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Abstract. After nerve injuries, e.g. following a re-
implantation of an accidentally cut hand, nerve 
fibres grows together again but will be 
misconnected. This implies an incorrectly mapping 
of the hand in somatosensory cortex. However, the 
brain is plastic and thus a natural question is if there 
is a way to stimulate the hand of such a patient so 
that the recovery will be optimal. To come up with 
suggestions on this, a computational model of the 
dorsal column-medial leminiscal system was 
implemented. Different versions of this model were 
used to simulate the reorganization of 
somatosensory cortex due to misconnected nerve 
fibres. A number of tactile training methods were 
simulated and their capability to reorganize cortex 
was measured. The simulation results brought about 
the following recommendation on how to stimulate 
a patient’s hand: Randomly select a small set of 
points on the palm and stimulate them shortly, and 
then select some new points. This recommendation 
is due to that such training methods worked well in 
all versions of the model. When the nerve injury is 
only partial, perhaps so-called cortical induction 
would also be a good choice. 
 
 
1. Introduction 
 
When an object is grasped by the hand, a number of 
touch sensitive receptors in the skin are stimulated, 
and signals are sent through the nerve fibres in the 
spinal column, via the medulla and the thalamus to 
the somatosensory cortex. The object is 
deconstructed into small segments, because every 
nerve fibre only conveys information from a small 
part of the skin surface, but the pattern is recreated 
in the brain by the cortical analysis. If there is an 
injury to the nerves from the hand to the medulla, 
the pattern of signals may be severely disturbed and 
the system will not work properly.  
 
Therefore, there is an interest in knowing how 
different forms of sensory stimulation influences 
the reorganization of somatosensory cortex 
following nerve injuries, e.g. where the nerves 
between the hand and the brain have been cut partly 
or altogether and then have grown back together. 
One example of such a situation is when a hand has 
been cut during an accident and has then been sewn 
together with the arm again.  
 
After such an injury, the nerves certainly grow 
together again, but unfortunately the individual 
nerve fibres will be misconnected. The 
consequence of this is that the sensory signals to the 
brain will be incorrectly mapped in the cortex.   
 
However, the brain is plastic, and it has an ability 
for reorganization. Therefore the somato-sensory 

maps in cortex begin to reorganize to some extent, 
and begin to code in a more correct way again. 
 
It is interesting to know how different forms of 
sensory stimulation, or training, influences how fast 
and to what qualitative level this reorganization in 
somatosensory cortex occurs, because this could be 
used to design better rehabilitation programs for 
patients suffering from misconnected nerve fibres.  
 
One way to get an idea of somatosensory 
reorganization is to create a computational model of 
the relevant neurophysiological systems, and then 
use that model to simulate the reorganization that 
takes place. By accomplishing simulations for 
different forms of sensory training and compare 
these to each other, one can hope to get a hint on 
what form of sensory stimulation will be 
appropriate for a real patient, so that his or her 
recovery from the injury will be as good as 
possible. 
 
One can wonder, why the use of simulations with 
computational models should be so good, and to 
what extent they tell us anything about reality. The 
answer is that a good computational model is 
founded in theoretical and empirical knowledge that 
has been formulated as executable code. Due to the 
computational power of modern computers it 
becomes possible to investigate consequences of 
scientific theories to an extent that would otherwise 
not be possible, since the chains of casual relations 
can exhibit a complexity that is hardly penetrable. 
The results from a simulation with a computational 
model can then be compared to empirical 
observations and if they agree, they constitute a 
support for the theory that the computational model 
was built on. The results can also point out the 
direction for further empirical investigations by 
providing new predictions. In this way simulations 
can also contribute to extend the existing theory. 
This is exactly the aim of this project, i.e. to aid in 
the extension of the existing knowledge by 
generating new ideas with clinical application.   
 
More precisely the aims of this project have been to 
construct a computational model of cortical 
plasticity in somatosensory cortex following nerve 
regeneration, and to use it to investigate how 
different forms of sensory training influence the 
reorganization of the maps in somatosensory 
cortex. 
 
 
2. Theoretical Background 
 
In this chapter, a theoretical background will be 
given. It contains a discussion, based on the 
literature, of the neurophysiological systems that 
have been modelled. The purpose of this is to show 
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what empirical knowledge the model is based on. 
Discussions on neural modelling in general, and a 
review of research on, and modelling of, cortical 
plasticity are given. A description of Kohonen’s 
self-organizing map algorithm is given, since the 
model of the somatosensory cortex is based on it. In 
addition a suggested method for sensory re-
education when the nerve injury is only partial, 
which has been simulated in this project, is 
discussed. 
 
 
2.1 Neurophysiological Systems 
 
The system that conveys information of touch from 
the skin to the somatosensory cortex is called the 
dorsal column-medial leminiscal system (Gardner 
& Kandel, 2000; Gardner, Martin & Jessell, 2000), 
see Fig. 2.1. It is organized so that the sensory 
information is processed in a series of relay regions, 
and this is a common organizational principle for 
sensory systems. For touch, there are only two 
relays on the path between the receptors in the skin 
and the somatosensory cortex. The receptor neurons 
are located in ganglions on the dorsal root of a 
spinal nerve and they have axons that are divided 
into two branches. One branch terminates in the 
skin where its terminals are sensitive to tactile 
stimuli. The other branch of the axon enters the 
spinal column, ascends through it and terminates in 
the gracile or the cuneate nuclei in caudal medulla 
in the brain stem. The afferent axons from medulla 
cross on their way through the medulla and pons 
and terminate in the ventral posterior lateral nucleus 
of the contralateral thalamus. Consequently, the 
right hemisphere of the brain receives sensory input 
from the left part of the body and vice versa. From 
the thalamus, the neurons send their axons straight 
to the primary somatosensory cortex, Brodmann’s 
areas 1 and 3b, which are located in the postcentral 
gyrus in the parietal lobe. 
 
A relay nucleus consists of projection (relay) 
neurons, with afferent axons that terminate in the 
next nucleus in the pathway, and inhibitory 
interneurons (Gardner & Kandel, 2000; Gardner, 
Martin & Jessell, 2000). The afferent axons 
branches to innervate several neurons in the 
consecutive relay nucleus or cortex. One 
consequence of this is that the receptive field of a 
neuron enlarges for each relay site, and the cortical 
neurons have the largest receptive fields. A 
receptive field is the area on the skin innervated by 
a neuron (Gardner & Kandel, 2000; Gardner, 
Martin & Jessell, 2000), and for the neurons in the 
dorsal root ganglion the receptive fields delimits the 
resolution of tactile stimulation, i.e. smaller and 
more receptive fields in a skin area gives a better 
resolution. In the dorsal root ganglion, the receptive 
field of a neuron represents the input from only one 

receptor, while in the somatosensory cortex the 
receptive field of a neuron represents the composite 
input of 300 – 400 receptors. However, the size of a 
receptive field in cortex or in a relay nucleus is not 
fixed, but can be modified by experience or for 
example, injury to a sensory nerve. In spite of the 
size of the receptive field of cortical neurons, fine 
details can be discriminated. This is because a 
cortical neuron responds most intensely in the 
middle of its receptive field.  
 
As mentioned above there are inhibitory 
interneurons in each relay nucleus, i.e. in the 
cuneate nucleus and gracile nucleus in medulla and 
ventral posterior lateral nucleus in thalamus, and 
they are also present in somatosensory cortex. One 
function of the inhibitory interneurons is to improve 
the resolution of the sensory input, and this is done 
because the inhibition restricts the spread of 
excitation, which is caused by the diverging of the 
axons coming in from the previous relay nucleus. 
Another function is to provide a reinforcement of 
contrasts. A consequence of the inhibition is that 
the activity in those neurons that are not most 
intensely activated is reduced, so that only the 
strongest of several competing responses are 
expressed. 
 
