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Abstract 
In this master’s thesis, an attempt is made to automatically predict where people will 

look when watching video sequences. An application in the form of foveation for video 

compression is discussed. A relatively simple prediction model is built based on eye-

tracking data from several subjects and low-level features generated from the video 

frames, using simple image processing algorithms. The prediction model uses a new 

method to extract differences in feature distributions between frame regions that are 

watched and those that are not. It is first shown that these differences are significant. The 

differences are then used to predict which regions will be looked at in a new video 

sequence. The prediction is evaluated against eye-tracking data for the new video 

sequence and it is shown that the prediction is significantly better than random. 

Moreover, the accuracy of the prediction is compared to that of a group of humans 

predicting another group of humans. This comparison indicates that the proposed model 

needs improvement. Finally, a discussion follows about the possibilities and problems of 

the selected approach to gaze prediction. 
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1 Introduction 

1.1 Improved video compression by foveation 
There has been, and still is, an enormous growth in the use of digital video. New 

applications, such as video telephony or Internet video streaming, and older ones, such as 

digital video home recording, continue to increase in popularity. Considering this, the 

need for efficient compression technologies is undeniable, given that transmission and 

storaging capabilities are still limited. 

 

Traditional video compression methods assume that every part of a video frame is 

equally important. Consequently, every part of a frame is equally degraded when the 

video is compressed. However, the assumption is not true since the human eye is only 

capable of sharp vision in a limited area. The visual acuity starts to drop rapidly at an 

angle of about 2° from the line of sight (Duchowski, 2002). This means that a relatively 

higher level of degradation in the periphery would not matter as much to the viewer as it 

would in the line of sight. Following this reasoning, it seems rational to use a higher 

compression rate for information that is of less importance, while providing a better 

image in the interesting parts of every frame. If this technique, known as foveation, were 

to be used by video compression software, it would be possible to increase the efficiency 

of compression – and get a better trade-off between quality and bit rate. See for example  

(Wang & Bovik, 2001) for an introduction to foveation. 

 

The problem with foveation is that it is not known in advance where a person will look 

on a video frame. There are currently three different solutions to this problem. The 

traditional solution, called online foveation, is to provide the person watching the video 

with eye-tracking equipment and feed the coordinates to a computer that renders the 

video differently based on where the subject is looking. However, this is not a plausible 

solution in many cases since eye-tracking equipment is expensive and complicated to use. 

Also, this approach does not reduce the requirements in terms of storage and bandwidth 

since the compression then would have to be made ad hoc. This solution is rather suitable 
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for applications where the video is rendered in real time, such as flight simulators (see 

Jacob & Karn, 2003, for a description). 

 

Another approach to solving the problem is to show the video that is about to be foveated 

to a group of people and measure their eye movements. The collected data can be used as 

a predictor of where people will look when seeing that video sequence, and to foveate it 

accordingly. This can be called offline foveation has been done successfully (Nyström, 

Novak & Holmqvist, 2004). In most cases however, this procedure is too costly to be 

used in practice, which led to the third solution approach.  

 

The third approach is to create an algorithm which in some way tries to predict, for every 

frame in a video sequence, what areas that are likely to be looked at, without the need for 

experiments with live subjects. This approach can be referred to as predicted foveation. 

Such an algorithm would indeed provide a cost-efficient way of improved digital video 

compression. This thesis describes an attempt to build a gaze prediction model, upon 

which such an algorithm is implemented (hereafter the word model will be used to signify 

both the model and the algorithm). However, as we shall see next, it is not at all obvious 

that it is possible to build a model capable of delivering accurate predictions of where 

people will look. 

 

In addition to improved video compression, other applications could also benefit from a 

gaze prediction model. The model could be useful in applications where it is important to 

extract the most important regions in an image or a video sequence, such as robotic 

vision, surveillance, automatic video classification etc. Beside the applications, the 

(validation of the) model could also generate knowledge about what influences gaze 

behavior, which is of theoretical interest. 

1.2 Gaze prediction – a futile endeavor? 

Is it possible to determine in advance where a person will look when watching a video 

sequence? There are good arguments both for why it could, and why it could not be 

possible. One could argue that the contents, or chain of events, of the video would to a 
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high degree control where one looks. If, for example, you are watching a film where 

someone suddenly enters an empty room and starts to speak, the chances are high that 

you would look at that person. A good argument comes from eye-tracking research that 

has shown that faces, especially the areas around the eyes and the mouth, tend to attract a 

great deal of eye fixations (see for example Henderson et al, 2000; Gullberg & 

Holmqvist, 1999; or Yarbus, 1967). This kind of knowledge could possibly, together with 

properties of the video sequence, be used for prediction of where people will look. 

 

On the other hand, it can be argued that humans have free will and prefer to look at 

different things. The randomness of people’s will and interest would thus make it 

impossible to predict the movement of their eyes. In the early days of eye-tracking 

research it was found that even just a single person looked at an image in completely 

different ways depending on a given task. In particular, some areas of the image were 

more looked at for one task and less for another (Yarbus, 1967) Thus, one could also 

argue that any attempt of prediction might have to consider the “task” that the person 

watching the video sequence is performing, whatever that might be.  

 

Some attempts have been made at predicting where people will look on still images. 

When images are exposed briefly to subjects, some previously proposed algorithms seem 

to be able to somewhat accurately predict where the subjects will look. The prediction of 

the order of fixations however, seems much harder (Privitera & Stark, 1998).  

 

However, contrary to the standpoint that gaze is too random and personal to predict, there 

is experimental evidence that the differences in people’s eye movement when watching 

video are quite limited. It has been shown that gaze points tend to group in one or few 

clusters (Dorr et al, 2005). An interesting result is that when eye-tracking data from a 

group of subjects was used to foveate a video sequence (as described in section 1.1 as the 

offline foveation approach) and it was shown to a second group of subjects, it was found 

that their gazes were more clustered compared to the first group. Apparently, foveation 

steers gaze points into the less compressed area(s) (Nyström, Novak & Holmqvist, 2004). 

It has also been shown that there are no significant differences in gaze patterns due to age 
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or gender (Goldstein et al, 2004). The essence of these results is, among other things, that 

the possible existence of interpersonal “tasks” for video watching is negligible, and that 

the problems of predicting the fixation order in still images does not carry over to moving 

images. The latter could be because video watching to a higher extent than still image 

watching is driven by stimuli, whereas still image watching is more of a top-down 

process since there is more time to freely explore every image. With all this in mind, gaze 

prediction in video seems a lot more plausible. 

 

The standpoint that prediction of gaze points is not possible could still be valid in one 

sense: Given that people have free will, a person could choose to just look at an arbitrary 

point on the screen without caring about what happens in the video. That kind of behavior 

is unlikely and seems impossible to predict. To require that is however a bit too strict. 

One has to remember that prediction does not necessarily mean being able to say exactly 

how one person will behave. Instead, prediction often refers to specifying what will 

happen on average. Take this as an example: One could predict that the weather in Lund 

will be mostly sunny in July, in a majority of years in the future. This would probably 

make quite a good prediction, although there will of course always be those summers 

when it rains all the time. When that occurs is much harder to say. Still, the prediction is 

often right and so it is useful. This reasoning applied to prediction of eye movements says 

that it will be impossible to say exactly where someone will look, but predicting where 

the majority of a group of people will look is still possible. 

 

In conclusion, the requirements for a successful prediction are that people tend to look at 

the same regions of video frames and that there are identifiable features in the video 

frames that in some way are correlated to the likelihood of different regions being looked 

at. Logically, the second requirement follows from the first since there could hardly be 

any other reason for the earlier mentioned tendency of clustering of gaze points, than that 

there is some feature in the video frame that correlates with gaze amount. What could 

otherwise attract different persons gaze to the same regions? The interesting question is 

thus not if there are features that correlate with gaze, but what those features are. Even if 

they do exist, they could be connected to some high-level cognitive aspects and as a 
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result be difficult or impossible to quantify. Prediction based on such features could 

indeed become quite a hard task. 

 

A model such as the one proposed here, assumes that the correlations between gaze 

behavior and some specific, computable, low-level features are sufficient for prediction 

purposes. Such correlations have been shown to exist for still images (see Reinagel & 

Zador, 1999; Privitera & Stark, 2000). Also, correlations have been found for video (Itti 

2005). Nevertheless, the assumption of correlation for video will constitute a part of the 

hypotheses of this thesis, and will be tested for the specific features that are used in the 

model described here. The main reason for this test, even though correlations already 

have been found, is that a different approach will be tried in how the features are used.  

 

The rest of the introduction section contains a quick presentation of the proposed 

prediction model, a comparison with another gaze prediction model, and the hypotheses 

of this thesis. The second section contains a description of the data material that has been 

used, and the experimental conditions under which it was collected. Section 3 is focused 

on presenting the features that are used in the model. In section 4, the data material is 

analyzed with regards to the used features, and it is investigated if the features correlate 

with gaze points. Section 5 is devoted to the prediction of gaze points for video and 

validation of this prediction. The results of the data analysis and the prediction are finally 

discussed in section 6. 

