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Abstract

This thesis examines whether it is possible to ascertain a mea-
surable difference between granted and refused grant applications with
automatic methods. A corpus of project descriptions from the Swedish
Science Council was examined with different classification techniques
and using different linguistic features. A Naive Bayes classifier is shown
to be a good predictor for this type of problem and the number of
prepositional phrases in a document is shown to be a good attribute
for classification. The results show that there does exist a statistically
measurable linguistic difference between granted and refused applica-
tions.

Sammanfattning

Denna uppsats undersöker om det g̊ar att, med automatiska meto-
der, mäta en skillnad mellan godkända och avslagna bidragsansökningar.
En korpus med projektbeskrivningar fr̊an Vetenskapsr̊adet undersöktes
med olika klassifikationstekniker för olika lingvistiska särdrag. Det vi-
sar sig att en “Naive Bayes”-klassificerare fungerar bra för denna slags
problem och ocks̊a att antalet prepositionsfraser i ett dokument skul-
le kunna vara en bra utg̊angspunkt för klassificering. Resultaten visar
slutligen att det finns en statistiskt mätbar spr̊aklig skillnad mellan
godkända och avslagna ansökningar.
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Introduction

In matters of grave importance, style, not sincerity, is the vital thing.
Oscar Wilde, The Importance of Being Earnest, Act III

Taking language for granted

Where it is trivially true that the way language is used is important in
everyday communication situations, it may not be as self-evident that the
way language is used is equally important when trying to communicate
something where the subject is not primarily expressed through language.

An application for a grant for a scientific project can be thought of as a
way of communicating a scientific thesis to a granting body, and one could
easily imagine that the only thing of importance in such a situation would
be what is said, not how one goes about saying it.

If all grant applications had only consisted of tables and charts which
had all been designed in the same way all applications would have the same
chances, as there would be nothing but data to build an assessment on. This
is far from the case, though, and as a grant application is expressed through
language, the way language is used becomes a factor in the assessment pro-
cess, whether you like it or not.

There is a tendency to take the language of scientific texts for granted
and not pay enough attention to how language is used. This is especially un-
fortunate when dealing with something as important as grant applications,
where the fates of entire projects hang in the balance.

Purpose

What I want to examine in this thesis is whether the quality (linguistic,
stylistic, etc.) of the language used in a grant application has any mea-
surable impact on the chances of a project’s application being granted and,
subsequently, if this can be accurately predicted by purely automatic means.

The aim of this thesis is thus to see if there exists a way to automatically
determine from the project description whether a research grant application
will be granted or refused. This can be considered as a text categorization
problem. The question is, then, whether a grant application document d
can be classified into the category c1, granted applications, or the category
c2, refused applications, according to the following definitions (Sebastiani,
2002, 2005):

[Text Categorization] may be formalized as the task of approxi-
mating the unknown target function Φ : D × C → {T, F} (that
describes how documents ought to be classified, according to
a supposedly authoritative expert) by means of a function Φ̂ :
D × C → {T, F} called the classifier, where C = {c1, . . . , c|c|} is

4



a predefined set of categories and D is a (possibly infinite) set of
documents. If Φ(dj , ci) = T , then dj is called a positive example
(or a member) of ci, while if Φ(dj , ci) = F it is called a negative
example of ci.

To see how different (semantic, stylistic, etc.) connections can be made
between the texts I will use a number of statistical and machine learning
techniques.

Outline of the thesis

The thesis consists of five main parts. Part 1 consists of background in-
formation and an overview of previous research in the field. In part 2 the
tools and resources used are presented. Part 3 presents the methods I use
to test my hypothesis. Part 4 presents the experimental results and part 5
concludes with a discussion of the results and suggestions for future work.
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1 Background

It is very much more difficult to talk about a thing than to do it.
Oscar Wilde, Intentions

Sebastiani (2002, 2005) are good introductions to the field of auto-
mated text categorization where Sebastiani (2005) is a slightly less tech-
nical overview of the field. In it are listed several main applications of text
categorization:

• Automatic indexing/automated metadata generation

• Document organization

• Text filtering

• Hierarchical categorization of web pages

• Word sense disambiguation

• Automated survey coding

• Automated authorship attribution and genre classification

• Spam filtering

None of these main categories really fit my project description. The problem
of classifying applications into granted and refused categories is similar to
other problems in the same area, however.

One classification problem not mentioned in the list above is automatic
classification into readability levels. This is similar to the problem presented
in this thesis, as it deals with the classification of texts into discrete levels
or categories, where all texts are assigned a level or category.

• Larsson (2006) is an example which presents a solution for classifica-
tion into readability levels for Swedish, using a number of classification
models, which were induced by training a Support Vector Machines
classifier on features established by previous research as good mea-
surements of readability. The features were extracted from a corpus
annotated with three readability levels. Empirical testings of differ-
ent feature combinations were performed to optimize the classification
models to render a good and stable classification, where the best model
obtained an F-score of 89.88.

• Liu et al. (2004) is also a Support Vector Machines-based approach,
which attempts to automatically recognize reading levels from user
queries to a search engine. Results show that the proposed method,
where a model was induced from authentic user queries using Support
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Vector Machines, performed significantly better than standard read-
ability indices and that it could achieve a recognition accuracy close
to or well above 80% for both 2-category and 3-category cases.

• Collins-Thompson and Callan (2005) is an attempt to classify Web
pages according to their reading difficulty level using multinomial
Naive Bayes with a smoothed unigram model. By using a mixture
model to interpolate evidence of a word’s frequency across grades, a
classifier was built that achieved an average root mean squared error
of between one and two grade levels for 9 of 12 grades. Such classifiers
have very efficient implementations and can be applied in many differ-
ent scenarios. The models can be varied to focus on smaller or larger
grade ranges or easily retrained for a variety of tasks or populations.