 

 
 

Fig. 2.1. The parts of the dorsal column-medial 
leminiscal system that conveys touch 
information from the palm. 
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The receptors in the skin are of different types, but 
for the submodality touch, the peripheral terminals 
of the dorsal root ganglion neurons, which as 
mentioned above, are sensitive to tactile 
stimulation, are encapsulated in non-neural 
structures called corpuscles. These structures alter 
the touch sensitive properties, so that the receptor 
responses are more functionally well fitted. Touch 
sensitive receptors are called mechanoreceptors. 
The axons of the dorsal root ganglion neurons are 
different depending on receptor type (Gardner, 
Martin & Jessell, 2000), e.g. for touch sensitive 
receptors the axons are more myelinated than the 
axons belonging to receptors for pain. Because of 
this difference, the signals from touch sensitive 
receptors propagate faster than the signals from 
receptors for pain. All nerve fibres from a dorsal 
root are connected to a continuous area of skin, and 
such an area is called a dermatome. 
 
In the sensory system, from the receptors in the skin 
to the somatosensory cortex, a somatotopic 
organization is maintained (Gardner & Kandel, 
2000). This means that the representation of the 
skin surface in the relay nuclei and in the 
somatosensory cortex preserves the topography of 
the skin surface. So there is a sensory map at each 
level of the sensory pathway. 
 
Although there is no general theory on the 
operation of cortex, there are some general 
principles of the cortical architecture and 
processing (Buonomano & Merzenich, 1998). 
Sensory cortex, as well as most other cortical areas, 
is divided into six layers, L-I-VI. The sensory input 
arrives first and foremost to L-IV and to some 
extent to L-VI and L-III and are, as mentioned 
above, arising from thalamus via thalamocortical 
axons. Output to other cortical and subcortical 
regions proceeds primarily via pyramidal cells in L-
V and L-VI. There is probably a general flow of 
information between the cortical layers, but also a 
horizontal flow within the same layer. Horizontal 
connectivity is probably important for cortical map 
reorganization. Cortical map reorganization will be 
discussed further in the next section below.  
 
Besides the organization into layers, somatosensory 
cortex is also organized into columns. The neurons 
in each column, innervates a tiny continuous area 
on the skin, in the case of touch, and columns are 
organized in somatosensory cortex so that they 
preserve the topography of the skin. In 
somatosensory cortex, there is a complete map of 
the body. In fact, there are complete topographical 
representations of the body in each of the four areas 
BA1, BA2, BA3a and BA3b. Such a map is not an 
undistorted representation of the body, instead 
certain parts of the body are exaggerated, while 
others are diminished. This is because the 

innervation density varies for different body parts. 
For example the hand, foot, and mouth have large 
representations. The representations in cortex can 
be altered by experience, so they are not fixed. 
 
It is a common feature of sensory areas, that they 
represent their sensory epithelial surfaces in a 
topographical way (Buonomano & Merzenich, 
1998). When it comes to the somatosensory cortex, 
the mapping is somatotopic, which, as mentioned 
above, means neighbouring cortical regions 
responds to neighbouring regions on the skin 
surface. However, a cortical map does not need to 
be a representation of spatially separated features. It 
can also, for example, be a representation of 
temporally separated features. For example, Kilgard 
and Merzenich (2001) carried out an experiment 
with adult rats in which they concluded that after 
repeated exposure to three-element sequences (high 
tone – low tone – noise burst), 25% of the neurons 
in auditory cortex exhibited a responding 
facilitation to a low tone if it was preceded by a 
high tone. 
 
A lot of research has been done on the 
somatosensory cortex. An example of how this 
research is done is a way to detect the 
representation of the contralateral body surface in 
somatosensory cortex. Microelectrodes can be used 
for this purpose (Florence, Jain & Kaas, 1997). 
These microelectrodes can be made of glass and 
filled with concentrated NaCl and are used to make 
extracellular recordings of action potentials at a 
depth of 700-750 µm in cortex (Reinecke, Dinse, 
Reinke & Witte, 2003). The research is often done 
with the aid of animals and while studying cortical 
plasticity (discussed in the next section) it is 
unfortunately very often necessary to harm the 
experimental animal by destroying some of its 
channels for sensory input or create lesions in the 
brain. However, in the last decade another method 
called TMS (transcranial magnetic stimulation) has 
been increasingly used to create virtual lesions, by 
disrupting the neuronal activity in cortical areas 
(Siebner & Rothwell, 2002).  
 
 
2.2 Cortical Plasticity 
 
The brain is continually reorganizing to adapt to the 
environment of its owner. This is confirmed in 
studies carried out by Kilgard, Pandya, Engineer 
and Moucha (2002) that suggest that sensory 
activation alter the functional organization of cortex 
to generate the most useful representation of the 
sensory environment.  
 
In the developing brain, the plasticity is very 
extensive. This was shown, for example, in a study 
made by Kahn and Krubitzer (2002). In their study, 
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the visual input to the brain was destroyed in some 
pups, very early in life, before the establishment of 
the retino-geniculo-cortical pathway. This resulted 
in a complete capture of the visually processing 
regions by the somatosensory and the auditory 
systems. One plausible conclusion following from 
this is that the peripheral innervation plays a very 
large role in the organization of cortex.    
 
According to Florence, Jain and Kaas (1997) the 
degree of plasticity is less in the adult brain than in 
the developing brain. Further evidence for this view 
is provided by Sawaki, Yaseen, Kopylev and Cohen 
(2003). They found that the ability of the motor 
cortex to reorganize decreased with age.  
 
However, the cortical maps in the adult brain are 
not static. Instead, according to Buonomano and 
Merzenich (1998), they undergo plastic changes 
due to peripheral manipulations and experiences 
throughout the whole life. 
 
The reorganization of cortex is probably not a 
phenomenon isolated to cortex, but depends on 
subcortical structures as well. Cortex seems to 
reorganize its representations constantly. The 
reorganization is dependent on the importance of 
the stimuli, i.e. important stimuli facilitate plasticity 
while unimportant are ignored. Little is known 
about the mechanism behind this, but it has been 
suggested by Kilgard and Merzenich (1998) that 
there are neuromodulatory systems that mark 
important stimuli. They stimulated nucleus basalis 
in adult rats electrically, and at the same time 
exposed them to auditory stimuli. This resulted in a 
massive reorganization of primary auditory cortex 
and thus they suggest that nucleus basalis may have 
a neuromodulatory function.   
 
Currently it is believed that the neural mechanism 
behind cortical representational remodelling is 
based on synaptic plasticity mainly depending on 
what is called LTP (long-term potentiation) of 
excitatory synapses following a Hebbian learning 
rule (Buonomano & Merzenich, 1998). At a 
synaptic level this means an increasing strength 
between synapses which fires together. At a higher 
neuronal level, this causes the formation of 
topographic maps.  
 
Florence, Jain and Kaas (1997) carried out 
experiments with monkeys, in which they studied 
the cortical reorganization following different 
forms of modifications of the input to the brain. In 
one study they made a transection of the median 
nerve in the arm of an owl monkey. Such a 
transection causes permanent denervation of the 
radial part (thumb side) of the palm. In the normal 
monkey, area 3b in somatosensory cortex 
represents the hand. The representations of the palm 

and the fingers are large, while the representation of 
the dorsal surface of the hand is small. Immediately 
after the transection, the deprived zone in area 3b 
was activated by input from the dorsal surface of 
the hand. Over time, even more of the deprived 
zone becomes activated by the dorsal surface of the 
hand, the palm and adjacent fingers.  
 
A possible explanation for the immediate changes 
of representations may be that the afferent axons 
from thalamus to L-IV in area 3b are believed to 
have a wider projection zone than what is reflected 
in the topographic map in cortex during normal 
conditions (Florence, Jain & Kaas, 1997), i.e. the 
axons fringes into the regions of neighbouring 
representations. If the level of inhibition is reduced 
due to trauma, the representations will expand into 
the deprived zone.  
 
An irritating and sometimes painful phenomenon 
that probably is caused by unwanted subcortical 
reorganization is phantom limbs (Ranadive, 1997). 
An experiment described by Florence, Jain and 
Kaas (1997) explains why. In the experiment one 
hand of a macaque monkey was amputated. The 
arm and the hand are represented in a subcortical 
structure called cuneate nucleus with the hand 
occupying all but the most dorsal extreme. After the 
amputation of the hand the arm representation 
expands into the deprived zone. The axons from 
this area are connected with the somatosensory 
cortical area that represents the hand and inputs 
from these axons are interpreted as hand sensations, 
so a tactile stimulation of the arm will now be 
experienced as both a touch on the arm and on the 
amputated hand. 
 
