
Divide-and-Conquer Sequence

Alignment Within a Specified Band

Emir Basic

Examensarbete för 20 p, Institutionen för datavetenskap,

Naturvetenskapliga fakulteten, Lunds universitet

Thesis for a diploma in computer science, 20 credit points,
Department of Computer Science,
Faculty of Science, Lund University

ii

Divide-and-Conquer Sequence Alignment Within a Specified Band

Abstract

Sequence comparison is a fundamental problem in computational molecular biology that aims to
discover similarity relationships between biological sequences. An alignment of two or more sequences is
a scheme in which sequences are placed on top of each other and spaces are inserted into the sequences
to make them of equal lengths. An optimal alignment maximizes the value of a similarity score function.
Given two sequences s = s1s2 . . . sm and t = t1t1 . . . tn, the standard dynamic programming (DP)
algorithm computes their optimal alignment in time and space O (mn). Hirschberg’s recursive divide-
and-conquer (D&C) algorithm [6] finds an optimal alignment of s and t in space O (m + n) and time
O (mn). The DBand algorithm for aligning within a constant band of width 2d + 1 determines an
optimal alignment in time and space O (dn). By combining the D&C and banding technique, we have
derived a linear-space algorithm FastDCA that spends O (dn) time in finding an optimal alignment in
the d-strip. We have also generalized this algorithm to compute an optimal alignment of k sequences
within a specified band in time O

`

k22k ndk−1 log
2
n

´

and space O
`

kn + dk−1
´

, where n is length of
shortest sequence and d is band radius. Given k similar sequences, the algorithm performs considerably
faster than O

`

k22knk
´

of the dynamic programming in k dimensions when d ≪ n.

Söndra-och-härska metod för aligning av sekvenser inom band

Sammanfattning

Sekvensjämförelser är ett grundläggande problem inom beräkningsbiologi med syfte att upptäcka
likheter mellan biologiska sekvenser. En aligning är en upplinjering av två eller flera sekvenser för att
visa fram likheter mellan dem. En optimal aligning maximerar värdet av en scoring-funktion. Givet två
sekvenser s = s1s2 . . . sm och t = t1t1 . . . tn, en optimal aligning kan beräknas med dynamisk program-
mering i tid O (mn) och utrymme O (mn). Hirschbergs rekursiva, söndra-och-härska (D&C) algoritm
[6] beräknar en optimal aligning av s och t i tid O (mn) och utrymme O (m + n). DBand-algoritm
beräknar en optimal aligning inom d-band i O (dn) tid och utrymme, för någon konstant d. Genom att
kombinera D&C - och bandtekniken härledde vi en algoritm för aligning inom specifierat band som tar
O (dn) tid och O (p d) minne. Vi har också generaliserat algoritmen för att beräkna en multialigning av
k sekvenser i O

`

k22k ndk−1 log
2
n

´

tid och O
`

kn + dk−1
´

utrymme, där d är bandets radius. För k re-
laterade sekvenser uppträder algoritmen betydligt snabbare än O

`

k22knk
´

av dynamisk programmering
i k-dimensioner, för d ≪ n.

Contents

1 Introduction 1
1.1 Basic terms in molecular biology . 1
1.2 Sequence comparison . 2

1.2.1 Motivation . 2
1.2.2 Computational problems . 2

1.3 Thesis goals . 2
1.4 Previous results . 3
1.5 Main contributions . 3

2 Pairwise sequence alignment 5
2.1 Similarity and alignments . 5
2.2 Dynamic programming algorithm . 7
2.3 Hirschberg’s algorithm . 9
2.4 DBand algorithm . 12
2.5 BandDCA algorithm: Aligning within a band in linear space 13
2.6 FastDCA: A faster, space-efficient aligning algorithm 16

3 Multiple sequence alignment 19
3.1 Motivation . 19
3.2 SP -alignment . 19
3.3 Dynamic programming in k dimensions . 21
3.4 Generalized Hirschberg’s algorithm . 22
3.5 DBand in k dimensions . 24
3.6 BandDCMA algorithm: A faster multi-aligning in less space 26

4 Discussion 29

References 31

Appendix A: Time analysis of Hirschberg’s algorithm in k dimensions 33

iii

List of Figures

2.1 Example of pairwise alignment . 5
2.2 Algorithm for computing optimal alignment score. 8
2.3 Dynamic programming matrix for aligning two sequences 8
2.4 Algorithm for optimal alignment. 9
2.5 Linear-space version of the algorithm Similarity . 10
2.6 Hirschberg’s divide-and-conquer algorithm. 11
2.7 Algorithm for optimal score in d-strip. 12
2.8 Linear-space algorithm for computing the optimal score. 14
2.9 Linear-space algorithm for optimal alignment in d-strip. 15
2.10 Algorithm for optimal alignment in d-strip. 17

3.1 Example of a multi-alignment . 20
3.2 Hirschberg’s algorithm in k dimensions. 23
3.3 DBand algorithm in k dimensions. 25
3.4 DC-algorithm for aligning within d-strip. 27

iv

Chapter 1

Introduction

One of the great problems of biology is determining relationships between organisms or sequences
that share similarity. At the most basic level, morphology of organisms has been used to make
very broad comparisons. Recently, with the advent of molecular data, comparisons have been
made at the molecular level. The standard way to compare molecular sequences is based on
alignments.

1.1 Basic terms in molecular biology

This section gives a very brief overview of some basic terms from molecular biology, such as:
cells, DNA, proteins, genes, chromosomes, genomes etc. For in-depth knowledge, we refer to
some introductory text in molecular biology such as [1].

Cells are building blocks in any living organism. Advanced organisms, known as eukaryotes,
possess a nucleus. In the nucleus of each cell, inside tiny structures called chromosomes lie DNA
(deoxyribonucleic acid) molecules. DNA is the hereditary material that carries information about
how an organism has developed from a single cell. The totality of hereditary information is the
genome of an organism. DNA has the structure of a double stranded helix. DNA sequences
can be represented as strings over the alphabet of four nucleic bases (nucleotides): adenine (A),
guanine (G), cytosine (C) and thymine (T). These bases can only form two different base pairs
(bp): A-T and G-C. DNA molecules can be millions of bp long. The human genome contains
roughly 3 billion bp. About 3% of the DNA in a chromosome represents the basic units of
heredity, known as genes. The human genome is estimated as comprising more than 30,000
genes. Proteins are molecules that are responsible for development of any organism. Most of
functions in a cell are accomplished by proteins. For example, many proteins act as enzymes
and catalyze chemical reactions. The building blocks of protein sequences comprise 20 amino
acids. Proteins are constructed by translating a DNA sequence into a sequence of amino acids.
A strand of DNA contains triplets of nucleotides, codons, that are encoded into amino acids.
A sequence of codons is called the genetic code. A typical protein sequence contains 100-5000
amino acids.

Any organism has the same DNA in each of its cells. An important property of a DNA
molecules is its replication. Before a cell divides, the DNA is unwound into two strands by the
RNA polymerase enzyme. During this process, errors or mutations frequently occur. A mutation
is a substitution or a replacement if an amino acid gets replaced by another amino acid. When an
amino acid is added to or lost from DNA, the mutation is an insertion or a deletion, respectively.
Insertion and deletions are sometimes called indels.

Protein synthesis consists of two phases: the transcription and translation. During the tran-

1

2 CHAPTER 1. INTRODUCTION

scription phase, a DNA molecule is unwound into two strands, which act as templates to form
the messenger RNA (mRNA). The mRNA is the complementary strand to the DNA. In the
translation phase, the codons of mRNA are matched with the particular amino acids that are
added to a linear molecule to form a protein. This process, known as the central dogma in
molecular biology, is completed in ribosomes.

1.2 Sequence comparison

The primary aim of sequence comparison is to discover similarity relationships between molecular
sequences, in terms of substitutions and indels. The similarity between two sequences gives a
measure of how similar sequences are, in a sense that the higher value indicates greater similarity.

1.2.1 Motivation

Although all living organisms have a common origin, they become distant in the process of
evolution due to mutations frequently occurring in DNA sequences. The first fact of biological

sequence analysis states that high sequence similarity usually implies strong functional or struc-
tural similarity. Two closely related DNA sequences that share a common evolutionary origin
are usually more similar than two unrelated sequences. For instance, the human and mouse
genomes are 85% similar. Therefore, when a new gene is sequenced in a labaratory, any analysis
starts with searching various data banks for similar sequences. With this in mind, sequence
comparisons may help in recovering functional, structural or evolutionary relationships between
various organisms. Comparison of protein sequences may reveal their functionality, as a protein
functionality is defined by its structure, which is in turn determined by the sequence of amino
acids. We now introduce the computational problem that will be discussed in this thesis.

1.2.2 Computational problems

Similarities between two sequences can be detected by aligning them one above the other and
inserting spaces into both sequences to make them of equal length. Finding the true alignment
that describes the evolution of one sequence into the other is a difficult biological task and out
of the scope of this thesis. Instead we will use a rule to assign a numerical value or score to any
possible alignment between the sequences. An optimal alignment between two sequences is an
alignment that achieves the highest score. This maximum score is called the similarity between
the sequences. The problem of aligning two sequences while maximizing the value of a score
function is called the sequence alignment problem. It is appropriate to mention that this thesis
deals only with the task of finding global alignments as opposed to, say, local alignments, which
are alignments between substrings of sequences. Chapter 2 examines current and new methods
for computing optimal alignments of two sequences.