As all three examples of readability classification above use different
methods and different evaluation measurements (F-score, accuracy and root
mean squared error), it is difficult to say which one is the most successful,
as it is not possible to directly compare the three. All three, however, show
that automatic readability classification with good results is possible.

The differences between readability classification and my problem is that
I use only two categories, granted and refused application, and that I try
to classify something slightly less tangible than readability, as it is proba-
bly not readability alone (whatever measurement one chooses to use), which
determines whether a grant application is granted or refused. It should also
be said that all three models above in some way deal with the readability
classification of Web pages or user queries to search systems which are typ-
ically quite short, whereas my work deals with complete written texts of
some length.

Another example of analysis and scoring of open-ended written work
similar to mine and not mentioned in the list above is automatic essay
grading, where texts are automatically categorized into one of several grade
levels or scores.

• Larkey (1998) is an example where several standard text-categorization
techniques were applied to the problem of automated essay grad-
ing. Bayesian independence classifiers and k-nearest-neighbor clas-
sifiers were trained to assign scores to manually-graded essays. These
scores were combined with several other summary text measures using
linear regression. The classifiers and regression equations were then
applied to a new set of essays. The classifiers worked very well and the
agreement between the automated grader and the final manual grade
was as good as the agreement between human graders.

• In Landauer et al. (2003) essays were graded by the so called Intel-
ligent Essay Assessor (IEA) using Latent Semantic Analysis (LSA),
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a model which induces the semantic similarity of words and passages
by analysis of large bodies of domain-relevant text. IEA’s dominant
variables are computed from comparisons with pre-scored essays of
highly similar content as measured by LSA. The study shows that the
scores of IEA correlated on average within two percentage points of
the correlations between two human graders of the same essay.

Automatic essay grading is similar to my problem in that essay grading
is a task using a number of variables, whereas readability classification only
classifies using one variable, readability. As in readability classification and
as opposed to my problem, however, the number of levels used are more
than two when essays are not simply graded into passed or failed essays.

The different examples of techniques and results above show that auto-
matic machine classification of texts in the manner I propose in this essay
is a viable proposition, although none of the examples above use a binary
classification such as mine, classifying into only two categories.

For background on methods and measurements for text classification for
Swedish see Platzack (1974) on readability, Svensson (1993) and Nordman
(1992) on LSP (Language for Specific Purposes) and Melin and Lange (2000)
on stylistics.
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2 Tools and Resources

Oh, I like tedious, practical subjects.
What I don’t like are tedious, practical people.

There is a wide difference.
Oscar Wilde, An Ideal Husband, Act I

2.1 Programming

All scripting and programming is done in Python, a simple but power-
ful open source high level programming language available for free from
www.python.org for a wide range of hardware and software configurations.
The version used is Python 2.5.1, the latest as of this writing.

Python has a well established user base and has an extensive library of
functions for many statistical and linguistic methods, e.g. NumPy for nu-
meric processing, the PyMC package for Bayesian statistics, the LIBSVM
package (Chang and Lin, 2001) for working with Support Vector Machines
and the Natural Language Toolkit (NLTK) (Bird et al., 2007), which con-
tains a number of modules for working with human language.1

Figure 1: Force-feeding a python

1See Bird et al. 2007, Appendix B for a comparison of Python versus other programming
languages for natural language processing tasks.
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2.2 The corpus

The corpus used consists of project descriptions from the project database of
Vetenskapsr̊adet, the Swedish Research Council, collected from the Internet
(www.vr.se).

When first embarked upon, my project was meant to create a template
for EU-grant applications, to maximize the chances of an application being
granted. There was no possibility, however, to access the refused applications
from the EU archives. An attempt at categorization into two categories
(granted/refused applications) based on data from only one category posed
problems that did not seem worthwhile to grapple with in a thesis of this
kind.

The project descriptions in my corpus are abstracts, however, and not
the entire grant applications, so I make the assumption that the style and
quality of language in the abstract is an accurate reflection of the language
in the actual grant application. Using the abstracts also has the advantage
of not having to filter out extra-linguistic data such as figures, tables and
equations from the documents.

The HTML documents collected from the Internet were stripped of all
HTML tags and all extraneous information (names, dates, funds granted,
etc.), and the resulting pure text documents, partitioned into granted and
refused applications, were used as a base for further processing.

The pure text corpus obtained in this fashion, with documents not in
Swedish and documents containing no text (of which there actually were a
few) removed, contained 26,442 grant application abstracts from between
2002 and 2006. 6,024 (23 %) of the applications were granted and 20,418
(77 %) refused. For further statistics see Table 1.

Table 1: Corpus statistics

corpus documents sentences words sentences/ words/
document sentence

entire 26,442 570,594 12,016,117 21.58 21.06

granted 6,024 132,323 2,796,210 21.97 21.13
refused 20,418 438,271 9,219,907 21.46 21.04
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2.3 Part-of-speech tagging

Part-of-speech tagging is the labeling of words with tags containing informa-
tion about the words’ parts of speech, usually the word class and information
about e.g. inflexion, gender or case. There are a number of automatic meth-
ods for part-of-speech tagging, e.g. rule-based, memory-based and statistical
methods.

Thorsten Brants’ Trigrams’n’Tags (TnT) tagger (Brants, 2000) is a lan-
guage and tagset independent statistical tagger based on second order Markov
models (Manning and Schütze, 1999, chapter 6). The TnT tagger uses tri-
grams, that is information about the tags for the two previous words to
predict the probability for the tag for the current word, and smoothing is
done by using linear interpolation of trigrams, bigrams and unigrams. TnT
is optimized for speed and is robust, in that it provides every word with
a tag. Average part-of-speech tagging accuracy is between 96% and 97%,
depending on language and tagset (Brants, 2000). The TnT tagger has
also been shown to have the highest overall accuracy when tagging both
known and unknown words for Swedish (Megyesi, 2002; Sjöbergh, 2006),
when trained on the Stockholm Ume̊a Corpus (SUC, 1997) .

