lund Institute of Technology (LTH).

Total number of authors:
1

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

https://portal.research.lu.se/en/publications/176b8167-f241-4188-ad17-ebb22e18c3be

ISSN 0280-5316
ISRN LUTFD2/TFRT--7504--SE

OmSim and Omola
Tutorial and User’s Manual

Version 3

Mats Andersson

Department of Automatic Control
Lund Institute of Technology
April 1993

Document name

Department of Automatic Control INTERNAL REPORT

Lund Institute of Technology Date of issue
P.O. Box 118 April 1993
S-221 00 Lund Sweden Document Number
ISRN LUTFD2/TFRT--7504--SE
Author(s) Supervisor

Mats Andersson

Sponsoring organisation

NUTEK

Title and subtitle
OmSim and Omola Tutorial and User’s Manual

Abstract

Omola is an object-oriented language for representation of continuous time and discrete event dynamical
models. Differential and algebraic equations are used for representing continuous time behaviour. OmSim
is an implemented environment for modelling and simulation based on Omola. OmSim contains a graphical
editor for defining and displaying structured models. OmSim is introduced to the novice user through a set
of prepared examples and exercises. The basic features of Omola are also presented.

Key words
Modelling, simulation, simulation languages

Classification system and/or index terms (if any)

Supplementary bibliographical information

ISSN and key title ISBN
0280-5316

Language Number of pages Recipient’s notes
English 39

Security classification

The report may be ordered from the Department of Automatic Control or borrowed through the University Library 2, Box 1010,
S-221 03 Lund, Sweden, Fax +46 46 110019, Telex: 33248 lubbis lund.

Contents

1.

Introduction ciusmesanwass s s sw v 2
1.1 Further information 2
1.2 References i i i it e 3
1.3 Acknowledgement 3
OmSim Tutorial 4
2.1 How to use thistutorial 4
2.2 Starting and stopping OmSim 4
2.3 Running a simple simulation 5
2.4 Working with structured models 9
25 Usingan OCL scriptot i oo 16
The Omola Modelling Language 18
3.1 Class definitions 18
3.2 Classattributes cossoanamsssessn 18
3.3 Classinheritance, 20
3.4 Scope rules and the resolution of identifiers 21
3.5 TheBaselibrary 23
3.6 Connections e, 25
3.7 Discreteevents e e 26
3.8 Omola files and model libraries 29
Omola Syntax e 30
The Base Library 33
Quantity Database0...... 35
The BasicElectrical library 38

1. Introduction

OmSim is an interactive environment for defining and simulating dynamical
models based on the modelling language Omola. The current version of Om-
Sim runs on Sun SparcStations under the X window system. It contains the
following important tools.

The Omola parser is invoked to load Omola model definitions into the
environment. The parser checks the syntax and report errors.

The class browser allows the user to view the contents of a loaded li-
brary and to select an object from it. The browser is the main window in the
environment and it is used to invoke and open up other tools.

The model editor is a graphical editor used for displaying and defining
Omola models.

The simulator compiles an Omola model and translates it into a suitable
form. The simulator has a number of built-in numerical integration routines for
simulating the compiled model. It also has a number of subtools to access and
to display variables and parameters, to display simulation results, to debug
models, etc.

The command language interpreter Omola Command Language (OCL)
is language for writing command procedures for setting up and running simu-
lation experiments in OmSim. When an OCL definition is loaded into OmSim
it is immediately executed by the OCL interpreter.

This document is meant to be a hands-on guide on how to use OmSim and
an introduction to Omola. Chapter 2 consists of an OmSim tutorial, describing
how models can be defined and simulated by a set of practical examples.
Chapter 3 is a short introduction to Omola, describing the main concepts of
the language. The two parts can be studied independently of each other.

1.1 Further information

More information about OmSim and its specific tools is found in a set of
manual pages accessible through the Unix man facility. The following manual
pages exists: AcCEss, BRowsER, FuncTions, MED, OcL, OMsiM, PLoT and
SIMULATOR.

A general presentation of the design and the ideas behind Omola is found
in [Andersson, 1990]. Overviews of Omola and OmSim and some modelling
examples are found in [Mattsson and Andersson, 1993] and [Mattsson et al.,
1993]. A preliminary description of combined discrete events and continuous
time models in Omola is found in [Andersson, 1992]. Extensive examples using
Omola for modelling chemical processes are found in [Nilsson, 1989].

1.2 References

ANDERSSON, M. (1990): Omola—An Object-Oriented Language for Model
Representation. Lic Tech thesis TFRT-3208, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden.

ANDERSSON, M. (1992): “Discrete event modelling and simulation in Omola.”
In Proceedings of the 1992 IEEE Symposium on Computer-Aided Control
System Design, CADCS ’92, Napa, California.

MaTTssoN, S. E. and M. ANDERSSON (1993): “Omola — an object-oriented
modeling language.” In JAMsHIDI and HERGET, Eds., Recent Advances
in Computer-Aided Control Systems Engineering, volume 9 of Studies in
Automation and Control. Elsevier Science Publishers.

MaTTSsoN, S. E., M. ANDERssON, and K. J. AsTROM (1993): “Object-
oriented modelling and simulation.” In LINKENS, Ed., CAD for Control
Systems. Marcel Dekker, Inc.

NiLssoN, B. (1989): Structured Modelling of Chemical Processes—An Object-
Oriented Approach. Lic Tech thesis TFRT-3203, Department of Automatic
Control, Lund Institute of Technology, Lund, Sweden. .

1.3 Acknowledgement

Omola and OmSim are results from work in the Computer Aided Control
Engineering (CACE) project. The author would especially like to thank the
project manager Sven Erik Mattsson, and the fellow co-workers Dag Briick,
Bernt Nilsson and Tomas Schonthal. Gratitude is also directed to Leif Ander-
sson for helping with IATgX problems. Finally the author would like to thank
Prof. Karl-Johan Astrém for initiating the project and for providing strong
support and encouragement.
This work has been supported by NUTEK project number 92-003500P.

2. OmSim Tutorial

This tutorial gives a general introduction to the OmSim environment. It is
based on some simple modelling and simulation exercises.

2.1 How to use this tutorial

The text in this tutorial is structured such that the presentation of OmSim
and the practical examples are interrupted by instructions to the reader to
issue commands in OmSim. Command instructions are printed in column wide
boxes. It is possible to run the complete examples just by reading and following
the boxed instructions.

The examples in this tutorial are based on a set of given files with some li-
braries and example models. You must copy these files into your local directory
before you can start doing the exercise. The files are located in a subdirectory
of the OmSim installation called tutorial. !

Notation

Commands to OmSim are selected from menus or issued by clicking on graph-
ical buttons. In this tutorial special notations are used for denoting buttons,
menus, and menu items. The notation is defined the following table.

Description Meaning Example
Round box Button
Bould box Menu
Box Menu item Quit

Boxes with arrow Menu selection [File]—[Quit]

Boxes with arrows Pull-right selection [Tools|—>[Show iree]—[Inheritance]

2.2 Starting and stopping OmSim

OmSim is started by the command omsim in Unix. After a few seconds you are
requested to position a window by moving the. mouse to-a desired position:and
then clicking a mouse button. The window is titled “Omola Class Browser”
and it is the main window of OmSim. It is used for selecting models and for
starting other tools.

Prepare a working directory and copy the tutorial model files to it. Issue
the command omsim. Position the window on the screen.

The newly started OmSim contains a library of basic Omola definitions. The
library is called Base and its contents are listed in the class browser. The classes
in Base are fundamental to OmSim and should not be changed or redefined.

In addition to the class browser an OmSim log window appears in the
bottom left corner of the screen. This window is used by OmSim to output
log messages and error messages.

1 At the Department of Automatic Control’s Spark Stations the tutorial is found in
/home/cace/lib/tutorial.

The class browser has two pull-down menus: [File] and [Tools]. [File] has an
option, [Quit], to stop OmSim.