 
2.3 Cortical Induction 
 
Patients with nerve injury in their arm might end up 
with the nerve fibres completely misconnected after 
the healing process. To help these patients an 
urgent question is how to optimize the 
rehabilitation, to make the cortical maps reorganize 
as well as possible. One question then, is if there 
are some kinds of re-education programs that can 
be used for this purpose. And there are, because 
studies have shown, for example, that an early use 
of tactile stimulation after nerve repair will give a 
significantly better discriminative sensibility 
(Rosen, Balkenius & Lundborg, 2003). 
 
If the arm nerve is only partially injured the patient 
might end up in a situation with one part of the 
hand correctly mapped and the other part 
incorrectly mapped in somatosensory cortex. To 
rehabilitate such patients a method for sensory re-
education that tries to extend the map for the intact 
part of the hand has been suggested. This method is 
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called cortical induction (Rosen, Balkenius & 
Lundborg, 2003). 
 
As mentioned, cortical induction presumes that not 
all nerve fibres have been injured, but that a part of 
the skin area on the palm is correctly mapped in the 
cortex. The training method is based on the ability 
of sensory cortex to expand the part of the map 
corresponding to a frequent stimulus, and its ability 
to differentiate between two different stimuli that 
are alternately presented. 
 
By simultaneously stimulating two points along the 
border between the skin area with a correct 
mapping and the skin area without a correct 
mapping in cortex, where one point is located on 
one side of the border and the other point on the 
other side, until the patient cannot any longer 
discriminate between stimulation of the two points, 
the intact part of the cortical map will expand to 
include the point in the incorrectly mapped skin 
area. When the points cannot be discriminated any 
longer, the two points are stimulated alternately 
until the patient can discriminate them again. Then 
a local expansion of the correctly mapped cortical 
map has been obtained. By repeating these two 
phases along the border of the intact part of the 
cortical map, the border will gradually move 
forward to include more and more of the incorrect 
part, until the whole cortical map is correct again. 
 
One can say that the training method cortical 
induction uses the intact topographical mapping as 
a seed to grow a new topographical mapping in the 
incorrectly mapped region. 
 
 
2.4 Modelling 
 
In neural modelling, there are two distinctive motifs 
(Kohonen, 2001). One is to on the basis of 
biological inspiration develop new useful technical 
devices with intelligent properties. The other motif 
is to describe and get an understanding of biological 
neural systems. Often the circuits designed for both 
of these purposes are artificial neural networks. It is 
the second of the motifs above that lies behind this 
project.   
 
In modern neurophysiology, each neuron is 
described as a complex dynamical system. It is 
controlled by neural signals, chemical transmitters, 
messenger molecules etc. So if one would try to 
take into account every known fact about the 
biological neural system in a model it would 
demand more computer power than is available to a 
researcher today. For example, to describe the 
global meteorological system would be trivial 
compared with a complete description of the brain.  
 

Fortunately, it is not be necessary to model every 
detail of the biological neural system to learn 
anything useful from the model. It is only necessary 
to model relevant parts of the system. So the only 
problem is to know what parts are relevant, but this 
is the same problem that a theoretical scientist will 
meet while deciding upon what to include in a 
theory, or an experimental scientist while deciding 
on the design of an experiment. It is a matter of 
judgement and experience.  
 
There are many types of artificial neural networks, 
but in principle, according to the descriptions given 
in Russel and Norvig (1995), they work as follows: 
An artificial neural network consists of a set of 
nodes, or units, that are connected to each other by 
links. For each link there is a weight, i.e. a number. 
Some of the nodes are input nodes and some are 
output nodes. Every node carries an activation 
value and when one wants to present the network 
for input, the input has to be translated into a form 
that is suited for the network. When that is done the 
input is presented to the network by activating its 
input nodes, i.e. for each node assign a certain value 
to its activation. The activation for the other nodes 
in the network is calculated. This is done by taking 
the activation for each node that has an incoming 
connection, multiply it by the weight associated 
with the connection and then sum all these 
products.  

 
 

 
  

Fig 2.2. Uppermost a node in an artificial 
neural network. At the bottom, a neuron 
(http://www.arts.uwaterloo.ca/~sspencer/psych
101/lecture3/lecture3.pdf, 2004-05-16). In a 
biological neural network the neurons takes its 
input signals from its dendrites, processes the 
input in a way corresponding to the activation 
function in an artificial neural network and 
then conveys the resulting signal through its 
axon. The synapses in a biological neural 
network correspond to the weights in an 
artificial neural network. 
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This sum of products is then transformed by a non-
linear activation function that gives the activation 
for the node. Finally the activation in the output 
nodes is calculated and this constitutes the output. 
Perhaps the output has to be translated to a proper 
form afterwards. An artificial neural network learns 
by adjusting its weights in accordance with some 
learning algorithm. If the artificial neural network 
needs the correct output corresponding to the input 
during learning, it is called a supervised artificial 
neural network. If it does not need this, it is called 
an unsupervised artificial neural network. 
 
 
2.6 Modelling Cortical Plasticity 
 
A growing amount of cortical plasticity modelling 
has been done. For example the Slovak researcher 
Lubica Benuskova and colleges have accomplished 
five studies on the plasticity of the somatic sensory 
(“barrel”) cortex in rats (Benuskova, Diamond & 
Ebner, 1994; Benuskova, 1995; Benuskova, 
Diamond & Ebner, 1996;  Benuskova, Diamond, 
Ebner & Armstrong-James, 1999; Benuskova, 
Rema, Armstrong-James & Ebner, 2001). These 
studies have been done by creating computer 
models of parts of a barrel column in the cortex of 
rats and then these models have been compared to 
electrophysiological experimental observations. 
The electrophysiological measurements were made 
on a single barrel column corresponding to one of 
the whiskers after normal experience and after 
experience with all but two adjacent whiskers 
trimmed. The trimming of all but two whiskers 
causes a change in the sensory input, which in turn 
is responsible for the reorganization of the barrel 
cortex. All models in these studies were based on 
the Bienenstock, Cooper and Munro (BCM) theory 
of synaptic plasticity. In short, the hallmark of the 
BCM theory is the dynamic synaptic modification 
threshold. Whether a neuron’s activity will lead to 
weakening or strengthening of its impinging 
synapses is dictated by this threshold. The threshold 
is proportional to the averaged (over some recent 
past) activity of the neuron. In the first study, only 
one neuron in a barrel column was modelled. In the 
following studies, the model was gradually 
extended by including the interaction of inhibitory 
and excitatory interneurons in one barrel column, 
and in the last few a large part of one barrel column 
was included. The last study also included 
modelling of prenatal exposure to alcohol and it 
was confirmed in accordance with experimental 
results that such exposure impaired plasticity in 
barrel cortex. Generally, the behaviour of the 
models was consistent with the electrophysiological 
observations.        
 
One model called LISSOM (Laterally Inter-
connected Synergetically Self-Organizing Map), 

described by Sirosh and Miikkulainen (1994), has 
been used to model cortical lesion plasticity. This 
model is a variant of the basic self-organizing map 
described below in the next section. The basic 
difference is that another rule is used to update the 
weights. From the results of the simulation with the 
LISSOM model, two suggestions on techniques for 
enhancement of recovery from surgery in the 
sensory cortices emanated. Namely, that blocking 
of lateral inhibition locally in cortex after surgery, 
and a forced cortical reorganization before the 
surgery, will speed up the recovery.    
 
Goodall, Reggia, Chen, Ruppin, and Whitney 
(1996) studied the effects of sudden focal lesions of 
varying size to the cortex. In their study they used a 
model of primary sensorymotor cortex controlling 
the position of a simulated arm. 
 
Wiemer, Spengler, Joublin, Stagge and Wacquant 
(1998) designed a model of early sensory cortex in 
which not only a topological, but also a temporal, 
representation of the input from the external world 
was taken into account. This was done because 
according to neurobiological experiments on early 
sensory cortex, the temporal distance between 
stimuli appears to be transformed into spatial 
distances in the cortical representation. Their 
simulations agreed with the experimental results. 
 