I used the TnT tagger2 with the Swedish language models3 developed
by Beata Megyesi (Megyesi, 2002) to tag the entire corpus. I used a ver-
sion of the language models which uses the Parole tagset, to make the tags
compatible with the SPARKchunk parser (see section 2.4).

TnT adds the part-of-speech tags to the words, separated with a slash
(/), i.e.

Vi/PF@UPS@S kommer/V@IPAS sedan/RG0S att/CIS undersöka/V@N0AS
resultaten/NCNPN@DS ./FE

An explanation of the tags used in the example is shown below. @ and 0

stand for features that are not applicable for the specific word. S in the
end of the tag is short for standard, as opposed to A - abbreviation and C -
compound. The entire Parole tagset is available (with Swedish descriptions)
at spraakbanken.gu.se/parole/tags.phtml.

Vi/P(pronoun) F(personal) @ U(utrum) P(plural) S(subject) @ S
kommer/V(verb) @ I(indicative) P(present) A(active) S
sedan/RG(adverb) 0 S
att/CI(infinitive mark) S
undersöka/V(verb) @ N(infinitive) 0 A(active) S
resultaten/NC(noun) N(neutrum) P(plural) N(nominative) @ D(definite) S
./FE(punctuation)

TnT, the Swedish language models and SUC are free of charge for non-
commercial research purposes.

2from www.coli.uni-saarland.de/∼thorsten/tnt/
3available at stp.lingfil.uu.se/∼bea/resources/tnt
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2.4 Shallow parsing

Chunking is an efficient and robust method for identifying short phrases in
text, or “chunks”. Chunks are syntactically related non-overlapping groups
of words. A chunk usually consists of a phrasal head word (such as a noun)
and the adjacent modifiers and function words (such as adjectives and de-
terminers).

In traditional chunking, however, the internal structure of the chunks is
not analyzed, i.e. if a word belongs to an adjective phrase which in turn
belongs to a noun phrase, the word is labeled as belonging to the noun
phrase tag only, not marking any other lower nodes in the tree, as it were.
This is not optimal, for instance, if we are interested in counting all types of
phrases in a text. What is required here is something more than a chunker,
but not a full parser with all the complexity that entails.

SPARKchunk by Beata Megyesi (Megyesi, 2002) is a shallow parser
based on a context-free-grammar for Swedish. SPARKchunk uses the Earley
algorithm implemented in Python by John Aycock (Aycock, 1998) to parse
PoS-tagged data into a number of different phrase types that represent the
hierarchical structure of a sentence. Here follows a brief description of the
phrases used in SPARKchunk, taken from Megyesi (2002):

• Adverb Phrase (ADVP) – adverbs that can modify adjectives, numerical
expressions or verbs. e.g. “very”

• Minimal Adjective Phrase (APMIN) – the adjectival head and its possible
modifiers, e.g. “very interesting”

• Maximal Adjective Phrase (APMAX) – more than one AP with a delim-
iter or a conjunction in between, e.g. “very interesting and nice”

• Noun Phrase (NP) – the head noun and its modifiers to the left, e.g.
“Pilger’s very interesting and nice book”

• Prepositional Phrase (PP) – one or several prepositions delimited by a
conjunction and one or several NPs, or in elliptical expressions an AP
only. e.g. “about politics”

• Verb Cluster (VC) – a continuous verb group belonging to the same
verb phrase without any intervening constituents, e.g. “would have
been”

• Infinitive Phrase (INFP) – an infinite verb together with the infinite
particle and may contain AdvP and/or verbal particles. e.g. “to go
out”

• Numeral Expression (NUMP) – numerals with their possible modifiers,
e.g. “several thousands”
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The PoS-tagged corpus output from TnT was subsequently tagged with
SPARKchunk. The version used adds the phrase tags to the ends of the
PoS-tagged words, separating them with an underscore (_), i.e.

Vi/PF@UPS@S_NPB kommer/V@IPAS_VCB sedan/RG0S_ADVPB att/CIS_INFPB
undersöka/V@N0AS_INFPI resultaten/NCNPN@DS_NPB ./FE

Each phrase type is also represented with an additional tag marking position
information, where XB marks the initial word of the phrase X, and XI marks
a non-initial word inside the phrase X. There is also a tag O for words outside
any phrase.

SPARKchunk is available free of charge for non-commercial research pur-
poses from stp.lingfil.uu.se/∼bea/resources/spark.
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2.5 Data analysis

WEKA (Waikato Environment for Knowledge Analysis) is a collection of
different models, techniques and algorithms for machine learning and data
mining, developed at the University of Waikato, New Zeeland (Witten and
Frank, 2005). WEKA can be used for machine learning in a number of
different contexts, not just in linguistics. It is also possible for the user to
add and try out their own machine learning models and algorithms.

WEKA can be run using a command line interface, but also has a graph-
ical interface, consisting of three parts: Explorer, Experimenter and Knowl-
edge Flow. In the Explorer the machine learning algorithms are run, and
there are also tools for preprocessing data (discretisation, normalisation,
etc.) and the possibility to build your own classifiers. In the Experimenter,
which is the part of WEKA I will mainly be using, you can compare dif-
ferent machine learning algorithms and see how well they perform on the
same data. Knowledge Flow is a visual interface where you can build your
own algorithms graphically by combining different components (data, filters,
classifiers, etc.).

WEKA’s input by default is flat ARFF-files (Attribute-Relation File For-
mat), which basically is a list of comma-separated values with one instance
per row, but WEKA can also import data from a number of other for-
mats, such as normal comma-separated value lists and a number of different
database formats.

The machine learning algorithms in WEKA can be applied to a number
of fields in language technology. WEKA also contains tools for prepro-
cessing, classification, regression, clustering, association and visualisation of
data. It is a good collection of machine learning tools, and a good way to try
out and understand different machine learning techniques applicable to lin-
guistic data. Being so comprehensive makes for quite a steep learning curve,
but once you have understood its basic workings, WEKA is a powerful tool.

