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Identification of Ship Steering Dynamics”

K. J. ASTROMY and C. G. KALLSTROM?

Maximum likelihood identification is applied to determine ship steering dynamics of a
Sfreighter and a tanker using free steering experiments on full scale ships.

Summary—System identification techniques are applied to
determine ship steering dynamics. The parameters of a
linear continuous time model are determined using discrete
time measurements. The parameters are estimated using
the maximum likelihood method. Applications to measure-
ments on a freighter and a tanker are given.

1. INTRODUCTION

THE dynamics of ship steering is of interest when
evaluating manceuvrability and it is a necessity
when designing autopilots, navigation and steering
systems. Ship dynamics is traditionally determined
from first principles using Newton’s laws of motion.
The main difficulty is to determine the hydro-
dynamic forces acting on the hull. These are
usually obtained from tests with scale models.
Two types of tests are common, free steering
experiments, where the rudder is changed and the
motion observed, and captive tests, where the scale
model is forced into a specific motion and the
forces acting on the scale model are measured.
The results obtained from scale model tests are
scaled in order to obtain mathematical models that
are relevant for full scale ships. Special dynamics
experiments are sometimes made during delivery
tests in order to evaluate the steering and manceuvr-
ing ability.

In this paper the problem of determining ship
steering dynamics is approached from the point of
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paper was recommended for publication in revised form
by associate editor H. Kwakernaak.
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Technology, Lund, Sweden.

view of system identification. Free steering experi-
ments on full scale ships are considered. The pre-
cise nature of the rudder perturbation is not
critical as long as the perturbations excite the ship
motion sufficiently. The data obtained in the
experiment are used to estimate the parameters in a
mathematical model of the ship. The structure of
the mathematical model is determined from the
steering equations of the ship. The results indicate
that it is possible to obtain models for ship steering
dynamics using the proposed scheme.

The paper is organized as follows. A review of
ship steering dynamics is given in Section 2.
Disturbances are discussed in Section 3. The prob-
lem of identifiability is analysed in Section 4. The
analysis shows which parameters can be deter-
mined from different types of measurements. In
particular it is shown that all linear hydrodynamic
derivatives cannot be determined from a free
steering experiment. The parameters of a complete
state model can, however, be determined provided
that both the heading angle and the sway velocity
are measured. The parameters of a transfer func-
tion model relating heading angle to rudder motion
can, of course, always be determined. The para-
meter estimation problem is discussed in Section 5.
This problem concerns the estimation of parameters
of a stochastic differential equation using discrete
time observations. The equations for the likelihood
function are given in a form which is convenient
for numerical computations. The estimation
scheme developed allows for non-uniform sampling
and missing measurements. The procedure has
been tested on data obtained from experiments on a
freighter, the M/S Atlantic Song, and on a tanker,
the T/T Sea Splendour. The experiments are
described in Section 6. Mathematical models
having different structure were fitted to the experi-
mental data. Both estimation of parameters in a
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black box model and parameters of models having
the correct physical structure are discussed in
Section 6. The results from the tanker experiment
are particularly interesting, because a large
mancuvre was made during the experiment. The
results obtained from this experiment indicate that
the nonlinear effects are important for a model
which should be valid for such manceuvres.

2. SHIP DYNAMICS

The equations describing ship dynamics are well
known. They are obtained from Newton’s laws
expressing conservation of linear and angular
momentum. See refs. [1-7]. The main difficulty
when deriving the equations is to describe the
hydrodynamic forces acting on the hull. The forces
are in general complicated functions of the ship’s
motion, i.e. the time history of the velocity,
angular velocity and the rudder motion. They also
depend on trim and draught. In shallow water and
close to shore the forces will also depend on the
topography.

If a ship is considered as a rigid body it has 6
degrees of freedom corresponding to translations in
3 directions and rotation around 3 axes. The
equations of motion are conveniently expressed
using a co-ordinate system fixed to the ship. The
hydrodynamic forces are easy to describe in such
a co-ordinate system because the symmetry of the
hull can be exploited. Neglecting sensor and
actuator dynamics, the ship can thus be modelled as
a 12-order system. Additional dynamics are also
introduced by the rudder servo. In many cases it
has, however, been shown that the model can be
simplified. It is customary at least for tankers and
similar ships to neglect the coupling between the
yaw motion and the pitch and roll motions. See
ref. [4], p. 62. Since the yaw motion is often
sufficient to discuss steering and autopilot design,
the following treatment will be limited to this
motion only.

FEquations of motion

To describe the equations of motion the co-
ordinate system fixed to the ship shown in Fig. 1 is
used.

z

F1G. 1. Definition of co-ordinates fixed to the ship.

Translation along the co-ordinate axes are called

surge, sway and heave and rotation around the

co-ordinate axes are called roll, pitch and yaw,
respectively.

Let v be the projection of the ship’s velocity on
the y-axis, and r the component of the angular
velocity on the z-axis. See Fig. 2. The projection
of the ship’s velocity on the x-axis is assumed to be
constant and equal to #,. The equations for the
yaw motion are then given by the laws of conserva-
tion of linear and angular momentum, ref. [1], p. 21

m (dv—i-ru +x dl.) Y,
=P o TAG I T 4>
dt dt 2.1)

+me(%-l—ruO) =N,

r
Iza
where m is the mass of the ship, I, its moment of
inertia about the z-axis, ¥ the component of the
hydrodynamic forces on the y-axis, N the z-com-
ponent of the torque due to the hydrodynamic
forces and x; the x co-ordinate of the centre of
mass. It is assumed that the centre of mass is
located in the x—z plane. The hydrodynamic force
Y and the torque N are complicated functions of
the motion. It is usually assumed that

Y = Y(UD r’ 85 Ij} ’.‘))

2.2
N = N(v? r’ 8, I}’ f‘), ( )

where 0 is the rudder deflection. The functions Y
and N will also depend on trim and draught. This
is not introduced explicitly in the following which
means that the results will hold for one loading
condition only.