Kalarickal and Marshall (2002) presented a study in 
which they used a computational model of 
somatosensory cortex and thalamus to model 
changes in receptive fields after intracortical 
microstimulation (ICMS) and peripheral 
stimulation. The model consists of a two level 
architecture with lateral inhibition and afferent 
excitation. In the simulations topographical changes 
of the receptive fields similar to those 
experimentally observed occurred. The simulations 
with the model also generated new and testable 
predictions.  
 
Some computational models that includes the hand 
and the somatosensory cortex have been made. For 
example a model made by Mazza and Roque-da-
Silva (1999). Their model includes tactile receptors 
for a hand connected to a cortical layer, consisting 
of inhibitory and excitatory neurons, corresponding 
to L-IV in area 3b. The purpose of the model was to 
study reorganization of somatotopic maps. They 
first ran a simulation so that a cortical map 
corresponding to an intact hand was formed. They 
then simulated a fusion of two digits and the 
cortical map was reorganized. After that they 
simulated a separation of the digits again and the 
cortical map was again reorganized. Even 
simulations corresponding to removal and re-
implantation of a digit were run. The results 
showed that the model was capable to transform the 
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somatotopic map of the hand in cortex in a way 
corresponding to empirical observations in 
primates.  
 
In another study, they investigated how cortical 
representations are affected by cortical lesions 
(Mazza & Roque-da-Silva, 2000). Cortical lesions 
may namely imply unbalances in the organization 
of the somatotopic maps. This study was made by 
the aid of a computational model of the 
somatosensory system. The model consisted of 512 
tactile receptors that represented a palm connected 
to 1024 excitatory and 512 inhibitory neurons in a 
cortical layer corresponding to L-IV in area 3b. In 
accordance with experimental data the simulations 
reproduced the formation and maintenance of 
somatotopic maps and the reorganization of the 
maps after destruction of neurons.  
 
A study made by Lin, Liljeholm, Ozdzynski och 
Beatty (2002) investigates what is called the 
neuronal empiricism hypothesis. This hypothesis is 
the idea that all cortical regions uses the same 
fundamental computational algorithm, and that 
cortical neurons learns the characteristic properties 
of their receptive fields by extracting statistical 
regularities from the input-streams they are 
processing. In their study, they used, Kohonen’s 
self-organizing map algorithm together with 
simulated input from the hand. They model the 
organization of the neurons in area 3b as a response 
to stimulation of the ventral side of the hand. 
Simulations of a normal hand, followed by 
simulations of a hand with an amputated digit were 
carried out. In the simulation with an amputated 
digit, the cortical map changed dramatically so that 
all cortical representations of the missing digit 
disappeared. The result from the study suggests that 
cortical neurons learn the properties and 
organization of their receptive field by statistical 
regularities in the stream of information they 
receive.  
 
 
2.7 Kohonen’s Self-Organizing Map 
 
To create a proper model of certain cortical regions 
we need neural networks that are able to learn 
without the aid of a supervisor, i.e. an unsupervised 
neural network. The kind of learning in this 
category of neural networks is usually called 
competitive, or self-organizing. A self-organizing 
map (Kohonen, 1990; Kohonen, 2001), abbreviated 
SOM, is an instance of this category. 
 
In a competitive learning network each node 
receives the same input. The nodes influence each 
other by lateral interactions that are both inhibiting 
and exciting. The winner, i.e. the node which is 
most activated is allowed to learn, i.e. update its 

weights, and in addition the nodes in a vicinity of 
the winner node are also allowed to update its 
weights, but to a lesser degree. To what degree the 
nodes are allowed to update its weights depends on 
the distance to the winner node. In the long run this 
will lead to self-organization of the nodes in the 
network so that every node will be sensitized to a 
certain domain of the input space, and the network 
will also conserve the order of the input space. 
 
Formally one can describe the SOM as a non-linear, 
ordered and smooth mapping from a manifold of a 
perhaps high-dimensional input space onto a low-
dimensional array. In fact, it is a non-linear 
projection of the probability density function p(x), x 
∈ Rn onto the array of nodes, which means that if 
the input from certain parts of the input space are 
more frequent or there is a greater probability that 
the input samples belongs to these parts, then this 
will be reflected in the map in such a way that the 
corresponding parts in the map will allocate a larger 
area. In most cases, the SOM are arranged as a two-
dimensional array of nodes and the input is 
connected to every node in the network (Wedel & 
Polani, 1996). A model (reference) vector mi = [µi1, 
µi2, …, µin]T ∈ Rn, later called a weight vector, is 
associated with every node i in the network, where 
it is assumed that the input vector x ∈ Rn.  
 
If the SOM is implemented in software, there is no 
need to find the magnitude of the node’s activation. 
It is enough to check which node has the weight 
vector that is closest to the input vector in some 
metric and then map the input onto that node. 
 
It is common to use the Euclidian distance to find 
the weight vector with the closest match to the 
input vector. Another common and more 
“biological” method is based on the dot product of 
the input vector x ∈ Rn and mi ∈ Rn. These two 
variants of the SOM algorithm will be described 
below. 
 
The SOM algorithm using the Euclidian 
distance: For every node i there is a weight vector 
mi∈Rn. At time step t an input signal x ∈Rn 
activates a winner node c for which the following is 
valid:  
 
     || mc - x || ≤ || mi  - x || ∀i,  
 
i.e. c is the node which weight vector best 
approximates the input signal. Every node updates 
its weights according to Kohonen’s learning rule: 
 
     mi (t + 1) = mi (t) + hci(t) ⋅ [x(t) - mi(t)], 
  
where h is a neighbourhood function, which is used 
in the following way: the learning is supposed to 
depend on where a node is located in relation to the 
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winner node c. For the neighbourhood function h 
the following must be valid: hci(t) → 0 when t → ∞. 
Otherwise the process will not converge. Often 
hci(t) = h(||rc – ri||, t), where rc ∈ R2 and ri ∈ R2  are 
location vectors of node c and node i in the array, 
i.e. the location on the cortical surface. When  
||rc – ri|| increases hci → 0. h might be defined in 
terms of the Gaussian function: 
 
     hci(t) = α(t) ⋅ exp(- ||rc – ri||2 / 2σ2(t)), 
 
where α(t) is a scalar-valued learning-rate factor, 
and σ(t) corresponds to the radius of the 
neighbourhood. α(t) and σ(t) are monotonic and 
decreasing functions of t.   
 
The dot product SOM algorithm: Instead of 
checking the Euclidian distance between the input 
vector and the weight vectors, the dot product of the 
vectors can be used to get the best match. The 
difference between the variant described above and 
this variant is that to the winner node, one 
calculates the dot product between the input vector 
and each weight vector. For the winner node c the 
following is valid: 
 
     XT(t)mc(t) ≥ XT(t)mi(t) ∀i,  
 
The weights are updated according to: 
 
     mi(t + 1) = [mi(t) + α'(t)x(t)] / || mi(t) + α'(t)x(t) ||  
     if i ∈ Nc(t) 
 
and 
 
    mi(t + 1) = mi(t) if i ∉ Nc(t) 
 
where Nc(t) is the neighbourhood of the node c at 
time t and 0 < α'(t) < ∞.  
 
Before processing, the weights have to be 
initialized. This can be done by assigning them 
randomly, but if they are initialized with some kind 
of order the process will converge much more 
rapidly. 
 
In a general way, the adaptive SOM processes can 
explain the organization found in varying structures 
in the brain and artificial self-organizing maps 
share many features with brain maps, i.e. the 
experimentally deduced topographical organization 
of the brain. 
 
 
3. Methods 
 
To investigate the influence from different forms of 
sensory training on the reorganization of the maps 
in somatosensory cortex I have built a series of 
models that consist of the relevant neural systems. 

These systems are: a part of a dorsal root ganglion 
that takes input from a palm, a part of medulla, a 
part of thalamus, and a part of primary 
somatosensory cortex. I have been working in steps 
in this project. For each step I have extended the 
current model to a more advanced one. Simulations 
have been done with the resulting models in each 
step. In the models, the number of neurons in each 
relay nucleus has been kept constant. This is not 
because it is realistic, but because I could not find 
any information about the relations between the 
numbers of neurons in each site. Anyway, these 
relations are not important for the simulation 
results. The number of neurons in each relay site, 
and the number of receptors in the palm, has been 
400, and in the cortex module the number of 
neurons has been 900. This is true for all versions 
of the model. In the models, it is possible to 
simulate the misconnection of nerve fibres between 
the hand and the dorsal root ganglion that follows 
nerve regeneration. 
 