Select [File]-{Quit] in the class browser.

2.3 Running a simple simulation

The purpose of this section is to demonstrate how a simple model can be
loaded and simulated in OmSim.
The model that is used in this example is the van der Pol oscillator defined

by the second order non-linear equation

d*y 2 9y

a9y _ =2 = 0.

az Ty by =0
The equation can be solved for different initial conditions and different pa-
rameter values by simulating the following Omola.model.

VanDerPol ISA Model WITH
a, b ISA Parameter WITH default:=1.0; END;
y TYPE REAL;

y'? 4 ax(yxy-blxy’ + y = 0;
END;

Starting OmSim with an Omola model file

A model file is a text file with Omola definitions. It can be loaded into OmSim
and it may define any number of models. A list of model files may be given as
argument to the OmSim startup command. The files will be loaded in given
order into OmSim at startup time.

The van der Pol model is stored in the model file ‘tutorial.om’. Get a copy
of that file to your working directory.

Start OmSim by issuing the Unix command: ‘omsim tutorial.om’.

More model files can be loaded into OmSim by selecting [File]—[Load] in
the main window.

The main OmSim window contains a browser for viewing the contents
of libraries and for selecting models and other classes for further treatment.
A library is a collection of Omola class definitions. It is usually so that each
model file defines a library. If a library name is selected in the left column of
the browser, its contained classes are listed in the right column.

Two libraries are now present in the environment: Base and Tutorial.

Select Tutorial by mouse clicking on the name in the left part of the class
browser. Click on VanDerPol in the right part of the same window, so
that it becomes high-lighted.

VanDerPol is now the currently selected class. Figure 2.1 shows current
appearance of Omola Class Browser.

(8] Omola Ciass Browser IR

file Tools

Browser shows: O Models O Terminals ®All classes

Libraries Classes in Tutorial

SecondOrder
«nones

ase

2

Figure 2.1 The Omola Class Browser with the Tutorial library.

[®] Simutator 1; VanDerPol ISA Mode! R T
Config Access In/Out Debug

StartTime | StopTime i_____ |

Time: 0 .

(Start) {Stop | {Continue | (Step] { Reset

Figure 2.2 The simulator panel for the van der Pol example.

Creating a simulator

The OmSim Simulator is a tool that can be invoked from the Omola Class
Browser’s menu. When a new simulator is created, it will be loaded
with the currently selected model from the class browser. Several simulators
can be created and each one will have its own control panel.

Select [Tools]—[Simulate] in the class browser and position the simulator
control panel on the screen.

Creating a simulator means that the model is checked, equations are col-
lected and analysed, and simulation code is generated. The simulator cannot
perform any simulations if the selected model is found to be incorrect. This
condition is shown by the status indicator in the upper right corner of the sim-
ulator showing “Error”. If the model is correct the status “Reset” is shown.

The simulator panel has four pull-down menus for various kinds of oper-
ations and for opening of sub-tools such as plotters for displaying simulation
results. The panel has two input fields where the user can specify simulation
start and stop times. It also has a row of buttons used for the most common
operations. Furthermore, it displays the progress of time during simulation
and the current state of the simulation. The state of the current simulation
activity is displayed in the upper right corner of the panel and it may show
Reset, Init, Active or Error.

The simulator created for our example is shwon in Figure 2.2.

Creating an Access Tool

An Access Tool is a simulator sub-tool that can be opened from of the
simulator panel. It is used for accessing the variables of the simulated model,
for example, setting initial values or changing parameters. A few different

[®) ModelAccess 1.1 [N

VanDerPol ISA Model
Y
v’

Y

b ISA Parameter M

a ISA Parameter M
& o

(cancel] | Ilﬁm (Options]

=[=T-23l 3] ==

@

Figure 2.3 Model Access tool for the van der Pol example directly after cre-
ation.

kinds of access tools are available. The most generally useful access tool is
obtained by selecting [Access|—{Model Struct]. It gives access to all variables of
the simulation model.

Select [Access]—+[Model Struct] in the simulator panel and position the Model
Access window.

The access tool, shown in Figure 2.3, displays the three variables (y and
it’s first and second derviatives) and the two parameters of VanDerPol.

Each row in a model access tool shows either the name of a substructure
(a component of the model), or the name and the current value of a variable.
Clicking on a substructure name opens or closes the display of its contents.
Pressing a mouse button on a variable name pops up a menu of operations
that can be performed on the variable.

A variable display line sometimes also shows a letter or some other symbol
indicating the source of the current value. For a freshly created simulator,
values are marked with an ‘M’ indicating that the current values come from
the model definition. Unknown values are indicated by question marks.

Setting up a plotter

Plotter is another important simulator tool. A new plotter is created from
in the simulator panel. The plotter window has two pull-down menus:
and [Config|, and two buttons for common operations: (Erase) and Rescale).

Select [In/Out]—[Plotter] in the simulator panel and position the new plot-
ter window on the screen. Don’t let it obscure any of the other OmSim
windows.

The access tool is used to select variables to plot. This is done by pushing
a mouse button on a desired variable name in the access tool, moving to
the item, and selecting an appropriate plotter from the pull-right
submenu. Plotters and other tools are identified by names displayed in the
window header.

We would like to display y and dy/dt in the plotter.

From the menu of the y variable in the access tool, select
[Connect]—[Plotter1.1]. Do the same thing for y'.

Setting initial values

The access tool shall be used for entering initial values. When the simulator
is in reset mode, the value boxes in the access tool show the initial value of
each variable. The values can be changed by clicking and typing in the value
boxes. When one or more values have been changed the new values have to be
sent to the simulator by clicking (Enter).

Mouse click in the value box of ¥ in the access tool. Use the keyboard to
enter the value of 1. Then click on (Enter).

Values that have been changed by the user will be marked with ‘E’ to
indicate an Explicit user value. If some variables are still marked with question
marks when the simulation is started, the simulator tries to derive consistent
initial values from the model. If this is not possible zeros will be used as initial
values.

Running the simulation
We are now ready to run the simulation.

We want to simulate from zero to 10 seconds. Enter ‘10’ in the Stop Time
box of the simulator panel. Click on Gtart). Click on on the plotter
to make the whole graph visible.

The resulting graph is shown in Figure 2.4.

The simulator has an options panel where the user can change a number
of different attributes and flags controlling the simulator and its numerical
routines. For example, it is possible to change integration method, distance
between output points, and error tolerances for the numerical routines.

It is always a good idea to check the simulation of a new model by adjust-
ing the error tolerances and trying different integration methods, and compar-
ing the results.

We will check if the simulation result is sensitive to local errors in the
used integration routine.

Select [Config|—+[Options.... Increase the error tolerance one order of magni-
tude compared with the default setting, by entering ‘0.01’ for the Relative
Error and ‘1e-05’ for the Absolute Error. Confirm the change by pushing

Ente.
Repeat the simulation by pushing again.

We will also check if the result is sensitive to the choice of integration
method. The van der Pol model can be simulated with any of the available
integration methods.

Select [Config]—[Options...]. Change to some other method, for example to
Dopri45r, by clicking on the appropriate radio button. Confirm the change

by pushing (Entep.
Repeat the simulation by pushing again.

[®] Plotier 1.7 ET]
File Config Erase Rescale

Figure 2.4 Graph obtained from the van der Pol simulation.

2.4 Working with structured models

In this section:we will create a structured. model -based on library components.
The example is based on two libraries with electrical components. However,
we will start by introducing some basic Omola terminology. You may also turn
to Chapter 3 for a more detailed description of Omola.

A structured model is a model whose behaviour is represented by a set
of submodels. The submodels may be structured models themselves. A model
that is not structured is primitive. It has no submodels and its behaviour is
defined by equations only.

Structured and hierarchical modelling in Omola is based on terminals
and connections. A terminal is a variable that is part of the model’s interface.
A connection defines a static relationship between terminals. A connection
between terminals of different submodels means that the submodels are inter-
acting.