1.3 The gaze prediction model 

The model described in this thesis (hereafter referred to as our model) will here be shortly 

described. A more careful treatment is given in sections 3, 4 and 5. Our model is based on 

two things: eye-tracking data that was recorded for several subjects while they were 

watching video sequences, and a set of low-level features. Practically no knowledge of 

the human visual system (i.e. the parts of the brain that are involved in visual processing 

and attention) is assumed.  
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A low-level feature is, in one sense1, a quantitative measure generated by an image 

processing algorithm using one or more frames of the video sequence. For example, a 

simple low-level feature is the luminance (brightness) of different points in a frame. An 

image processing algorithm that calculates the luminance feature would take an image (a 

video frame) as input, and return a new image whose pixel values are proportional to the 

luminance of the pixels in the original image. The result would look like a gray-scale 

version of the original image. Another example of a low-level feature is what is returned 

by an image processing algorithm that emphasizes edges (an edge detector). The 

algorithm transforms an image into a new image where the pixel values are related to the 

difference in intensity between adjacent pixels. An example of such a transformation, for 

a gray-scale image, can be seen in figure 1. In the resulting image, edges are given high 

values and the areas between them are given lower values. All in all, our model uses 

different variants of four basic features: Intensity, edges, motion and contrast. 

 
Figure 1: Example of edge detection 

 

                                                
1 Two different interpretations are given to the term feature. The first interpretation, as discussed in the 

previous section, refers to visual properties of objects at any level. This is a modification of the feature term 

used in the visual search literature, where basic features are stimulus attributes that supports efficient 

search and effortless segmentation of objects (Wolfe, 1998). The other interpretation is that a feature is a 

computable measure of an image (or several consecutive images). There is often a clear correspondence 

between the two interpretations (as for the color feature), but not necessarily (as for the ‘edge feature’). 

When the term is used, the context can be taken as a guide to which interpretation is appropriate. Although 

hereafter, the word will mainly be used to signify computable meauses of images. 
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Figure 2: The model workflow 

The model workflow can be seen in figure 

2. Our model works in two main phases. 

First there is the analysis phase (which is 

similar to what is often referred to as 

training in machine learning literature). 

This phase takes eye-tracking data and the 

corresponding video sequence(s) as input. 

It consists of calculating measures of the 

different features for the video that has 

been shown to the subjects. The feature 

measures are calculated for the regions of 

the frames that have been looked at, and for 

the frames in total. For reasons that will be 

explained later, the contrast feature 

measure is not calculated for the whole 

frames, but in random regions of the different frames. These feature measures are stored 

and analyzed to construct statistical distributions, here called feature density maps, which 

is the output of the analysis phase. These maps describe how certain values of a feature 

correlates with gaze, and are in structure similar to probability functions. The information 

contained in the maps is an aggregate of the recorded eye-tracking data, with regard to 

the features. 

 

Since our model works through statistical analysis, it does not assume any knowledge 

about how the real human visual system functions. An exception however, lies in the 

selection of features used in the model. These were chosen with consideration of previous 

research about what attracts gaze and visual attention (Wolfe, 98; Reinagel-Zador 1999; 

Itti 2004; Privitera & Stark, 1998). 

  

The other step is the prediction phase. It takes a set of feature density maps and a video 

sequence (which has not been used in the analysis phase) as input. The prediction is 

carried out by calculation of feature measures on the frames in the video. The different 



 12 

feature density maps are then used together with these measures to decide the likelihood 

of a gaze in different regions of the video frames. The general idea is that the likelihood 

is calculated based on what value the feature measures in the actual region correspond to 

in the feature density maps. The output is finally presented as two-dimensional 

probability2 maps, here called prediction maps3, which are supposed to describe the 

likelihood of gaze in different points of the frame. The prediction maps can then be 

validated against eye-tracking data (this is done in section 5). If the prediction is to be 

used for foveation, the video codec is supposed to alter the compression rate based on the 

prediction maps. 

1.4 Other attempts at prediction, similarities and differences 

There has been some research on the prediction of gaze points and related concepts4 (see 

for example Osberger & Maeder, 1998; Privitera & Stark, 2000; Itti & Koch, 2000). Also 

(Ericsson & Pehrsson, 2005) is relevant in that the methodology is in part similar to what 

is tried here. 

  

Only recently, research has turned to the interesting problem of predicting gaze points in 

video. The most well-known attempt is briefly described in the following subsection. 

                                                
2 Strictly, they are estimations of probability functions which are assumed to exist for the purpose of this 

thesis. 
3 Maps with the same function are sometimes called saliency maps, to point out that they estimate the 

relative saliency of different regions on the screen (Itti, 2004). 
4 Some prefer using the concept region of interest (ROI) to denote regions where people look. A gaze point 

is here assumed to be located in a ROI. Others prefer to predict fixations. Essentially this is the same thing 

as predicting gaze points, although only points where the eye fixates for a certain time period are counted 

(i.e. gaze points during saccades are not counted). In the actual prediction, it makes no difference to predict 

gaze point or fixations. The reasons that this master’s thesis uses the more general concept of gaze points is 

that it would be impractical to filter out fixations from the data material. 
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1.4.1 The iLab model 

A model that has gotten a lot of attention lately has been created by iLab at University of 

Southern California5, led by Laurent Itti (the model will hereafter be referred to as the 

iLab model). The most important aspects of the iLab model will be described here in 

short, but see (Itti, 2004) for details.  

 

The iLab model is originally based on a visual search model for still images (Itti & Koch, 

2000)  with added temporal aspects. Both models are based on neurobiological 

knowledge and assumptions about the visual system. The iLab model calculates feature 

maps for twelve different low-level features at nine spatial scales. It then calculates a 

center-surround difference for every feature map, at different pairs of scales. This yields 

six maps for every feature, a total of 72 feature maps. These maps undergo a form of 

internal competition, where regions with high feature values compete with each other to 

gain high values in the final maps. The competition is then repeated across the spatial 

scales. The result indicates those regions that stand out from their surroundings. This is 

an attempt to model the pop-out effect in visual search (described in Wolfe, 1998). The 

maps are finally added to create what is called a saliency map, which is used to guide the 

prediction (some normalization, scaling and temporal smoothing is also performed). 

Optionally, it is also possible to a priori define a discrete number of virtual foveas 

(simulated gazes) that are driven by the saliency maps and have internal dynamics. This 

option is probably a heritage from the visual search model, and could perhaps be useful 

for applications such as video compression or robot vision. 

 

The greatest difference between the iLab model and our model, is the starting point. 

Instead of trying to approximate neurobiological phenomena, our model is based on a 

statistical analysis of gaze points and their surroundings in the video frames. Our model 

is simpler, but the structure is harder to motivate from a theoretical perspective. But even 

though there is no attempt here to construct a model for how the human visual system 

actually works, the model is implicitly a function of the neurobiological reality. This is 

                                                
5 See http://ilab.usc.edu 
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because the eye-tracking data, that the model is built upon, contains what real human 

visual systems (of test subjects) have produced.  

 

The iLab model, on the other hand, is built from theorizing – not with regards to the types 

of features involved (they have all been proved to correlate with eye-tracking data), but 

there is no experimental data involved in the actual modeling. This is not necessarily bad, 

since it makes the model context-free and independent of what data material is available, 

but at the same time it seems awkward to build a model without using data to control any 

of the parameters. One could assume that the creators of the iLab model have very good 

knowledge about the human visual system, or maybe suspect that the model is the result 

of an advanced trial-and-error scheme, or perhaps a combination of the two. It does leave 

room for questions such as whether the relative weighting of the features is optimal. All 

features are currently treated as equally important which is not in agreement with the 

finding that some of the features have higher correlation with eye-tracking data, as found 

in (Itti, 2005). If a particular feature correlates more with gaze than others, why should 

not a model of the human visual system take that into account? On the other hand, there 

are also drawbacks with only using experimental data to build the model, as done here. It 

becomes very sensitive to the data material used. If the data material is non-

representative, the predictions will probably not be very good for most video sequences. 

 

The two models are clearly built with different purposes. The main goal for iLab seems to 

be biological plausibility, which is not considered here. The primary matter of interest in 

this thesis is the predictive ability of the model. Our model does therefore not include the 

option of having virtual foveas. Instead, the prediction maps in themselves are supposed 

to be used for foveation of video. Another aspect, which is important for applications, is 

that our model is simpler and computationally faster6. For example, it does not use 

different spatial scales, and there are no competitive networks involved. 

 

                                                
6 This is, of course, given that both algorithms and their implementations are optimized to the same degree. 
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But perhaps one of the most important differences is the extent to which the two models 

have been validated: Our model has been built and validated on eye-tracking data from 

groups of 14 and 26 subjects. The iLab model has been validated on a set of video 

sequences where the number of subjects varies between as few as four and six (average 

4.7). Even if the results of the prediction were significantly better than random, the 

ecological validity of the results are disputable with so few subjects. On a further 

account, it is questionable how naive Itti’s subjects really were. The subjects were given 

explicit instructions to look at the main events in the video sequences (Itti, 2004). 

1.5 Hypotheses 

The goal of this thesis is to produce a model that uses computable low-level features 

together with eye-tracking data to produce gaze predictions, for video, of the best 

possible quality. As discussed in the introduction, a necessity for prediction is that the 

features used by the model correlate with the amount of gaze a region receives. Even 

though this has been previously shown for a set of low-level features, the assumption 

deserves to be tested yet again. A good reason for this is the considerable amount of data 

available (see section 2), another is that a different approach has been used for the feature 

analysis compared to previous studies (such as Reinagel & Zador, 1999; Privitera & 

Stark, 2000; Itti 2004). 

 

Analysis Hypothesis: There are significant differences in low-level features between 

regions that are looked at and regions that are not looked at. 

 

Even if there are differences, this does not guarantee that they are sufficient for prediction 

purposes. A minimum requirement for prediction is that it is better than random guessing. 

 

Weak Prediction Hypothesis: Using only low-level features, it is possible to predict 

which regions will be looked at. The prediction is significantly better than what could be 

achieved by random. 