When creating computational models, it would be a 
great idea to stick to some kind of standard to 
enable others to benefit from it. This is exactly what 
has been done in this project since it is a subproject 
of Ikaros (Balkenius, 2003). Ikaros is a project that 
aims to develop an infrastructure that can be used 
for system level modelling of the brain. In addition, 
it keeps databases with computational models and 
experimental and functional brain data. Ikaros 
provides the programmer with an environment 
which aims to be a standard method for system 
level modelling of the brain. In Ikaros, there are a 
collection of models corresponding to different 
brain regions. There are also modules working as 
drivers for I/O. Ikaros has a plug-in architecture and 
that enables the programmer to add new models in 
an easy way.  
 
During the simulations the quality of the map 
formed in the cortex module was measured. The 
method for map quality measurement used in these 
simulations is based on a method described in 
Teuvo Kohonen’s book Self-Organizing Maps 
(Kohonen, 2001). My slightly modified version of 
this method works as follows: Randomly select n 
input samples from the input space and activate the 
model with them. For each of them, check which 
neuron in the cortex module has the best matching 
weight vector and which neuron has the second best 
matching weight vector. Count the number of cases 
in which the neuron with the best matching weight 
vector and the neuron with the second best 
matching weight vector are neighbours in the map. 
Divide the resulting sum with n to make the 
measure independent of the size of the input space. 
The resulting number is a measure of the quality of 
the map, i.e. how well organized the cortical map 
is. In the simulations with all models n = 800. The 
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choice of n is based on a method for selection 
dimensioning found in the literature (Klefsjö & 
Hellmer, 1991). 
 
This method of quality measurement has the benefit 
of providing a numerical value signifying the 
quality of the cortical map for each training method 
before, after and during the learning phase. A 
training method with a higher value on this quality 
measure is considered better than a training method 
with a lower value, provided that both are trained 
with an equal amount of iterations. 
 
A number of training methods, i.e. different 
methods for input generation, where created, and 
simulations were done with the models with a set, 
or a subset, of these training methods. There were 
30 simulations with each training method used for 
each model. This was necessary because some of 
the training methods depended on a random 
function and in the quality measurements only 
randomly selected subsets of the input space were 
used. Due to this, the simulations were not 
deterministic and to get significant results, 
simulations had to be repeated several times. With 
30 simulations or more nothing has to be assumed 
about distribution. With all versions of the model 
besides the model of partial nerve injury, see 
chapter 6, simulations with all training methods 
described in Fig. 3.1 were done. The training 
methods used with the model of partial nerve injury 
are described in chapter 6.  
 
In the simulations, quality measurements were done 
a number of times during the reorganization of the 
cortex map after the mixing of the nerve fibres. The 
simulations started with a well organized map, i.e. 
well organized according to the state of the model 
before nerve fibre mixing. This was accomplished 
by reading in a set of weights to the cortex module 
in the beginning of each simulation. These weights 
were generated by a simulation with training 
method 1, see Fig. 3.1, and the reason to choose this 
particular training method for this purpose was 
because the organization of the relevant cortical 
areas for touch in reality should be formed by all 
kinds of constellations of stimuli, at least 
approximately, and what training method 1 
provides is an approximation of that. By reading in 
the weights, it was possible to turn on mixing at the 
very beginning of the simulations, which saved a 
lot of computer time.  
 
However, the main reason for starting the 
simulation by reading in weights corresponding to a 
well organized map was to allow every training 
method to start with the model in an identical state. 
This is important since the differences in map 
quality should depend on the differences of the 
training methods only. 

Training 
Method 

Description 

1 In each iteration, a random number 
of points on the palm are stimulated 
with a random intensity.  

2 In each iteration, one point on the 
palm is stimulated, in such an order 
that every point is stimulated from 
left to right, row by row in the same 
manner as one reads a text in 
English. When the last point on the 
last row has been stimulated, the 
same process starts over.  

3 In each iteration, one point on the 
palm is stimulated, and which point 
is selected is chosen at random.  

4 In each iteration, two points on the 
palm are stimulated, one on the 
edge of the palm, in a clockwise 
order, and starting with the first 
element in the first row and one in 
the same order as in training 
method 2, but with the edge left 
out.  

5 In each iteration, two points on the 
palm are stimulated, and which 
points are selected is chosen at 
random.  

 
Fig. 3.1. The table describes all training 
methods used in the simulations, besides 
cortical induction.  
 

 
The simulations results were analyzed statistically. 
Confidence intervals for the map quality were 
calculated with a confidence level of 99% (p = 
0.01), and presented as diagrams. 
 
The simulations started with the nerve fibres from 
the palm mixed, i.e. a randomly set map between 
the output of the palm and the input of the medulla 
was turned on. In the simulations with the model of 
partial nerve injury, the nerve fibres were only 
partly mixed. Besides the model of partial nerve 
injury, every simulation consisted of a training 
period with 2000 iterations with one of the training 
methods. The map quality was measured, with the 
method described above, before the training period 
and then every 500 iterations. The specifics of the 
simulations with the model of partial nerve injury 
are described in chapter 6. 
 
 
4. A Basic SOM Model 
 
For a basic SOM model four Ikaros modules were 
implemented: NeuralField2D, SOM, Mixer and 
StimGen. These modules are described below. 
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NeuralField2D: This module describes a neural 
field, i.e. a collection of neurons that interacts with 
each other by inhibition and excitation. The neurons 
are represented by a matrix. This matrix, which is 
also the modules output, describes the activation of 
each neuron. As input the module also takes a 
matrix. Depending on the input matrix, the 
elements in the output matrix are updated. This is 
done in such a way that the input matrix is 
projected onto the output matrix and each element 
in the output matrix is influenced by the activations 
of the projected elements in the input matrix. The 
level of influence of the elements in the projected 
input matrix on an element in the output matrix is 
determined by their distance to the element in 
question and their activation level. The elements of 
the projected input matrix have both inhibitory and 
excitatory influence on the elements of the output 
matrix. In practice, this is done by using a Gaussian 
function for both inhibition and excitation, but with 
one sigma value for inhibition and another for 
excitation. So, when the activation level for an 
element in the output matrix is calculated, it is done 
by projecting the elements of the input matrix onto 
the output matrix, and for each of them calculate 
the distance to the element in the output matrix. 
This distance is then inserted into two Gaussian 
functions, one for inhibition and one for excitation. 
The values of the Gaussian functions are multiplied 
with the activation level of the input matrix element 
which projection is considered. These products are 
calculated for each element in the input matrix and 
summed. So, in the end, there are to sums, one for 
inhibition and one for excitation and these are 
normalized. Inhibition is then subtracted from 
excitation and if the result is positive, the activation 
of the output matrix element is set to this value, 
otherwise it is set to zero. The operation of the 
module is equivalent to a neural field with 
inhibitory and excitatory interactions, but without 
learning.  
 
In the model, there were three instances of this 
module. The palm and the dorsal root ganglion 
were modelled with an instance of it, but with 
inhibition turned of. This is not strictly authentic 
when compared with the neurophysiological system 
which it intends to model, but in the dorsal root 
ganglion the neurons do not inhibit or excite each 
other, but their corresponding receptors in the palm 
have a receptive field with some spatial extension 
and these overlaps. Therefore a stimulus on a point 
on the palm will excite a collection of neurons in 
the dorsal root ganglion and the excitation level of a 
dorsal root ganglion neuron is determined by where 
in its receptive field the stimulus is applied, with 
the excitation largest if the stimulus is applied in 
the centre of the receptive field and with a decline 
when it deviates to its borders. So, when a point is 
stimulated on the palm, a group of adjacent neurons 

in the dorsal root ganglion will be excited, since the 
stimulus is applied inside their receptive fields. For 
neurons close to the centre of the group, the 
excitation are large and the excitation for neurons 
declines with the distance from the centre of the 
group. The group consists of adjacent neurons, 
because the axons from the palm conserve the 
somatotopic organization in the dorsal root 
ganglion. To model this part of the system with an 
instance of NeuralField2D is not to far from the 
truth since it should behave in a similar way.   
 