Stationary solutions

Assuming that the rudder is kept constant at the
centre position the steady-state solution to the
equations of motion is given by

S, r)y= Y(v,r,0,0,0)—mru, =0,

(2.3)
g, )= N(v,r,0,0,0)—mxgru, = 0.

For a ship which is symmetric around its centre
plane the force Y and the torque N will vanish for
a motion with v =0 and r=0. The stationary
solution to (2.3) is then given by v =0 and r = 0.
Depending on the properties of the functions Y and
N there may, however, also be other solutions.
These are easily obtained from a graph of the
functions f and g. See Fig. 3. The case of one
stationary point Q only as shown in Fig. 3(A) is
most common. For very large tankers the case
shown in Fig. 3(B) can, however, occur. In such a
case the solution v =0 and r=0, point Q in
Fig. 3(B), which corresponds to a straight line
motion is unstable while the solutions v = v,
r=—r, and v = —p,, r=r, point P, and P, res-
pectively in Fig. 3(B), which correspond to circular
motions are stable. A ship with these properties
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cannot be kept on a straight course with zero
rudder. It will either go into a port yaw or into a
starboard yaw and the motion will tend to a
stationary circular motion.

”,
1

Fi1G. 2. Variables used to describe the linearized yaw
motion of a ship. Notice that different conventions
for the sign of & are used in the literature.

~0

flv,1}=0

-, NG

o E—flv,r)=0
gtv,1)=0 glv,1)=0

A. 8.

F1G. 3. The determination of the stationary motions

as the intersections of the curves f(v,r) = 0 and

g(v, ) = 0 is illustrated. In case A the curves intersect

at the origin only but in case B there are 3 stationary
solutions.

Normalization and linearization

It is customary to normalize the equations by
introducing dimension free quantities. This can be
done in several different ways. In the ‘prime’
system, which is most common, the length unit is
the length of the ship, L, the time unit is L/V, where
V is the ship’s speed, and the mass unit is pL?/2,
where p is the mass density of water. The nor-
malized variables are denoted by introducing a
‘prime’ on the non-normalized variables.

To linearize the equations it is necessary to
introduce the partial derivatives of the force ¥ and
the torque N. The partial derivative

YU = (3/30) Y(U, rs 8’ I}: ’:),

where the right-hand side is evaluated at arguments
zero, is called a hydrodynamic derivative. The
derivatives Y,, ¥;, Y;, Y, N,, N,, N;, N, and N are
defined analogously.

Linearization of (2.1) around the stationary
solution v = 0, » = 0 and normalization gives

m =Y,  m'xd =Y'7 g [ v
m'xg —N;  I'—N; |4t

[ Y, Y —-mw' ] [v’ [ Y,
= +

N,/ N/—m'xg ¥ Ny

where all parameters and variables are dimension
free. Notice that it has been assumed that uy/V = 1.

The derivatives Y;" and N;’ are negative. Notice
that they appear in the equations in the same way
as the mass and the inertia. These terms are there-
fore sometimes called added mass and added
inertia. In more accurate representations they will
depend on the frequency of the excitation.

The hydrodynamic derivatives can be determined
from hydrodynamic theory. See refs. [7] and [8].
They can also be determined from scale model
tests. Descriptions of different model tests and
comparisons with theory are given in refs. [6], [7]
and [9]. Examples of normalized hydrodynamic
derivatives for different ships are shown in Table 1.

S, (2.4)

State equations

The normalized equations of motion (2.4) are
easily converted to standard state space notation
by solving for the derivatives dv’/d:’ and dr'/d¢’.
This gives the following model for the yaw motion
of the ship

v’ ay a4 O v’ by
d
dr’ =] an ap 0 ] by |9,
i 0 1 0 W 0
(2.5)

where the heading i defined by dif/d¢" = r' has also
been introduced as an extra variable. The heading
i is shown in Fig. 2.

The parameters of (2.5) are remarkably similar
for different ships as can be seen in Table 1. The
numerical values will, however, change with trim
and draught.

The linearized yaw motion of a ship can thus be
desctibed as a third-order dynamical system where
the state variables can be chosen as

’

v’ the sway velocity, i.e. the component of the
ship velocity on the y-axis in the co-ordinate
system fixed to the ship,

7

v’ the ship’s angular velocity about the z-axis,
i the deviation in heading angle.

Other state variables are sometimes chosen. The

angle of attack, i.e. B in Fig. 2, can be used instead

of the sway velocity v. It is sometimes necessary to
introduce additional dynamics to account for the
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properties of the rudder servo. In the examples
which follow this is represented simply as a time
delay.