 



 16 

As discussed in section 1.1, it is impossible to exactly predict where a person will look, 

so to require that accuracy would be unfair. However, since people’s gazes tend to 

cluster, the best possible predictor is probably another group humans. To expect a model 

to have the same accuracy of predictions as a group of humans is perhaps far-fetched, but 

in an optimistic spirit, a comparison is nevertheless to be performed. 

 

Strong Prediction Hypothesis: Compared to a group of humans predicting another 

group of humans, prediction based on low-level features is not significantly worse. 

 

To quantify the extent to which these hypotheses are met will be much easier given a 

more exact description of the analysis and prediction phases. The hypotheses will 

therefore be operationalized in the subsequent sections, just before they are evaluated 

with regards to the results. 

2 Data material 
The data material used in this thesis consists of video sequences and eye-tracking data 

recorded for these sequences. Some data was available in prior, and some was gathered 

through an experiment. 

2.1 Data from a previous study 

Information about video sequence A can be found in 

table 1. The eye-tracking data was recorded at 50 Hz, 

using 14 subjects. The video sequence and the eye-

tracking data originate from (Nyström, Novak & 

Holmqvist, 2004) (the video sequence used here is the 

non-foveated version).  

 

2.2 Experiment 
To collect additional data, an experiment was 

conducted. A new video sequence was  

  Video sequence A 
Length 3 m, 35 s 

Frame rate 25 Hz 

#Frames 5384 

Resolution 720×576 

Image size 720×576 

Colors Thousands 

Sound 44100 Hz Stereo 

Content Seven different types  

of natural scenes 

Table 1: Video sequence A 
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prepared (see table 2). It consists of two different parts, where the second follows directly 

after the other with a mere interruption of four black frames. The image size was smaller 

than the resolution, meaning that there were black borders around the video sequence. 

 

The experiment took place in Humanistlaboratoriet, in the premises of Språk- och 

Litteraturcentrum (SOL-centrum) at Lund University, April 28th and 29th, 2005.  

 

2.2.1 Subjects 

30 subjects (18 male, 12 female) were recruited. Most, but not all, were students at Lund 

University. Their ages were (by estimation) between 20 and 55, with a median around 25. 

None of the subjects knew in advance about 

the purpose of the experiment. When asked 

after the experiment what they believed was 

the purpose, most responded that it was to 

see what they had looked at, but they could 

not say why. A few of them thought that the 

purpose was to determine what would attract 

their attention (motion was mentioned by 

most of these). However, all the subjects 

were quite vague and could not elaborate. No 

one mentioned anything about (low-level) 

features, statistical analysis, prediction, or 

anything related. Many subjects did however 

show interest in the film (Boondock Saints), 

saying that they wanted to see the rest of it as 

well (only five had seen the film before). The 

subjects claimed that they felt comfortable with the experimental situation and that they 

had watched the video as they would have done in a normal setting. Visual inspection of 

the recorded data does not indicate otherwise (i.e. there were no subjects that did not 

seem to follow the major events in most parts of the video sequence). 

Video sequence B 
Length Part 1: 4 min, 41 s  

Part 2: 15 min 

Frame rate 25 Hz 

#Frames Part 1: 7026 

Part 2: 22497 

Resolution 768×576 

Image size Part 1: 352×288 

Part 2: 759×329 

Colors Thousands 

Sound Part 1: None 

Part 2: 44100 Hz Stereo 

Content Part 1: Standard clips used  

in video compression research 

Part 2: The beginning of 

the movie ‘Boondock Saints’ 

Table 2: Video sequence B 
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2.2.2 Procedure 

The subjects were received one at a time. They were seated in a chair approximately 75 

centimeters from a Dell 17” tft screen, which was used to display the video sequence. 

The screen had a resolution of  800x600 and was connected to an Apple Powerbook G4 

1GHz in another room that used QuickTime to display the video (in ‘normal’ size, with 

the rest of the screen black). An SMI iView X remote camera was placed on the table 

directly under the monitor and used as an eye-tracking device. An SMI iView infrared 

corneal reflex pupil system was attached to the sides of the monitor. It was used to emit 

infrared light that was reflected by the subjects’ eyes into the camera. Nothing was 

attached to the subjects, so they could freely move their heads although they were 

instructed not to make any quick movements since the camera can only follow slow 

movements. 

 

The subjects were told that they could abort the experiment at any time, without having to 

motivate why. They were also informed that they have the right to contact the experiment 

leader (the author) after the experiment in order to have their data deleted. 

 

The eye-tracking device was calibrated using 9 dots located in a grid, displayed one at a 

time, on an area of the same size as the video sequence. The subjects looked at each of 

them while an eye-tracking expert handled the calibration program from the other room. 

After the calibration, the subjects were told that they should look at the video in the same 

way they would usually do. They were told that they first were going to see a red dot (see 

section 2.3 for an explanation) that makes a circular motion across the screen and then a 

number of short clips with no sound, followed by 15 minutes from the beginning of a 

movie. 

 

The subjects were given the possibility of asking questions (no questions about the 

purpose of the experiment were answered). They were finally told to look at the red dot 

as long as it was on screen. The light was then switched off in the room, and they were  

left alone as the video sequence began to play. 
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The eye-tracking device filmed one of the subject’s eyes while the video sequence 

played. A computer then took the images of the eye in the infrared wavelength band, and 

calculated the relative angle at which the eye was directed towards the screen, using the 

images of the pupil and the corneal reflex. Using the calculated angle, the on-screen 

coordinates of the gaze where calculated. Measurements were given at 50 Hz (every 20 

ms). The measurement error was estimated to be less than one degree (which equals 

approximately 30 pixels on the screen).  

 

During the experiment, the eye-tracking expert monitored the subjects and the eye-

tracking device from the other room. If the subjects’ head movements made the camera 

loose track of the eyes, this was corrected for within a few seconds. 

 

When the video sequence had reached the end, the experiment leader entered the room 

and the light was turned on. The subjects were asked for their general impression of the 

experiment and if they had seen the movie before. They were also asked about their 

beliefs about the purpose of the experiment. Nothing was however revealed until after the 

final subject had left, when an explanatory e-mail was sent out to the subjects. Before 

leaving, the subjects signed a paper saying they permit usage of the recorded data 

material for academic purposes. Every subject also received a small gift in the form of 

two lottery tickets. 

2.2.3 Resulting data 

The result of the experiment was 30 files with on-screen eye-tracking coordinates at 50 

Hz (two measurements per frame). No difference is made in the data if the measured 

coordinates are due to fixations, saccades, smooth pursuit, blinks, or anything else. 

Measurements recorded when the subject looked outside the screen or closed his/her 

eyes, or when the camera lost track of the eye, were removed. 

 

Of the 30 subjects, four (two male, two females) was later removed due to different 

reasons, such as calibration errors. For one subject (female), only 13,5 minutes of data 



 20 

was later used, due to a sudden error in the video playback 14 minutes into the 

experiment. 

2.3 Post-experimental calibration procedures 

In addition to the spatial calibration performed prior to the data recording, a temporal 

calibration has to be performed as well in order to match the eye-tracking data with the 

frames of the video sequence. This was done in the same way for both of the two 

available data sets. 

 

The purpose of the red dot (included in the beginning of both video sequences) is to 

support the temporal calibration. The calibration is performed by calculation of the center 

of the red dot for each frame (the diameter of the red dot is 55 pixels). For each frame, 

the distance between the gaze point and the center of the red dot is then calculated for 

different temporal offsets in the data. This means that the data is moved back and forth in 

time while the distance to the red dot is measured for a particular frame. This is done for 

all the frames where the red dot is visible (the rest of the screen is black in those frames). 

Of all the temporal offsets that generated the smallest distance, the median is selected as 

the temporal offset to be used. 

 

After the temporal calibration, the first 300 frames were discarded. Only 161 of these 

were used for calibration, but removal of the first few seconds reduces any transient 

effects that may be present in the beginning of the experiment. 

 

A criterion for a subject to be used was that there were at least 20 consecutive frames (40 

consecutive measurements where the distance between the gaze point and the center of 

the red dot was less than 70 pixels. Other than the subjects already mentioned as 

discarded, all the subjects passed this criterion. 

 

In video sequence B, the image area is smaller than the video resolution. The data 

coordinates were therefore transformed with a spatial offset, and the video was cropped 

so that only the image area remained. The main reason to do this is that the feature 
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calculations would otherwise have been biased due to a big portion of the screen 

practically never being looked at (e.g. the color black would be attributed an artefactual 

low correlation with gaze). The cropping also increased the speed of the calculations that 

followed. 

3 Features and images 

3.1 Computer representations of images 
All the calculations and data handling in this thesis were performed in Matlab. Some 

specific details that follow might differ in other environments. 

 

Using QuickTime, the video sequences A and B were converted to sequences of tiff 

images. These were then imported to Matlab for further processing. Color images are 

represented in Matlab by three-dimensional matrices of size H×W×3, where H is the 

image height and W is the image width. The values in the matrix are floating point 

numbers7 in the interval [0,1] that describe the intensity of one of the three color channels 

in the pixel that corresponds to the location in the matrix. If the image is in RGB format 

(as it is when it is imported from a tiff file), then the first layer of the matrix contains the 

red color channel, the second the green and the third the blue. A completely blue image 

would thus be represented by zeros in the first two layers and ones in the third layer. 