Terminals (and their connections) can be simple or structured. A sim-
ple terminal involves a single quantity while a structured terminal contains
multiple quantities.

Omola is an object-oriented modelling language. A model or a terminal
in Omola is a class definition. Every class defines a general concept that can
either be used as a basis for other classes or it can be instantiated into a
simulation model. Every class in Omola has a super class. Attributes of the
super class will be inherited by the new (derived) class.

Viewing Omola definitions in OmSim

Restart OmSim and load two model files by issuing the Unix com-
mand: ‘omsim basicel.om elgen.om’. This will load two electrical li-
braries called BasicElectrical and ElectricalGenerators.

OmSim has facilities for displaying models and libraries in different ways. Any
Omola class definition can be presented as text. Inheritance and component
hierarchies can be presented as tree diagrams. The model display facilities are
found under [Tools|—[Omola] and [Tools|—[Show tree]. There are three tree display
possibilities: inheritance tree, component tree, and submodel tree. They all
display a tree with the currently selected class as the root. Every node in a

9

[ElectricMode! HE RS S R AR

ElectricNode

oltage Source——Voitage Generator
ElectricTwoPoleV:
CurrentSource—CQuirent Generator

Resistor
ElectricTwoPole
ElectricModel Capacitor——VarCapacitor
Inductor
Swilch
GroundPoint

| esl

Figure 2.5 Inheritance tree for the electrical library.

tree diagram represent a class definition. The inheritance tree for the electric
library is shown in Figure 2.5.

Select library BasicElectrical and class ElectricModel.
Select [Tools]—[Show tree]—[Inheritance). Position the window and extend it

to make it wider.

The nodes in a tree display are mouse sensitive. A mouse click on a node
creates a window showing the Omola definition of that class. The same type
of window for the currently selected class can be created by [Tools|—[Omolal.
Names of other classes are printed in bold characters in Omola display win-
dows. They are mouse sensitive and clicking results in a new window displaying
that class.

Click on ElectricTwoPole, in the inheritance diagram.

The result is the window shown in Figure 2.6.

The electric libraries

A set of libraries of electrical components and models have been developed to
be used in this tutorial. We will start by giving a brief presentation of these
libraries.

BasicFElectrical is a library which defines a set of basic classes that are
fundamental to our particular application domain. The library is printed in
Appendix D. The definitions can be divided into three groups: terminals, base
classes, and electric components.

The most important terminal in this library is called ElectricTerminal. It
is a structured terminal with two components, V, which is a VoltageTerminal
and I, which is a CurrentTerminal. An ElectricTerminal represents a single
connection point of an electrical component, for example, one end of a resistor.
It is has an electric potential, related to a system reference point, and an
electric current flowing into the component. It is a convention used throughout
this library that all terminals have a current with a positive value if the current
is flowing into the component.

10

[@] OMOLA class ElectricTwaPole [§

ElectricTwoPole IS4 BasicElectrical::ElectricModel WITH (&
T1 ISA BasicElectrical::ElectricTerminal WITH
% Layout here...;
END;
T2 ISA BasicElectrical::ElectricTerminal WITH
% Layout here...;
END;
V TYPE Real;
I TYPE Real;
T1.I + T2, I = 0Q;
¥V o=T1.vV - T2.V;
I =T1.1I;
END; 5|
i o

Figure 2.6 Omola window showing definition of ElectricTwoPole.

Study the Omola definition of ElectricTerminal by selecting it in the
Omola Class Browser and then choosing [Toolsl+{Omola). Position the win-
dow and enlarge it to-an apropriate size.

An important base class is called ElectricTwoPole. It is used as a super
class for many electric components that have two electric terminals. The ter-
minals are called T1 and T2. A property common to all electric two-poles is
that the currents through the terminals are equal but of different signs. This is
expressed as an equation in ElectricTwoPole. ElectricTwoPole also defines two
local variables, I and V, for convenience. V is the voltage across the two-pole
and I is current floating from T1 to T2. The definition of ElectricTwoPole is
shown in Figure 2.6.

Study the Omola definition of ElectricTwoPole in the same way as Elec-
tricTerminal. Cancel the Omola Windows when you are done.

Electric Generators is a library which contains a set of voltage and cur-
rent sources that are useful in models of electric circuits. CurrentSource and
VoltageSource are constant sources where the voltage and current are defined
by parameters.

Study the Omola definition of VoltageGenerator. How many equations
does the VoltageGenerator define? How many variables and equations are
defined for a VoltageGenerator when we also include inherited attributes?

CurrentGenerator and VoltageGenerator are controlled sources, where the
current and voltage are controlled from an input terminal. The library also
includes a two waveform generators that can be used to control the voltage
and current generators.

The graphical model editor

We will now put together a simple structured model based on building blocks
from the electric libraries. A model block diagram editor (Med) is an OmSim
tool used for defining and viewing structured models graphically.

11

Select <nomne>> in Class list of the Omola Class Browser. Open a model
editor by selecting [Tools|»[Med] in the Omola Class Browser.

Med has one pulldown menu, called [Edit], and two editing buttons, called
and (Connecd). It also has a graphical editing area showing the diagram
of the edited model.

The Edit menu allows the user to load the editor with an existing model
or with an empty, newly created, model. The model that is currently selected
in the Omola Class Browser will be loaded for editing when Med is started
or when [Edit]—[Existing] is selected. A new model can be created in Med, by
selecting [Edit|—[New). The currently selected model will then be used as the

super class of the new model.

Select ElectricModel in the BasicElectrical library. Select [Edit}/—[New] in
Med.

A box with the name ‘Unnamed’ will appear in the model editor.

The model currently being edited in Med is called the subject. Every
object visible in the editor, including the subject, has an associated pop-up
menu. The menu is displayed by pushing a mouse button on the name or on
an icon of the object. An option called in the object’s menu, can be used
to display important information about the object and to change its name.

We will start by giving the new model a proper name.

Press a mouse button on the string Unnamed and select [Tufo]. Use the
keyboard to edit the Class name field. For example, change the name into
ElectricTest. Confirm the change of name by pushing (Set name).

Submodels and terminals are added to the subject by the use of (nserd).
An instance of the currently selected item in the Omola Class Browser is
inserted as a new component of the subject every time is pushed. The
new component has to be placed on the diagram area by the mouse. New
components are given automatically generated names. Positions and names of
components can be changed at any time by the use of the component’s pop-up
menu.

It is a good practice to position terminals along the rectangle border and
submodels inside the rectangle of the subject.

We will build a simple electric circuit based on a voltage generator, a
resistor and a capacitor.

Select VoltageGenerator in library ElectricGenerators. Click on
in the Model block diagram editor. Move the mouse into the rectangle
of the graphical area and position the icon by clicking a mouse button
somewhere in the left part of the diagram.

Select FunctionGenerator from the same library and insert one in the dia-
gram close to the voltage generator. Continue by inserting a Resistor and
a Capacitor from library BasicElectrical. Finally, insert a GroundPoint,
also defined in BasicElectrical.

12

is used for defining connections between terminals of the subject
and submodels. A connection is created in the following way.

1. Click on (Connect).

2. Select a terminal in the diagram.

3. Position any number of corners of the connection line.
4. Select the second terminal.

After the click on until the second terminal has been selected, the
editor is in connection mode. The mode is indicated by the mouse cursor
appearing as a cross. Connection mode can be cancelled by pushing any key
on the keyboard.

Selection of terminals can be done in different ways. One possibility is by
clicking on a terminal icon. Terminal icons of submodels consists of small filled
squares. Terminal icons of the subject model appear as larger, unfilled, squares
with the names of the terminals. Another possibility to connect submodels is
to select the terminal from the pop-up menu of the submodel icon. Next step
will be to connect the submodels in our example model.

Push (Connect). Then select the lower terminal of the voltage generator.
Position a corners if desired. Finally select the terminal at the ground
point icon. Repeat the procedure to connect the other end of the voltage
generator to the resistor, the resistor to the capacitor, and finally the
capacitor to the ground.