Simultaneously aligning more than two sequences, the so-called multiple sequences alignment

or multi-alignment, is a natural generalization of the two-sequence alignment. The problem of
computing optimal multi-alignments under the well-known SP -score is studied in Chapter 3.

1.3 Thesis goals

Our primary objective is the theoretical study of the alignment problem and, in particular,
underlying optimization techniques. We are interested in exploring and combining the three basic
algorithmic techniques: dynamic programming, divide-and-conquer, and branch-and-bound.

1.4. PREVIOUS RESULTS 3

1.4 Previous results

An excellent introductory textbook on algorithms in computational biology is [9]. Our reviews of
standard algorithms (Chapter 2, Sections 2.2 – 2.4, and Chapter 3, Sections 3.2 – 3.3) are mainly
based on Chapter 3 of this book. The sequence alignment problem can be solved in time and
space O(mn) using the well-known dynamic programming technique. Hirschberg [6] introduced
a divide-and-conquer method that reduces the quadratic space complexity of the dynamic pro-
gramming algorithm to linear space. Charter et al. [4] implemented FastLSA algorithm that is,
as they they claim, superior to Hirschberg’s algorithm. Arvestad [2] generalized Hirschberg’s al-
gorithm to k-dimensions. Aligning within a constant band is a popular technique for speeding up
the dynamic programming algorithm. The problem of aligning within a constant band has been
studied by many researchers [4, 7, 8]. Carrillo and Lipman [3] presented a branch-and-bound
heuristic for multiple sequence alignment based on pairwise projections of multiple alignments.
An implementation of this method is the MSA program which can align up to 6 sequences of
size 200. To align somewhat longer sequences, Stoye [10] devised an efficient divide-and-conquer
algorithm (DCA) for multiple sequence alignment, which uses MSA as subprocedure.

1.5 Main contributions

The main contribution is a divide-and-conquer algorithm for aligning two sequences within a
specified band, and its generalization to k dimensions.

Our algorithm BandDCA, a hybrid of Hirschberg’s method and the band-aligning algorithm,
computes an optimal alignment in a specified band using O (dn log2 n) time and O (m + n) space.
Its k-dimensional generalization, the algorithm BandDCMA computes an optimal alignment of
k sequences within a specified band, using the SP measure, in time O

(

k22k ndk−1 log2 n
)

and
space O

(

kn + dk−1
)

, where n is the length of longest sequence and d is a constant specifying
the band radius.

Chapter 2

Pairwise sequence alignment

In this chapter, we examine various algorithmic techniques for the alignment problem, which is a
typical combinatorial problem with many possible solutions of which we seek to find the optimal

one, that is, a solution that optimizes the value of a scoring function.
Chapter 2 is organized as follows: In Section 2.1, we give a mathematical formulation of

the alignment problem. Section 2.2 examines the standard dynamic programming algorithm
for computing an optimal alignment of two sequences in quadratic time and space. Section 2.3
discuss Hirschberg’s recursive algorithm for finding an optimal alignment in linear space. Section
2.4 reviews a O(dn)-time algorithm for aligning similar sequences within a band of width 2d+1.
In Section 2.5, we apply Hirschberg’s method to a specified band obtaining an algorithm that
can recover an optimal alignment in linear space and in O (dn log2 n) time. In Section 2.6, we
improve the linear-space algorithm to deliver an optimal alignment within a band in O (dn) time.

2.1 Similarity and alignments

In this section, we give a precise formulation of the alignment problem. We start out by formal-
izing the concepts of the similarity and optimal alignments between two sequences.

An example alignment between two sequences is shown in Figure 2.1. We see that an align-
ment column may contain two identical characters (a match), two distinct characters (a mis-

match) or a character and a space (an insertion or a deletion).

s′ : G T A C T A − G
t′ : − − C C T A C G

Figure 2.1. Example alignment between sequences s = GTACTAG and t = CCTACG.

Definition 2.1 (Alignment) Let s and t be two sequences over an alphabet Σ. An alignment

between s and t is a pair of extended sequences s′, t′ ∈ Σ+ = Σ∪{−}. The alignment α = (s′, t′)
must satisfy:

1. |s′| = |t′|.

2. After removal of all spaces, we have s′ = s and t′ = t.

3. For all i, either s′[i] or t′[i] is not a space.

5

6 CHAPTER 2. PAIRWISE SEQUENCE ALIGNMENT

There are many possible ways to define a score function that assigns a value to an alignment
of two sequences. A simple function assigns a score to each alignment column depending on
its contents. For example, a column containing a match receives score +1, a column with a
mismatch is given score −1, and a column containing an indel gets score −2 (indel). In general,
we can define a score function w : Σ+ ×Σ+ 7→ R for a pair of characters. Our column scores can
now be rewritten as: w(x, y) = 1 if x = y, w(x, y) = −1 if x 6= y and w(x,−) = w(−, x) = −2.

Definition 2.2 (Alignment score) Let α be an alignment of s and t, and let w be a score
function. Then, the score of α, denoted score(α), is equal to the sum of column scores:

score(α) =

|α|
∑

i=1

w(s[i], t[i]). (2.1)

Definition 2.3 (Optimal alignment score or similarity) The optimal score of an align-
ment of s and t, also called the similarity and denoted sim(s, t) for sequences s and t, is the
highest score of any alignment of s and t, i.e.

sim(s, t) = max
α∈A(s,t)

score(α),

where A (s,t) is the set of all alignments between s and t.

Definition 2.4 (Optimal alignment) An optimal alignment, denoted opt(s, t) for sequences
s and t, is an alignment with the highest score.

Notice that the alignment score depends greatly on the choice of scoring function. With our
choice, the score of the above example alignment is obtained as follows:

4 ∗ (1) + 1 ∗ (−1) + 3 ∗ (−2) = −3,

since the alignment contains 4 columns with identical letters, one column with distinct letters
and three columns with a space. We have chosen a scoring function that rewards matches and
penalizes mismatches and spaces because we are interested in maximizing similarities between
two sequences. Simple column scores work fine for aligning DNA sequences. For comparison of
protein sequences, it is, however, appropriate to use a score matrix S, where S(x, y) is the score
for matching letter x against letter y. Spaces are handled separately because they tend to occur
in bunches or gaps which is why the space penalty is often made dependent on gap length. We
give now a precise definition of the similarity and alignment problem.

Problem 2.1 (Similarity problem) Given two sequences over an alphabet Σ and a score
function w, find the maximum score of their alignment.

Problem 2.2 (Optimal alignment problem) Given two sequences over an alphabet Σ and a
score function w, find their optimal alignment, i.e. an alignment that achieves the highest score.

Having clarified alignment scoring, we now turn our attention to computing optimal alignments.

2.2. DYNAMIC PROGRAMMING ALGORITHM 7

2.2 Dynamic programming algorithm

There exists a exponentially large number of possible alignments of two sequences which makes a
greedy algorithm that generates all possible alignments and picks the best one very inefficient. In
the following, we review an efficient algorithm for computing optimal alignments that employs
the dynamic programming technique. The general idea of dynamic programming is to save
solutions for smaller instances of the problem in a table and use them later to solve the whole
problem.

Let s and t be two sequences of length m and n, respectively, and let w be a score function.
The dynamic programming algorithm builds up the optimal score of an alignment between s and
t by computing the optimal scores of alignments between all prefixes of s and t. There are n + 1
prefixes of s and m + 1 prefixes of t including the empty strings which makes it appropriate to
arrange the computations in an (m + 1) × (n + 1) matrix a, in which an element a[i, j] contains
the optimal score of an alignment between s[1..i] and t[1..j]. We will call a the matrix of prefix

scores.
The algorithm exploits the fact that an optimal alignment between s[1..i] and t[1..j], denoted

opt (s[1..i], t[1..j]), can be obtained only in one of the following three ways:

• Construct opt (s[1..i − 1], t[1..j]) and align a space with t[j], or

• Construct opt (s[1..i − 1], t[1..j − 1]) and align s[i] with t[j], or

• Construct opt (s[1..i], t[1..j − 1]) and align s[i] with a space.

The three possibilities are exhaustive since an alignment column may not contain two spaces.
This gives us immediately the recurrence relation for computing a[i, j]:

a[i, j] = max







a[i − 1, j] + w (s[i],−) i > 0, j ≥ 0
a[i − 1, j − 1] + w (s[i], t[j]) i, j > 0
a[i, j − 1] + w (−, t[j]) i ≥ 0, j > 0,

(2.2)

where w(x, y) = 1 if x = y, w(x, y) = −1 if x 6= y and w(x,−) = w(−, x) = −2. The
first row and the first column of a are initialized with multiples of -2. This is because the
only way to align s[1..i] (or t[1..j]) with an empty string is to align each character of s (or t)
with a space. The remaining elements are computed in the row or column fashion according
to the above recurrence. On completion, a[m,n] will contain the optimal score, sim(s, t). In
Figure 2.2 appears the complete pseudocode of the algorithm, which will be referred to as the
basic algorithm in the rest of Chapter 2. It should be mentioned this algorithm, like all other
algorithms in this thesis, depends on the additive property of the alignment score, that is, if the
alignment is divided in two parts and each part is scored independently, then the sum of partial
scores is equal to the score of the complete alignment.