TABLE 1. EXAMPLES OF NORMALIZED HYDRODYNAMIC
DERIVATIVES AND DIMENSION FREE PARAMETERS OF STATE
MODELS FOR DIFFERENT SHIPS

Merchant

Mo
Mine ship B lezﬁk;ant Tanker Tanker
ship N ger. 60, ,SYP 190 000 210 000
sweeper block codf - riney St awt
class
0.70
Tength L (m) 55 160 161 305 310
Speed V
(mi/s) 4.0 7.8 7.7 8.2 4.1
m'-ye 0.0229  0.01546 0.03139  0.03530
m'xg Y 0.00039  0.00026° O© 0.00113
Ve Tapgt
LAPE 0.00048 0.00012 O 0.00089
I, 0.0012  0.00083 0.00192  0.00210
¥ -0.0222  -0.01160 -0.01873 =0.02012
yr'—n{' -0.0076  ~0.00526 -0.01169 =-0.00880
! ~0.00567 ~0.00291 —0.00701 =-0.00675
N g -0.0034 —0.00184 -0.00353 -0.00346
Yé' 0.00211 0.00278 0.00323 0.00490
R ~0.00105 -0.00133 -0.00152 -0.00245
a ~0.863  -0.895  -0.693  -0.597  —0.466
a1, -0.482  -0.286  -0.304  -0.372  ~0.196
=5, =4, -3. -3. -3.02
ay 5.25 4.37 3.41 3.66
- o -2 2 - - -
2 2.45 2.72 2.17 1.87 1.56
by 0.175 0.108 0.207 0.103 0.176
1. -0. -1.63 -0.80 ~1.24
by 1.38 0.92 1.63
Ref. {2] {51 {71, 191 {10} {111

Input—output relations

Let the rudder angle 8 be the input and the
heading angle ¢ the output. The input-output
relation can then be represented by the transfer
function

_ bys+by, K'(1+5T5)
GO = rasta) T+t &9

ay = —dy—dy,
Ay = Qy1 Qgp — 12 a3,
bl = b21:

by = agy by — 31 by

@.7)

This model of ship dynamics has been used
by several authors when investigating steering,
manceuvrability and autopilots as discussed in
refs. [3] and [12]. It has been proposed by Nomoto

[13] that the transfer function (2.6) should be
approximated with

_K
s(1+sT,)"
There are also several procedures proposed to
determine K’ and T, in (2.8) from experimental

data. These parameters have also been determined
for many different ships.

Gy(s) = 238)

3. MODELS FOR DISTURBANCES

If available physical knowledge should be
exploited when modelling the system, it is also
desirable to try to describe the disturbances by
physical models. The motion of a ship is in-
fluenced by variations in wind and waves. There
may also be forces which are not accounted for in
the simple models described in Section 2, for
example forces due to coupling with pitch and roll
motions and forces due to the fact that the ship is
elastic. In this section it is attempted to give a
simple model for the wind forces, assuming that
the only effect of the wind is an additive force Y,
and an additive torque N,, in the model (2.1).
The wind force will depend on the relative wind as
seen from the ship. Let the relative wind vector
W,e; have the angle 0 with the nominal heading as
shown in Fig. 4. The equations of motion (2.1)
then become

m(%—l— Fllg+ X %’;) = Y+Y,00,4),
3.1

dr do

Izaﬁ-mx(;(aJrruo) = N+N,(0,).
If it is assumed that the wind has a constant com-
ponent and the equations are linearized there will

be terms proportional to i which are not present in

—
£

Fic. 4. The influence of wind on the ship motion.

the linear equation (2.4). The coefficients of these
terms will depend on the velocity and the direction
of the wind. There will also be additive terms in the
linear model which depend on the fluctuations of
the wind.
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State equations

Reducing the linearized and normalized version
of equation (3.1) to state form the following model
is obtained

! ’

d v din G2 4z v
FTY rl=an anm axn r
P 0 1 0 W
by €
+| by [84+] en [, (3.2)
0 0

where e; and e, are functions of the wind forces.
Notice that it follows from the assumption that the
effect of the wind only gives additive terms in (3.1)
that the elements ayy, dyy, Gy, dog, by and by
remain the same as in the model (2.5) with no dis-
turbances. The parameters a;3 and a,; will, how-
ever, be highly dependent on wind velocity and
direction. Conceivably the wind may also in-
fluence as an added mass and added inertia.

Transfer functions

It is of interest to see how the transfer function
relating heading angle to rudder is changed when
the effect of the wind is taken into account. The
transfer function is easily obtained from (3.2). It
is given by

Gs) = bys+by 33)
1 .3 9 s .
s°tay s+ as+as
where
ay = —dy — Ay,
Gy = Qy1 Qgg — Uy oy — g,
a3 = dyy Aoz — 13 a9y, (3.4)

by = by,
by = a5 by —ay byy.
Notice that in the presence of wind the transfer

function relating the heading angle to the rudder
will not necessarily contain an integrator.

Turbulence spectra

Much theoretical and experimental work has
been devoted to the description of wind fluctua-
tions. It has been found that at least at high
altitudes the wind fluctuations can be described as
homogeneous isotropic turbulence. See refs. [14]
and [15]. It has been found that the lateral com-
ponent can be described by the spectral density

_ 2L 1+3(wL)?
) =5 TH @D F
and the longitudinal component by the density
oL 1
7 1+ (wl)®’

(3.5

D(w) = (3.6)

where o is the intensity, L is the scale of the turbu-
lence and w is the inverse wave length in metres,
The scale of the turbulence is of the order of 150-
1500 m at high altitudes [16].