 

To be able to handle color information in images separately from luminance information, 

the RGB images need to be converted into another color space. We will here use the 

YCbCr color space. In this color space the first layer in an image matrix, the Y channel, 

represents the luminance8, and the other two layers, the Cb and the Cr channels, 

                                                
7 It is also possible to use integer representations 
8 Actually it represents the luma which is not exactly the same thing. The term luminance will be used 

continuously since the difference is not relevant here, but see http://en.wikipedia.org/wiki/Luminance 

(2005-06-06) for details. 
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represents chrominance (i.e. color content). Descriptions of the YCbCr color space are 

readily available9. 

  

In Matlab there is a function10 that transforms an image from RGB to YCbCr, using the 

conversion formula: 

 

! 

Y= 65.481" R +128.553 "G + 24.996 " B +16( ) 255

Cb = #37.797 " R # 74.203 "G +112 " B +128( ) 255

Cr = 112 " R # 93.786 "G #18.214 " B +128( ) 255

 

 

As can be seen in the first equation, Y only takes values in the interval [0.063, 0.922]. 

Figure 3 shows how colors are mapped into the YCbCr color space. The color space 

looks like a cube with (starting from the top in clockwise order) blue, magenta, red, 

yellow, green, cyan and white (in the middle) in the visible corners. Black is located on 

the backside, in the opposite corner of white. 

 
Figure 3: The YCbCr color space. The Y-axis points out of the figure. 

                                                
9 See for example http://en.wikipedia.org/wiki/YCbCr (2005-06-06). 
10 rgb2ycbcr 
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3.2 Low-level features 

This section contains a description of the low-level features used in our model. These 

features are computable, in the sense that they are generated from an image by an image-

processing algorithm. It is not claimed that these computable features are the only 

important visual properties or that they are the major factors in determining where a 

person will look when watching a video sequence. On the contrary, it is strongly believed 

that there are high-level features (that may not be visual, such as context) that are 

extremely important for directing gaze. The motivation for using low-level features is 

that they are easily computable (high-level features may be very difficult to model) 

combined with the results that they do correlate with gaze patterns in a significant way 

(Reinagel & Zador, 1999; Privitera & Stark, 2000; Itti, 2005). 

 

There are two possible reasons that low-level features seem to correlate with gaze points. 

The first is that it could actually be the low-level feature in itself that influences where a 

person directs the gaze. As an example, this could, hypothetically, be true if motion 

throughout evolution has been a consistently good indicator of where to look to receive 

important information (such as if someone is attacking you). Then it could have become 

encoded in our genes that it is adaptive to look where there is motion. 

 

The other possible reason is that the low-level feature in itself is of no importance, but it 

happens to correlate with an important higher-level feature. It can be discussed if a face is 

a high-level feature or not, but from a computational standpoint it is quite complicated to 

construct a general face detector (for an example, see Schneiderman, 2000). On the other 

hand, it is easy to detect skin color. Skin color is not a perfect face detector, but at least 

skin color should correlate with the existence of a face. Since it is known that people tend 

to look at faces (Gullberg & Holmqvist, 1999), a low-level feature that detects skin color 

could in fact prove useful, even though humans probably do not have a natural tendency 

to look at skin colored objects (unless it actually is skin). 
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Which of these reasons that explains the correlation is not investigated further in this 

thesis. But the above discussion is useful to keep in mind for the presentation of the low-

level features. 

3.2.1 The intensity feature 

The intensity feature is simply calculated as the intensity in each of the pixels of the 

image. There are two variants of this feature: The first is the Y intensity value, the 

luminance in the pixel. The other is the Cb and the Cr values that together form a two-

dimensional feature vector. In mathematical notation, this can be expressed as: 

 

! 

IY pi, j( ) = 1,0,0( ) " pi, j

IC (pi, j ) =
0,1,0( ) " pi, j
0,0,1( ) " pi, j

# 

$ 
% % 

& 

' 
( ( 

 

 

where pi,j is the pixel at coordinates (i,j). It is a point in the YCbCr color space and IY(p) 

and IC(p) are the luminance intensity value and the color intensity values of the point. 

3.2.2 The edge feature 

The edge feature is calculated as the difference in intensity between adjacent pixels. 

Specifically, it takes the pixel intensity multiplied by 4 and subtracts the intensity of the 

pixels that are above, below, to the left and to the right. It then takes the absolute value. 

Just as for the intensity feature, there are two different variants of the edge feature. One is 

calculated on the Y channel, and the other is calculated on the color channels to form a 

two-dimensional feature vector. In mathematical notation: 

 

! 

EY pi, j( ) = 1,0,0( ) " 4 pi, j # pi#1, j # pi+1, j # pi, j#1 # pi, j+1( )

EC pi, j( ) =
0,1,0( ) " 4 pi, j # pi#1, j # pi+1, j # pi, j#1 # pi, j+1( )

0,0,1( ) " 4 pi, j # pi#1, j # pi+1, j # pi, j#1 # pi, j+1( )

$ 

% 

& 
& 

' 
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) 
) 

 

 

 



 25 

An example of the EY feature calculated for a whole image, was shown in figure 1, 

section 1.3. In the actual implementation, the edge feature is calculated by a convolution 

between the image and the matrix 

! 

MEdge =

0 "1 0

"1 4 "1

0 "1 0

# 

$ 

% 
% 
% 

& 

' 

( 
( 
( 
 

followed by taking the absolute value of the resulting image. Since the resulting image is 

two pixels larger in height and width, the image is also cropped to the original size. The 

EY feature is then extracted as the first layer in the image, and the EC feature is extracted 

from the second and the third layers. 

 

This edge feature is a high pass frequency filter. It suppresses image content with low 

spatial frequencies (intensity that changes slowly) and emphasizes image content with 

high spatial frequencies (intensity that changes rapidly). It is suspected that high 

frequency correlates with high information density and, in the end, gaze points. 

3.2.3 The motion feature 

The motion feature is a bit more complicated than the two previous features. There are 

numerous different techniques and image processing algorithms that can estimate the 

motion in a point, given a few consecutive frames. The good ones however, do tend to 

get quite mathematical (see for example Brox et al). Since the motion estimation problem 

lies outside the scope of this thesis, our model will use an approximation. The motion 

feature will be approximated by disturbance fields, which are weighted frame 

differences. Disturbance fields are commonly used in motion detection algorithms, which 

suggests that this approximation may be apt. The disturbance field is implemented using 

a recursive filter, as defined by (Halevy & Weinshall, 1998), with the small modification 

that the absolute value is used instead. 

 

! 

A
0

= 0

A
t

= 1" w( )Pt + wA
t"1

D
t

= P
t
" A

t"1
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P denotes the image matrix, At denotes the temporal average image at frame t, and Dt is 

the disturbance field at frame t. The weighting factor w controls the duration for which a 

frame influences future values of the disturbance field. More recent frames are always 

given more importance, so setting w is a matter of how quickly the disturbance field 

“forgets” a frame difference. The value w = 0.6 was used, which according to (Trucco et 

al, 2002) implies that only the 6 most recent frames are expected to make a significant 

difference11. When the disturbance field is initially calculated, the 20 preceding frames 

are used as an initialization sequence. 

 

Just as for the intensity and edge features, the motion feature has a Y channel variant, and 

a color channel variant. They are simply calculated by taking the values of the 

disturbance field in the corresponding point. If di,j is used to denote the disturbance field 

at coordinates (i,j), then this can be expressed as: 

 

! 

DY pi, j( ) = 1,0,0( ) " di, j

DC pi, j( ) =
0,1,0( ) " di, j
0,0,1( ) " di, j

# 

$ 
% % 

& 

' 
( ( 

 

 

Note the difference between DY and DC, which are features, and Dt, which is the 

disturbance field at frame t.  

3.2.4 The contrast feature 

The contrast feature is here defined as the standard deviation in a patch, with a given size 

and shape, of an image. The patches that are to be used will be introduced in the next 

section. Unlike the other features, the contrast feature is used in three variants, one for 

each channel, which are all one-dimensional. The main reason for using one-dimensional 

color variants is that there will always be a lot fewer measurements of the contrast feature 

                                                
11 The number is probably higher here since our definition of a significant difference is smaller, as follows 

from the histogram intervals defined in the next section.  
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since it can only be calculated for patches and not for individual pixels. The mathematical 

definition used here, is: 

! 

s" =

pi, j # p "
pi , j $"

%

n #1
,       

! 

C
Y
(") = 1,0,0( ) # s"

C
Cb
(") = 0,1,0( ) # s"

C
Cr
(") = 0,0,1( ) # s"

 

 

Here Γ denotes the image patch where the feature is calculated and 

! 

p "  is the mean 

intensity in the three channels in the patch. The square root is taken separately in the 

three dimensions. 

 

Like the edge feature, contrast is suspected to correlate with information density. Note 

however that there is a difference between the two features: The contrast feature 

disregards the relative location of the intensity variations in the patch, whereas the edge 

feature does not.  

4 Analysis 
In the analysis phase, our model is trained using eye-tracking data and feature 

calculations on the corresponding video sequence. The goal of the analysis is to find a 

description of how these features correlate with gaze points. 

 

Until now, the word correlation has been used in a way that demands some clarifications: 

First, it has been discussed whether there is a correlation between gaze points and 

features. Strictly, this does not make sense, since correlation is defined mathematically as 

a value that describes the amount of co-variation between two datasets.  

What is really meant by the expression, is the question whether the features are 

significantly different in regions near gaze points (regions of interest, or ROI:s) 

compared to other regions which are not near gaze points (or in the image as a whole). 