An actual alignment can be reconstructed by backtracking in the matrix a. During the matrix
computation, this procedure draws an arrow indicating how each (i, j) was obtained according to
the recurrence in Equation (2.2). Once the complete matrix is filled, the procedure traces back
through arrows from (m,n) to (0, 0). Each arrow represents an alignment column. A vertical
arrow leaving (i, j) stands for a column in which s[i] is matched with a space in t, a diagonal
arrow corresponds to a column aligning s[i] with t[j], while a horizontal arrow means that s[i]
is matched with a space in t. Computing an optimal alignment is, thus, equivalent to finding
a longest path in a grid graph. Figure 2.3 illustrates an example of a filled matrix with drawn
optimal paths and corresponding alignments.

In Figure 2.4 is given a recursive algorithm that accepts sequences s and t and the matrix
a, previously computed by basic algorithm, and returns an optimal alignment of s and t in
the reverse order. In this code, instead of implementing arrows explicitly, a simple test is used

8 CHAPTER 2. PAIRWISE SEQUENCE ALIGNMENT

Algorithm Similarity

input: sequences s and t

output: similarity between s and t

m := |s|

n := |t|

for i := 0 to m do

a[i, 0] := i ∗ w (s[i],−)

for j := 0 to n do

a[0, j] := j ∗ w (−, t[j])

for i := 1 to m do

for j := 1 to n do

a[i, j] := max (a[i − 1, j] + w (s[i],−)

a[i − 1, j − 1] + w (s[i], t[j]),

a[i, j − 1] + w (−, t[j]))

return a[m,n]

Figure 2.2. Algorithm for computing optimal alignment score.

2

1

1 2

A G

A

A

 1

−1

−1

 0

0 −6

 1

−1 0 −2

−3 −2 −1

−5 −4 −1

A G−

−

C

C

A

A

A

0 1 2 3

0

1

2

3

4

−2

−4

−6

−8

−2 −4

−1 −3

−2−1

−2

Optimal
alignments

A A A C
A G

−

−

− C

A A A C
A G C

A A C
A G C

A

Figure 2.3. Dynamic programming matrix a for sequences AAAC and AGC, optimal
paths indicated with magenta arrows (left) and associated optimal alignments (right).
The middle figure clarifies the evaluation of entry a[2, 2]: it is obtained from a[1, 1],
which is why we draw a magenta arrow going from (2,2) to (1,1) in the matrix a.

to decide the next matrix element to visit. The call Align(s, t, len, opt-align) returns only one
optimal alignment in global variable opt-align.

Theorem 2.1 An optimal alignment between two sequences s and t of length m and n, respec-

tively, can be computed in time and space O (mn).

2.3. HIRSCHBERG’S ALGORITHM 9

Algorithm Align

input: sequences s, t and array a given by Similarity

output: optimal alignment in two-row array opt-align

pos := 0

if i = 0 and j = 0 then

return reverse(opt-align)

else if i > 0 and a[i, j] = a[i − 1, j] + w (s[i],−) then

Align(i − 1, j, pos)

pos := pos + 1

opt-align[1, pos] := s[i]

opt-align[2, pos] := −

else if i > 0 and j > 0 and a[i, j] = a[i − 1, j − 1] + w (s[i], t[j]) then

Align(i − 1, j − 1, pos)

pos := pos + 1

opt-align[1, pos] := s[i]

opt-align[2, pos] := t[j]

else// has to be j > 0 and a[i, j] = a[i, j − 1] + w (−, t[j])

Align(i, j − 1, pos)

pos := pos + 1

opt-align[1, pos] := −

opt-align[2, pos] := t[j]

Figure 2.4. Algorithm for optimal alignment.

2.3 Hirschberg’s algorithm

In this section, we review Hirschberg’s recursive algorithm [6] that finds an optimal alignment
in O (m + n) space, at the cost of roughly doubling computation time. Linear-space algorithms
are useful for aligning long sequences, in which case the space is often the limiting factor.

An immediate improvement in the computational time of the basic algorithm can be derived
by noticing that each row in the dynamic programming matrix depends only on the preceding
one. Figure 2.5 shows the modified version of the algorithm that computes in linear space the
complete matrix leading to sim(s, t). To recover an alignment associated with this highest score,
Hirschberg employs a divide-and-conquer strategy, which consist of recursively breaking the
problem into smaller independent subproblems, solving the subproblems directly and combining
their solution to solve the whole problem.

The basic idea is to divide s into two parts and find an appropriate split of t such that the
concatenation of the two subalignments, one aligning s[1..i] and t[1..j] and the other aligning the
rest of s and t, produces an optimal alignment of the complete sequences s and t, i.e.

opt (s[1..i], t[1..j]) + opt (s[i + 1..m], t[j + 1..n]) = opt(s, t), for j ∈ [1, n] (2.3)

The alignment problem is, thus, reduced into two subproblems that involve aligning shorter
sequences. The subproblems are in turn subdivided recursively until they are small enough to
be aligned in the available memory using the standard procedure Align. Then the concatenation
of optimal subalignments yields an optimal overall alignment.

10 CHAPTER 2. PAIRWISE SEQUENCE ALIGNMENT

Algorithm BestScore

input: sequences s and t

output: vector a

m := |s|

n := |t|

for j := 0 to n do

a[j] := j ∗ w (−, t[j])

for i := 1 to m do

old := a[0]

a[0] := i ∗ w (s[i],−)

for j := 1 to n do

temp := a[j]

a[j] := max(a[j] + w (s[i],−),

old + w (s[i], t[j]),

a[j − 1] + w (−, t[j]))

old := temp

return a[n]

Figure 2.5. Linear-space version of the algorithm Similarity .

The main difficulty with this approach is to determine, for a fixed i, an optimal value of j that
would allow the problem decomposition. This value j is determined as follows. The algorithm
computes in linear space the scores for aligning s[1..i] with an arbitrary prefix of t, and also the
scores for aligning s[i + 1..m] with an arbitrary suffix of t. The former scores are saved in the
matrix a of prefix scores and the latter in the matrix b of suffix scores. We saw earlier how to
compute a. The matrix b is computed just like a but backward. We initialize the last row and
column and compute backward until we reach b[0, 0]. Summing the prefix and suffix scores gives
the scores of j alignments in Equation 2.3 for j ∈ [1, n]. The best among these is, obviously,
equal to sim(s, t), so the choice of an optimal j is easy — pick j yielding the maximum total
score.

We saw earlier that BestScore (Figure 2.5) computes the matrix a in linear space, a similar
procedure is used for b. Figure 2.6. shows the complete pseudocode of the algorithm. In this
code, i is set to be ⌊m/2⌋, as we want the subproblems to have roughly the same size. The call
BestScore(s[a..i], t[c..d], pref-sim) returns in pref-sim the optimal scores for aligning s[1..i] and
t[c..j] for j ∈ [c − 1, d]. Similarly, BestScoreRev(s[i + 1..b], t[c..d], suf-sim) returns in suf-sim the
optimal scores for aligning s[i+1..b] with t[j+1..d] for j ∈ [c−1, d]. The call DCA(s[1..m], t[1..n])
returns an optimal alignment of s and t.

Complexity analysis

To analyze the storage requirement of the algorithm, we consider the space needed for the input
sequences plus the space used in the recursion by BestScore. At the first recursion level, BestScore

uses one buffer of size n to hold the optimal scores a[i, 0] through a[i, j], and a[i − 1, j] through
a[i−1,m]. This buffer may be reused in the recursion, hence the space complexity remains linear
in m and n, that is, O (m + n).

2.3. HIRSCHBERG’S ALGORITHM 11

Algorithm DCA (Divide-and-Conquer Alignment)

input: sequences s and t, indices a, b, c, d

output: optimal alignment

description: pref -align and suff -align are two-row buffers
holding prefix and suffix alignment. (i, posmax) is optimal
midpoint. Align returns optimal subalignments in buf .

// Base case: align s and t with standard procedure Align

if |s| ∗ |t| < M then // M is available memory

return Align(s[a..b], t[c..d], buf) // direct solution

else

// General case: decompose, solve recursively and combine

i := ⌊(a + b)/2⌋ // fix middle position in s

// compute matrices of prefix and suffix scores

BestScore (s[a..i], t[c..d], pref -scores)

BestScoreRev (s[i + 1..b], t[c..d], suff -scores)

// find optimal index posmax in t to allow decomposition

posmax := c − 1

vmax := pref -scores[c − 1] + suff -scores[c − 1]

for j := c to d do

score := pref -scores[j] + suff -scores[j]

if score > vmax then

vmax := score

posmax := j

// solve two subproblems recursively

DCA (s[a..i], t[c..posmax], pref -align)

DCA (s[i + 1..b], t[posmax + 1..d], suff -align)

return Concat(pref -align, suff -align)

Figure 2.6. Hirschberg’s divide-and-conquer algorithm.

The time complexity of the algorithm, denoted T (m,n), satisfies the following recursion:

T (m,n) ≤ mn + T (n/2, j) + T (n/2,m − j),

where mn is the total cost of the calls to BestScore and BestScoreRev , each taking (m/2)n
time, while T (m/2, j) and T (m/2, n−j) are the costs for the two recursive calls. In the following
lemma, we use induction to prove that the time roughly doubles as a consequence of the recursion.

Lemma 2.1 The time complexity of the BandDCA algorithm is as follows: T (m,n) ≤ 2mn.