The nature of the turbulence close to the ground
differs from that at high altitudes. Equations (3.5)
and (3.6) can be considered as crude approxima-
tions but the scale and the intensity will vary with
height and the properties of the ground. A number
of measurements have been carried out. See refs.
[17-19]. The experimental data indicates that the
scale L is approximately proportional to altitude,
The formula

L =09/
is proposed as an approximation valid up to
/1 =300 m in ref. [15].

The ships to be discussed in Section 6 have
lengths of 200-400 m. Their time constants are of
the order of 20 and 200 sec. The velocities are
about 10 m/sec. Both the ratio of the ship’s length
to the turbulence scale and the ratio of the distance
travelled in a time constant to the turbulence scale
is much larger than one. In the model (3.2) it is
thus not unreasonable to assume that the disturb-
ances e; and e, are realizations of white noise.

4. IDENTIFIABILITY

In Section 2 three linear models were given for the
dynamics describing the yaw motion of a ship, the
equations of motion (2.4), the state model (2.5) and
the transfer function model (2.6). The equations of
motion (2.4) give a model with 13 parameters n’,
xq, 1] and 10 hydrodynamic derivatives. The
state model (2.5) has 6 unknown parameters aq,
gy Q91> Uog, b7 and by and the transfer function
(2.6) is characterized by 4 parameters. Before it is
attempted to estimate the parameters of these
models, the problem of identifiability will be
analysed. See ref. [20]. It will thus be investigated
if the parameters of the models can be determined
from the data of an input-output experiment.
To be precise a parametric model of a system is
parameter identifiable if the parameters can be
determined uniquely from the input-output rela-
tion.

The transfer function model

The input-output pairs rudder angle, heading
angle will now be considered. It is obvious that the
transfer function model (2.6) with parameters a,
ay, by and b, is an identifiable model except in the
case when there is a pole zero cancellation,

The state model

The state model (2.5) is not identifiable since it
follows from equations (2.7) that there is a 2-
dimensional family of parameters that will corre-
spond to the same input-output relation. Notice,
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however, that the parameter by; can be determined
uniquely.

1t is thus not possible to determine the para-
meters of the state model (2.5) from data obtained
from an experiment where the rudder angle is per-
turbed and the heading angle is observed. Assume,
however, that the sway velocity v is also observed
in the same experiment. The transfer function
relating the sway velocity ' to rudder angle & is
given by

es+e, K /(1+5T))
stta;sta, (1+5T)(+sTy

Gz(s) = )a (41)

her —
where ¢ = by,

“4.2)
o= aypboy— Ay byy
and the parameters a; and g, are given by (2.7).
By straightforward algebra it can be shown that the
parameters dyy, dyg, Gy, oy, by and by can be
solved from equations (2.7) and (4.2) if at least

coby# ey by, 4.3)
This condition is equivalent to the state model (2.5)
being controliable. The state model (2.5) is thus
identifiable under the condition (4.3) if the input—
output pairs relating rudder angle to heading angle
and sway velocity are available.

The equations of motion

Analysis of equation (2.4) shows that the mapping
from the parameters to the input—output relation is
not an injection. First, all parameters such that the
quantities m'=Y;, m'xy Y, m'xg—Ny,
I'~N;, Y/—m' and N,/—m'xg are constant will
have the same input-output relation. Secondly, it
is possible to multiply (2.4) with a non-singular
matrix and still have the same input-output rela-
tion. We can thus conclude that the equation of
motion is not identifiable no matter what input-

output pairs are known.

Models with disturbances

It is possible to extend the analysis of identifi-
ability to the models discussed in Section 3, where
wind disturbances are included. It can be shown
that the linearized model (3.1) is not identifiable.
The state model (3.2) is identifiable if the transfer
functions relating the rudder to the heading and the
sway velocity are known and if the values of the
parameters are such that the system is completely
observable and completely controllable. The state
model is, however, not identifiable if only the
input—output relation between the rudder and the
heading is known. The parameters of the transfer
function (3.3) are also identifiable.

5. PARAMETER ESTIMATION
Having discussed the problem of identifiability,
the parameter estimation problem will now be

treated. This problem is extensively discussed in
the literature. See e.g. the survey [20]. Both the
estimation of parameters in a state model and the
estimation of the parameters of a transfer function
model can be formulated as a problem of deter-
mining the parameters in the stochastic differential
equation

dx = Axdr+ Budt+dw. (5.1)
It is assumed that the initial state is a gaussian
vector with mean value m and covariance R, and
that {w(r),0<t<o0} is a Wiener process with
incremental covariance R,df, which is assumed
independent of the initial state. Assume that an
input signal has been applied to the system and
that the output has been observed at discrete times
ty, by, ..., Iy With a measuring device which can be
characterized by

y(tk) = CX(fk)-I-DLl(I‘]C)-i‘E(fk), k= 0: 1’ 9N (52)

The measurement errors {e(t;)} are assumed to be
independent and gaussian with zero mean and
covariance R,. It is furthermore assumed that the
measurement errors are independent of {w(f),
0 < t< oo} and of the initial state.

The model (5.2) implies that the measuring
instruments are such that they give an output
signal which is the instantaneous value of a linear
combination of the state variables. The errors of
measurements taken at different times are inde-
pendent. Equation (5.2) is a good model when the
sensor dynamics are considerably faster than the
system dynamics and the measurement errors of
different sampling events are uncorrelated.