In order to connect the function generator to the voltage generator the
terminals have to be selected from menus, since these particular terminals have
no icons.

Push (Connect). Push a mouse button on the function generator icon and
select @ from the pop-up menu. Then push a mouse button somewhere in
the middle of the voltage generator icon and select from the menu.

The new model is now completed and the resulting diagram.is shown in
Figure 2.7.

Simulating the model A simulator for a model in Med can be created
from the subject menu, that is the pop-up menu activated by pushing a mouse
button on the subject’s name in the upper left corner of the diagram.

Push a mouse button on the name of the model you have created in Med
and select from the pop-up menu. Position the simulator control
panel.

Using the Model Access Tool A Model Access Tool is needed in order to
get access to simulation variables. It is needed to specify variables to plot, to
set initial values and to display variable values during simulation. The access
tool obtained from [Access]—[Model Struct] of the simulator panel is useful to get
access to all variables of a structured model. When it is created it shows the

13

[8] Mode! block diagram editor

Edit Insert Connect B
ElectricTest

\
A

&

| i

Figure 2.7 Med showing completed structured model.

names and the super classes of the model and all its immediate submodels.
Each row displays an object which is either a component or simple variable. An
object that is not a simple variable can be expanded in the display, so that its
components become visible. A mouse click on a non-expanded component will
make it expanded. A mouse click on an expanded component will compress it
to its original one-line form.

Models that are defined by Med normally have automatically generated
component names. For submodels with icons the names are normally not vis-
ible in the diagram. It is often necessary to know the name of a particular
submodel to be able to select correct variables in an access tool. The name
can be seen in the title of the pop-up menu of the submodel icon.

Select [Access]—[Model struct] in the simulator panel. Position the access
tool window and extend its size to make it about twice as high and a bit
wider.

Click on the line showing the capacitor.

The components of the capacitor submodel will be displayed. The param-
eter, C, and the the terminals, T1 and T2, can be expanded further.

Create a plotter by selecting [In/Out|—[Plot] in the simulator window.

The capacitor has a variable, V, representing the voltage across the ca-
pacitor.

Connect variable V of the capacitor to the plotter by pushing a mouse
button on the variable name and selecting [Connect]—[Plotter1.1].

It is possible to make access tools which display selected variables. Access
tools containing all parameters or all state variables of a model can be created
from the menu. It is also possible to create customized access tools by copying
single variables from other access tools. This is done by selecting from
the variable’s pop-up menu.

14

[®] Plotter 1.1 B =R
File Config FErase Rescale

1

0.8

0.6 1

0.4 A

0.2

Figure 2.8 Graphs of ElectricTest simulation with square wave input and dif-
ferent capacitance settings.

In order to experiment with different parameter settings in our test model
it is convenient have an access tool with only the parameters.

Select [Access]—[Parameters| in the simulator panel.

Except for the resistance and the capacitance parameters, the function
generator has a number of parameters for selecting waveform, frequency, am-
plitude, etc. The waveform is determined by a parameter, Func, with a sym-
bolic value which may be sawtooth, sine, square, or triangle.

Click in the value box of the Func parameter of the function generator
model in the variable access tool for parameters. Use the keyboard to edit
the value and replace the default value of sine with square.

Simulate the model and try different settings for other parameters.

The resulting graphs from four simulations with square wave generator
and different values of the capacitance is shown in Figure 2.8.

Saving the model A model created by Med can be saved in a file as Omola
code. Submodels, connections and the graphical layout will be represented in
Omola and saved.

A model can be associated with a file. To save a particular model it is
necessary to save the file with which it is associated. This will also save all
the other model associated with the same file. Menu selection [File]—[Save file
of the Omola Class Browser allows the user to select a model file and save it.

New models created by Med are always entered in a library called Scratch
and associated with a file called ‘scratch.om’. The file name can be changed
through the option of the model’s pop-up menu in Med. If the file name
is changed to an existing model file, the model will also be moved to the last
library in that file. If the file name is changed to a non-existing file, then a
new library with a similar name is created and the model is moved to that
library.

15

Select from the pop-up menu of ElectricTest in Med. Change the file
name to ‘test.om’ and confirm the change by clicking in Set name). A
new library called test appears in the class browser. Save the new model
by selecting [Save file] in [File] of the class browser. Select test.om in the
file selection box that appears and confirm the operation by clicking on

Gavo.

2.5 Using an OCL script

The Omola Command Language (OCL) is a simple language for writing com-
mand scripts. A command script is a textual representation of a sequence of
commands which are otherwise performed interactively using mouse and key-
board input. OmSim can read OCL scripts from a file and execute the com-
mands. By using OCL it is possible to set up and execute complete simulation
experiments. OCL is described in a separate manual.

We will use an OCL script to perform-a parametersstudy of a simple
second order model. The model is called SecondOrder and it is defined in the
file ‘tutorial.om’.

The example OCL script first defines the model and calls it m. Then
it creates a simulator called sim and a plotter called Response. Finally five
simulations are performed for different settings of the model parameter z.
The OCL script is defined in the file ‘experiment.ocl’ and it looks like the
following.

BEGIN
Tutorial::SecondOrder m; % Create the model

Simulator sim(m); % Make a simulator for it
sim.display(200, 200); % Display the simulator
sim.stoptime := 10; % Set simulation stop time
Plotter Response(m); % Make a plotter

Response.display (600, 200);

Response.xrange(0, 10); ' Set the scales
Response.yrange(0, 2);

Response.y(x); % Define the variable to plot

 Simulate for different dampings:

FOR z := [0.2, 0.3, 0.5, 0.7, 1.0] BEGIN
m.z := z; % Set damping parameter
sim.start; % Run simulation
END;
END;

An OCL block starts with BEGIN and ends with END ;. The commands are based
on the object-oriented philosophy of creating objects and sending messages to
them. Models in the model database and tools in OmSim are instantiated into
objects and given names local to the particular block.

16

O] Response IR
File Config FErase Rescale
2
154 o
14 L
0.5 1 -
0 T T 1 L) T L L) 1 T
0 2 4 8 8 10

Figure 2.9 The resuling graphs from the example OCL script.

OCL scripts can be included in ordinary Omola model files and they are
executed when the file is loaded. However, it is common practice to store each
OCL script on a separate file.

We can try the OCL script by restarting OmSim and giving the script file
as the last argument.

Restart OmSim by issuing the Unix command ‘omsim tutorial.om
experiment.ocl’. Position the main OmSim window.

OmSim is started, the models are loaded and the OCL script is executed.
The resulting plot is shown in Figure 2.9.

17

3. The Omola Modelling
Language

This chapter gives an introduction to the Omola modelling language.

3.1 Class definitions

Omola models are based on class definitions. A class definition serves as a
prototype that can be used for creating any number of model instances. Model
instances are used during simulation.

Classes are used for representing model structures. A class defined on the
top level in a file is called a global class. Classes can also be used as attributes,
defined inside other classes. Such classes are called components or local classes.

A class has a name, a super class, and possibly a body of attribute defi-
nitions. A class definition has the structure:

<name> ISA <super class> WITH
<class body>
END;

or if the class has no local attributes simply:
<name> ISA <super class> ;

The class body can include definitions of other classes, variables, equations,
connections and events.

As an example of a class definition, regard the following definition of a
van der Pol model.

VanDerPol ISA Model WITH
a, b ISA Parameter WITH default:=1.0; END;
y TYPE REAL;

y'' o+ ax(yky-b)xy’ +y = 0;
END;
The name of the defined class is ‘VanDerPol’. Its super class is Model, which
is a previously defined class. The body defines four attributes: two component
class definitions, one variable, and one equation.

3.2 Class attributes

A class definition may have a body of attribute definitions. Attributes can be

e components, which are nested class definitions representing submodels,
terminals, parameters, etc.

e variables,

e equations,

e connections, and
e events.

Components, variables and equations are presented in this section. Connec-
tions are discussed in Section 3.6 and events are discussed in Section 3.7.