WEKA is written in Java, which makes it platform independent and able
to be built into the user’s own Java (or, for that matter, other language)
programs. Weka is open source software issued under the GNU General
Public License.1

I have used WEKA version 3.5.6, the latest as of this writing.

1WEKA was recently (september 2006) bought by Pentaho Corp, an American com-
pany specialising in “Open Source Business Intelligence”. Hopefully WEKA will remain
open and free in the future. . .
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3 Method

To test Reality we must see it on the tight-rope.
When the Verities become acrobats, we can judge them.

Oscar Wilde, The Picture of Dorian Gray

3.1 Feature selection

The analysis part of the process consisted of training machine learning algo-
rithms on features extracted from the texts in the processed corpus, to find
successful models for classification into granted and refused applications.

I used 6,000 granted and 6,000 refused applications taken at random
from the corpus (section 2.2) and the following features, taken from Melin
and Lange (2000) and Platzack (1974):

Sentences The number of sentences in a document.

Words The number of words in a document.

Letters The average word length in letters.

PPS The number of prepositional phrases in a document.

NPS The number of noun phrases in a document.

NQ Nominal Quotient, a measure of the information content of a document,
measured as follows:

NQ =
nouns + participles + prepositions

verbs + pronouns + adverbs

LIX Readability index for Swedish (LäsbarhetsIndeX), a measure of the
complexity of a document, measured as follows:

LIX = words/sentences + (100 ∗ long words/words)

where “long words” are words with more than 6 letters
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3.2 Classifiers

I used WEKA (section 2.5) with six different machine learning algorithms
to try to classify the corpus into granted and refused applications using the
different features from section 3.1.

The classifiers I used were chosen to give a varied mix of classifiers using
different techniques (Witten and Frank, 2005). Descriptions of the classifiers
used follow below.

ZeroR (Zero Rules) Predicts the test data’s average value. The accuracy
with two classes (yes/no) is always 50%. This is used as the baseline
against which the other classifiers are evaluated.

DTable (Decision Table) Builds a simple decision table majority classi-
fier. For an example of the type of table used by the classifier, see
Table 2. The Decision Table classifier evaluates feature subsets using
best-first search and can use cross-validation for evaluation (Kohavi,
1995).

Table 2: An example of rules from a decision table classifier

Sentences Letters PPS NPS Granted
’(10.5-20.5]’ ’(3094.5-inf)’ ’(56.5-inf)’ ’(216.5-inf)’ yes
’(20.5-inf)’ ’(3094.5-inf)’ ’(56.5-inf)’ ’(216.5-inf)’ yes
’(20.5-inf)’ ’(1571.5-3094.5]’ ’(56.5-inf)’ ’(216.5-inf)’ no
’(10.5-20.5]’ ’(3094.5-inf)’ ’(27.5-56.5]’ ’(216.5-inf)’ no
’(20.5-inf)’ ’(3094.5-inf)’ ’(27.5-56.5]’ ’(216.5-inf)’ yes
’(-inf-10.5]’ ’(3094.5-inf)’ ’(56.5-inf)’ ’(95.5-216.5]’ yes
’(10.5-20.5]’ ’(3094.5-inf)’ ’(56.5-inf)’ ’(95.5-216.5]’ yes
’(20.5-inf)’ ’(1571.5-3094.5]’ ’(27.5-56.5]’ ’(216.5-inf)’ no
. . .

ADTree (Alternating Decision Tree) A decision tree is an arrangement
of tests that prescribe an appropriate test at every step in an analy-
sis. Nodes in a decision tree involve testing a particular attribute. An
unknown instance is classified by starting at the root (the top, as a
decision tree is a tree standing on its head) node and travelling down
the tree according to the values of the attributes tested at successive
nodes down the tree until one reaches a leaf node, see Figure 2. In the
algorithm used, based on Freund and Mason (1999), the induction of
the trees has been optimized, and heuristic search methods have been
introduced to speed learning.

16



Figure 2: An example of a decision tree

J48 Another decision tree algorithm, an implementation in Java of the
C4.5 algorithm from Quinlan (1993). The algorithm grows the tree by
splitting the nodes in a way that maximises information gain, which
is defined as the difference of the entropy of the mother node and
the weighted sum of the entropies of the child nodes (Manning and
Schütze, 1999). The algorithm can be explained in pseudo-code as
follows:

(1) Check for base cases
(2) For each attribute (a)

Find the information gain from splitting on (a)
(3) Let (a_best) be the attribute with the highest

information gain
(4) Create a decision node that splits on (a_best)
(5) Recurse on the sublists obtained by splitting on (a_best)

and add those nodes as children of the decision node

NBTree (Naive Bayes Tree) A hybrid between decision trees and Naive
Bayes (see below), that creates trees whose leaves are Naive Bayes
classifiers for the instances that reach the leaf. Cross-validation is
used to decide whether a node should be split further or a Naive Bayes
model should be used instead.

Naive Bayes An implementation of the probabilistic Naive Bayes classifier
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using estimator classes. Numeric estimator precision values are chosen
based on analysis of the training data. A Naive Bayes classifier uses
Bayes’ Theorem (Bayes, 1764):

P (A|B) =
P (A)× P (B|A)

P (B)

The probability of A occurring given that B has occurred (P (A|B)) is the proba-
bility of A occurring (P (A)) times the probability of B occurring if A has occurred
(P (B|A)) divided by the probability of B occurring (P (B)).

together with the “naive” assumption that the attributes used are
conditionally independent, which they usually are not in real life. The
Naive Bayes classifier has, however, been shown to do surprisingly well
in comparison to other classifiers (Zhang, 2004).