In the particular case of ship dynamics the model
(5.2) is reasonable because the shortest time con-
stant of interest and the sampling interval is about
5-60 sec. All sensors have dynamics with time
constants shorter than 1 sec, and the measurement
errors are about 0-1° in heading, 0-02°/sec in yaw
rate and 0-01 m/sec in velocity.

Problem statement

It is thus assumed that an identifiable model
(5.1) and (5.2) is given and the problem is to deter-
mine the identifiable parameters from observed
input—output pairs. The parameters will be deter-
mined using the maximum likelihood method.

The likelihood function
To obtain the likelihood function, i.e. the joint

probability density of the observed outputs assum-
ing all parameters known, we introduce

(o)
(1)
Yy = s (53)
M-
(i)
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i.e. a vector consisting of all outputs observed up to
and including time 7,

Assume that the probability distribution of y,,
has a density p(y,). It then follows from the
definition of conditional probabilities that

) =y v, 1 p(, ) (5.4)

Repeated use of this formula gives the following
formula for the likelihood function

L = p(y,) = ply) |y, et |, ]

DD )] Py (5.5)

The likelihood function can thus be conveniently
written as a product of conditional densities.

In the particular case of a model described by
(5.1) and (5.2) all random variables are gaussian
and the conditional density is also gaussian. The
logarithm of the likelihood function can then be
written as

N
—logL = L 12 logdet R(#;,)

N
+% Z ET(tk) Rnl(tk) E(rk) =+ CODSt, (56)
k=0

where

e(tk) = y(tk) _j)(tlc | tk——l) (57)
and §(t;,| f;,—1) denotes the conditional mean of y(,)
given y,  and R(t;) the conditional covariance.
We have

P(te| 1_y) = Cm+ Du(t,). (5.9

Also notice that {e(t;), k =0,..., N} are the resi-
duals or the innovations of the output process.
The conditional mean (7| #,,_;) and the conditional
covariance R(7;) are easily determined recursively
through the Kalman-Bucy filtering theory. See
e.g. ref. [21]. We have

| tig) = C(t1| 1) + Du(ty),
Rt 1) = 2t 1) + K (1) (1),
(d/de) 2(t| ) = A%(t| 1)+ Bu(r),

SIS,
K(ty) = P(ty| ;) CT
X [Ry+CP(ty| 1) CT17, } (5.9)
P(ty| 1) = P(ty| ty—y)
—K(1;) CP(t;,
(d/dn P(t] 1) = APt

tk—l):
z‘lc) +P(tl rk) AT +R1’

A A EE
R(13) = Ry+ CP(t;,] 1,y C™.

The computation of the likelihood function is thus
easily done recursively. A description of the pro-
gram LISPID, which performs the calculations, is
given in ref. [22]. This program is a general

identification program for linear systems with many
different options. The program which is written
in FORTRAN consists of 52 subroutines. Includ-
ing comments the program size is 9200 statements.
The program without any data storage requires a
core of 64k cells on the UNIVAC 1108, if no
segmentation is used. It requires a core of 25k
cells using segmentation and overlays. Additional
memory space to store data is necessary.

Numerical aspects

The maximum of the likelihood function is
found by an optimization routine. It is, however,
extremely tedious to compute the gradient analytic-
ally, so only optimization techniques using the
values of the loss function have been tried.

Two different algorithms have proved to be the
most suitable for this kind of problem. In the first
one the gradient is computed numerically using
finite differences. Then a quasi-newton method is
applied to find the optimum as described in ref.
[23]. The other algorithm does not use numerical
gradients, but gets information about the loss
function by a special search pattern as discussed in
ref, [24].

The actual computations are far from straight-
forward, and although a fast computer, a UNIVAC
1108, is used, the execution times often become
rather long, especially when the observations are
not equally spaced in time. The execution time also
depends on the complexity of the model, the number
of measurements, the number of parameters to be
estimated and the accuracy of the initial parameter
values.

6. EXPERIMENTS

Two sets of experiments will be considered in
this paper. The first experiment was carried out
on a freighter, the M/S Atlantic Song, using fairly
primitive equipment including manual generation
of test signals and manual reading of the heading
angle. The idea of making such experiments was
inspired by the early work of Garde and Persson
[25]. The second experiment was performed on a
tanker, the T/T Sea Splendour, using fairly sophisti-
cated equipment including rate gyro, doppler log
and an on-line process computer. The experiments
are described in more detail in the following.

The Atlantic Song experiment

The Atlantic Song is a freighter of the Wallenius’
Lines. It is 197 m long, it weighs 15,000 tons and
has a maximum speed of 21 knots. The experiment
was made in 1969, off the west coast of Denmark.
The wind was about 8 Beaufort (17-20 m/sec,
fresh gale) and the wave height 3-54m. The
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Fic. 5. Result of identification of a second-order model with the structure (6.1) to the Atlantic Song data (heading
measurements dots, model full line). The mean values are subtracted and the output is shifted one sampling interval.

sight was poor due to a heavy snowfall. The ship
had a luffing tendency, and a wind gust forced a
port yaw. The impact of the waves on the bow
induced sudden starboard yaws. The experiment,
which lasted for about half an hour, was per-
formed by 2 students. The speed was 18-5 knots at
the beginning of the experiment and was reduced to
18 knots at the end of the experiment due to the
rudder motions. A sampling interval of 15 sec was
chosen based on prior knowledge of the dynamics.
In the experiment the rudder angle was perturbed,
and the heading angle was observed. One student
was the co-ordinator during the experiment. He
was standing on the bridge together with the cap-
tain. The other student was at the rudder servo in
the machine room. At each sampling event the
heading angle was read from the gyro compass.
A command to change the rudder angle was given
to the helmsman and the rudder angle was observed.
The results were recorded in a table. The input was
chosen as 2 periods of a PRBS signal with a length
of 64 sampling intervals. The peak to peak varia-
tion was about 10°. The signal was changed
somewhat to keep a reasonable course.