Proof. For m = 1, no maximum computations occur, thus T (1, n) ≤ 2n. For m > 1, we have

T (m,n) ≤
mn

2
+

mn

2
+ T (m/2, j) + T (m/2, n − j)

≤ mn + nj + mn − nj = 2mn �

Theorem 2.2 An optimal alignment between two sequences s and t of lengths m and n can be

computed in time O (mn) and space O (m + n).

12 CHAPTER 2. PAIRWISE SEQUENCE ALIGNMENT

2.4 DBand algorithm

This section examines a faster algorithm for finding high-scoring alignments in the case when
sequences are fairly similar.

Let s and t be two very similar sequences of the common length n. From Section 2.2, we recall
that alignments corresponds to paths in the dynamic programming matrix. An alignment of s and
t that contains no spaces or, equivalently, in which all letters are aligned, has its corresponding
path along the main diagonal. If this is not an optimal alignment, we may insert spaces into the
sequences to form a better alignment. Since spaces are represented with horizontal (or vertical)
moves in the matrix a, this will cause the associated path to wander away from the main diagonal.
Hence, if sequences are similar, their alignment path is most likely contained within a narrow
band around the main diagonal. The main idea is that we might be able compute the optimal
score by filling only in a band portion of the matrix.

The algorithm DBand accepts two sequences s and t with |s| = |t| = n and a parameter d
as input and computes elements in the band of the horizontal width 2d + 1. On completion, it
returns in a[n, n] the optimal score of an alignment confined to the band. Elements outside the
d-strip is neither initialized nor used in maximum computations. The test for whether a position
(i, j) lies inside the strip is completed with the following statement:

InsideStrip(i, j, d) ≡ (−d ≤ j − i ≤ d).

Each element a[i, j] inside the strip is evaluated as with the standard dynamic programming
except for the elements in the border, for which maximum computations may involve fewer than
three terms. In the code, only positions (i−1, j) and (i, j−1) are tested with InsideStrip because
they may be outside the strip when (i, j) is in the border. As before, an actual alignment can
be reconstructed using the backtracking algorithm Align in Figure 2.4.

Algorithm DBand

input: sequences s and t of equal length n, integer d

output: optimal alignment score in the d-strip

n := |s|

for i := 0 to d do

a[i, 0] := i ∗ w (s[i],−)

for j := 0 to d do

a[0, j] := j ∗ w (−, t[j])

for i := 1 to n do

for j := max(0, i − d) to min(n, i + d) do

// compute maximum among predecessors

a[i, j] := a[i − 1, j − 1] + w (s[i], t[j])

if InsideStrip (i − 1, j, d) then

a[i, j] := a[i − 1, j] + w (s[i],−)

if InsideStrip(i, j − 1, d) then

a[i, j] := a[i, j − 1] + w (−, t[j])

return a[n, n]

Figure 2.7. Algorithm for optimal score in d-strip.

2.5. BandDCA ALGORITHM: ALIGNING WITHIN A BAND IN LINEAR SPACE 13

One last concern remains: Will the computed score in a[n, n] be optimal even without the
band constraints, that is, will we obtain the same score if we use the basic algorithm instead? This
depends, of course, on the choice of parameter d and similarity degree between the sequences.
The smaller value of d, the faster the algorithm will be but also the higher possibility of ending
up with a suboptimal alignment, that is, an alignment whose score is close to the optimal score.
There exist many methods for estimating d so an optimal alignment is likely contained in the
d-strip, however none of them guarantees to return an optimal solution. We assume here that
our d is well-suited for the input sequences and that the algorithm returns the optimal score.

It is straightforward to extend the algorithm to handle sequences of different lengths. Let
two sequences s and t have lengths m and n, where m ≤ n. The alignment definition implies
that we must insert n − m spaces into the shorter sequence s plus c additional space pairs into
both sequences. Therefore, we need to modify the algorithm so it computes the band portion of
the matrix between diagonals −c and c+n−m, where c = m−n+d and d ≥ n−m. A diagonal

k of a matrix consists of those elements (i, j) with j − i = k. Consequently, the d-strip criterion
must be modified as follows:

InsideStrip(i, j, d) ≡ (−c ≤ j − i ≤ c + n − m).

The case when m > n is handled analogously.

Complexity analysis

The computation time of DBand is proportional to the area of the d-strip, which is dn+n−d2 =
O (dn). The evaluation of each element a[i, j] takes O(1) time, so the total computational time
is, thus, O (dn). For d ≪ n, this is a great speed-up of the basic algorithm.

The space requirement is also O (dn) since the backtracking procedure requires the complete
d-strip in order to reconstruct the alignment itself. This space complexity may be reduced to
linear by using Hirschberg’s method, as we will show in the next section.

Theorem 2.3 An optimal alignment in the d-strip between two sequences s and t can be com-

puted in time and space O (dn), assuming that the sequences have the same length n.

2.5 BandDCA algorithm: Aligning within a band in linear space

In this section, we derive a linear-space algorithm for finding alignments in a constant band by
combining the divide-and-conquer- and banding technique. We begin by modifying DBand to
compute sim(s, t) in linear space. In Figure 2.8 appears a linear-space algorithm that accepts two
sequences of different lengths and returns the best score. BandScore can be used as subprocedure
in a divide-and-conquer algorithm that recovers an actual alignment.

BandDCA is a recursive algorithm that determines the middle pair of positions in an optimal
alignment between two sequence and uses it to find the other positions in the alignment recur-
sively. It does this by computing the d-strip of matrices a and b and selecting j from interval
[m/2 − d,m/2 + d] so it maximizes the total scores. This optimal j is the sufficient information
to decompose the problem into two independent subproblems. The algorithm then makes two
recursive calls subdividing the subproblems further until they are small enough to be solved
directly. The optimal alignment is produced by appending these trivial alignments.

The pseudocode of the algorithm appears in Figure 2.9. The call BandScore(s[a..i], t[c..d], ld, hd)
returns the optimal prefix scores between s[a..i] and t[c..j] for j ∈ [i + ld..i + hd]. Analogously,
the call BandScoreRev(s[i+1..b], t[c..d], ld, hd) returns the optimal suffix scores between s[i+1..b]
and t[j+1..d] for j ∈ [i+ ld..i+hd]. The call BandDCA(s[1..m], t[1..n], ld, hd) returns an optimal
alignment of s and t confined to the band between diagonals ld and hd.

14 CHAPTER 2. PAIRWISE SEQUENCE ALIGNMENT

Algorithm BandScore

input: sequences s and t, integers ld, hd

output: vector a

m := |s|

n := |t|

for j := max(0, ld) to min(n − m, lh) do

a[j] := j ∗ w (s[i],−)

for i := 0 to m do

old := a[0]

a[0] := i ∗ w (s[i],−)

for j := max(0, i + ld) to min(n − m, i + lh) do

temp := a[j]

a[j] := old + w (s[i], t[j])

if InsideStrip(i − 1, j, ld, hd) then

a[j] := max(a[j], a[j] + w (s[i],−))

if InsideStrip(i, j − 1, ld, hd) then

a[j] := max(a[j], a[j − 1] + w (−, t[j]))

old := temp
return a[n]

Figure 2.8. Linear-space algorithm for computing the optimal score.

Complexity analysis

We assume, for simplicity, that sequences s and t have the same size n and that −ld = hd =
d. The time complexity of BandDCA, denoted T (n, d), can be estimated with the following
recursion:

T (n, d) ≤ c dn + 2T (n/2, d),

where c is a constant, O(dn) is the time spent in finding the alignment midpoint and 2T (n/2, d)
is the cost of the two recursive calls to itself. We observe that when the band is reduced to the
main diagonal, i.e. when d is 1, the time complexity expression becomes T (n) ≤ c n + 2T (n/2).
After unfolding, the recurrence has log2 n terms:

log n
∑

i=1

2i n

2i
= n

log n
∑

i=1

1i = nlog2 n.

In the worst case, the algorithm recomputes all elements in the main diagonal at each recursive
level, which causes the total slow-down in the algorithm by the factor log2 n. This claim is proved
strictly in the following lemma.

Lemma 2.2 The time complexity of the BandDCA algorithm is as follows: T (n, d) ≤ c dn log2 n.

Proof. The proof is developed by induction on n.

For n = 2, T (2, d) ≤ 2d is obviously true for d ≥ 1.

2.5. BandDCA ALGORITHM: ALIGNING WITHIN A BAND IN LINEAR SPACE 15

Algorithm BandDCA (Banded Divide-and-Conquer Alignment)

input: sequences s, t, indices a, b, c, d, diagonals ld, hd

output: optimal alignment

description: pref -align and suff -align are two-row buffers
holding prefix and suffix alignment. (i, posmax) is optimal
midpoint. Align returns part-alignments in opt-align.

// Base case: align s and t with standard procedure Align

if |s| ∗ |t| < M then // M is available memory

return Align(s[a..b], t[c..d], ld, hd, opt-align)

else

// General case: decompose, solve recursively and combine

i := ⌊(a + b)/2⌋ // fix middle position in s

// compute matrices of prefix and suffix scores

BandScore (s[a..i], t[c..d], ld, hd, pref -scores)

BandScoreRev (s[i + 1..b], t[c..d], ld, hd, suff -scores)

// find optimal index posmax in t to allow decomposition

posmax := max(i + ld, c − 1)

vmax := pref -scores[posmax] + suff -scores[posmax]

for j := max(i + ld, c) to min(i + hd, d) do

score := pref -scores[j] + suff -scores[j]

if score > vmax then

vmax := score

posmax := j

// solve two subproblems recursively

DCA (s[a..i], t[c..posmax], ld, hd, pref -align)

DCA (s[i + 1..b], t[posmax + 1..d], ld, hd, suff -align)

// concatenate two sub-alignments

return Concat(pref -align, suff -align)

Figure 2.9. Linear-space algorithm for optimal alignment in d-strip.