 

Second, correlation has been used to characterize a general relation of dependence 

between gaze points and features. In other words, every kind of dependence, or co-

variation, between gaze points and feature values has been described as a correlation, 
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with no differentiation between different kinds of co-variation. However, the strict 

mathematical concept of correlation can only handle linear co-variation. This means that 

there can be a (non-linear) co-variation between gaze points and features, with zero 

correlation. As an example of when this could become a problem, imagine that people 

often look at regions in images where the edge feature is very high, and that they also 

often look at regions where the edge feature is very low. If the standard correlation 

concept is used, this pattern will not be detected because it will seem that people in 

average look at regions where the edge feature takes a value somewhere in the middle.  

 

The usage of standard correlation becomes very problematic when it comes to 

investigating the co-variation of gaze points and color, since it is not natural to use order 

relations on color (should magenta be attributed a “higher value” than blue just because it 

is represented by a higher value in the Cb channel?). If some colors, like skin color, are 

popular to look at, then that is the kind of information that should be provided by a co-

variation concept, not that people on average look at colors that are a somewhat 

lower/higher in the color scales than the average image colors. 

 

Previous studies on feature properties of regions have used the standard correlation 

concept (e.g. Reinagel & Zador, 1999). This could be enough if the purpose is just to 

discover that there are systematic differences in features in regions near gaze points 

compared to other regions. However, if prediction is the purpose of the analysis, it would 

be unwise to not consider non-linear co-variations. Instead of using the standard 

correlation, our model therefore counts the occurrence of different feature values in order 

to estimate their relative frequency – near gaze points as well as for the whole image. 

These frequency estimations are then used to construct feature density maps, which are 

estimates of the likelihood that a point is near a gaze point, given the feature value.  

 

The proposed feature density maps contain, for each feature value, a number between 

zero and one. A high value indicates that the feature value has occurred disproportionally 

many times near a gaze point. A low value indicates that the feature value seldom occurs 

near gaze points. The sum of all values in the feature density map is always set to one.  
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4.1 Method 

The video sequence was processed, one frame at a time. The features were first calculated 

on the whole frame. Gaze points were read from a data file (two points per subject and 

frame) and ROI masks were created by adding of patches of ones into a zero matrix of 

image size. The patches were circular and centered on the gaze points. Four ROI masks 

were created, each with a different patch size. Patches with radii of 15, 30, 45 and 60 

pixels, corresponding to 0.5°, 1°, 1.5° and 2° of visual angle respectively, were used. 

Since the patches were simply added to the ROI masks, there were overlaps. 

Theoretically the ROI masks could therefore take integer values in the interval [0, 2n], 

where n is the number of subjects. 

 

The calculated feature values were used to create histograms12 of the occurrences of the 

feature values (i.e. the feature values were counted based on which bin they belonged to). 

This was first done in the whole frame, then in the patches. Two-dimensional features 

were put in three-dimensional histograms. A feature value was counted as many times 

as the corresponding ROI mask value. For every feature, this resulted in one 

histogram for the whole frame and four histograms for the ROI:s (one for each patch 

size). Table 3 contains information about the structure of the histograms: what intervals 

of the feature values that were covered, and the size of the bins. For two-dimensional 

features, the intervals and bin sizes are the same along both dimensions. See figure 4 for 

examples of histograms.  

 

 

 

 

 
                                                
12 According to http://en.wikipedia.org/wiki/Histogram (2005-06-06), “a histogram is the graphical version 

of a table which shows what proportion of cases fall into each of several or many specified categories.” The 

term histogram will also be used to describe the actual tables as well. A histogram bin is a specific sub-

interval in a histogram that constitutes a category. In a histogram, each bin is represented as a bar whose 

height is proportional to the relative frequency of cases falling into the category. 
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Figure 4: Histograms for ROI:s and whole frames for the IY feature in video sequence B.  

 

The contrast feature was not calculated for the whole frame, but instead for patches 

randomly located in the image. The number of random patches was the same as the 

number of gaze points. This was done to facilitate a subsequent step where several non-

ROI feature values were necessary. Taking the contrast on the whole image would only 

have given one value per frame13. By this procedure, the contrast measure was also 

calculated on regions with sizes of similar order (they are not always equal in size 

because some patches are located near the borders of the image).  

 

When all the frames had been processed, the histograms were added across frames. In 

order to get the relative frequency of the feature values, the histograms generated from 
                                                
13 Contrast is a bit problematic due to that it is not calculated in individual points. For the other features, a 

value in a ROI is certain to exist also in the whole screen. This is not true for contrast. 

Histogram feature intervals 
Feature Interval Bin size 

Intensity [0, 1] 0.01 

Edge [0, 4] 0.01 

Motion [0, 1] 0.01 

Contrast [0, 0.1] 0.01 

Table 3: Histogram structures 
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gaze points were divided (point wise) by the histograms generated from the whole frame. 

The contrast histograms were divided by the random histograms generated by the same 

patch size. To avoid dividing by zero, one was added to the denominator in all divisions. 

The feature density maps were finally obtained after a normalization (the sum of each 

map was set to one). 

4.2 Results 

The feature density maps and histograms discussed in this section have been generated 

from both video sequence A and video sequence B. Due to practical reasons, they are 

presented in graphical form only. All 36 feature density maps can be found in the 

appendix, section 7.1. Do note that these feature maps have not been used for prediction, 

since that would violate the principle of separating the training and validation data. 

 

The analysis hypotheses states: There are significant differences in low-level features 

between regions that are looked at and regions that are not looked at. 

 

If there were no correlation between gaze points and the low-level features, the feature 

density maps would all be approximately equal to uniform probability functions (i.e. they 

would be almost flat). It can be seen, however, that the maps are not very regular. These 

irregularities indicate that some feature values more often are located near gaze points 

than are other feature values. For example, look at the feature density maps for IC, the 

color feature. They seem to contain high values near the edges of the color space, 

representing extreme values of Cb and Cr. These values correspond to the pure colors in 

the corners of the YCbCr color space (see figure 3). Thus, it might be concluded that the 

subjects on average preferred to look at regions that contain pure colors, rather than 

mixed.  

 

The statement of the hypothesis can be operationalized into statistical tests as follows. 

The objective is to prove that the feature density maps are different from uniform 

probability functions. This corresponds to the feature values calculated in the ROI:s and 

the features values calculated in the whole frame being drawn from different probability 
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distributions. If the two distributions, the ROI feature value distribution and the “frame 

total” feature value distribution, would be identical, then the feature density maps should 

be nearly uniform. The feature value histograms, which were used to calculate the feature 

density maps, can be seen as estimations of the relevant distributions. So in order to test if 

the distributions are different, these histograms will be used. If it is found that there is a 

significant difference between the histograms generated from feature values near gaze 

points, and the histograms generated from feature values in the whole frame, the 

hypothesis is taken to be true. For the contrast feature, the histograms from random points 

will be used instead of the histograms for the whole frame. 

 

For the one-dimensional features, the difference will be tested using the Kolmogorov-

Smirnov14 test as well as a homogenity test15. For the two-dimensional features, the 

difference will be tested using a two-dimensional version of the same homogenity test. 

The results from the statistical tests are located in the appendix, section 7.3. 

 

The Kolmogorov-Smirnov test assumes continuous data, a condition which in fact is 

violated since the feature values have been put in histograms with a finite number of bins. 

Because the feature values in themselves were not stored, they were approximated by the 

lower end of the bins in which they were placed (i.e. the continuous data was quantized). 

These violations are however not considered to have a major effect on the test (and even 

if they do, they ought to make it harder to reach significance since local variations in the 

data are lost).  

 

Between 1-100 million values were calculated in the analysis phase, for each feature and 

patch size. A simulation-based statistical technique was applied for the Kolmogorov-

Smirnov test: 10,000 quantized feature values were drawn from the empirical 

distributions given by the histograms, in 100 trials. The Kolmogorov-Smirnov test was 

applied to the drawn samples. After all the trials, the median of the test statistics and the 

                                                
14 The Matlab function kstest2 was used. 
15 A description of the homogenity test is located in the appendix, section 7.2  



 33 

p-values was taken. The results can be seen in table 5. This test is very good at 

discovering even very small differences in distributions if the samples are large. To 

control that the significance was not artefactual, a control test was made where the two 

samples were drawn from the same empirical distribution. This control test generated 

non-significant p-values for all features that were tested. 

 

The homogenity test was applied to all the feature histograms. Because of few values in 

certain bins, some merging of bins was necessary to fulfill the requirements for normal 

approximation. The number of bins used in each test can be seen in tables 6 and 7, along 

with the test results. 

 

The significance levels are extremely high16, due to the large amount of samples. The 

gaze point histograms are indeed different from the whole frame histograms. It also 

appears that the histograms for the smaller patch sizes are more deviant17. 

  

As an extra precaution, to see if the tests behaved correctly, some tests were also 

performed to see if the histograms for feature values in random regions were different 

from histograms for feature values in the whole frame. In those calculations, p-values 

were consistently nonsignificant for the Kolmogorov-Smirnov test. In the homogenity 

test, p-values were still extremely low, although the test statistic was considerably lower 

than in the real tests (about a factor of 104). This suggests that the test is too sensitive to 

small differences. However, some unpaired t-test for the sample means was also 

performed on 10,000 random samples. They all gave insignificant p-values, in agreement 

with the Kolmogorov-Smirnov test. One can also argue that the significant result in the 

                                                
16 The near-zero p-values are given by the tests because of  the way they work: Given many samples, the 

tests will be very certain about differences between two distributions. This is reflected in the p-values. 