The relay nuclei in the medulla and the thalamus 
were also modelled with instances of Neural-
Field2D. Both inhibition and excitation were turned 
on.  
 
Somatosensory cortex was modelled by another 
module, SOM. This module is an implementation 
of the self-organizing map described in section 2.6 
above. In the simulations, the dot-product algorithm 
was used and the shape of the neighbourhood was 
Gaussian. This module also contains functionality 
for measurements of the map quality. 
 
In addition to NeuralField2D and SOM, there were 
two other modules used in the simulations. One of 
them was Mixer, which creates a random map 
between input and output. It takes a matrix as input 
an also outputs a matrix. This mapping can be 
turned on after a specified number of iterations. The 
other module was StimGen, which generates input 
matrices to the palm according to different training 
methods. In the simulations, the module instances 
were lined up as shown in Fig. 4.1. 
 
 

               
  

Fig. 4.1. The figure shows the modules in the 
basic SOM model and their biological 
counterparts. 
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This model was the first one and it was also the 
simplest. The main purpose of building it was to get 
a working model up and running.   
 
In Fig. 4.2 the results from the simulations with the 
basic SOM model are presented as a diagram, and 
in Fig. 4.3 momentary depictions from a couple of 
simulations with the basic SOM model are shown. 
This is to illustrate the activation at different sites 
along the pathway. 
 
The results from these simulations shows that the 
training methods used did not differ from each 
other very much. The basic SOM seems to organize 
well with any method and it seems to be a far too 
simplistic model to be really interesting. However, 
the purpose of this version of the model was first 
and foremost to get a working model of the relevant 
neurophysiological systems up and running. 
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Fig. 4.2. The results of the simulations with the 
basic SOM model presented as a diagram. The 
confidence interval for every training method at 
every point of measurement is smaller than ± 
0.004 (p = 0.01). As we can see in the diagram, 
the training methods are in practice equally 
good. 
 
 

5. A Multiple Peak Model 
 
It would be more natural if the learning in the map 
when several points on the palm are stimulated 
would have an influence on its ability to map the 
same points separately too. To take this into 
account, the SOM module in the basic SOM model 
was modified.     
 
The SOM module in this modified model differs 
from the basic SOM in that the learning, i.e. the 
updating of the weights belonging to the neurons in 
the map does not only depend on the winner 
neuron. In the basic SOM, how much the weights 
belonging to a certain node will be updated, 
depends on the distance to the winner node. In this 
version of the model, how much a nodes weights 
will be updated, depends on all nodes. For every 
node in the network, an influence from each node is 
calculated in a similar way as from the winner node 
in the case of the basic SOM. The results of the 
calculations are multiplied by the level of activation 
of the influencing nodes, so that the level of 
influence on a node by another node depends on the 
level of activation, i.e. the degree of matching of 
the nodes weights to the input vector, for the other 
node. To calculate the influence on a certain node 
in the network, the influence from all the nodes in 
the network are normalized by dividing with the 
largest influence and then the normalized influences 
are summarized. The resulting sum is taken as the 
neighbourhood function h described in section 2.4 
above. The difference is that in this modified SOM, 
the neighbourhood function h describes not only 
how to update a nodes weight depending on its 
distance to the winner node, but how to update the 
nodes weights depends on its distance to all the 
other nodes and their levels of activation. 
 
 

 

 
 

Fig. 4.3. The figure shows the activation at different levels at a moment in a simulation with the basic 
SOM model. In the uppermost sequence of frames there is no nerve fibre mixing, while in the sequence at 
the bottom there is. From left to right the frames show: the applied stimuli, the palm, the relay nucleus in 
medulla, the relay nucleus in thalamus, the winner neuron (and a small vicinity) in cortex, and the 
activation in cortex. 
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The simulations with this model, which is 
somewhat more realistic than the basic SOM 
model, generated results, see Fig. 5.1, that were 
more interesting. 
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Fig. 5.1. The results of the simulations with the   
multiple peak model. The confidence interval 
for every training method at every point of 
measurement is at most ± 0.06 (p = 0.01). 
Training methods 1, 3, and 5 are good, but 
training method 2 is worse and training method 
4 is far worse than the others. 

 
 
Training methods 1, 3, and 5 reorganized the 
cortical map fast and with a high quality, and the 
quality remained high at a constant level during the 
simulations. Training methods 2 and 4 were worse 
with training method 2 stabilizing at a lower level 
than 1, 3, and 5. Training method 4 decreased the 
map quality very much during the first 500 
iterations, but then the quality started to improve 
slowly but steadily. 
 
Training methods 2 and 4 have in common that 
they are stimulating the palm in an orderly manner, 
i.e. they are not based on any random function. 
However the training method 4 is much worse than 
training method 2, at least during the first 2000 
iterations. 
 
The common feature of training methods 1, 3 and 5 
is that they are all based on a random selection of 
stimuli points. These results may be taken as at 
least a weak possibility that the training methods 
used for optimization of the recovery after nerve 
regeneration should be based on random stimuli. 
But as we will se in later models, this is not always 
the case. 
 
 
6. A Model of Partial Nerve Injury 
 
To enable a simulation of those cases where only a 
part of the nerve in the arm was injured, the 

multiple peak model was modified. One thing that 
was modified was the module Mixer. This was 
done to allow mixing of only a part of the nerve 
fibres. When the nerve injury is only partial there 
are reasons to believe that a certain training method 
called cortical induction, described above in section 
2.3, would be of great value. Therefore, in addition 
to the changes in the module Mixer, a new training 
method was implemented in the module StimGen. 
 
Actually, first an accurate version of this training 
method was implemented, but there were problems 
to get it to work with a model with a very limited 
number of neurons. It was necessary to keep the 
number of neurons limited, because otherwise the 
model would have been too computationally 
expensive. Another problem was that it would have 
been necessary to run quite a lot of iterations in a 
simulation, because of the nature of cortical 
induction, i.e. it repeats the stimuli of a couple of 
points many times before proceeding. I 
implemented and tested an accurate implementation 
of cortical induction and a rough estimation is that 
it would take approximately 12000 iterations in 
each simulation with a model of the same size as 
the previous models, so it would take a lot of 
computer time to run the simulations. However, this 
was not the main reason to abandon it. The main 
reason, instead, was that I run into strange troubles 
with the implementation where the simulation 
unexpectedly hanged and the stimulation of the 
edge didn’t proceed anymore after several 
thousands of iterations, for some reason. Since it 
would take about 12000 iterations, only to test any 
changes to the implementation, which means about 
8 hours waiting for the computer, it would not be 
reasonable to continue. 
 
Therefore, to get some idea of the usefulness of 
cortical induction, I created a simplified version of 
it. This version of cortical induction is presented 
below: 
 
Training Method Cortical Induction: This function 
implements a simplified version of cortical 
induction. It works by randomly select one point on 
the edge of the part of the palm corresponding to 
the well organized part of cortex and one point in 
the same column but one row further down into the 
part of the palm that corresponds to the part of 
cortex that is not well organized yet. This is done as 
many times as there are points along the edge, then 
for each iteration one point on the edge is selected 
randomly. This is done as many times as there are 
points along the edge, then for each iteration one 
point on the row one step below the edge is selected 
randomly. This is also done as many times as there 
are points along the edge, then the edge is moved 
one row further down and the process above starts
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over. This continues until the edge is moved to the 
last row. 
 
The simulations started with the nerve fibres for 
half the palm mixed, and as in the previous models 
weights corresponding to a well organized cortical 
map before mixing were read in. The map quality 
was measured before and after the learning phase 
which lasted for 600 iterations. The reason to run 
precisely 600 iterations was that that was exactly 
the number of iterations needed to let all of the part 
of the palm with mixed nerve fibres be stimulated 
with the training method cortical induction, and to 
be comparable each of the other training methods 
should be run with equally many iterations.  
 
The training methods used in the simulations with 
this model, were training methods 1, 3 and 5 used 
in the previous model, and in addition the new 
training method “cortical induction”. For each of 
these training methods only the nerve fibres for half 
the palm were mixed. The reason to choose training 
methods 1, 3, and 5 was because they were good in 
the previous model.   
 
In Fig. 6.1 the results from simulations with the 
model of partial nerve injury are shown in a 
diagram, and in Fig. 6.2 momentary depictions 
from a simulation with the model is shown to 
illustrate the activation at different sites along the 
pathway. 
 