The input-output data recorded are shown in
Fig. 5. The data have partly been analysed before.
See refs. [26, 27]. A more detailed description of
the results shown in this paper is given in ref. [22].

As a first attempt to analyse the data the discrete
time model

yO)+ayt—D+...+a,y(t—n)
=byu(t—1)+...+b, u{t—n)
+Ale(t)+eret—1)+...+c, e(t—n)] (6.1)

was fitted to the data by the maximum likelihood
method. The estimation of the parameters of this
model can be simplified significantly, as is des-
cribed in Astrom and Bohlin [28]. An interactive
program IDPAC, which performs this, is des-
cribed in ref. [29]. This program minimizes the
loss function

V,=

HM/

2(f)

l\)l'—-‘

which is equivalent to maximizing the likelihood
function [28]. Repeating the identification for
different values of » the following loss functions
were obtained: V; = 6684, V, =294-5 and V; =
286:9. An attempt to determine the order by an
F-test gives the test quantities F(1—2) = 50-4 and
F(2-+3)=1-0. This indicates that a second-order
model is appropriate. Akaike has in ref. [30] pro-
posed that the order should be selected so that the
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criterion
AIC = —2logL+2v

is minimal where L denotes the maximum value of
the likelihood function and v the number of
estimated parameters. Akaike’s criterion also
gives a second-order model. The parameters are
given below

4, =—1644005 ¢, =—075+0-10,
ay = 0-66 +0-05, ¢, = 0064010,
by =—011+003,  V=2945,
by=—019+0:04, AIC = 560-5.

6.2)

If initial values also are estimated, a second-order
model is obtained as well. This model has the loss
function ¥V =274:5 and an AIC = 5557, which
indicates that initial values should be estimated.
The model parameters are not significantly different
from the values given above.

In Fig. 5 are shown the input, the measured out-
put, the model output and the residuals of the
second-order model with estimated initial values.
The residuals are far from normal. Figure 5 shows
that the residuals have very large values at times
close to 1250 and 1600 sec. These large residuals
can be traced to bad data.

To avoid any difficulties by trying to replace the
bad data points by interpolation or other fudging
of the data, only the portion 0-1200 sec will be
used in the following. Notice, however, that a
straightforward ML estimation of the parameters
of the discrete time model (6.1), which is very
inexpensive to run, is very useful in order to check
the measured data.

The following results are thus based on the first
80 input-output pairs. Initial states were estimated
because this gave a significant reduction of the loss
function and of the AIC. It was attempted to
remove both levels and trends from the data.
There were no significant changes in the para-
meters of the second order models obtained. The
following parameters were obtained

a; = —1-60+0-03, ¢y =—0-37£0-14,
a, = 0-61 +0-03, ¢y =—020+0-11,
by =—0-161+0-014, V =1796,
by = —0-285+0-016, AIC = 1789.

(6.3)

Notice the significant reduction in loss function as
compared with (6.2).

There were some difficulties in estimating a
third-order model. The algorithm had difficulties
in converging, and the parameter ¢g had to be fixed
to zero to obtain a well-conditioned information
matrix. After some attempts the following model

2

was obtained

a, = —1-05+0-05, ¢ =018+013,
a, =—034+0-07, ¢y =—018 4013,
a; = 041 +0-04, V = 1588,

by =—015+0-01, AIC=1751.

by =—0-38 4001,

by =—0-13+0-02,

6.4

A comparison with the model (6.3) gives a test
value of F=3-01. Using the F-test it is thus
questionable if the model (6.4) is preferable.
Akaike’s test indicates that the model (6.4) is
better than the model (6.3). The zeros of the poly-
nomial A(z) for the model are 0-95, 0-71 and
—0-61. The zeros of the polynomial B are —0-4
and —2-0. The corresponding zeros for the model
(6.3) are 0-97, 0-63 and — 1-8 for the A and B poly-
nomial respectively. The zero —0:61 of the poly-
nomial 4, which is approximately cancelled by the
zero —0-4 of the polynomial B, corresponds to a
model of the type

Lt+1) =—065(1)+e(d).

A first-order model with a negative pole is typical
for a case where round-off noise occurs. If the
covariances of the residuals and the cross covari-
ances between the input and the residuals are
analysed, it can be concluded that the second-order
model is acceptable, but that the residuals are
whiter for the third-order model.

To summarize, we find that it is difficult to dis-
tinguish between the second- and the third-order
models. The major improvement by going to a
third-order model is that the quantization of the
heading angle is modelled. Since this is not our
major concern, the second-order model is accepted.
Notice that the polynomial A(z) of the model (6.3)
has a zero very close to z=1. This is expected
because the model should ideally contain an
integrator, as indicated in Section 2. The straight-
forward fitting of a model (6.1) thus gives a model
of the Nomoto type with a time constant of 29-4 sec
and a gain of —0-055sec™. If a model of higher
order is attempted, a pole on the negative real axis
is obtained resulting from an attempt to model
round-off errors, which occur due to the quantiza-
tion of the data.