However, the difference does not need to be large to be significant. A careful interpretation of the numbers 

is absolutely necessary, since such small differences may well be due to a bias in the sampling data (i.e. the 

video sequences). 
17 Not true for the homogenity test, because more samples were available for larger patches. This was not 

the case in the Kolmogorov-Smirnov test, where the simulation technique was used. 
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homogenity test is probably due to the vast amount of samples. What these results really 

suggest, is that it maybe remains to find a more appropriate statistical test for this kind of 

hypothesis and data? The problem really lies in an assumption behind the tests, namely 

that the samples are representative for the whole population. If they are not, even a small 

bias will generate significant differences with a large number of samples. 

 

With that in mind, it can nevertheless be concluded that the features have different 

distributions near gaze points compared to the rest of the frames. The hypothesis seems to 

hold, at least for this data material.  

 

There is finally an important reservation which must be considered. There is no guarantee 

that the tested histograms are representative. As an example, consider that a main person 

in a video sequence, who is often in the gaze, typically wear clothes of a constant color 

(at least throughout a particular scene). This kind of regularity in objects of high interest, 

which may not exist in a bigger data set, gives a bias to the samples and the histograms. 

The deviation from uniform distributions could possibly be non-generalizable. To 

investigate this, the same statistical test was performed on a subset of the data, namely 

only video sequence A. If the suspicion of a bias is correct, then the p-values should be 

even smaller in these tests (if the same number of samples are used). As can be seen in 

tables 8, 9 and 10, the p-values do not give a clear-cut answer to this question, even if 

they might seem to be a bit lower for video sequence A. Also note that there are fewer 

samples for these tests. The suspicion of a data bias is important and needs more 

investigation, although this matter will not be pursued further in this thesis. 

 

The significance levels are not undisputable, but they do indicate that these features may 

be used for prediction of gaze points. But the significance levels found here are not the 

whole truth. The ability of the features to actually predict gaze points in a highly varying 

set of scenes will be investigated in the next section. 
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5 Prediction 
We are now ready to turn to the main problem of this thesis. The feature density maps, 

described in the previous section, will be used to predict gaze points. The prediction will 

be given in the shape of prediction maps, which are normalized to sum one and whose 

values (ideally) correspond to the probability of a gaze in the corresponding points. 

 

The feature density maps generated from one video sequence are used to predict gaze 

points in another video sequence. The predictions are then finally validated against the 

eye-tracking data. The accuracy of the predictions is tested for statistical significance, 

first compared to random, then compared to how well a group of humans predict another 

group of humans. 

5.1 Method 

The video sequence, which is to be predicted, is processed frame by frame. The features, 

except for contrast, are calculated for the whole image. A grid of points is allocated to the 

image. For every patch size (same patch sizes as in the analysis phase), a mask is created 

with patches centered on the grid points. The feature values inside those patches are then 

gathered. Every feature and grid point is now assigned a feature score. The score is 

calculated as the sum of the values in the feature density maps, corresponding to the 

feature values in the patches centered on the grid point. All scores are divided by actual 

patch size, so that patches near the image border (which can be as small as half the 

original patch size) are not discriminated. To get the total score for the grid point, all the 

feature scores are multiplied. The frame’s prediction map is finally created by 

interpolation18 of the grid point scores, followed by normalization so that the sum is one. 

The individual feature scores of each grid point are saved, to make it possible to make 

new prediction maps based on any subset of the features. 

 

                                                
18 Any interpolation method is possible, as long as the result is non-negative everywhere. Here, spline 

interpolation is used (splines are piecewise polynomial functions). Negative values are then set to zero. 
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Since the prediction map is actually only computed based on the grid points, a large 

number of grid points is necessary for good prediction. Unfortunately, this also means 

increased computational costs (algorithm time complexity is approximately linear). Here, 

99 grid points were used for the first part of video sequence B. In the second part of video 

sequence B, 112 grid points were used. The grid points were distributed to reflect the 

image aspect ratio. In the first part of video sequence B, the distance between grid points 

were 36 pixels vertically and 35 pixels horizontally. In the second part, distances were 55 

and 51 pixels respectively.  

5.2 Validation 

Predictions were made on 5842 frames of video sequence B, part 1, and 6996 frames of 

video sequence B, part 2.19 Some examples of predicted frames can be found in the 

appendix, section 7.4. Visual inspection of the prediction is of course interesting, but to 

make an objective estimation of the predictive ability, the accuracy has to be quantified. 

 

The weak prediction hypothesis states: Using only low-level features, it is possible to 

predict which regions will be looked at. The prediction is significantly better than what 

could be achieved by random. 

 

The hypothesis is tested as follows. First, the value of the prediction maps is evaluated in 

all the recorded gaze points. For each frame, the mean of these evaluations is denoted as 

the model prediction score for that frame. If the prediction would have been performed 

randomly, the mean of the prediction scores should be approximately one divided by the 

number of pixels in each frame (corresponding to a uniform distribution20). The 

hypothesis is therefore taken to be true if the mean score is significantly larger than this 

value – the random prediction score. 

                                                
19 Not all frames of all video sequences were predicted due to the computations being very time-

consuming. 
20 It is not done here, but it would be interesting to also test the prediction against a normal distribution 

centered in the middle of the screen. For obvious reasons, most interesting things aren’t located near the 

screen borders. 
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When the validation was made, data points were not counted where the gaze points was 

not registered to be in the image area. If all the gaze points were outside the image area, 

the frame was not included in the validation. T-tests were used to test if the model’s 

prediction score minus the random score is greater than zero. The results are found in 

tables 4 and 5, under “Comparison with random”. 

 

As discussed previously, the predictor used in offline foveation is a group of humans. To 

really put our model’s prediction capability to the test, its accuracy is also compared to 

that of a group of humans predicting another group. It’s quite unrealistic to expect that 

our model will perform as good as humans, since humans logically should be the very 

best possible predictors of other humans. The test is rather included as a means of 

showing how big the difference actually is between our model’s performance, and what 

could be demanded at most. 

 

The strong prediction hypothesis states: Compared to a group of humans predicting 

another group of humans, prediction based on low-level features is not significantly 

worse. 

 

How well can humans really predict each other’s gaze points? The following approach 

was used to quantify the performance of a group of humans as a gaze predictor. For every 

frame, the subjects with gaze points outside the image were first removed. Then each 

individual member of the remaining subjects, one at a time, was predicted by the 

remaining. This was done with a (human) prediction map created by addition of 

Gaussians centered on the gaze points, and a  normalization of the sum to one. For each 

subject, that prediction map is then evaluated in the gaze points of that subject. The mean 

of all these evaluations is taken as the human prediction score for the frame. 

 

How to select the standard deviation for the Gaussians in these computations is a 

complicated issue. A small standard deviation gives high scores when the gaze points are 

close to each other, but very low scores when the gaze points diverge. A larger standard 
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deviation does not differentiate as much. Different standard deviations were tried, and the 

value that gave the highest score was used. The used standard deviation was σ = 4.21 

 

T-tests were performed to see if there was a significant difference between the model 

prediction score and the human prediction score. The results are found in tables 4 and 5, 

under “Comparison with humans”. 

 

Prediction validation 
Video Sequence B, part 1 

Mean score, model 1.50⋅10-5 

 Comparison with random 

Random score 9.86⋅10-6 

t-test statistic 11.62 

p 6.77⋅10-31 

Degrees of freedom 5841 

Comparison with humans 

Mean score, humans 1.38⋅10-4 

t-test statistic 35.96 

p 1.01⋅10-268 

Degrees of freedom 11682 

 

 

 

 

In both validations, the model’s prediction was better than random and not as good as 

human prediction. Due to the large number of samples, all differences are significant with 

extremely small p-values. As can be seen in figures 5 and 6, the accuracy of both the 

                                                
21 Even if this value for the standard deviation gives the highest score, it is probably not plausible for use in 

offline foveation. The reason is that it makes gaussians that are so thin that regions are attributed very low 

values in the prediction map, even if those regions are likely to be inside the areas covered by the human 

fovea if one looks directly at a gaze point.  
22 The value was too small for Matlab’s double precision arithmetic. 

Prediction validation 
Video Sequence B, part 2 

Mean score, model 9.74⋅10-6 

Comparison with random 

Random score 4.00⋅10-6 

t-test statistic 45.59 

p Close to zero22 

Degrees of freedom 6996 

Comparison with humans 

Mean score, humans 4.22⋅10-5 

t-test statistic 86.41 

p Close to zero 

Degrees of freedom 13992 

Table 4: Validation, video 

sequence B, part 1 

 

Table 5: Validation, video sequence 

B, part 2 
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model and the human prediction varies a lot between frames. Especially the model’s 

prediction is not very robust. Actually, the model performs worse than random prediction 

in as many as 38% of the frames. These effects are due to varying content in different 

scenes. Humans ought to predict each other better when there are few regions with 

interesting content. In addition to that, the model also suffers from errors due to the 

prediction maps of different features giving high scores to unattended regions, especially 

in some scenes. The correlation coefficient between the two prediction scores in figure 5 

and 6, is 0.43. 

 

 
Figure 5: Human prediction score, video sequence B, part 2 

Frame 

Sc
or

e 
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Figure 6: Model prediction score, video sequence B, part 2 

 

To investigate the contribution of each single feature, prediction was also performed 

using only one feature at a time. The results from this test, which was only performed for 

video sequence B, part 2, can be found in table 6. By doing this type of validation, it is 

possible to separate the usefulness of each feature, from the part of the model where the 

features are combined.  