Figure 3: A greeting from Rev. Mr. Bayes
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3.3 Evaluation

The features from section 3.1 were compared in WEKA’s Experimenter in-
terface (see section 2.5) using the different classifiers from section 3.2. All
tests were carried out using a 20-fold cross validation repeated ten times,
which means that the data is first split randomly into 20 parts which are
each held out from training in turn, and testing is performed on the held-out
part. The results from this procedure are then averaged to give the overall
result. This procedure is repeated ten times and again the average is used
(Witten and Frank, 2005).

In this way the classifiers were evaluated for accuracy, i.e. the proportion
of correctly classified instances, defined as

accuracy =
a + d

a + b + c + d

using a contingency table such as Table 3 (Manning and Schütze, 1999).

Table 3: Contingency table for evaluating a binary classifier

YES is correct NO is correct
YES was assigned a b
NO was assigned c d

Using a paired t-test we can also see whether there exists a significant
difference between the outcomes of different classifiers on the same data. A
significance level of 0.05 (5%) is used and a version of the test known as the
corrected resampled t-test (Witten and Frank, 2005).
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4 Results and Discussion

Success is a science; if you have the conditions, you get the result.
Oscar Wilde, Letters

My first results are shown in Table 4, which shows the results of testing
the classifiers on all seven separate features and on the combination of all
features taken together (henceforth referred to as the ‘All’ feature), sorted
by the highest average accuracy. The best classifier for each separate feature
has the result shown in bold.

Table 4: Accuracy (%) for each feature separately in descending order, along
with the averages for each feature and for each classifier

Dataset Dtable ADTree J48 NBTree Bayes Average

All 53.90 ◦ 54.15 ◦ 53.62 ◦ 53.81 ◦ 53.81 ◦ 53.86
PPS 53.41 ◦ 54.01 ◦ 53.37 ◦ 53.41 ◦ 54.22 ◦ 53.68
Words 53.71 ◦ 53.67 ◦ 53.71 ◦ 53.71 ◦ 53.57 ◦ 53.67
Letters 53.75 ◦ 53.61 ◦ 53.62 ◦ 53.65 ◦ 53.53 ◦ 53.63
NPS 53.45 ◦ 53.11 ◦ 53.45 ◦ 53.45 ◦ 53.47 ◦ 53.39
Sentences 51.71 ◦ 52.26 ◦ 52.83 ◦ 52.00 ◦ 52.85 ◦ 52.33
NQ 49.95 52.43 ◦ 51.06 ◦ 50.56 ◦ 51.45 ◦ 51.09
LIX 50.00 50.41 49.78 49.99 50.96 ◦ 50.23

Average 52.48 52.96 52.68 52.57 52.99

◦ = statistically significant improvement from the baseline (50%)

The ZeroR classifier will not be included in these tables as the results
are invariably 50% (see section 3.2).

We can see that the feature with the highest average accuracy (53.86%
correct) was the ‘All’ feature, followed by the number of prepositional phrases
(PPS, item 3.1 in section 3.1). When looking at the separate results, the two
highest ranked features have changed places, with the PPS feature having
the highest ranking of all (54.22%), followed by the ‘All’ feature (54.15%).

The worst single feature was LIX (item 3.1 in section 3.1), which only
shows a significant improvement using one classifier out of six, so we can
already conclude that LIX (at least in itself) is not a good enough predictor
attribute, which could be discarded from future analyses.

20



Table 5: Accuracy (%) for all combinations of two features in descending
order

Dataset Dtable ADTree J48 NBTree Bayes Average

Words+NQ 53.69 ◦ 53.83 ◦ 54.07 ◦ 53.69 ◦ 53.92 ◦ 53.84
PPS+NQ 53.39 ◦ 54.31 ◦ 53.53 ◦ 53.40 ◦ 54.50 ◦ 53.83
Letters+NQ 53.69 ◦ 53.94 ◦ 53.86 ◦ 53.64 ◦ 53.84 ◦ 53.79
Letters+LIX 53.75 ◦ 53.82 ◦ 53.62 ◦ 53.65 ◦ 54.06 ◦ 53.78
Words+PPS 53.85 ◦ 53.78 ◦ 53.35 ◦ 53.89 ◦ 53.88 ◦ 53.75
Sents+Letters 54.25 ◦ 53.78 ◦ 53.76 ◦ 53.53 ◦ 53.43 ◦ 53.75
Words+LIX 53.71 ◦ 53.81 ◦ 53.25 ◦ 53.71 ◦ 53.95 ◦ 53.69
Sents+Words 53.76 ◦ 53.87 ◦ 53.73 ◦ 53.64 ◦ 53.34 ◦ 53.67
PPS+NPS 53.68 ◦ 53.50 ◦ 53.36 ◦ 53.69 ◦ 53.88 ◦ 53.62
NPS+NQ 53.41 ◦ 53.59 ◦ 53.60 ◦ 53.43 ◦ 53.98 ◦ 53.60
PPS+LIX 53.41 ◦ 53.63 ◦ 53.37 ◦ 53.41 ◦ 54.13 ◦ 53.59
NPS+LIX 53.45 ◦ 53.66 ◦ 53.38 ◦ 53.45 ◦ 54.00 ◦ 53.59
Words+NPS 53.64 ◦ 53.35 ◦ 53.57 ◦ 53.70 ◦ 53.51 ◦ 53.55
Sents+PPS 53.68 ◦ 53.71 ◦ 53.18 ◦ 53.52 ◦ 53.60 ◦ 53.54
Sents+NPS 53.40 ◦ 53.77 ◦ 53.67 ◦ 53.46 ◦ 53.36 ◦ 53.53
Words+Letters 53.38 ◦ 53.57 ◦ 53.39 ◦ 53.35 ◦ 53.54 ◦ 53.45
Letters+PPS 53.67 ◦ 53.06 ◦ 53.26 ◦ 53.35 ◦ 53.77 ◦ 53.42
Letters+NPS 53.35 ◦ 53.30 ◦ 53.48 ◦ 53.38 ◦ 53.55 ◦ 53.41
Sents+LIX 51.71 ◦ 52.77 ◦ 52.67 ◦ 52.00 ◦ 52.97 ◦ 52.42
Sents+NQ 51.67 ◦ 52.47 ◦ 52.32 ◦ 51.99 ◦ 53.28 ◦ 52.35
NQ+LIX 49.95 51.79 ◦ 51.56 ◦ 50.46 52.31 ◦ 51.21