The first 80 input-output pairs of the Atlantic
Song experiment have also been used to estimate
the parameters of the transfer functions (2.6) and
(2.8) using the program LISPID. No integrator
was assumed because the wind was modelled as
described in Section 3. The result of the identifica-
tion of the second-order model is shown in Fig. 6.
The autocorrelation function of residuals and the
cross correlation function between rudder angles
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and residuals are shown in Fig. 7. The obtained
gain and time constant, when the wind influence is
eliminated, are given in Table 2, where also the
result from IDPAC is shown. The third-order
model obtained is given in Table 3, where the wind
influence is also eliminated.

The result of an F-test shows distinctly that a
second-order model is appropriate to the data.
Akaike’s information criterion gives the same
result.
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Fic. 6. Result of identification of a second-order

transfer function (2.8) to the first 80 data points of the

Atlantic Song experiment. The dashed heading is the
model output, the full line is the measurements.

FiG. 7. The autocorrelation function of residuals (A)

and the cross correlation function between rudder

angles and residuals (B), where the residuals are
obtained from Fig. 6.

TABLE 2. RESULT OF IDENTIFICATION OF A SECOND-ORDER
MODEL TO THE FIRST 80 DATA POINTS OF THE Atlantic Song

EXPERIMENT
From From
LISPID IDPAC
K! -1.62 -1.14
]
TS 1.49 1.42
K 1/s -0.078 ~0.055
TS s 30.9 29.4
T S 12.1 15.0

(fixed value)

The values of the transfer function parameters [cf. (2.8)]
are given as normalized (‘prime’ system) and non-norma-
lized. 7 is the time lag between the rudder change and the
sample event.

TARLE 3. RESULT OF IDENTIFICATION OF A THIRD-ORDER
MODEL TO THE FIRST 80 DATA POINTS OF THE Atlantic Song

EXPERIMENT
X! -2.38
'
Tl 8.32
1
T2 1.11
1
'I'3 . 4.61
X 1/s -0.115
Tl S 172.3
T2 S 22.9
T3 S 95.5
T S 12.0

The values of the transfer function parameters [cf. (2.6)]
are given as normalized (‘prime’ system) and non-
normalized. 7 is the estimated time lag between the
rudder change and the sample event.

The results thus show that the data from the
experiment can be modelled well by a second-order
model. There are very good agreements between
the results obtained when fitting a discrete time
model and when fitting a continuous time model.
The decrease in loss function obtained when in-
creasing the order of the continuous time model is
very insignificant. The corresponding improve-
ment in the discrete time model is more significant.
The improvement corresponds to a more accurate
modelling of the round-off errors. This indicates
that if the experiments are performed using heading
information only, it is important to have a good
resolution of the measurement of heading angle.

The Sea Splendour experiment

The Sea Splendour is a tanker built for the Salén
Group by Kockums Mekaniska Verkstads AB in
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Malmo, Sweden. It is 329 m long, has a beam of
52 m and weighs 255,000 tons. The cargo capacity
is 339,000 m?, and the maximum speed is 16 knots.

The experiments were performed in 1972 north
of Stavanger, Norway. The course was 140° and
the wind was blowing on starboard with a speed of
about 10 m/sec. The tanker had a ballast corre-
sponding to 50 per cent of the full capacity. The
forward draught was about 10m, and the aft
draught was about 13 m during the experiment.

During the experiment, which lasted for about
50 min, the speed was between 15-5 and 16-0 knots.
In the middle of the experiment the course was
changed by 20°. The sampling interval was
30 sec. The input signal was chosen as a PRBS
signal, but it was necessary to make many manual
changes to avoid large deviations from the desired
course. At every sample instant the process com-
puter measured rudder deflection, course, yaw rate,
forward velocity, bow and stern sway velocities,
and printed them on a typewriter. The course was
measured by a gyro compass, the yaw rate by a
rate gyro, and the velocities by a doppler log.
The input—output data obtained during the experi-
ment is shown in Fig. 8. Eight consecutive readings
were missed during the experiment.
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Attempts to estimate the linear hydrodynamic
derivatives Y/, Y¥,'—m', N/, N/ —m'xy, Y5 and
Ny’ of the model (2.4) failed when all data points
were used. This was probably due to nonlinear
effects during the course change in the middle of
the experiment. Therefore, the experiment was
divided into two parts, one before the yaw and one
after, The linear hydrodynamic derivatives of the
model (2.4) were then estimated using the second
part of the data set. Parameters for the influence
of the wind, instrument biases, constant terms in the
force and torque equation, covariances of dis-
turbances and measurements and initial states were
also estimated. The complete model contained 23
unknown parameters. The parametrization is
given in the appendix together with the estimates.
The model obtained was simulated with the rudder
angles from the first part of the data set as input
signal. Results of both the identification and the
simulation are shown in Fig. 8. The parameter
values obtained from the identification are given in
Tables 4, 5 and in the appendix, Table 6. The
values of the acceleration derivatives and the
initial estimates of the other derivatives are adjusted
values from model tests with a similar tanker. A
more detailed description of the results is given in
ref. [22].
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FiG. 8. Result of identification of the model (2.4) to

the second part of the Sea Splendour data. Simulation

of the model to the first part of the rudder angle

signal is also shown. The dashed lines are model
outputs.
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TABLE 4. ESTIMATED HYDRODYNAMIC DERIVATIVES FROM
IDENTIFICATION OF THE MODEL (2.4) TO THE SECOND PART
OF THE Sea Splendour DATA (see also appendix)

m'—YQ' 0.0156
m'XG'_YiI 0
m'xG'—NQ' 0
Iz'"Nfl 0.000963
Initial Final
estimates estimates
YV' -0.0113 -0.0146
Yr'—m' -0.00482 -0.00565
NV‘ -0.00183 -0.00168
Nr'—m'xG' ~0.00238 -0.00115
Yo' 0.00181 0.00183
Né' -0.00086 ~0.00060

TABLE 5. VALUES OF NORMALIZED (‘PRIME’ SYSTEM) AND

NON-NORMALIZED TRANSFER FUNCTION PARAMETERS [cf.