Prediction validation – single feature prediction 
Video Sequence B, part 2 

Mean score, IY 3.8⋅10-6 

Mean score, IC 4.1⋅10-6 
Mean score, EY 4.3⋅10-6 
Mean score, EC 5.2⋅10-6 
Mean score, DY 4.5⋅10-6 
Mean score, DC 4.4⋅10-6 
Mean score, CY 7.2⋅10-6 
Mean score, CCb 6.8⋅10-6 
Mean score, CCr 8.0⋅10-6 

Table 6: Validation, video sequence B, part 2, prediction based on individual features 

Frame 

Sc
or

e 
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Interestingly, some of these scores are quite close to the score of the whole model, which 

uses all the features. This suggests that the multiplication of feature scores used by the 

model is not a very good approach. There is probably useful information hidden in the 

features, that the model does not take account of. This may possibly be because 

multiplication requires that none of the feature scores are low, in order to give a high 

value. Another method, where the feature scores were summed in order to create the 

prediction maps, was also tried. Both simple summation of the feature scores, as well as a 

weighted summation, where the mean scores in table 6 gave the weights, were tried. The 

results are found in table 7. As can be seen however, summation does not appear to be 

better than multiplication in this case. 

 

Model prediction scores – feature summation 
Video Sequence B, part 2 

Mean score, model using summation 6.87⋅10-6 

Mean score, model using weighted summation 6.94⋅10-6 

Table 7: Model prediction scores, using feature score summation 

6 Discussion 
The results indicate that the selected features strongly correlate with gaze points of 

human video observers. There really seems to be major differences in low-level features 

between attended and unattended regions in the video frames. One has to be careful 

however, in how to interpret these differences. For example, it seems from these results 

that people generally prefer looking at regions where there are pure colors, and where 

there is high contrast. But the true cause of these tendencies is yet to be revealed. They 

could be due to some general preference to look at such regions, that people have because 

of one of the two explanations given in section 3.2. But they may in fact also be due to 

biases in the used data material. I do argue that all of the irregularities in the feature 

density maps found here hardly are artefactual, but the shapes of the maps may be 

specific to the used data material. 
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A disadvantage of building a model, such as this, based on experimental data, is that it is 

contextual. If the data material on which the model is built is non-representative, the 

feature statistics may not be generalizable. The interesting question is if there is such a 

thing as a representative video sequence? Since there are so many aspects that can be 

considered, the answer is probably no in general. But one has to remember that it is the 

low-level feature values that are used, and estimations of their distributions may very 

well be applicable to a wide range of data, even though there will always be exceptions, 

of course. But perhaps there is a common denominator for low-level feature distributions, 

for a large class of video sequences? A more thorough investigation in this matter could 

probably shed some light on the issue. A possible approach to testing the generalizability 

would be to compare feature value distributions generated from several different data 

materials. If they turn out to be very different, then there is a problem.  

 

The level of predictional accuracy of our model lay, as expected, somewhere between 

those of random and human prediction. Still, there is no point in trying to conceal that the 

author had hoped that our model would perform better. It should not be hard to beat a 

uniform random prediction. It should actually be enough to use the fact that most people 

look at the center of the screen during most of the time. Therefore, a predictor which is 

not able to beat that score in 38% of the frames, is nowhere as strong and robust as it has 

to be. 

 

Concerning the strong prediction hypothesis, it has to be remembered that it is a very 

strong statement. A model which is as good as humans in predicting where other humans 

will look, in all types of scenes, might never see the light of day. But the gap in predictive 

ability is most likely a difference which is possible to shrink. The strong prediction 

hypothesis has not been met here, but it has in no way been proved that it is impossible to 

do so in the future, at least for some specific types of scenes. Gaze prediction is still in its 

early stages, and is most likely not a futile endeavor after all. 

 

The proposed approach, where the relative frequencies of feature values are used for 

prediction, is still interesting in the views of the author, and should not be discarded on 
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the grounds of the predictive accuracy attained here. The approach offers a way of 

leveraging on feature values, which has not been considered previously. It lets the model 

consider a more general class of correlation between gaze points and features, removing 

some of the limitations that follow from arranging feature values on a scale. This is an 

advantage over classical methods.  

 

Of course, a lot more development and testing have to be made in order to benefit from 

this approach. A starting point could be in the combination of the feature scores. The 

results indicate that simple multiplication and addition are too crude. Perhaps a neural 

network approach would work better? The results from prediction based on single 

features also indicate that movement does not give as high accuracy as was expected. 

Thus, the selected approximation of movement (disturbance fields) is probably not a 

good one. 

 

The strange rectangular pattern that the prediction model gives (see the examples in 7.4) 

is most likely artefactual. It may be due to certain features giving low scores in some 

regions, and thereby generating low scores for those grid points. The interpolation 

method then gives low values to whole regions. This problem could possibly be fixed by 

changing the interpolation method, how the feature scores are combined, or possibly by 

using more grid points. 

 

A major problem in gaze prediction based on low-level features, is the things that the 

features are incapable of discovering. Examples of such things are expectations: If it is 

expected that someone will walk out of a car, how could a predictor based on low-level 

features possibly know that? Events of that kind are likely to require the model to include 

top-down aspects as well. 

 

Nevertheless, the features used here are just a small selection of the endless possibilities 

available. Everything that can be generated by an image-processing algorithm can be 

used as a feature. And, as discussed recently, with the relative frequency approach, the 

feature values does not even have to be arranged in a scale. This means that it is possible 
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to include “features” that handle special cases, like a face or text detector. There is also 

room for improvement of the existing features. Motion has already been mentioned – a 

better motion detection algorithm would almost certainly increase the predictive ability of 

the model. A type of situations that probably need special care are scenes where the 

camera is moving. As the motion feature works now, this gives a high value for the whole 

frame, while human viewers might hardly even notice the movements, if they are focused 

on an object that is relatively still (relative to the camera). 

 

More added features unfortunately bring a problem with them. As the number of features 

is increased, the risk of overlapping increases. As an example, consider a face detector 

being integrated into the model. They way that it is constructed here, the data analysis 

would still give relatively high values to skin colors – even though the additional 

predictive strength of skin colors is diminished due to the face detector. This 

phenomenon introduces a bias with increased number of features. One has to be careful 

not to add several features that cover the same aspect and thus correlate with each other. 

Maybe it is possible to integrate a mechanism in the model that removes such effects? 

Such a mechanism could, for example, be a “winner-takes-all” function, where the 

feature that has the highest predictive ability at any time, does the prediction by itself. 

Maybe neurobiological research could provide a starting point for a solution to the 

problem? A purely statistical approach, in the spirit of this thesis, would be to use 

multidimensional, joint histograms that cover several features in common distributions. 

That solution, however, increases the need for (representative) data. 

 

Other possible improvements of our model include quantitative, such as using more 

patches (of other sizes), a finer grid, or a smaller bin size for the histograms. More 

complicated possible improvements include trying different model structures. For 

example it would be interesting to see how well a boosting algorithm, such as the one 

used by (Ericsson & Pehrsson, 2005) can perform for moving images. If a scene change 

detector would be included in the model, it would be possible to use different prediction 

structures (or feature density maps) for different types of scenes. Although first it should 
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be established that it is possible to categorize scenes in a general way, that makes sense to 

the model (i.e. makes the scene classification useful in terms of improved prediction).  

 

In conclusion, there seems to be many years left of research before gaze prediction can 

become useful for applications. Still, the findings that certain features tend to be different 

in attended regions, is interesting from a theoretical standpoint. Regarding this attempt of 

gaze prediction, it has initially not delivered any results of quality. But although the 

achieved accuracy indicates a failure, there is still hope that the selected approach can 

prove to be rewarding in the future. Thus the failure is considered an interesting one.  
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7 Appendix 

7.1 Feature density maps 
This section contains graphical representations of the feature density maps generated by 

the analysis described in section 4. The feature density maps shown here have been 

generated from both video sequence A and video sequence B. 

 

 

 
Figures 7-10: Feature density maps, IY feature 
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Figures 11-14: Feature density maps, IC feature 

 

 
Figures 15-16: Feature density maps, EY feature 
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Figures 17-18: Feature density maps, EY feature 

 

 

 
Figures 19-22: Feature density maps, EC feature 
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Figures 23-26: Feature density maps, DY feature 

 

 
Figures 27-28: Feature density maps, DC feature 
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Figures 29-30: Feature density maps, DC feature 

 

 

 
Figures 31-34: Feature density maps, CY feature 
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Figures 35-38: Feature density maps, CCb feature 

 

 
Figures 39-40: Feature density maps, CCr feature 
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Figures 41-42: Feature density maps, CCr feature 

 

7.2 The homogenity test 

The object of the test is to see whether two histograms are generated by different 

distribution. The test can be used for distributions of any dimension. Let H0 be the 

hypothesis that the distributions are equal. We have two samples of sizes N and M 

respectively. The number of samples in each bin is denoted by nk and mk, where k is the 

bin index. If H0 is true, then an estimation of the probability of a sample in bin k is  

! 

pk =
nk + mk( )
N + M

 

Now,  

! 

Tn =
nk " Npk( )

2

Npk 1" pk( )( )k

#   and 

! 

Tm =
mk "Mpk( )

2

Mpk 1" pk( )( )k

#  

are approximately χ2-distributed and can be used to test H0. However, this approximation 

might be crude. A further refinement can however be done: The distribution of the 

number of observations nk, conditioned on the total number of samples in the bin, nk+ mk, 

is of Bin(nk+ mk,N/(N+M)), given that H0 is true. (We are still neglecting the dependence 

between boxes due to the finite number of samples.) Now, we have that 
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is approximately χ2-distributed. To get the significance level at which H0 can be rejected, 

the right quantile of the χ2-distribution is evaluated at T (χ2-test). The number of degrees 

of freedom is the number of bins minus one. 