Average 53.26 53.49 53.33 53.26 53.66

◦ = statistically significant improvement from the baseline (50%)

Table 6: Accuracy (%) for the best ten features or two-feature combinations
in descending order

Dataset Dtable ADTree J48 NBTree Bayes Average

All 53.90 ◦ 54.15 ◦ 53.62 ◦ 53.81 ◦ 53.81 ◦ 53.86
Words+NQ 53.69 ◦ 53.83 ◦ 54.07 ◦ 53.69 ◦ 53.92 ◦ 53.84
PPS+NQ 53.39 ◦ 54.31 ◦ 53.53 ◦ 53.40 ◦ 54.50 ◦ 53.83
Letters+NQ 53.69 ◦ 53.94 ◦ 53.86 ◦ 53.64 ◦ 53.84 ◦ 53.79
Letters+LIX 53.75 ◦ 53.82 ◦ 53.62 ◦ 53.65 ◦ 54.06 ◦ 53.78
Words+PPS 53.85 ◦ 53.78 ◦ 53.35 ◦ 53.89 ◦ 53.88 ◦ 53.75
Sents+Letters 54.25 ◦ 53.78 ◦ 53.76 ◦ 53.53 ◦ 53.43 ◦ 53.75
Words+LIX 53.71 ◦ 53.81 ◦ 53.25 ◦ 53.71 ◦ 53.95 ◦ 53.69
PPS 53.41 ◦ 54.01 ◦ 53.37 ◦ 53.41 ◦ 54.22 ◦ 53.68
Sents+Words 53.76 ◦ 53.87 ◦ 53.73 ◦ 53.64 ◦ 53.34 ◦ 53.67

Average (top ten) 53.74 53.93 53.62 53.64 53.90

◦ = statistically significant improvement from the baseline (50%)
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However, it could still be the case that the LIX feature taken together
with some other feature could yield good results, especially as the ‘All’ fea-
ture comes in first in the averages. So for that reason I have also performed
tests with combinations of two features. Table 5 shows the results for all
combinations of two features in descending order by classifier average.

In Table 5 we can see that combinations with LIX do get fairly high
results, and that the best LIX combination scores better even than the
PPS + Words combination, which Table 4 could lead one to believe would
be one of the highest scorers. The combination of the two worst single
features from Table 4, LIX and NQ, does however get the bottom place as
a combination as well.

In Table 6, which shows the features or two-feature combinations with
the best ten average accuracies, we can see that the ‘All’ feature from Table 4
still has the highest ranking.

The above tests have shown the average results when combining all clas-
sifiers. For the rest of the tests I have chosen just one classifier to test
the rest of the combinations, as similar tests to the ones above would be
prohibitively resource-heavy. I have chosen the Naive Bayes classifier as it
was the one with the best average results in Tables 4 and 5 (see Table 7).
Research (Zhang, 2004) has also shown that Naive Bayes is a good classifier
for these types of tasks. These tests were also carried out using a 20-fold
cross validation.

Table 7: Classifiers sorted by average accuracy using the averages from Tables
4 and 5

Classifier Accuracy (%)
Naive Bayes 53.32
Alternating Decision Tree 53.23
J48 53.01
Naive Bayes Tree 52.92
Decision Table 52.87
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Tables 8, 9 and 10 show the best ten combinations of three, four and five
features respectively, and Table 11 shows the results for all combinations of
six features, i.e. all features minus one, in descending order by accuracy.

Table 8: Accuracy for the best ten combinations of three features using the
Naive Bayes classifier (for all results see Table 13)

Features Accuracy (%)
PPS+NQ+LIX 54.46
NPS+NQ+LIX 54.37
Words+NQ+LIX 54.36
Letters+NQ+LIX 54.32
PPS+NPS+NQ 54.27
Words+PPS+LIX 54.21
PPS+NPS+LIX 54.13
Words+PPS+NQ 54.08
Letters+PPS+NQ 53.98
Letters+PPS+LIX 53.98

As we can see in Table 8 the features NQ and LIX together with another
feature score the highest among the combinations of three features, although
the combination of just NQ and LIX score the lowest of all combinations in
Table 5.

Table 9: Accuracy for the best ten combinations of four features using the
Naive Bayes classifier (for all results see Table 14)

Features Accuracy (%)
Words+PPS+NQ+LIX 54.37
PPS+NPS+NQ+LIX 54.26
Sentences+PPS+NQ+LIX 54.10
Words+NPS+NQ+LIX 54.03
Letters+NPS+NQ+LIX 54.03
Words+PPS+NPS+NQ 54.00
Sentences+PPS+NPS+LIX 53.98
Words+PPS+NPS+LIX 53.98
Letters+PPS+NPS+NQ 53.95
Sentences+Words+PPS+LIX 53.93

23



In Table 9 we can see that the best three four-feature combinations all
have the features PPS, NQ and LIX in common, and that the NQ+LIX
combination is prominent in the top ten for five-feature combinations as
well (Table 10).

Table 10: Accuracy for the best ten combinations of five features using the
Naive Bayes classifier (for all results see Table 15)

Features Accuracy (%)
Words+PPS+NPS+NQ+LIX 54.09
Words+Letters+PPS+NQ+LIX 54.05
Words+Letters+NPS+NQ+LIX 53.96
Sentences+PPS+NPS+NQ+LIX 53.93
Words+Letters+PPS+NPS+LIX 53.88
Sentences+Words+PPS+NPS+LIX 53.87
Letters+PPS+NPS+NQ+LIX 53.84
Sentences+Letters+PPS+NPS+LIX 53.81
Words+Letters+PPS+NPS+NQ 53.80
Sentences+Words+PPS+NQ+LIX 53.79

Table 11 shows that the features PPS, NQ and LIX have an impact on
the scoring here as well, as the three worst combinations are the ones where
these features are removed.