18

Components
A component is a class definition nested inside another class definition as an
attribute.

A component is defined in the same way as a global class definition. A
minor difference is that it is possible to give a list of names for defining a set
of identical components. For example,

TankSystem ISA Model WITH
Tankl, Tank2 ISA TankModel;
END;

defines a model, TankSystem, with two components, Tank1 and Tank2, which
are subclasses of TankModel which must be previously defined.

Variables

The body of a class definition may include variable definitions. A variable has
a name and a type and it may take different values during simulation of the
model.

There are five basic data types supported in the current implementation.
These are real, integer, string, symbol and enumeration. In addition, the struc-
tured type matrix:of real; is supported. An enumeration typed variable takes
symbolic values that are restricted to a given set of symbols.

A variable definition may also include a binding which binds the variable
to an expression or a constant value. If a variable is bound to a constant
value, this value will hold for all instantiations of the class at all times during
simulation, i.e, the variable is actually a constant.

A variable binding must be type consistent with the variable. The types
must be identical or it must be possible to coerce the binding to the type of the
variable. For example, a real variable may be bound to an integer expression
but not vice versa.

A string constant is written in double quotes while a symbolic constant
is preceded by a single quote mark. Here is an example with variables of the
six different types, all with bindings to constant values.

M1 ISA Class WITH
x TYPE REAL := 2.0;
i TYPE INTEGER := 1;

s TYPE STRING := "This is a string.";

symb TYPE Symbol := ’0OmSim;

enum TYPE (Gas, Water, Steam) := ’Gas;

matr TYPE [2, 2] := [1.1, 1.2; 2.1; 2.2];
END;

A variable without a binding is called a free variable and may be used as a
state variable in a dynamic model. The following example shows a class with
three variable attributes: x, which is a constant; y, which is a free variable;
and z, which is bound to an expression that depends on x and y.

M2 ISA Class WITH
x TYPE Integer := 1;
y TYPE Real;
z TYPE Real := x + y;
END;

A variable definition may include the keyword ‘DISCRETE’ to declare that
the variable is not varying continuously in time. Discrete variables are dis-
cussed together with events in Section 3.7.

19

Equations

The body of a class may define equation attributes. Equation attributes can
either be causal or non-causal. A non-causal equation attribute, normally just
called equation, is written as

<expression> = <expression> ;

where the left and right side expressions have equal status. A causal equation
attribute, usually called assignment, has the form

<variable name> := <expression> ;

Assignments should, just as ordinary equations, be interpreted as equality
relations. The difference is that an assignment defines which variable should
be computed from the equation. An ordinary equation can basically be used
for computing any of the involved variables.

Assignments are the same as variable bindings. The difference is only that
the assignment does not appear together with the declaration. There can be at
most one valid binding or assignment to a variable when the complete model
is considered. Assignments in a class body override inherited assignments and
bindings to the same variable. See also the following section about inheritance.

Equations include arithmetical or logical expressions based on functional
operators and symbolic references to variables. The expressions must be type
consistent. A reference to the time derivative of a variable is made using special
operators. For first and second order time derivatives, can be indicated by
succeeding the variable with one or two single quotes. For example, x’ refers
to the first order time derivative of x while x’’ refers to the second order
time derivative. It is also possible to use the more general operator dot(x,n),
where n is an integer indicating the derivative order.

3.3 Class inheritance

A class inherits all attributes of its super class. If a class defines a local at-
tribute with the same name as an inherited attribute, the local attribute will
override the inherited one.

Except for the possibility of overriding, inherited attributes have the same
status as locally defined ones. By definition, the set of attributes of a class is
the set of local attributes in union with the set of not overridden attributes of
the super class.

Connections and equations cannot be overridden since they have no
names. However, assignments can be overridden since they can be uniquely
identified by the assigned variable. For example, regard the following two
model definitions where the second model is a subclass of the first one:

M ISA Class WITH
x TYPE Real :
y TYPE Real :
END;

1.0;
2.0

.
’

MM ISA M WITH

x := 3.0;
y TYPE Integer;
END;

20

In class MM the variable x is inherited from class M but its binding is overridden
by a local assignment to the constant 3.0. The variable y is redefined to an
unbound integer in MM.

Class inheritance arranges all classes in an inheritance tree. The root of
that tree is the predefined class Class which is the only class that does not
have a super class. Figure 3.1 shows the inheritance tree for all predefined
classes in Omola.

3.4 Scope rules and the resolution of identifiers

Components and variables are referred to by names. Names referring to at-
tributes occur in class definitions (the super class name), in connections, in
equations, and in binding expressions. When class definitions are manipulated
or checked for consistency, names are resolved according to the scope rules of
Omola. The scope rules are different for the super class name compared to the
other uses of name references. The scope rules are described in the following.

Resolution of super classes
A class definition

<name> ISA <super class name> ... ;

resolves the super class name reference immediately when the class definition
is parsed. The main rule for finding the super class is to search for a global
(top level) class definition with the given name. Global class definitions are
searched in the current library and possibly in other libraries according to the
rules described in the Section 3.8. This default resolve rule applies whenever
the super class is given as a single name.

It is possible to modify the super class search procedure by extending
the super class name with a library qualification using a double colon like
‘LibA: :ModelX’. In this case only the specified library is searched for a global
class with the given name. If the library name is omitted and the super class
name starts with the double colon like ‘: :ModelX’, only the current library is
searched.

There is a set of special qualifier symbols that-modifies the resolve rule
to search in the local environment of components rather than in the global
library.

THIS:: When a super class name is preceded by this qualifier, like

‘THIS: :X’, the super class is searched in the local environment of the class

being defined. In this case, X is supposed to be a component defined in

the owner of the class being defined or in any of its super classes.

SUPER: : This special qualifier works similar to THIS: : but the search starts
from the super class of the owner of the class being defined. This makes
it possible to define class attributes like ‘X ISA SUPER::X ... ;’ where
the inherited component X is redefined and specialized.

OUTER:: With this special qualifier the search for the super class starts in the
owner of the owner of the class being defined. The search works outwards
in the component hierarchy.

Here is a simple example using the OUTER: : and the THIS:: operators:

21

M ISA KindOfModel WITH
X ISA Class;
MM ISA Model WITH
X ISA Class;
Y ISAN OUTER::X; Y% OUTER::X means M.X
Z ISA THIS::X; % THIS::X means M.MM.X
END;
END;

In this example the super class of Y is resolved into the X defined as an attribute
of M. It would also work if X was not locally defined in M but inherited from
KindOfModel.

Resolution of variables

All name references in expressions, equations and connections are resolved by
searching the local environment and outwards in the component hierarchy.
Since inheritance works as if attributes were defined locally, an inherited at-
tribute will always be found before an attribute with the same name defined in
the owner class. This default resolve rule can be changed by using the OUTER: :
special qualifier before the variable name. In this case the search starts in-the
owner of the model in which the name reference appears.

Global variables or constants are referred to by preceding the variable
name with a library name qualifier or just a double colon meaning global in
the current library. A commonly used global variable is the simulated time
which is predefined in the Base library (see Appendix B). This variable is
referred to as Base: :Time.

Dot-notation is used to refer downwards in component hierarchies. For
example if model M has a class attribute called X which in its turn has a variable
attribute called Y, this variable can be referred to as X.Y in the context of M.

Value semantics

If a class attribute has a variable attribute named value, that class can be
used as a variable. When the name of such a class attribute is used in an
expression where variables are expected, the value-attribute of the class is
used the value. As an example, regard the predefined class Parameter:

Parameter ISA Class WITH
value TYPE Real;
default TYPE Real := 0.0;

END;

A model can define parameters and refer to their value-attributes without
using dot-notation. For example:

M ISA Model WITH

P ISA Parameter;

x TYPE Real := P + 2.0;
END;

where the name P in the binding expression of x actually refers P.value.