 

As a rule of thumb, the normal approximation is viable if the expected number of samples 

in each bin is more or equal to 5 under H0. This is equivalent to the bins being so large 

that 

 

! 

min
k

pk "
min N,M( )
N + M

# 

$ 
% 

& 

' 
( > 5 . 

Bins with zero samples in the edges of the histograms (i.e. outside the area where the 

feature takes values) are ignored by this rule. The test would have given the same result if 

those bins had never been in the histogram. The zero-sample bins are of course not 

included in the degrees of freedom either. 
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7.3 Statistical tests of the analysis hypothesis 

Kolmogorov-Smirnov test 
Video sequence A and B 

Feature Patch radius Test statistic p 

IY 15 0.0893 <10-34 

IY 30 0.0822 <10-29 

IY 45 0.0783 <10-26 

IY 60 0.0704 <10-21 

EY 15 0.0563 <10-13 

EY 30 0.0524 <10-11 

EY 45 0.0475 <10-9 

EY 60 0.0423 <10-7 

DY 15 0.0942 <10-38 

DY 30 0.0854 <10-31 

DY 45 0.0752 <10-24 

DY 60 0.0634 <10-17 

CY 15 0.2059 <10-184 

CY 30 0.2228 <10-216 

CY 45 0.2234 <10-217 

CY 60 0.2145 <10-200 

CCb 15 0.1164 <10-58 

CCb 30 0.1408 <10-86 

CCb 45 0.1458 <10-92 

CCb 60 0.1412 <10-86 

CCr 15 0.2212 <10-212 

CCr 30 0.2495 <10-271 

CCr 45 0.2276 <10-225 

CCr 60 0.2349 <10-240 

Table 8: Kolmogorov-Smirnov test for difference between histograms 
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One-dimensional homogenity test 
Video sequence A and B 

Feature Patch radius Number of bins Test statistic p df 
IY 15 101 5.1038⋅106 Close to zero23 83 

IY 30 101 1.7003⋅107 Close to zero 83 

IY 45 101 2.9906⋅107 Close to zero 83 

IY 60 101 4.0527⋅107 Close to zero 83 

EY 15 201 2.0370⋅106 Close to zero 91 

EY 30 201 6.2707⋅106 Close to zero 98 

EY 45 201 9.8538⋅106 Close to zero 99 

EY 60 201 1.1696⋅107 Close to zero 100 

DY 15 101 4.8741⋅106 Close to zero 83 

DY 30 101 1.5990⋅107 Close to zero 83 

DY 45 101 2.7137⋅107 Close to zero 83 

DY 60 101 3.4290⋅107 Close to zero 83 

CY 15 21 1.3345⋅105 Close to zero 7 

CY 30 21 1.8079⋅105 Close to zero 7 

CY 45 21 1.8276⋅105 Close to zero 6 

CY 60 21 1.6821⋅105 Close to zero 6 

CCb 15 51 1.1256⋅104 Close to zero 11 

CCb 30 51 1.6404⋅104 Close to zero 11 

CCb 45 51 1.8894⋅104 Close to zero 10 

CCb 60 51 2.2039⋅104 Close to zero 9 

CCr 15 26 3.9134⋅103 Close to zero 4 

CCr 30 26 3.5941⋅103 Close to zero 4 

CCr 45 26 5.2001⋅103 Close to zero 4 

CCr 60 26 7.6160⋅103 Close to zero 4 

Table 9: One-dimensional homogenity test for difference between histograms 

 

 

 

 

                                                
23 The value was too small for Matlab’s double precision arithmetic. 
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Two-dimensional homogenity test 
Video sequence A and B 

Feature Patch radius Number of bins Test statistic p df 
IC 15 10×10 1.7623⋅109 Close to zero 45 

IC 30 10×10 4.1442⋅108 Close to zero 46 

IC 45 10×10 5.1990⋅109 Close to zero 47 

IC 60 10×10 5.3038⋅108 Close to zero 47 

EC 15 41×41 1.1016⋅107 Close to zero 72 

EC 30 41×41 3.7506⋅107 Close to zero 86 

EC 45 41×41 7.1231⋅107 Close to zero 96 

EC 60 27×27 9.8890⋅107 Close to zero 55 

DC 15 11×11 2.0465⋅105 Close to zero 24 

DC 30 11×11 6.4649⋅105 Close to zero 24 

DC 45 11×11 1.0973⋅109 Close to zero 26 

DC 60 11×11 1.4615⋅109 Close to zero 29 

Table 10: Two-dimensional homogenity test for difference between histograms 
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Kolmogorov-Smirnov test 
Video sequence A 

Feature Patch 

radius 

Test 

statistic 

p 

IY 15 0.0714 <10-21 

IY 30 0.0708 <10-21 

IY 45 0.0676 <10-19 

IY 60 0.0655 <10-18 

EY 15 0.0537 <10-12 

EY 30 0.0522 <10-11 

EY 45 0.0494 <10-10 

EY 60 0.0428 <10-7 

DY 15 0.1019 <10-44 

DY 30 0.0971 <10-40 

DY 45 0.0925 <10-36 

DY 60 0.0877 <10-33 

CY 15 0.1447 <10-90 

CY 30 0.1702 <10-125 

CY 45 0.1767 <10-135 

CY 60 0.1729 <10-130 

CCb 15 0.1492 <10-96 

CCb 30 0.1850 <10-148 

CCb 45 0.1823 <10-144 

CCb 60 0.1845 <10-148 

CCr 15 0.1986 <10-171 

CCr 30 0.2269 <10-224 

CCr 45 0.2398 <10-250 

CCr 60 0.2483 <10-268 

Table 11: Kolmogorov-Smirnov test for difference between histograms 
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One-dimensional homogenity test 
Video sequence A 

Feature Patch radius Number of bins Test statistic p df 
IY 15 101 5.1038⋅106 Close to zero 83 

IY 30 101 1.7003⋅107 Close to zero 83 

IY 45 101 2.9906⋅107 Close to zero 83 

IY 60 101 4.0527⋅107 Close to zero 83 

EY 15 201 2.0370⋅106 Close to zero 91 

EY 30 201 6.2707⋅106 Close to zero 98 

EY 45 201 9.8538⋅106 Close to zero 99 

EY 60 201 1.1696⋅107 Close to zero 100 

DY 15 101 4.8741⋅106 Close to zero 83 

DY 30 101 1.5990⋅107 Close to zero 83 

DY 45 101 2.7137⋅107 Close to zero 83 

DY 60 101 3.4290⋅107 Close to zero 83 

CY 15 34 9.2323⋅103 Close to zero 12 

CY 30 34 1.1471⋅104 Close to zero 12 

CY 45 34 1.1972⋅104 Close to zero 12 

CY 60 34 1.2125⋅104 Close to zero 12 

CCb 15 51 6.3363⋅103 Close to zero 7 

CCb 30 51 1.0048⋅104 Close to zero 8 

CCb 45 51 1.1021⋅104 Close to zero 9 

CCb 60 51 1.0595⋅104 Close to zero 9 

CCr 15 26 7.7238⋅103 Close to zero 4 

CCr 30 26 1.2305⋅104 Close to zero 4 

CCr 45 26 1.5290⋅104 Close to zero 4 

CCr 60 26 1.7596⋅104 Close to zero 4 

Table 12: One-dimensional homogenity test for difference between histograms 
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Two-dimensional homogenity test 
Video sequence A 

Feature Patch radius Number of bins Test statistic p df 
IC 15 10×10 2.2453⋅107 Close to zero 42 

IC 30 9×9 7.1852⋅107 Close to zero 35 

IC 45 9×9 1.1571⋅108 Close to zero 35 

IC 60 9×9 1.4673⋅108 Close to zero 35 

EC 15 26×26 9.3829⋅105 Close to zero 22 

EC 30 26×26 3.4098⋅106 Close to zero 29 

EC 45 26×26 6.9117⋅106 Close to zero 32 

EC 60 26×26 1.1119⋅107 Close to zero 34 

DC 15 11×11 3.0119⋅106 Close to zero 24 

DC 30 11×11 9.2214⋅106 Close to zero 24 

DC 45 11×11 1.4708⋅107 Close to zero 26 

DC 60 11×11 1.7893⋅107 Close to zero 29 

Table 13: Two-dimensional homogenity test for difference between histograms 

7.4 Examples of predicted frames 
Here, two examples of predicted frames are given. In each example, the original frame is 

displayed first, followed by the predictions of the model and that of humans. The 

predictions are visualized in the following manner: First, the prediction maps were 

calculated. The human prediction map was created (for this purpose) by adding 

Gaussians with standard deviation σ = 30 in the gaze points. Both prediction maps were 

then normalized to an average intensity of 0.3 and any values larger than 1 were set to 1. 

The two last steps were repeated until the average value was approximately 0.3. The 

sums of prediction maps were thus approximately the same. The image matrices of the 

frames were finally point wise multiplied by the respective prediction maps, to generate 

the visualization. 
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Figure 43: video sequence B, part 2, frame 9800 

 
Figure 44: video sequence B, part 2, frame 9800, predicted by our model 

 
Figure 45: video sequence B, part 2, frame 9800, predicted by humans 
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Figure 46: video sequence B, part 2, frame 10050 

 
Figure 47: video sequence B, part 2, frame 10050, predicted by our model 

 
Figure 48: video sequence B, part 2, frame 10050, predicted by humans 
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