Table 11: Accuracy for all combinations of six features (all minus one) using
the Naive Bayes classifier

Features Accuracy (%)
All−Sentences 53.89
All−Letters 53.82
All−NPS 53.74
All−Words 53.74
All−NQ 53.67
All−PPS 53.67
All−LIX 53.66

Finally, Table 12 shows the best ten combinations of features using the
Naive Bayes classifier. We can see that among the top features are, again,
PPS, NQ and LIX in various combinations.
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Table 12: Accuracy for the best twenty combinations of features using the
Naive Bayes classifier

Features Accuracy (%)
PPS+NQ 54.50
PPS+NQ+LIX 54.46
NPS+NQ+LIX 54.37
Words+PPS+NQ+LIX 54.37
Words+NQ+LIX 54.36
Letters+NQ+LIX 54.32
PPS+NPS+NQ 54.27
PPS+NPS+NQ+LIX 54.26
PPS 54.22
Words+PPS+LIX 54.21
PPS+LIX 54.13
PPS+NPS+LIX 54.13
Sentences+PPS+NQ+LIX 54.10
Words+PPS+NPS+NQ+LIX 54.09
Words+PPS+NQ 54.08
Letters+LIX 54.06
Words+Letters+PPS+NQ+LIX 54.05
Words+NPS+NQ+LIX 54.03
Letters+NPS+NQ+LIX 54.03
NPS+LIX 54.00
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Table 13: Accuracy for all combinations of three features using the Naive
Bayes classifier

Features Accuracy (%)
Sentences+Words+Letters 53.47
Sentences+Words+PPS 53.67
Sentences+Words+NPS 53.52
Sentences+Words+NQ 53.62
Senteces+Words+LIX 53.63
Sentences+Letters+PPS 53.38
Sentences+Letters+NPS 53.51
Sentences+Letters+NQ 53.48
Sentences+Letters+LIX 53.39
Sentences+PPS+NPS 53.63
Sentences+PPS+NQ 53.93
Sentences+PPS+LIX 53.64
Sentences+NPS+NQ 53.60
Sentences+NPS+LIX 53.68
Sentences+NQ+LIX 53.76
Words+Letters+PPS 53.79
Words+Letters+NPS 53.55
Words+Letters+NQ 53.64
Words+Letters+LIX 53.74
Words+PPS+NPS 53.78
Words+PPS+NQ 54.08
Words+PPS+LIX 54.21
Words+NPS+NQ 53.55
Words+NPS+LIX 53.80
Words+NQ+LIX 54.36
Letters+PPS+NPS 53.85
Letters+PPS+NQ 53.98
Letters+PPS+LIX 53.98
Letters+NPS+NQ 53.53
Letters+NPS+LIX 53.66
Letters+NQ+LIX 54.32
PPS+NPS+NQ 54.27
PPS+NPS+LIX 54.13
PPS+NQ+LIX 54.46
NPS+NQ+LIX 54.37
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Table 14: Accuracy for all combinations of four features using the Naive
Bayes classifier

Features Accuracy (%)
Sentences+Words+Letters+PPS 53.47
Sentences+Words+Letters+NPS 53.54
Sentences+Words+Letters+NQ 53.42
Sentences+Words+Letters+LIX 53.59
Sentences+Words+PPS+NPS 53.59
Sentences+Words+PPS+NQ 53.83
Sentences+Words+PPS+LIX 53.93
Sentences+Words+NPS+NQ 53.44
Sentences+Words+NPS+LIX 53.68
Sentences+Words+NQ+LIX 53.51
Sentences+Letters+PPS+NPS 53.46
Sentences+Letters+PPS+NQ 53.61
Sentences+Letters+PPS+LIX 53.80
Sentences+Letters+NPS+NQ 53.54
Sentences+Letters+NPS+LIX 53.59
Sentences+Letters+NQ+LIX 53.49
Sentences+PPS+NPS+NQ 53.88
Sentences+PPS+NPS+LIX 53.98
Sentences+PPS+NQ+LIX 54.10
Sentences+NPS+NQ+LIX 53.62
Words+Letters+PPS+NPS 53.66
Words+Letters+PPS+NQ 53.81
Words+Letters+PPS+LIX 53.90
Words+Letters+NPS+NQ 53.62
Words+Letters+NPS+LIX 53.80
Words+Letters+NQ+LIX 53.78
Words+PPS+NPS+NQ 54.00
Words+PPS+NPS+LIX 53.98
Words+PPS+NQ+LIX 54.37
Words+NPS+NQ+LIX 54.03
Letters+PPS+NPS+NQ 53.95
Letters+PPS+NPS+LIX 53.90
Letters+NPS+NQ+LIX 54.03
PPS+NPS+NQ+LIX 54.26
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Table 15: Accuracy for all combinations of five features using the Naive Bayes
classifier

Features Accuracy (%)
Sentences+Words+Letters+PPS+NPS 53.52
Sentences+Words+Letters+PPS+NQ 53.75
Sentences+Words+Letters+PPS+LIX 53.68
Sentences+Words+Letters+NPS+NQ 53.56
Sentences+Words+Letters+NPS+LIX 53.63
Sentences+Words+Letters+NQ+LIX 53.43
Sentences+Words+PPS+NPS+NQ 53.68
Sentences+Words+PPS+NPS+LIX 53.87
Sentences+Words+PPS+NQ+LIX 53.79
Sentences+Words+NPS+NQ+LIX 53.58
Sentences+Letters+PPS+NPS+NQ 53.66
Sentences+Letters+PPS+NPS+LIX 53.81
Sentences+Letters+PPS+NQ+LIX 53.71
Sentences+Letters+NPS+NQ+LIX 53.54
Sentences+PPS+NPS+NQ+LIX 53.93
Words+Letters+PPS+NPS+NQ 53.80
Words+Letters+PPS+NPS+LIX 53.88
Words+Letters+PPS+NQ+LIX 54.05
Words+Letters+NPS+NQ+LIX 53.96
Words+PPS+NPS+NQ+LIX 54.09
Letters+PPS+NPS+NQ+LIX 53.84
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5 Conclusions and Future Work

I can stand brute force, but brute reason is quite unbearable.
Oscar Wilde, The Picture of Dorian Gray

The results in section 4 show that I have verified my hypothesis, that it
is possible to automatically ascertain linguistic differences between granted
and refused grant applications and that these differences are statistically
significant.