For n > 2, we have the following:

T (n, d) ≤ c dn + 2T (n/2, d)

≤ c dn + c 2d(n/2) log2 (n/2)

= c dn + c dn log2 n − c dn

= c dn log2 n. �

To analyze the space complexity, we consider lengths of the sequences and two buffers of size
ld + hd + 1 to hold the optimal scores computed with BandScore and BandScoreRev . These
buffers are reused in the recursion so the space complexity of the algorithm is O (m + n).

Theorem 2.4 A d-optimal alignment of two sequences s and t of length n can be computed in

time O (dn log2 n) and space O (m + n), in worst case.

16 CHAPTER 2. PAIRWISE SEQUENCE ALIGNMENT

2.6 FastDCA: A faster, space-efficient aligning algorithm

A drawback with the previous algorithm is the log2 n factor appearing in the expression for the
worst-time complexity. In this section, we show how to speed up the algorithm, at the cost of
using a few extra linear buffers. The space requirement remains, however, linear in m and n.

The main idea is to divide s into p substrings of equal size and find a suitable split of t into
p substrings such that a concatenation of p optimal subalignments between the corresponding
substrings in s and t produces the total optimal alignment. The alignment problem is this way
decomposed directly in p independent subproblems which, in turn, are subdivided recursively
until they are small enough to be solved with the standard procedure. In this decomposition of
problems, the subproblem k involves aligning s[k m

p +1..(k+1)m
p] and t[jk+1..jk+1], for 0 ≤ k < p.

This dividing scheme, which is often used in parallel algorithms for sequence comparisons [5],
can be seen as a generalization of Hirschberg’s approach. For p = 2, the original Hirschberg’s
method is obtained.

The difficulty with this approach is in finding, for p fixed positions m
p , 2m

p , . . . ,m in s, a p-
tuple of cut positions in t that would allow the problem decomposition. To do this, we make use
of a matrix c of total scores, in which c[i, j] contains the highest score of an alignment that cuts at
(i, j). An alignment contains cut(i, j) when the alignment can be divided into two subalignments,
one aligning prefixes s[1..i] and t[1..j], and the other aligning suffixes s[i + 1..m] and t[j + 1..n].
The matrix c is computed as the sum of the matrices a and b with their contents, where a and
b are computed as before:

a[i, j] = sim (s[1..i], t[1..j])

b[i, j] = sim (s[i + 1..m], t[j + 1..n]).

In fact, we only compute p dividing rows in c corresponding to the total alignment scores for each
possible p-tuple of cut positions in t and select the one that maximizes the score in each of p rows
of c. In addition to using a different dividing scheme, we also must impose band constraints on
the algorithm in order to restrict the search space for optimal alignments to the band between
diagonals ld and hd. The procedure BandScore does exactly this. An outline of the algorithm
for sequence s and t follows:

1. Define p dividing rows of the matrix c to be m
p , 2m

p , . . . ,m, where c = a + b.

2. Using linear space, compute and save p dividing rows of c.

3. Find the maximum-valued element in each of p dividing rows in order to reveal optimal
cut positions j1, j2, . . . , jp in t. For dividing row i, this involves computing any c[i, j] and
selecting the one with the highest value:

c[i, j] = max { c[i, l] : l ∈ [i − ld, i + hd] } .

4. Use optimal cut positions to subdivide the problem into p subproblems. For each sub-
problem, if the product of the sequences lengths is smaller than a threshold M , then we
construct an optimal alignment directly. Otherwise, we make p recursive calls to further
subdivide the subproblems.

5. Concatenate produced optimal subalignments to obtain the total optimal alignment.

The complete pseudocode of this recursive algorithm is given in Figure 2.10.

Complexity analysis

To analyze the running time, we assume, for simplicity, that s and t have the same size n and
the subproblems are evenly subdivided at each recursion level. Also we set d = −ld = hd. The

2.6. FastDCA: A FASTER, SPACE-EFFICIENT ALIGNING ALGORITHM 17

Algorithm FastDCA (Fast Divide-and-Conquer Alignment)

input: sequences s, t, indices a, b, c, d, diagonals ld, hd, constant p

output: optimal alignment in align

align = ∅ // two-row buffer to hold alignment

bandwidth := ld + hd + 1

// Base case: align s and t with standard procedure Align

if |s| ∗ |t| < M then // M is the available memory

return BandAlign (s[a..b], t[c..d], ld, hd, buf)

else

// General case: decompose, solve recursively and combine

// compute band portions of matrices of prefix and

// suffix scores, saving only p dividing rows

PrefixScores (s[a..b], t[c..d], p, ld, hd, pref -scores)

SuffixScores (s[a..b], t[c..d], p, ld, hd, suff -scores)

// find optimal index jmax for each dividing row

for k := 0 to p − 1 do

jmax := c − 1

maxscore := pref -scores[k, c − 1] + suff -scores[k, c − 1]

i := ⌊(k + 1) ∗ (a + b)/p⌋ // dividing row i

for j := 1 to bandwidth do

score := pref -scores[j] + suff -scores[j]

if score > maxscore then

maxscore := score

jmax := j

// solve subproblem k recursively

FastDCA (s[a..i], t[c..jmax], p, ld, hd, subalign-k)

align = Concat (align, subalign-k) // acummulate alignment

a := i + 1

c := jmax + 1

return align

Figure 2.10. Algorithm for optimal alignment in d-strip.

time complexity of the algorithm, denoted T (n, d), can then be estimated with the following
recurrence:

T (n, d) = c dn + p T (n/p, d),

for some constants c and p. In this expression, the term c dn is the time spent for computing
the matrix of total scores and p T (n/p, d) is the cost of p recursive calls with sequences of length
n/p. We claim that T (n, d) ≤ c dn logp n. The proof is developed by the induction on n. For
n = 1, the statement is obviously true, as no maximum computations occurs. For n > 1, we
have the following equations:

18 CHAPTER 2. PAIRWISE SEQUENCE ALIGNMENT

T (n, d) ≤ c dn + p T (n/p, d)

≤ c dn + c p d(n/p) logp(n/p)

= c dn + c dn logp n − c dn

= c dn logp n

for some constant c. By setting p to n1/c, we get rid of the log factor, leaving T (n, d) ≤ c dn.
This is asymptotically the same time complexity as that of the DBand algorithm.

The algorithm uses O (p d) space to find the first p-tuple of optimal cut positions. This linear
buffer may be reused in the recursion, so the total space complexity, considering also the size
of the input sequences, remains linear in m and n, given that p is set to n1/c. Our findings are
summed up in the following theorem.

Theorem 2.5 An optimal alignment of sequences s and t within a specified band of width 2d+1
can be computed in time O (dn) and space O (p d), where n is the common length of the sequences

and p = n1/c for some constant c.

Chapter 3

Multiple sequence alignment

The objective of this chapter is to generalize the alignment algorithms from Chapter 2 to work
with multiple sequences. In Chapter 3, we study algorithms for simultaneous aligning of more
than two sequences. We start out by giving the formal definition of the multiple alignment
problem and proceed with a review of the dynamic programming algorithm in k dimensions.
A generalization of Hirschberg’s space-saving algorithm for optimal alignments of k sequences
is discussed next. Furthermore, we extend the two-sequence algorithm for aligning within a
specified band to k sequences. Lastly, we combine the banding approach with Hirschberg’s
divide-and-conquer technique to derive an algorithm for multi-alignments within a band that
uses less space than the standard dynamic programming.

3.1 Motivation

In sequence analysis one frequently compares several protein sequences that have similar function.
Finding their optimal multi-alignment might be useful in the following applications:

• Discovering similarities in conserved regions;

• Grouping proteins into families;

• Reconstructing evolutionary trees for various organisms.

3.2 SP -alignment

To formalize the concept of the optimal multi-alignment and discuss its scoring, we need to
introduce some terminology.

Definition 3.1 (Multi-alignment) Let s = {s1, s2, . . . , sk} be a set of sequences over an al-
phabet Σ. An alignment between sequences in s is a set of extended sequences s′ = {s′1, . . . , s

′
k}

over the alphabet Σ+ = Σ ∪ {−} with the following three properties, for all i, j : 1 ≤ i ≤ k,
1 ≤ j ≤ n:

1. |s′i| = n, where n is the length of the alignment s′.

2. After removal of all spaces from s′i, we have s′i = si.

3. At least one s′i[j] is not a space.

An example of a multi-alignment is given in Figure 3.1. There exist a large number of possible
multi-alignments for a given set of k sequences. Our goal is to find an alignment that maximizes

19

20 CHAPTER 3. MULTIPLE SEQUENCE ALIGNMENT

s′1 : A C T − G
s′2 : A − T C G
s′3 : G C C − A
s′4 : G T T − −

Figure 3.1. A multi-alignment of four short DNA sequences

an objective function. A simple approach to scoring multi-alignments is to evaluate scores column
by column. To score an alignment columns we use an additive function known as the sum-of-pairs

(SP) score, which is based on the pairwise score function defined in Section 2.1.