22

[0 crss B TSR e T TR,]
Layout
Modael
~Evuntinpul

Event Evanl Turminat<_

il “EventOulput

AStructure
Reallzation SeiOfDAE

Pramitive

d ~Connection
s T Parameter
Vanalle
gl g L
e Torménal E—Simple Output
/aaslchmahld/m !
- \,_.. Discreta Teminal
Ten
s = ruSumTennina
> RaconiTerminal
ectorTenninal

Figure 3.1 Inheritance tree for the Base library.

Variable bindings

The rules for resolving a variable reference make it possible for any expression
in a binding or equation to refer to variables downwards as well as upwards
in the component hierarchy. However, for the left side of an assignment (the
assigned variable) the rules are more strict. Only variables below the assign-
ment in the component hierarchy may be bound. The first element in the dot-
notation of the assigned variable must be the name of an attribute present in
the same class as the assignment (but it may be inherited). In other words, a
model can bind variables in its own submodels and other components but a
submodel or a component cannot bind variables defined in their owners.

3.5 The Base library

Omola includes a library called Base, which defines some basic classes. These
classes are always assumed to be predefined and they have special meanings
to the system and affects the way classes are interpreted as simulation models.
The Base library is shown as an inheritance hierarchy in Figure 3.1. The
complete Omola definition of Base is given in Appendix B.
The meaning and usage of some of the classes in Base is described in the
following.

Terminal
A terminal is a model component that is a subclass (directly or indirectly) of
the predefined class Terminal. It is used as a part of the model’s interface defi-
nition. In a structured model, interaction between submodels is represented by
connections between terminals. Connections are discussed in the next section.
There are a number of predefined subclasses of Terminal that can be
used as super classes of model components. Terminal itself cannot be used
directly as a super class of a model component, it is an empty class meant as
a classification for all terminals. Some terminal classes are presented in the
following.

BasicTerminal is a subclass of Terminal. It is used as a super class for
all terminals representing a single interface variable. It defines the following

23

attributes.
value is the terminal’s value.

quantity is a string defining the physical quantity of the terminal. The string
must be a valid name of quantity according to the list in Appendix C.

unit is a string defining the unit of measure. The string must be a valid SI
unit in agreement with the quantity according to Appendix C.

variability specifies if the terminal represent an ordinary time varying vari-
able or of if is a parameter which is constant during simulation.

default is used for giving a value to an unconnected terminal. If this attribute
is bound, and if the terminal is not connected on the outside, the binding
expression is used to form an equation with the terminal.

Simple Terminal is a specialization of BasicTerminal with one additional
attribute: causality. The class is used for all terminals resulting in equali-
ties when they are connected. The causality attribute can be used to give
the terminal a defined causality either as an input or as an output terminal.
Normally the causality is undefined.

ZeroSumTerminal is a specialization of BasicTerminal with one addi-
tional attribute: direction. The class is used for all terminals resulting in
zero-sum equations when they are connected. Zero-sum terminals are usually
used for representing flows, currents and forces.

The direction attribute can be In or Out defining the direction of positive
“ﬂow”.

RecordTerminal is a class for structured, multi-variable, terminals. Spe-
cializations of this class are supposed to add a set of terminal components
which may be basic terminals or other structured terminals.

Other important classes in Base

In addition to Terminal discussed above and Event discussed below, there are
a number of classes in Base which have special meaning to OmSim. These spe-
cial classes are presented here. There are also a few classes, e.g., Realization
and its subclasses and VectorTerminal, defined in Base but not used in cur-
rent implementation. These classes are reserved for future use and they are
not discussed further in this document.

Model should be used as a super class for all class definitions representing
a complete top level model, or classes that are designed to be specialized into
complete models or submodels. The class has only one attribute, Graphic,
which is used by the system for graphical representation of models.

Parameter should be used as a super class for all user parameters, i.e.,
variables that are not varying continuously but can be accessed and changed
by the user of the model. The class defines a value attribute and another
attribute called default, used as value if nothing else is supplied by the user.

Parameters get special treatment by the simulation tools. If the model
contains equations and assignments that only involve parameters, these rela-
tions will be used to propagate parameter values when they are changed by
the user.

24

Variable should be used as a super class to components that are used
instead of ordinary variables. A variable component has an attribute called
initial which may be bound to any desired initial value.

Layout is used for the graphical representation of models. A model com-
ponent of class Layout is used and manipulated by the graphical editor but
ignored by the simulator. For more information, see the comments in of defi-
nition of tt Layout in Appendix B and in the Med manual pages.

Connection is used by the graphical representation of connections. Model
components of this class are defined and manipulated by the graphical editor.

3.6 Connections

A connection is a class attribute that defines a relation between two terminals.
Terminals are components that are defined as subclasses of the predefined class
Terminal. Terminals are used for defining the interface of a model, i.e., the
ports through which it interacts with other models-imr the environment.

A connection is written as

<terminal name> AT <terminal name> ;

where that left and right sides have the same status.

Connections represent interaction between models. A connection will be
translated into one or several equations between terminal variables. How this is
done depends on the properties of the terminals. For example, if two terminals
descending from SimpleTerminal are connected it will result in an equality.

Connection consistency
Connections are checked for consistency before a model is instantiated. The
consistency rules that applies are the following.

1. Structure: A basic terminal (representing a single quantity), must be con-
nected to a basic terminal. Record terminals must have the same number
of components and the components must be pair-wise connectable.

2. Quantity: Basic terminals must have consistent.quantities. Quantities are
consistent if they are known by the database and equal.

3. Type: Basic terminals must be type consistent according to the same rules
that apply for equations.

4. Value: If connected terminals have constant values they must be equal.

5. Causality:
(a) Two simple terminals (across terminals) with defined causality (input
or output) must be consistent.
(b) Two zero-sum terminals (through terminals) have no defined causal-
ity and are always correct.
(c) If a simple terminal is connected to a zero-sum terminal the former
must have a defined causality (input or output).

When simple terminals with defined causality are connected to zero-sum
terminals according to rule 5c, the simple terminals will not be included in
the zero-sum equation. An input terminal works as a measurement of the
connected zero-sum terminal while an output terminal binds the value of the
connected zero-sum terminal.

25

3.7 Discrete events

In Omola it is possible to define models with discrete event behaviour in
combination with continuous time behaviour. An event is a discontinuity that
occurs in a model during simulation. This section will describe how discrete
events are defined in Omola.

An event occurs due to some logical condition on variables or due to some
other event. The event may cause discontinuities in the continuous time be-
haviour of the model, i.e., one or several variables may change value abruptly.
An event may also cause other events to be scheduled to occur at some time
in the future.

Event definitions
An event definition in Omola may define a condition for the event to occur,
called the firing condition, and the result of the occurrence called the event
action.

Events are defined as class attributes. An event attribute has the following
form:

ONEVENT <condition> <action> ;

where the keyword “ONEVENT” should be read “on event”.

A common way to define an event is to give the firing condition as a
logical condition on some state dependent variables and the event action as a
set of action statements. This is written as:

ONEVENT <logical expression> DO <action statements> END;

The ‘DO...END’ section defines any number of actions, typically state assign-
ments, that will be executed in some order when the event occurs. An event
declared in such a way has no name. Named events are sometimes useful and
may be declared as components that are subclasses of one of the predefined
classes Event or EventTerminal. For named events the firing condition and
the action can be defined in separate clauses. For example, the definition of a
named event with one firing condition and one action body will look like:

E ISAN Event;
ONEVENT <condition> CAUSE E;
ONEVENT E DO <action statements> END;

The ‘ONEVENT. . .CAUSE’ construction is used to propagate an event condition
to one or many named events. The CAUSE keyword may be followed by a list
of event names. The advantages of using named events are that one event
may have many firing conditions and that one firing condition may cause
many events. Firing conditions and actions may also be distributed in differ-
ent submodels. Named events serves as the basis for event propagation and
synchronization discussed below.