I have shown that the feature PPS (section 3.1) is the best single pre-
dictor for this classification problem (Table 4) and that combinations of the
PPS, LIX and NQ features give the best overall results (Table 12). I have
also shown that a Naive Bayes classifier (section 3.2) is a suitable classifier
for this type of task, and that, using such a classifier, an accuracy of up to
54,5 % can be achieved (Table 12).

For even better results one could try other classifying techniques shown
to work well for text categorization, e.g. Support vector machines (Sahlgren
and Cöster, 2004) or techniques such as Latent Semantic Analysis (Deer-
wester et al., 1990; Foltz et al., 1998) and Random Indexing (Sahlgren,
2005). See Sahlgren (2006) for a discussion of the word-space model on
which these types of classifier build. These techniques, however, lie outside
the scope of this thesis, where the main point was to see if an automatic clas-
sification was at all possible and not necessarily to try for the best possible
results.

I have also only classified the documents into two categories: granted
and non-granted applications. In reality this type of either/or-classification
would be the end result of a long process, where applications are weighed
and probably graded on a finer scale to begin with. Not having access to
material from inside an application process I have no way of classifying into
anything else than granted/non-granted applications. If such material were
available, i.e. if I had access to applications graded on a scale between
yes and no, a project such as mine could probably tell us more about the
assessment of grant applications and probably get better results.

A future project of this kind could also be enlarged to use actual grant
applications in their entirety to see whether my results still hold true. A
reasonable assumption is that the statistical differences between the entire
application texts will be much greater than the differences between the ab-
stracts used in this study.

Possible future developments could be devising tools based on these re-
sults to help applicants maximize their applications’ chances of being granted
- or at least minimize the risk for being refused on linguistic (be they explicit
or implicit) grounds.

One could also imagine devising tools to help assessors “see beyond” the
language of an application, as a grant application with a high “language
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score” is not necessarily a good application in any other way than the lan-
guage used. The same, in reverse, is true for applications written in poor
language, which could be flagged for extra scrutiny somewhat along these
lines: “Watch out! This application uses subpar language - do not let that
cloud your assessment of its scientific merit!”

Language alone is of course not a basis for granting or discarding grant
applications, although I have shown that it does play a role. Future research
based on the results from my thesis could be of service to both applicants and
granting bodies, to increase the awareness of the linguistic factors present
in a grant application process - that language cannot be taken for granted.

30



References

Aycock, J. (1998). Compiling little languages in python. In Proceedings of
the 7th International Python Conference.

Bayes, T. (1764). An essay towards solving a problem in the doctrine of
chances. Philosophical Transactions of the Royal Society of London.

Bird, S., Klein, E., and Loper, E. (2007). Introduction to Natural Language
Processing. TBA.

Brants, T. (2000). Tnt – a statistical part-of-speech tagger. In Proceed-
ings of the 6th Applied Natural Language Processing Conference, Seattle,
Washington.

Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for support vector
machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm.

Collins-Thompson, K. and Callan, J. (2005). Predicting reading difficulty
with statistical language models. Journal of the American Society for
Information Science and Technology, 56(13):1448–1462.

Deerwester, S. C., Dumais, S. T., Landauer, T. K., Furnas, G. W., and
Harshman, R. A. (1990). Indexing by latent semantic analysis. Journal
of the American Society for Information Science, 41(6):391–407.

Foltz, P. W., Kintsch, W., and Landauer, T. K. (1998). The measurement
of textual coherence with latent semantic analysis. Discourse Processes,
25(2&3):285–307.

Freund, Y. and Mason, L. (1999). The alternating decision tree learning al-
gorithm. In Proceedings of the 16th International Conference on Machine
Learning, pages 124–133, San Francisco, CA.

Kohavi, R. (1995). The power of decision tables. In Lavrac, N. and Wrobel,
S., editors, Proceedings of the Eighth European Conference on Machine
Learning, pages 174–189, Berlin, Germany.

Landauer, T. K., Laham, D., and Foltz, P. (2003). Automatic essay assess-
ment. Assessment in Education, 10(3).

Larkey, L. S. (1998). Automatic essay grading using text categorization tech-
niques. In Proceedings of SIGIR-98, 21st ACM International Conference
on Research and Development on Machine Learning, pages 90–95.

31

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm


Larsson, P. (2006). Classification into readability levels: implementation
and evaluation. Master’s thesis, Department of Linguistics and Philology,
Uppsala Universitet.

Liu, X., Croft, B., Oh, P., and Hart, D. (2004). Automatic recognition of
reading levels from user queries. In SIGIR’04.

Manning, C. D. and Schütze, H. (1999). Foundations of Statistical Natural
Language Processing. MIT Press, Cambridge, Massachusetts.

Megyesi, B. (2002). Data-Driven Syntactic Analysis - Methods and Applica-
tions for Swedish. PhD thesis, Department of Speech, Music and Hearing,
KTH, Stockholm, Sweden.

Melin, L. and Lange, S. (2000). Att analysera text: stilanalys med exempel.
Studentlitteratur, Lund, 3 edition.

Nordman, M. (1992). Svenskt fackspr̊ak. Studentlitteratur.
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