Definition 3.2 (SP -score of alignment) Let α be an alignment of k sequences. Also, let w
be a score function for aligning a pair of characters and define w(−,−) = 0. The score of the
column columnj in α is computed as:

SP -score(columnj) =
∑

x,y∈columnj

w(x, y) (3.1)

The score of the alignment α is the sum of its column scores:

SP -score(α) =

|s′

1
|

∑

j=1

SP -score(columnj), (3.2)

Alternatively, we can score an multi-alignment based on pairwise alignments that can be ex-
tracted from it.

Definition 3.3 (Induced pairwise alignment) Let α be an alignment of k sequences. A
pairwise alignment obtained from α by selecting any two sequences and deleting columns con-
sisting of two spaces is called the induced pairwise alignment or the projection of α on the two
selected sequences.

The following lemma connects the SP -score of a multi-alignment to its pairwise scores. It states
that the total score of an alignment is the sum of the scores of all its projections.

Lemma 3.1 If w(−,−) = 0, then for any alignment α of s1, s2, . . . , sk, we have

SP -score(α) =
∑

1≤i<j≤k

score(αi,j) (3.3)

where αi,j is the pairwise alignment induced by α on si and sj.

Definition 3.4 (Multi-similarity) The multi-similarity between k sequences is the maximum
score of any multi-alignment according to a score function w, i.e.

sim(s1, s2, . . . , sk) = max {SP -score(α) : α = (s′1, . . . , s
′
k), α ∈ A(s1, s2, . . . , sk)} ,

where A (s1, s2, . . . , sk) is the set of all possible multi-alignments of s1, s2, . . . , sk.

Definition 3.5 (Optimal multi-alignment) An optimal multi-alignment is a multi-alignment
that has the maximum SP -score.

3.3. DYNAMIC PROGRAMMING IN K DIMENSIONS 21

Notice that Equations 3.2 and 3.3 do the same thing, only in different orders. In each case, we
are computing the score w(s′i[k], s′j [k]) for each column k and for each pair (i, j). We are now
ready to give a precise formulation of the multi-alignment problem.

Problem 3.1 (Multi-similarity problem) Given k sequences and a score function w, find
the maximum score of their multi-alignment.

Problem 3.2 (Optimal multi-alignment problem) Given k sequences and a score function
w, find their optimal multi-alignment, i.e. an alignment that achieves the maximum score.

3.3 Dynamic programming in k dimensions

The dynamic programming technique can easily be extended to more than two sequences. Let
s1, s2, . . . , sk be k sequences we wish to align and assume, for simplicity, that they have the same
size n. Instead of a two-dimensional matrix, we use a k-dimensional matrix A to hold the optimal
alignment scores between arbitrary prefixes of k sequences. Specifically, A[i1, i2, . . . , ik] contains
the optimal score for s1[1..i1], s2[1..i2] . . . , sk[1..ik]. Using boldface letters to denote k-tuples, the
two-sequence recurrence relation in Equation 2.2 for k sequences becomes:

A[i] = max
{

A[i − b] + SP -score(Column(s, i,b)) : b ∈ {0, 1}k \ {0, . . . , 0}
}

, (3.4)

where Column(s, i,b) = (cj)1≤j≤k with

cj =

{

sj [ij] if bj = 1
− if bj = 0.

Term SP -score(Column(s, i,b)), which is the score of current column in the alignment, is com-
puted according to Equation 3.1. After initializing A with the statement A[0] = 0, the algorithm
computes the remaining cells following the order of the above recurrence. The operator max
is taken over at most 2k − 1 values, as this is the number of all possible configurations for an
alignment column. A cell A[i] is a border cell if at least one of its indices ij is 0. Border cells,
which depend on less than 2k −1 other cells, are calculated with the same recurrence except that
bj must be zero when ij is zero. When k is fixed, k nested for loops can be used to fill in A.

The alignment itself can be recovered in O
(

nk
)

space by using a backtracking procedure
similar to the one described for the pairwise case. The backtracking algorithm uses O

(

nk
)

space since the entire matrix is required to be present in memory. Alternatively, the generalized
Hirschberg’s algorithm can be used to deliver the alignment in O

(

nk−1
)

space, which will be
discussed in the next section.

Complexity analysis

The SP method requires O(k2) time for computing column scores as there are k(k−1)/2 pairwise
scores to add up for each column. The computation of each cell depends on 2k−1 other neighbors.
Since there are (n + 1)k cells in total to compute, the time complexity can be estimated to
O

(

k22knk
)

. This confirms the well-known fact [11]: the multi-alignment problem is NP-hard
under the SP -score.

Theorem 3.1 An optimal alignment of k sequences, under the SP -score, can be computed in

time O
(

k22knk
)

and space O
(

nk
)

, given that all sequences have the same size n.

22 CHAPTER 3. MULTIPLE SEQUENCE ALIGNMENT

3.4 Generalized Hirschberg’s algorithm

We describe a generalization of Hirschberg’s algorithm to k dimensions that reduces the space
complexity of the dynamic programming with one order of magnitude, at the expense of roughly
doubling the computation time.

The basic divide-and-conquer idea for multi-alignments goes as follows. Given sequences
s1, s2, . . . , sk, cut s1 in half and determine a (k − 1)-tuple of optimal cut positions in remain-
ing sequences to allow the problem decomposition. The problem of finding an optimal align-
ment of s1, s2, . . . , sk is this way reduced to the two subproblems: the prefix problem of op-
timally aligning s1[1..n1/2], s2[1..i2], . . . , sk[1..ik] and the suffix problem of optimally aligning
s1[n1/2 + 1..n1], s2[i2 + 1..n2], . . . , sk[ik + 1..nk]. Each subproblem is subdivided recursively un-
til the sequences are short enough to be aligned within the available memory using dynamic
programming. The concatenation of the optimal subalignments produces an overall optimal
alignment of k sequences.

It is easy to see that optimal cut positions always exist — we could select them explicitly if
we were given an optimal alignment. Finding optimal ij ’s without a pre-given optimal alignment
is a more difficult task; however the strategy is the same as in the two-sequence case:

• Compute the optimal scores of aligning s1[1..n1/2] with prefixes s2[1..n2] . . . , sk[1..nk];

• Compute the optimal scores of aligning s1[n1/2+1..n1] with suffixes s2[1..n2] . . . , sk[1..nk];

• Choose the best among the total scores.

To save the above scores the algorithm uses two matrices A and B of prefix scores and suffix
scores, respectively. It computes the first halves of the matrices in a row fashion, saving only the
last rows, that is, two (k − 1)-dimensional hyperplanes given by ⌊n1/2⌋ and ⌊n1/2 + 1⌋ as the
first coordinates. As in the pairwise case, adding A and B with their contents results in the the
matrix C of total scores:

C[n1/2, i2 . . . , ik] = sim(s1[1..n1/2], s2[1..i2], . . . , sk[1..ik]) +

sim(s1[n1/2 + 1..n1], s2[i2 + 1..n2], . . . , sk[ik + 1..nk]),

for each input sequence sj with |sj | = ni, 0 ≤ ij ≤ ni, 1 ≤ j ≤ k. The algorithm computes the
midrow in C, which is the optimal scores of all alignments for each possible choice of ij ’s. To
retrieve optimal ij ’s, it then chooses the best among the total scores, i.e.

C[n1/2, i2 . . . , ik] = max {C[n1/2, l2, . . . , lk] : 0 ≤ lj ≤ nj , 2 ≤ j ≤ k} ,

since this score is equal to the multi-similarity sim(s1, s2, . . . , sk).
The complete pseudocode of the algorithm appears in Figure 3.2. In this code, the matrix

A is computed in space O
(

nk−1
)

using BestScore. This procedure is implemented analogously
to its pairwise counterpart. A similar procedure BestScoreRev is used for B. The stopping
criterion for recursion is given by a threshold M , the available memory. Parameter M is set
∏k

i=2 (|si| + 1), which is the minimal amount of memory at the first level of recursion required
for searching (k − 1)-dimensional space for the optimal ij ’s. Without this amount of memory
available the algorithm cannot run, in which case a further space reduction must be considered
— a possible topic for future work.