Event conditions
Events may be caused by conditions on continuous time variables. Assuming
x is variable we may write:

ONEVENT x < O CAUSE E1i;

This will cause the event E1 to fire when x goes from positive to negative
value. In order for the event to fire a second time the logical condition has to
become false and then true again.

26

In general, the firing condition can be any OR-expression combining logic
expressions with named events. For example:

ONEVENT x<0 OR y>1 OR Ea OR Eb CAUSE E1;

will fire the event E1 if any of the events Ea or Eb occurs or if any of the two
inequality expressions become true,

Event actions

A set of actions in a DO...END action body, are not executed in sequence but
are sorted and executed in a appropriate order depending on the variables
used.

A typical action is an assignment of a new value to a state variable. It is
also possible to have other types of event actions like printing a message or
scheduling a future event. If there is more than one action body associated
with an event, the actions will be sorted together.

In order to define relations between the value of state variables before
and after an event, the variable operator ‘new’ is introduced. The expression
‘new(x)’ in an action body refers to the value of x immediately after the
event. For discrete variables, which are discussed below, the new operator may
be interpreted as the forward. shift operator. Only new-values may be assigned
in an event action. That means the normal form of an event action statement
is:

new(x) := <expression> ;

where x is any variable. The right side expression may refer to variables with
or without the new operator. This means that it is possible to refer to the
value of a variable as it was immediately before the event or as it will become
immediately after the event.

All assignments associated with an event will be sorted such that an as-
signment to a particular variable will be executed before any other assignment
referring to new(x) in the right hand side expression. It is an error of the
model if such a sorting is not possible.

Event propagation
Events may be propagated to cause other events. An event clause defining
event propagation looks like:

ONEVENT <or-expression> CAUSE <list of event names> ;

where the or-expression is one or many event names separated by OR. The
effect of event propagation is that all members in the propagation chain will
be treated as one single event, this means that their associated actions will be
sorted in proper order.

Events can also propagate between submodels over terminal connections.
There is a predefined Omola class called EventTerminal that has the combined
functionality of a terminal and an event. A connection between two event
terminals will propagate events in both directions. For example, if Et1 and
Et2 are event terminals, the connection

Et1l AT Et2;
will be equivalent to the two event clauses:

ONEVENT Et1 CAUSE Et2;
ONEVENT Et2 CAUSE Et1;

There are also predefined event terminal classes called EventInput and
EventOutput that restrict event propagation to one direction.

27

Discrete time variables
In a combined continuous time and discrete event model, some variables are
varying continuously in time while other variables change step-wise as a result
of events. The latter kind of variables are called discrete time variables (or
simply discrete variables), while the former kind is called continuous time
variables (or simply continuous variables).

In Omola, all variables are considered to be continuous time variables
unless they are explicitly declared to be discrete. A discrete variable is declared
with keyword ‘DISCRETE’ in the variable definition. For example:

X TYPE DISCRETE Real;

A discrete variable is considered to have a known value by the continuous time
simulation system. This means that the equation manipulation system that
sets up the simulation system needs not to find a continuous equation that
can be solved for that variable.

Discrete assignments and equations
An equation or an assignment that involves only discrete variables is called a
discrete equation or a discrete assignment.

Discrete assignments may be defined in event action bodies or anywhere
in a model. A discrete assignment or equation, not defined in an event action
definition, is interpreted as an equality valid at all times. During simulation
it has to be evaluated only at those event instances that affect any of the
variables in the equation. A discrete equation or assignment can be ignored
by the continuous time simulation system.

A discrete assignment defined in an event action body is evaluated only
as a result of that particular event. As mentioned before, the assigned vari-
able must always be referred to by the new-operator. For example, with the
following declarations:

X, ¥ ,z, TYPE DISCRETE Real;

E1, E2, E3 ISAN Event;

Z 1= X+y;

ONEVENT E1 DO new(x):=0.0; END;
ONEVENT E2 DO new(x):= x + 1.0; END;
ONEVENT E3 DO new(y):=2#%x; END;

it will always be true that z = +y. The relation y = 2z will hold immediately
after the event E3 (until some other event changes the value of x). The action
of event E2 represents the difference equation z;,, = z; + 1.

Scheduled events

The events considered so far have been triggered by some logic condition on
time varying variables. However, it is very common that the exact time when
an event will fire is known or can be computed in advance. This is, for example,
the case for sampled systems where the time for the next sample event is
known. Such an event can be scheduled, i.e, it can be put in queue of time
ordered events. The system can then be simulated more efficiently.

A special procedure call: ‘schedule(E,delay)’, where E is a name of an
event, may be used in event action bodies. The effect is that the event E will
be scheduled to occur in delay time units from current time. If delay is zero
the new event will be handled immediately after the current event.

As an example of using scheduled events, a sampled data model can be
represented by the following Omola code. The event Init is special since it
will always be called by the simulator at the start of a new simulation.

28

DiscreteSyst ISA Model WITH
h TYPE Real := 1.0; %Sample interval
Sample, Init ISAN Event;
OnEvent Sample OR Init DO

h ... variable assignments
schedule(Sample, h);
END;

END;

3.8 Omola files and model libraries

An omola file may contain any number of class definitions. A class defined at
file level, i.e., not encapsulated in any other class definition, is called a global
class. Every global class belongs to a library. An Omola file may contain a
library statement, declaring to which library the following definitions belong.
A library statement looks like:

LIBRARY <library name> ;

The library name can be any valid name string. The statement sets the current
library that will be valid until the next library statement or until the end of
the file. A library called Scratch will be used as current library until the first
library statement appears in the file.

A file may contain several library statements but it is recommended to use
a one-to-one correspondence between files and libraries and to have a library
statement first in every Omola file.

A library is a separate name-space for global definitions. Normally when
a class definition is parsed, if the super class is given as an unqualified name,
only the current library is searched. However, it is possible to give a search
path of libraries that are to be searched for unqualified name references. Such
a statement is given in an Omola file as:

USES <1ibl>, <1ib2>, ... ;

and it is usually put directly after the library statement. Global names will
be searched starting with current library and then in the libraries given in the
USES statement, beginning from the last library in the list. A USES statement
is valid until the next statement or until end of file.

Global constants

Variables bound to constant values may be defined globally in an Omola file.
The definition is similar to a variable attribute definition with a binding. It
has the form:

<name> TYPE <type specifier> := <expression> ;

where the expression must evaluate to a constant value. A reference to a global
constant in a class definition must include a double colon ‘::’. For example, a
global constant named Pi, must be referred to as ‘: :Pi’.

29

A. Omola Syntax

omola-definitions ::=
/¥ empty */
omola-definitions id class-def ;
omola-definitions id type-declaration ;
omola-definitions LIBRARY id ;
omola-definitions USES name-list ;
omola-definitions block ;
omola-definitions COMMENT

omola-definitions error ;

class-def :=
super-class-def
super-class-def WITH class-body END

super-class-def ::=
ISA reference

class-body ::=
body tag-body

body ::=
/* empty */
body body-item ;
body COMMENT

body-item ::=
name-list class-def
name-list type-declaration
reference := expr
expr = expr
reference AT reference
event-handler
error

event-handler ::=
ONEVENT event-body
WHEN event-body

event-body ::=
expr DO actionbody END
expr CAUSE expr-list

actionbody =
/* empty */
actionbody function-designator := expr ;
actionbody function-designator ;
actionbody COMMENT

tag-body ::=
[* empty */
tag-body tag body

tag 1=
TAG

type-declaration ::=
TYPE var-kind type-designator

30

TYPE var-kind type-designator

var-kind ::=

/¥ empty */
DISCRETE

type-designator ::=

MATRIX [expr , expr]
ROW [expr]
COLUMN [expr]
REAL

INTEGER
STRING

(name-list)
POLYNOMIAL
REFERENCE
SYMBOL

id

expr-list ==

expr ::

expr
expr-list , expr

IF expr THEN expr ELSE expr
expr AND expr
expr OR expr

NOT expr

expr REL-OP expr
expr .. expr

expr ADD-OP expr
expr MUL-OP expr
expr HAT expr

expr DOTHAT expr
ADD-OP expr

expr QUOTE
primary

error

primary ::=

reference

QUOTE id

matrix

polynomial

REAL

INTEGER
STRING

(expr)
function-designator

matrix 1=

IoOwsS ::