In this simplified version of cortical induction, there 
was no feedback from the SOM module providing 
information about to what degree the correct part of 
the cortical map had expanded locally around the 
edge. Therefore it is possible that a different 
amount of stimulation around the edge before 
putting it forward, would give a better result for the 
training method cortical induction. However, the 
ability to reorganize the cortical map is already very 
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Fig. 6.1. The results of the simulations with the 
model of partial nerve injury, presented as a 
diagram. There was no significant difference (p 
= 0.01) in map quality, for any training method, 
after 600 iterations compared with the map 
quality after 0 iterations. Neither was there any 
significant difference (p = 0.01) in map quality 
after 600 iterations, when the training methods 
were compared to each other. 
 

 
good for the training method cortical induction as is 
the case for the other training methods used in the 
simulations with this model. Therefore, I suspect 
that this model is far too simple to indicate the 
usefulness of cortical induction. Maybe simulations 
of partial nerve injury, using a later version of the 
model (described below), for example with the 
leaky integrator and with disturbances in the timing 
of signals would give more interesting results 
enabling me to provide a better statement on this.

  
 

 
 

Fig. 6.2. The figure shows the activation at different levels at a moment in a simulation with cortical 
induction and the nerve fibres corresponding to the lower part of the palm mixed. From left to right the 
frames show: the applied stimuli, the palm, the relay nucleus in medulla, the relay nucleus in thalamus, the 
winner neuron (and a small vicinity) in cortex, and the activation in cortex. 
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7. A Leaky Integrator Model 
 
One way to extend the multiple peak model to be 
more consistent with, and more accurately model, 
the operation of the neurons in the real cortex is to 
let the activation in the cortex module linger for 
some time. This could be done by partly add the 
activation from the previous iteration to the current 
activation. This type of neuron models is called a 
leaky integrator (Kohonen, 2001).  
 
To implement a leaky integrator some functionality 
was added to the SOM module in the multiple peak 
model. In the SOM module the activations from the 
previous iteration are added to the current 
iteration’s activations, but first the previous 
activations are multiplied with a factor which 
expresses the activation decay. As a result the 
activations in an iteration will not disappear 
immediately after this iteration, but decline 
smoothly during a number of future iterations. For 
example with an activation decay set to 0.5, as in 
my simulations with this model, the activations 
from the previous iteration will still be present but 
with the strength reduced to 50% of its initial value. 
Activations 7 iterations behind the current one will 
still be present, but their strength will now be 
reduced to less than 1% of their initial values. The 
simulation results with this version of the model are 
presented below in Fig. 7.1.  
 
In the simulations with this model, training methods 
3 and 5 still seems to be good as in the multiple 
peak model, but training method 5 has deteriorated 
a bit. 
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Fig. 7.1. The results of the simulations with the 
leaky integrator model, presented as a diagram. 
The confidence interval for every training 
method at every point of measurement is at 
most ± 0.10 (p = 0.01). Training method 3 is 
good, and training method 5 is probably a bit 
worse but rather good. The others are worse but 
training method 2 seems to improve steadily 
after 500 iterations.  

 
 

But training method 1 is not good at all anymore. 
This effect is probably due to that the lingering 
activation has a smoothening effect when this 
particular training method is used, so that in every 
iteration cortex tends to be more homogeneously 
activated no matter what stimuli of the kind 
generated with training method 1 is put into the 
model. This smoothening effect might arise because 
in every iteration the main part of the palm is 
stimulated more or less, and this means that in the 
next iteration there will be lingering activation 
corresponding to an input vector of the same type 
as the current one, but with another activation 
pattern. Since the degree of stimulation at every 
point in training method 1 is randomly chosen to a 
value between 0 and 5, the effect should be that the 
activation of cortex in every iteration corresponds 
to a subset of the input space that are in average 
more homogeneously activated in every point than 
the input space itself. Therefore cortex is probably 
very homogeneously activated and this changes the 
cortical map a lot, in a bad direction, since the map 
is a projection of the probability density function of 
the input space.   
 
Training method 2 has deteriorated too after 500 
iterations, compared with the multiple peak model, 
but then it improves with the number of iterations, 
and I think it is likely that it would reach the same 
level of quality in the cortical organization if more 
iterations were run.  
 
Training method 4 is as bad as training method 1 in 
this model, but it is a bit more difficult to explain 
why it doesn’t improves again after the dip at 500 
iterations as it did in the multiple peak model. 
Instead it seems to remain at a low level of quality.   
 
 
8. Sensitivity to Timing of the Signals 
 
I had the idea that maybe after a severe nerve injury 
there might be disturbances in the timing of signals. 
This idea was founded in two reasons. First, as 
mentioned in section 2.1, the signals from pain 
receptors are conveyed at a slower pace than the 
signals from touch receptors. Second, when the 
nerve fibres grows together again after a nerve 
injury, there are fibres belonging to pain receptors 
that grows together with fibres belonging to touch 
receptors and vice versa. Together this means that 
some receptors that were previously conveying pain 
signals will now convey touch signals and it is quite 
plausible that the transfer of the signal from the 
palm to the medulla will then take a little longer, 
since the part of the nerve fibre previously 
conveying pain signals is less myelinated than is 
normal for a nerve fibre that conveys touch signals. 
To test this, the leaky integrator model was 
extended so that the conveying of the signals from 
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every other receptor took a little longer to reach 
medulla. This has been implemented by the use of 
three more modules than in the leaky integrator 
model. After the module StimGen there is a new 
module Separate which separates the incoming 
matrix into two output matrices of equal size as the 
input matrix. This is done by letting every other 
element from the input matrix go into one of the 
output matrices and the rest of the elements go into 
the other output matrix. One of these output 
matrices is then inserted into an instance of the 
module NeuralField2D called palm1 with inhibition 
turned of as it was for palm in the previous models. 
The other output matrix from the Separate module 
goes into an instance of a new module called 
DelayOne2D and from there into another instance 
of NeuralField2D with inhibition turned of called 
palm2. The only function of DelayOne2D is to 
output the same matrix as it took as input. The 
purpose of this is simply to delay this part of the 
information flow one iteration. The output from 
palm1 and palm2 goes into an instance of a new 
module called Merge which merges its two input 
matrices into one. From Merge the information 
proceeds to the previously described module Mixer, 
which simulates nerve fibre mixing. The output 
matrix from Mixer goes into the part of the model 
that represents medulla, as before, and from here 
and on, the model is similar to the leaky integrator 
model. Fig. 8.1 shows the modules of the model 
and how they are connected. 
 
In Fig. 8.2 the results from the simulations with the 
leaky integrator model, extended with two different 
rates of signal transfer, are presented. 
 
 

 
 

Fig. 8.1. The figure shows the modules in the 
simulations with the leaky integrator model, 
extended with two different rates of signal 
transfer. 

Quality

0

0,2

0,4

0,6

0,8

1

0 500 1000 1500 2000

IterationsTM 1 TM 2 TM 3

TM 4 TM 5

 
Fig. 8.2. The results of the simulations with the 
leaky integrator model, extended with two 
different rates of signal transfer, presented as a 
diagram. The confidence interval for every 
training method at every point of measurement 
is at most ± 0.11 (p = 0.01). Training method 1 
gives a very bad organization of the cortical 
map in this model, while the others seem quite 
good except possibly training method 4. 
 

 
The results from the simulations with this version 
of the model are very interesting, since the addition 
of two different rates of signal transfer to the leaky 
integrator model seems to take away the 
deterioration in the leaky integrator model 
compared to the multiple peak model. An exception 
is the training method 1 which is still bad, probably 
because of the reasons discussed in section 7.3. On 
the other hand, the reorganization ability of training 
method 4 seems to be improved compared to the 
multiple peak model and so do training method 2 
which is now extremely good. That the cortical 
reorganization is better in this model compared to 
the leaky integrator model is quite interesting, since 
one should expect the opposite with the motivation 
for this model presented above. 
 
 
9. A Two Palm Model 
 
As mentioned in chapter two the bundles of afferent 
axons from the nuclei in medulla cross over two the 
contralateral side of thalamus, but in reality there 
are also some ipsilateral connections, so there are 
also an ipsilateral activation. Therefore, stimulation 
of the healthy arm will lead to some activation of 
the cortex areas corresponding to the injured arm.  
 