Complexity analysis

The lower bound for the space complexity is proportional to the space for one (k−1)-dimensional
row, which is O

(

nk−1
)

. This storage can be reused in the recursion so the total space complexity

3.4. GENERALIZED HIRSCHBERG’S ALGORITHM 23

Algorithm DCMA

input: set of sequences s = {s1, s2, . . . , sk}, indices c1, . . . ck, d1, . . . dk

output: optimal alignment of s

nj := |sj |, j ∈ {1, . . . , k}

n := {n1, n2, . . . , nk}

// Base case: construct short alignments with dynamic programming

if n1 ∗ n2 ∗ . . . ∗ nk < M then // M is the available memory

return Malign(s)

else

// General case: divide and solve recursively

i1 := ⌊n1/2⌋

BestScore ({s1[1..i1], s2[1..i2], . . . , sk[1..nk]}, pref -scores)

BestScoreRev ({s1[i1 + 1..n1], s2[i2 + 1..n2], . . . , sk[1..nk]}, suff -scores)

// To retrieve optimal cuts, find maximum among total scores

{i2, i3, . . . , ik} := BestCut (n, pref -scores, suff -scores)

// Two recursive calls solves two subproblems

DCMA ({s1[c1..i1], s2[c2..i2], . . . , sk[ck..ik]}, pref -align)

DCMA ({s1[i1 + 1..d1], s1[i2 + 1..d2] . . . , sk[ik + 1..dk]}, suff -align)

return Concat (pref -align, suff -align)

BestCut (m, A, B)

maxscore := −∞

bestcuts := ∅

i1 := ⌊m1/2⌋

for i2 := 0 to m2 do

for i3 := 0 to m3 do
. . .

for ik := 0 to mk do

C[i1, i2, . . . , ik] := A[i1, i2, . . . , ik] + B[i1, i2, . . . , ik]

if C[i1, i2, . . . , ik] > maxscore then

maxscore := C[i1, i2, . . . , ik]

bestcuts := {i2, i3, . . . , ik}

return bestcuts

Figure 3.2. Hirschberg’s algorithm in k dimensions.

remains the same. We conclude that the reduction in the space complexity from O
(

nk
)

to
O

(

nk−1
)

is not so impressive as that from quadratic to linear space in the pairwise case.
In decomposition of problems, the size of the subproblems is roughly half that of the main

problem, so the total slow-down in the algorithm caused by the recursion. Next we analyze
the time complexity in a more formal way. To keep the analysis simple, we assume that all

24 CHAPTER 3. MULTIPLE SEQUENCE ALIGNMENT

sequences have the same length n = ℓ · 2t and optimal cut positions are the middle positions in
the sequences. The time complexity of the algorithm, T (n), can be estimated with the following
recurrence relation:

T (n) ≤

{

c1k
22knk if n ≤ ℓ

c1k
22knk + c2n

k−1 + 2T (n/2) otherwise,
(3.5)

for some constants c1 and c2. Here, 2T (n/2) is the amount of work for solving the two sub-
problems of size n/2 each and the remaining part is the time required for dividing the problem.
Precisely, c1k

22knk is the time for computing matrices A and B and c2n
k−1 is the number of com-

parison required for searching for maximum element among (n + 1)k−1 elements in the midrow
of C. Unfolding the recurrence, we obtain a summation for T with t = log n − log ℓ terms plus
the amount of work spent at the last recursion level for aligning n/ℓ sequences of length ℓ each:

T (n) ≤
t−1
∑

i=0

2i

[

c1k
22k

(n

2i

)k

+ c2

(n

2i

)k−1
]

+
n

ℓ

(

c1k
22kℓk

)

= c1k
22knk

t−1
∑

i=0

(

1

2k−1

)i

+ c2 nk−1
t−1
∑

i=0

(

1

2k−2

)i

+ c1 k22knℓk−1

= c1k
22knk 1 −

(

1
2k−1

)t

1 − 1
2k−1

+ c2 nk−1 1 −
(

1
2k−2

)t

1 − 1
2k−2

+ c1 k22knℓk−1 (3.6)

= O
(

k22knk + nk−1 + k22knℓk−1
)

, for t > 0 and k > 1. (3.7)

In the extreme cases, we obtain the following results:

1. For t = 1 or, equivalently, ℓ = n, the first two terms in Equation (3.6) disappear, while
the third term becomes O

(

k22knk
)

, the time bound of dynamic programming running on
original sequences.

2. For t = log2 n (or ℓ = 1), the first two terms remain the same as in Equation (3.7), while
the third term reduces to O(k22kn). Hence, T is O

(

k22knk + nk−1 + k22kn
)

, which is,
again, asymptotically the same time as for dynamic programming.

An inductive proof for time bound T is given in Appendix A.

Theorem 3.2 An optimal alignment of k sequences, under the SP measure, can be computed

in time O
(

k22k nk + nk−1
)

and space O
(

nk−1
)

, given that all sequences have the same size n.

3.5 DBand in k dimensions

We have seen how to reduce the space complexity of the dynamic programming algorithm from
O

(

nk
)

to O
(

nk−1
)

; our goal here is to speed up the computations of alignment scores. The
time bound can be improved by excluding those cells from computations hat are not likely to be
part of an optimal alignment. This is a generalization of DBand algorithm from Section 2.4.

Suppose we want to align k fairly similar sequence of length n. The algorithm exploits the
fact that optimal alignments of similar sequences have their paths near the main diagonal in the
matrix. It establishes a band or a polyhedron of radius d around the main diagonal and look
for optimal alignments only inside this area. A cell i = (i1, . . . , ik) belongs to the main diagonal

3.5. DBand IN K DIMENSIONS 25

if il = il+1 for 1 ≤ l < k. Any cell A[i] is computed according to the standard recurrence in
Equation (3.4) except for border cells, in which case neighboring cells that fall outside the d-strip
are not consulted in maximum computations. To test whether a position i falls inside the d-strip,
we use the following statement:

InsideStrip (i, d) ≡ (−d ≤ i1 − ij ≤ d : 1 < j ≤ k).

The complete DBand algorithm in k dimensions is given in Figure 3.3. It accepts k sequences
and a parameter d and returns the optimal score of their multi-alignment confined to the d-strip.
The procedure that performs fill-in the d-strip of A is implemented as k nested for loops. The
algorithm can be extended to compute the optimal score in the d-strip around a given heuristic
alignment rather than around the main diagonal. We can use the algorithm to improve the score
of a given heuristic alignment.

Algorithm DBand in k dimensions

input: sequences s = {s1, s2, . . . , sk} of length n, integer d

output: optimal score of an alignment confined to d-strip

n := |s1|

for i1 := 1 to n do

for i2 := max(0, i1 − d) to min(n, i1 + d) do

. . .

for ik := max(0, i1 − d) to min(n1, i1 + d) do

a[i] := max{a[i − 1] + SP-score
(

Column(s, i,b)
)

}

if InsideStrip (i − b, d) then

a[i] := max{a[i − b] + SP-score
(

Column(s, i,b)
)

}
return a[n1, n2, . . . , nk]

Figure 3.3. DBand algorithm in k dimensions.

As in the two-sequence case, the main concern here is how to choose a parameter d so the
computed score is optimal even without the band constraints. A value of d is best found by
computing a lower bound L for the alignment score and then setting d to Smax −L, where Smax

is the maximum possible score of aligning k identical sequences. A quick estimate for L can be
obtained as follows:

L =
∑

1≤x<y≤k

sim(sx,sy).

Complexity analysis

The lower bound for the computational time is proportional to the number of cells in the d-strip,
that is, O(ndk+1). Each cell can be computed in time O(2kk2), given that the column scores
take O(2k) time. The total time complexity of DBand is thus O

(

k22k ndk−1
)

, which is a big
advantage over dynamic programming when d ≪ n, since the d-strip is in that case only a small
subset of the set containing all the matrix cells. For similar sequences, spaces will be evenly
distributed in the sequences so DBand is likely to find an optimal alignment score. The space
complexity is O

(

ndk−1
)

as the algorithm saves the entire d-strip in the memory.

Theorem 3.3 An optimal alignment of k sequences in the d-strip, under the SP score, can be

computed in time O
(

k22k ndk−1
)

and space O
(

ndk−1
)

, given that all sequences have the size n.

26 CHAPTER 3. MULTIPLE SEQUENCE ALIGNMENT

3.6 BandDCMA algorithm: A faster multi-aligning in less space

Hirschberg divide-and-conquer algorithm can be extended to handle the band constraints. An
outline of the algorithm BandDCMA for optimal multi-alignments within a specified band follows.

1. Set i1 = ⌊n1/2⌋.

2. In row fashion, compute the first halves of the matrices A and B of prefix and suffix scores,
respectively, subject to constraint that ij ∈ [i1 − d, i1 + d] for 2 ≤ j ≤ k, saving only two
midrows:

A[i1, i2, . . . , ik] = sim (s1[1..i1], s2[1..i2], . . . , sk[1..ik])

B[i1, i2, . . . , ik] = sim (s1[i1 + 1..n1], s2[i2 + 1..n2], . . . , sk[ik + 1..nk])

3. Choose ij ’s (2 ≤ j ≤ k) maximizing the total scores, i.e.

(i1, i2, . . . , ik) = arg max
ij∈ [i1−d,i1+d]

{A[i1, i2, . . . , ik] + B[i1, i2, . . . , ik]} ,

4. Construct optimal alignments between s1[1..n1/2], s2[1..i2], . . . , sk[1..ik] and those between
s1[n1/2 + 1..n1], s2[i2 + 1..n2], . . . , sk[ik + 1..nk] in a recursive manner. The subproblems
are decomposed until they are small enough to be solved within the available memory using
DBand in k dimensions.

5. Combine produced optimal subalignments to obtain an overall optimal alignment con-
strained to the d-strip.

The pseudocode of the algorithm is given in Figure 3.4. In this code, the function BestCut ,
implemented as k nested for loops, finds optimal ij ’s with respect to i1 by searching in the band
region of radius d around the main diagonal. In other words, it searches for optimal ij ’s that are
at most d positions away from the middle position in s1, in their optimal alignment. For given
k sequences, the algorithm finds their best multi-alignment that has at most kd spaces.