[rows]

columns
rows ; columns

columns 1=

expr
€XpI : eXpI : expr
columns , expr

1= expr

31

polynomial ::=
LCBRACK poly-item RCBRACK

poly-item ::=
c-poly
r-poly

r-poly u=
expr : expr-list

c-poly =
expr-list

function-designator ::=
id (expr-list)
id ()

name-list ::=
id
name-list , id

indexed =
id
id [expr-list]

indexed-list ::=
indexed
indexed-list . indexed

reference ::=
indexed-list
: : indexed-list
id :: indexed-list

block =
begin statement-list END

begin ::=
BEGIN

statement-list ::=

/* empty */
statement-list statement ;

statement ::=
reference id
reference id (reference)
reference ocl-arg-list
reference := expr
FOR reference := expr block
block

error

ocl-arg-list ::=
[* empty */
o)
(expr-list)

32

B. The Base Library

LIBRARY Base;
Time TYPE Real;

Layout ISA Class WITH
%% Graphical layout of a class

x_pos TYPE Real;

y_pos TYPE Real;

%% Position of center, relative lower-left corner of
%% enclosing block, in screen coordinates.

x_size TYPE Real := 400;
y_size TYPE Real := 300;
%% Size of block in screen coordinates.

invisible TYPE Integer := 0;
%% If true, the enclosing model should be invisible in a block
%% diagram; may currently be used for terminals on components.

%% A layout may also have these attributes, which are
%% undefined by default.
W
%% bitmap Name of a bitmap file; "sum" denotes
%% bitmap file "sum.bm".
W
%% label Used to label a model.
END;

Model ISA Class WITH
attributes:
Graphic ISA Layout;
% Primary_Realization TYPE String := "Any realization name";
END;
Event ISA Class;
EventTerminal ISAN Event;
EventInput ISAN EventTerminal WITH
causality TYPE Symbol := ’input;
END;
EventOutput ISAN EventTerminal WITH
causality TYPE Symbol := ’output;
END;
Realization ISA Class;
Structure ISA Realization;
SetDfDAE ISA Realization;
Primitive ISA Realization;), same as SetOfDAE

Connection ISA Class;), Connection with breakpoints.

Parameter ISA Class WITH

33

attributes:

value TYPE Real;

default TYPE Real := 0.0;
END;

Variable ISA Class WITH
attributes:

value TYPE Real;

initial TYPE Real := 0.0;
END;

Terminal ISA Class WITH
Graphic ISA Layout;
END;

BasicTerminal ISA Terminal WITH
attributes:
value TYPE Real;
quantity TYPE String := 'number";
unit TYPE String := "1";

variability TYPE (TimeVarying, Parameter) :

default TYPE Real;
END;

SimpleTerminal ISA BasicTerminal WITH

causality TYPE (Undefined, Input, Output) :

END;

SimpleInput ISA SimpleTerminal WITH
% Corresponds to an input in Simnon.
causality := ’'Input;

END;

SimpleOutput ISA SimpleTerminal WITH
% Corresponds to an output in Simnon.
causality := ’COutput;

END;

ZeroSumTerminal ISA BasicTerminal WITH
direction TYPE (In, Out) := ’In;
END;

DiscreteTerminal ISA SimpleTerminal WITH
value TYPE Discrete Real;
END;

RecordTerminal ISA Terminal WITH
components:
END;

VectorTerminal ISA Terminal WITH
attributes:

Length TYPE Integer;
END;

it

'TimeVarying;

'Undefined;

34

Quantity Database

Name of quantity
number

Space and time quantities:
angular.acceleration
angular.velocity
angle

acceleration
velocity

length

breadth

height

thickness

radius

diameter
length.of.path

area

volume

time

Periodic quantities:
period

time.constant.of.an.exponentially.varying.quantity

frequency
rotational.frequency

Unit

rad/s2
rad/s

588
e
(V]

2

“HESBB8B88E8B

Hz
Hz

35

Name of quantity

Mechanics quantities:
mass.flow.rate

mass

density

specific.volume
momentum

impulse
angular.momentum
angular.impulse
moment.of.inertia
force

weight
moment.of.force
bending.moment
torque

pressiire

normal.stress
shear.stress

viscosity

power

work

energy
potential.energy
kinetic.energy
volume.flow.rate

Heat quantities:
thermodynamic.temperature
celsius.temperature
heat.flow.rate

heat

density.of heat.flow.rate
thermal.conductivity
coefficient.of heat.transfer
heat.capacity
specific.heat.capacity
entropy
internal.energy
enthalpy
helmholtz.free.energy
gibbs.free.energy
specific.entropy
specific.enthalpy
specific.internal.energy

Unit

36

Name of quantity

Electricity and magnetism quantities:
electric.current
electric.charge
electric.field.strength
electric.potential
electric.voltage
electric.flux
capacitance
permittivity
magnetic.field.strength
magnetic.flux
self.inductance
permeability
resistivity
conductivity
reluctance
impedance

reactance

resistance

power

active.power
apparent.power
reactive.power

Unit

ohm

Siééé’-

37

D. The BasicElectrical library

This is the definition the basic electrical library used in the tutorial. All graph-
ical information have been stripped from the models in order to save space
and to make the models easier to read.

LIBRARY BasicElectrical;

wh

%% Basic library of general electric components. Developed to be used
%% as an example in "OmSim and Omola Tutorial and User’s Manual,

%% Version 3", M. Andersson, 1993.

Wi

VoltageTerminal ISA SimpleTerminal WITH
unit := "V";
quantity := "electric.potential";
END;

CurrentTerminal ISA ZeroSumTerminal WITH
unit := "A";
quantity := "electric.current";

END;

ElectricTerminal ISA RecordTerminal WITH
V ISA VoltageTerminal;
I ISA CurrentTerminal;

END;

ElectricModel ISA Model;

ElectricNode ISA ElectricModel WITH
%4 Connection point for electric terminals.

T ISA ElectricTerminal;

ElectricTwoPole ISA ElectricModel WITH
%% Electrical component with two ports.

T1, T2 ISA ElectricTerminal;

V, I TYPE Real;
%% I is current through component, into T1.
%% V is voltage drop over component; T1 is positive.

T1.I + T2.I = 0;
V="T1i.V - T2.V;
I =T1.T;

END;

ElectricTwoPoleV ISA ElectricTwoPole WITH
%% Electric two pole with vertical teminal layout,

END;

Resistor ISA ElectricTwoPole WITH
%% Resistor with parameter resistance.

R ISA Parameter WITH default := 1.0; END;

38

V=1I=%R;
END;

Capacitor ISA ElectricTwoPole WITH
%4 Capacitor with parameter capacitance.
%% Model may be refined to have time varying capacitance
%% by replacing C.

C ISA Parameter WITH default := 1.0; END;

dot (CxV) = I;
END;

Inductor ISA ElectricTwoPole WITH
%% Inductor with constant inductance.

L ISA Parameter WITH default := 1.0; END;
V = LxI?;

END;

GroundPoint ISA ElectricModel WITH
%% Defines the electric potential reference.
%4 Every complete model of an electric circuit should
%% have exactly one of these.

T ISA ElectricTerminal;

VarCapacitor ISA Capacitor WITH
%% A capacitor with variable capacitance.

C ISA SimpleTerminal;
END;

Switch ISA ElectricTwoPole WITH
%% Electric switch controlled by external events.

Open, Close ISAN Event;
is_closed TYPE DISCRETE Integer;
0 = IF is_closed THEN V ELSE I;
OnEvent Open DO

new(is_closed) := 0;
END;
OnEvent Close DO

new(is_closed) := 1;

END;
END;