(2.6) and (4.1)] COMPUTED FROM INITIAL AND FINAL
ESTIMATES IN Table 4

Initial Final

estimates estimates
K! : =-0.72 -1.63
KV' 0.47. 0.76
Tl' 2.30 3.87
T,' 0.36 0.54
T3' 1.03 0.79
TV' 0.21 0.32

K 1/s -0.018 -0.040
K, m/s 3.8 6.2
T, s 92.5 155.6
T, s 14.6 21;5
Ty s 41.5 31.9

T, s 8.3 12.9 /

7. CONCLUSIONS

It has been shown that ship steering dynamics
can be determined from free steering experiments
on full scale ships using system identification tech-
niques. The results confirm that the transfer func-
tion relating heading to rudder angle can be deter-
mined by measurements of these 2 variables only.
However, if the hydrodynamic derivatives of a
linear model are desired, then it is necessary to have
a priori knowledge or an estimate of the accelera-
tion derivatives, and information on the sway

velocity. The proposed identification method makes
it possible to get insight into the nature of the dis-
turbances. The modelling not only of measurement
noise, but also of state noise has proved to be
important to obtain accurate parameter estimates.
The effect of the wind is assumed only to give an
additive force and an additive torque. Con-
ceivably the wind may also influence as an added
mass and added inertia, but this effect is probably
small. The residuals obtained from the identifica-
tion procedure have proved to be extremely useful
to check measured data. They also give an oppor-
tunity to judge if the assumed model is feasible.
Since free steering experiments can be performed
both on scale models and on full scale ships the
method offers a possibility to analyse effects due to
scaling. It also makes it possible to check if hydro-
dynamic derivatives determined under quasi-
stationary conditions can be used to describe the
transient motion. Since the technique can be
applied without significantly disturbing the mission
of the ship, experimental data can be gathered at
reasonable costs although this has partially to be
paid for in terms of computer time. It is also pos-
sible to use the same identification techniques on
closed loop experiments as discussed in ref. [31],
where the deviation from the desired heading can
be kept very small. The technique also gives pos-
sibilities to get insight into the variation of dynami-
cal properties with loading and speed. Forexample,
the influence of the water depth can be explored.
It would also be interesting to analyse data from
experiments with the same ship made under
different weather and sea conditions. It is also
important to check models obtained from one set
of experiments against data from another experi-
ment. Such extensions are now being carried out.
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TABLE 6. PARAMETER VALUES FROM IDENTIFICATION TO THE
SECOND PART OF THE Sea Splendour DATA (see also Tables 4

and 5)
i -
YV (91) 0.0146
v _'-m' (8,) -6.00565
. x
Linear
Nv' (93) -0.00168
hydrodynamic
N _'-m'x.’' (e,) -0.00115
derivatives ' ¢ 4
i
Y6 (65) 0.00183
t -
N(5 (96) 0.00060
: -2
Wind 97 ~4.4.10
parameters 84 7.8.107°
-2
8y 1.5.10-
I 1.4.107%
Bias -1
811 knots 8.6+.10
parameters -1
912 knots 8.1-10
-4
613 dey/s -5.,2.10 "
R (1,1 3,3.107°
Ry (1,2) 1.3.1072
Covariance Rl(2,2) 5.4-10_3
matrices Rz(l,l) (knots)2 1.7-];0*7
R,(2,2) (knots) 1.5.1073
R, (3,3) (deg/s) 1.0-107°
-1
eﬂo knots -5.3.10
Initial “ -2
5] deg/s ~4.4.10
state 21
8,5 deg 121.0
Time lag T s 6.2
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APPENDIX—COMPLETE MODEL USED FOR
PARAMETER ESTIMATION

The complete model, which was used for the
Sea Splendour identification, is given below [cf.
(2.4)]. It contains 23 unknown parameters,
6,—0. o, and o, are conversion factors from
degrees to radians and from m/sec to knots,
respectively. V, L, L, and L, were assigned the
values 82 m/sec, 329-2, 147-6 and 131-1 m. The
values provided of the acceleration derivatives are
given in Table 4. U1 is an artificial input signal
which consists of only figure ones to make it
possible to estimate the bias parameters 0y,—8;,.
The estimated values of the parameters are given
in Table 6.

L ? t L2 ’ ’ s
ﬁ(’n_Yi’) Vi(me -YH 0 do
L ’ ! r ‘L2 ! !
Vz(m xg —N,) 72(12. =Ny 0 dr
0 0 1 dis
1 L B
v b, 7 b, 0, o(?)
=11 L dt
1% 0y 72 b, 0,65 (@)
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7= T'|sin 4|, where T is the sampling interval
(30 sec).
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