Complexity analysis

Let T (n, d) be the time complexity of the algorithm running on k sequences. Then T can be
estimated from the following recurrence:

T (n, d) ≤

{

c1 k22k n dk−1 if n ≤ ℓ
2T (n/2, d) + c1 k22k n dk−1 + c2 dk−1 otherwise

(3.8)

for constants c1 and c2. After unfolding, we get a summation for T with t = log n − log ℓ terms:

T (n, d) ≤
t−1
∑

i=0

2i
[

c1k
22k

(n

2i

)

dk−1 + c2

(n

2i

)

dk−2
]

+
n

ℓ

(

c1k
22kℓk

)

= c1k
22kndk−1

t−1
∑

i=0

1i + c2 dk−2
t−1
∑

i=0

1i + c1 k22knℓk−1 (3.9)

= O
(

k22k dk−1n log2 n + dk−1 log2 n + k22knℓk−1
)

(3.10)

for t > 0 and k > 1. In the extreme cases, we have the following results:

3.6. BandDCMA ALGORITHM: A FASTER MULTI-ALIGNING IN LESS SPACE 27

Algorithm BandDCMA

input: set s = {s1, s2, . . . , sk}, integer d, indices c1, . . . ck, d1, . . . dk

output: optimal alignment of s

nj := |sj |, j ∈ {1, . . . , k}

n := {n1, n2, . . . , nk}

// Base case: construct alignments in available memory with BandMalign

if n1 ∗ n2 ∗ . . . ∗ nk < M then // available memory M , set to dk−1

return BandMalign(s) // takes d.p.matrix precomputed with DBand

else

// General case: divide and solve recursively

i1 := ⌊n1/2⌋

BandScore ({s1[1..i1], s2[1..i2], . . . , sk[1..nk]}, d, pref -scores)

BandScoreRev ({s1[i1 + 1..n1], s2[i2 + 1..n2], . . . , sk[1..nk]}, d, suff -scores)

// To retrieve optimal cuts, find maximum among total scores

// subject to constraints ij ∈ {i1 − d, . . . , i1 + d} for j ∈ {1, . . . , k}

{i2, i3, . . . , ik} := BandCut (n, d, pref -scores, suff -scores)

// Two recursive calls solves two subproblems

BandDCMA ({s1[c1..i1], s2[c2..i2], . . . , sk[ck..ik]}, d, pref -align)

BandDCMA ({s1[i1 + 1..d1], s1[i2 + 1..d2] . . . , sk[ik + 1..dk]}, d, suff -align)

return Concat (pref -align, suff -align)

BandCut (m, d, A, B)

maxscore := −∞

bestbandcuts := ∅

i1 := ⌊m1/2⌋

for i2 := 1 to m2 do

for i3 := max(0, i2 − d) to min(m3, i2 + d) do

. . .

for ik := max(0, i2 − d) to min(mk, i2 + d) do

C[i1, i2, . . . , ik] := A[i1, i2, . . . , ik] + B[i1, i2, . . . , ik]

if C[i1, i2, . . . , ik] > maxscore then

maxscore := C[i1, i2, . . . , ik]

return bestbandcuts

Figure 3.4. DC-algorithm for aligning within d-strip.

• For t = 0 (ℓ = n), the first two terms in Equation (3.9) disappear, while the third term
becomes O

(

k22k ndk−1
)

, the run-time of the DBand .

• For t = log2 n (ℓ = 1), the two summands in Equation (3.9) are computed to log2 n, while
the third term reduces to O(k22kn). Hence, the expression for T in Equation (3.10) is
reduced to O

(

k22k n dk−1 log2 n + dk−1 log2 n + k22kn
)

. Since this is the asymptotically

28 CHAPTER 3. MULTIPLE SEQUENCE ALIGNMENT

same time as O
(

k22k ndk−1 log2 n
)

, we conclude that T exceeds the time bound for DBand

in k dimensions by a log2 n factor.

Notice that we can get rid of the log2 n factor in the time complexity expression T by decomposing
the problem directly into p > 2 subproblems, which are then solved recursively. A generalization
of FastDCA to k dimensions does exactly that. The cost to pay is in the space complexity because
the generalized FastDCA must keep p (k − 1)-dimensional rows in memory at the same time.
Hence, the algorithm is a trade-off between the computational time and memory requirement.
We skip the implementations details as it is straightforward extension of its pairwise counterpart.

The space complexity is O
(

kn + dk−1
)

because the algorithm computes only those cells in
the midrow that falls inside the d-strip. We sum up our results in the following theorem.

Theorem 3.4 An optimal alignment of k sequences confined to the d-strip, can be computed in

time O
(

k22k ndk−1 log2 n
)

and space O
(

kn + dk−1
)

, assuming that all sequences have the same

size n and the SP measure is used.

Chapter 4

Discussion

In our theoretical study of the sequence alignment problem, we have combined various algorith-
mic techniques including dynamic programming, divide-and-conquer and branch-and-bound. By
combining recursive and iterative methods, we were able to improve the computation time and
reduce space requirement of some standard alignment algorithms. We have also generalized the
two-sequence methods to work with k sequences.

Our main result is the BandDCMA algorithm for multi-alignments within a specified diagonal
band. It computes an optimal alignment between k sequences within a constant band of radius
d considerably faster than standard dynamic programming, given that d ≪ n where n is the
length of the shortest sequences. The quality of the computed alignment depends greatly on
how we choose parameter d. Choosing d too small may result in a low-quality alignment. On
the other hand, high values of d would make the algorithm as impractical as standard dynamic
programming as computation time of our algorithm grows exponentially with d. As we have not
implemented the algorithm, it is difficult to say which values of d are appropriate for aligning
a set of rather similar sequences. One way to obtain a reasonable value for d is by computing
the alignment score using a fast heuristic algorithm. Our algorithm can be then used to search
for best alignments in the band of radius d around this heuristic alignment. It should also be
mentioned that the stopping criterion for the recursion could be chosen differently. Exploring
this option might be a possible topic for further studies. A natural extension of this work is to
implement the algorithm.

Although multi-alignment algorithms in this thesis are straightforward generalizations of their
pairwise counterparts, we hope that they will contribute to a better understanding of algorithmic
techniques for the multi-alignment problem and lead to developing new algorithms.

29

References

[1] Alberts, B; Johnson A; Lewis, J; Raff, M; Roberts, K; Walter, P: Molecular biology of the

cell. 4th edition. New York: Garland; 2002.

[2] Arvestad, L: Algorithms for biological sequence alignment, PhD thesis, Dec. 1999.

[3] Carrillo, H; Lipman, D: The multiple sequence alignment problem in biology. SIAM J. Appl.
Math., 48(5):1073–1082, 1988.

[4] Chao, K; Pearson, W R; Miller, W: Aligning two sequences within a specified diagonal band,
CABIOS, 8(1992), 481–487.

[5] Edmiston, E W, Core, N G; Saltz, J H; Smith, R M Parallel processing of biological sequence

comparison algorithms, Journal of Parallel Program. 17 259–275 (1988).

[6] Hirschberg, D S: A linear space algorithm for computing maximal common subsequences.
Commun. ACM, 18(6):341–343, 1975.

[7] Iyengar, A K: Parallel characteristics of sequence alignment Algorithms. ACM, 1989.

[8] Myers, E W; Miller, W: Optimal alignments in linear space. Comp. Appl. Biosci. 4:11–17
(1988).

[9] Setubal, J; Meidanis, J: Introduction to computational molecular biology. Boston: PWS
Publishing, 1997.

[10] Stoye, J: Divide-and-conquer multiple sequence alignment Dissertation Thesis. Universität
Bielefeld, Forschungsbericht der Technischen Fakultät, Abteilung Informationstechnik, Re-
port 97–02, 1997.

[11] Wang, L; Jiang, T: On the complexity of multiple sequence alignment. J. Comput. Bio.,
1:337–348, 1994.

[12] Wang, L; Jiang, T: Algorithmic methods for multiple sequence alignments, City U of Hong
Kong, UC Riverside.

31

Appendix A: Time analysis of Hirschberg’s

algorithm in k dimensions

Let sequences s = (s1, s2, . . . , sk) have lengths n = (n1, n2, . . . , nk) and let T (n) denote the time
complexity of the algorithm. Then T can be estimated with the following recursion:

T (n) ≤ k2 2k
k

∏

j=1

nj +
k

∏

j=2

nj + T (n1/2, . . . , ik) + T (n1/2, . . . , nk − ik).

Lemma 1 The time bound for the algorithm DCMA is as follows:

T (n) ≤ 2 k2 2k
k

∏

j=1

nj + 2

k
∏

j=2

nj .

Proof. We proceed by induction on n1.

For n1 = 1, no maximum computations occur so the hypothesis is obviously true:

T (n) = k2 2k
k

∏

j=2

nj < 2
(

k2 2k + 1
)

k
∏

j=2

nj

For n1 > 1, we have

T (n) ≤ k2 2k
k

∏

j=1

nj +

k
∏

j=2

nj + T (n1/2, . . . , ik) + T (n1/2, . . . , nk − ik)

=
(

k2 2k n1 + 1
)

k
∏

j=2

nj +
(

k2 2k n1 + 1
)

k
∏

j=2

ij +
(

k2 2k n1 + 1
)

k
∏

j=2

(nj − ij)

=
(

k2 2k n1 + 1
)





k
∏

j=2

nj +

k
∏

j=2

ij +

k
∏

j=2

(nj − ij)





≤ 2 k2 2k
k

∏

j=1

nj + 2
k

∏

j=2

nj .

The last inequality holds because the inequality

k
∏

i=1

ai +
k

∏

i=1

bi ≤
k

∏

i=1

(ai + bi)

is always true for ai, bi ≥ 0, where i is a positive integer. �

33