To get an idea of how an equal and simultaneous 
stimulation of the hand with healthy nerve fibres 
would influence the recovery of the hand with 
injured nerve fibres, the previous model, including 
multiple peak activation, a leaky integrator, and two 
different rates of signal transfer, was extended to 
model the neurophysiological systems correspond-
ing to both hands up and till medulla. The system 
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for one of the hands corresponds to an injured arm 
and the system for the other hand corresponds to a 
healthy arm. So, the system corresponding to the 
injured hand has mixing of its nerve fibres turned 
on, while the system corresponding to the other 
hand has not. For the system corresponding to the 
injured arm, there are modules for thalamus and 
cortex, as in the previous model, but for the system 
corresponding to the other arm there are not. In the 
model the relay nuclei in medulla corresponding to 
the healthy side was connected to the relay nuclei in 
thalamus corresponding to the injured side.  
 
The NeuralField2D module used for medulla at the 
healthy side was slightly modified, so that every 
other element in its output matrix is changed to 
zeroes. This was because there are less ipsilaterally 
connected axons, and changing every other element 
to a zero should correspond to neurons with no 
ipsilateral axons.  
 
The StimGen module for the healthy side was also 
slightly modified. This was done to disable it to 
interfere with the quality measurements, i.e. while 
measuring quality, only the injured side were 
stimulated. 
 
Fig. 9.1 shows a schematic depiction of the 
modules in the two palm model and how they are 
connected. In Fig. 9.2, the results from the 
simulations with the two palm model are presented. 
 
 

 
 

Fig. 9.1. The figure shows the modules in the 
two palm model.  
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Fig. 9.2. The results of the simulations with the 
two palm model, presented as a diagram. The 
confidence interval for every training method at 
every point of measurement is at most ± 0.10 (p 
= 0.01). Training method 1 gives a very bad 
organization of the cortical map in this model, 
training method 2 is better but not very good as 
in the previous model. The other training 
methods seem quite good. 

 
 
The simultaneous stimulation of the palm of the 
healthy arm does not seem to influence the 
reorganization very much. This was a bit surprising, 
since a deterioration of the reorganization due to the 
ipsilateral activation was expected. This was 
expected since due the stimulation of the hand of 
the healthy arm, should tend to push the cortical 
map into an organization similar to the one 
prevailing before the nerve injury. Therefore the 
impact on the cortical organization due to the new 
situation following the mixing of nerve fibres 
would be resisted to some extent. But as seen, this 
was not the case. 
 
 
10. Discussion 
 
I have simulated the reorganization of somato-
sensory cortex to get an idea on what constitutes a 
proper sensory re-education after injuries to the 
nerves between the hand and the brain. This work 
has proceeded by implementing gradually more 
advanced versions of the model. With each version 
of the model, simulations were run. The simulations 
with all versions of the model, gave that a 
continuous random selection of a small set of points 
for stimulation on the palm, is a good re-
educational strategy.  
 
In general training methods 3 and 5 have worked 
well in all models. Training method 2 worked fairly 
well, but not as good as training methods 3 and 5. 
Training method 1 is not a good choice in those 
models that include a leaky integrator. A discussion 
on the reasons for this was included in chapter 7 
above. When it comes to training method 4, it 
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seems in summary, that it would not be a 
particularly good choice, but even this method 
becomes fairly good in the model with two different 
rates of signal transfer. This seems to be a property 
of that model. I got the impression that the addition 
of different rates of signal transfer to the leaky 
integrator model has a stabilizing influence, in that 
it becomes less sensitive to the choice of training 
method.   
 
Generally, training methods 3 and 5 have been 
good in all models, so to hazard a guess and come 
up with a recommendation; it would be that a 
training method after nerve generation should 
randomly choose a small set of points on the hand 
and stimulate them shortly and then select some 
new points. 
 
To randomly choose a large part of the receptors of 
the hand in every iteration of the loop, and 
stimulate them with a randomly chosen intensity 
may on the contrary be a less useful method. 
 
When it comes to partial nerve injuries, i.e. there is 
a part of the hand that is correctly mapped in the 
cortex, the recommendation would be the same. 
Perhaps cortical induction would be as good or 
better, but to enable a statement on this, it would be 
necessary to run simulations of partial nerve 
injuries with my more advanced models and in 
addition with the more realistic implementation of 
cortical induction. In this project, simulations of 
partial nerve injuries were only done with the 
multiple peak model and a simplified version of 
cortical induction. 
 
The reader should observe that the 
recommendations above are very loosely founded, 
since all models are tremendous simplifications of 
the real neurophysiological systems.  
 
An interesting observation is that training method 2 
showed to be extremely good in the model with 
different rates of signal transfer. This indicates that 
in reality there might be a possibility that the best 
design of a training method is not to use sets of 
randomly selected stimuli points, but a design with 
some kind of order in the selection, or a 
combination of random selection and ordered 
selection. 
 
All versions of the model made in this project are 
considerable simplifications of their 
neurophysiological counterparts. One reason for 
this was to keep the burden of work at a reasonable 
level. Therefore, I have restricted the model to 
comprise only the palm, instead of the whole hand, 
and only touch sensitive receptors have been 
included. Another reason was that the accessibility 
to computer power is always limited and therefore 

the different neurophysiological systems included 
in the computational model have been modelled 
with a considerably less amount of neural cells than 
in the biological counterparts. For the same reason, 
the level of detail in the model has been kept at a 
reasonable level. 
 
With a more well thought-out set of training 
methods, it would probably be possible to make a 
stronger statement on the best design of training 
methods, than I have been able to do, but I did not 
put a large amount of effort on this. This was 
because one of the most interesting questions would 
be to confirm or refute the usefulness of cortical 
induction. The other training methods were selected 
to have something to compare it with. So, of course 
it would have been better if I had pondered on what 
kind of training methods I would construct to get 
evenly distributed samples from the set of all 
possible training methods. 
 
It is not too easy to compare my model with those 
mentioned in section 2.5, since my simulations are 
specifically designed to shed some light on the 
problem with cortical reorganization induced by 
misconnected nerve fibres, and non of the models 
mentioned in section 2.5 are aimed at that problem. 
However, there were mentioned some models that, 
like mine, includes the hand and the somatosensory 
cortex. So, it could be worthwhile to mention 
something on what I have done differently in 
comparison to them.  
 
Mazza and Roque-da-Silva (1999; 2000) made a 
couple of models which included the hand and the 
somatosensory cortex. With the aid of one of these, 
they simulated the reorganization of somatosensory 
cortex after changes to the sensory input. One 
advantage of my model compared to theirs, is that I 
have included the relay nuclei in the medulla and 
the thalamus. This makes my model more 
biologically plausible in that respect.  
 
This is also true for the model made by Lin, 
Liljeholm, Ozdzdynski and Beatty (2002), also 
mentioned in section 2.5. Their model also included 
the hand and the somatosensory cortex. Their 
model of somatosensory cortex, like mine, used 
Kohonen’s self-organizing map algorithm. But an 
extension in my model, compared to theirs, is that 
in my model, short of the first version, I have 
modified the original self-organizing map algorithm 
to include influences from all activity in the cortex 
module on the updating of the weights. In the 
original algorithm, the updating of the weights of a 
node depends on the winner node, and the distance 
to the winner node, while in my modified version of 
the algorithm, the updating of the weights of a node 
depends on all the other nodes, but the influence 
from another node is proportional to how well it 
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matches the input vector and the distance. The idea 
is that this should make the model more 
biologically plausible, in that stimulating several 
points on the hand will also lead to learning 
corresponding to separate stimulation of these 
points. 
 
As a conclusion, I will discuss some suggestions for 
further research. One suggestion is to build a more 
realistic and authentic model of the dorsal column-
medial leminiscal system. Then one should take 
into account that there are not only receptors for 
touch sensations in the hand. There are also 
receptors for pain, heat and proprioception, and for 
example there are different types of receptors for 
touch, as indicated above. Receptors for different 
submodalities do not project onto the same maps in 
the somatosensory cortex, so when the nerve fibres 
have grown together in a random way there are 
severe problems that have not been taken into 
account in the simple model in this project. In 
reality, the problem with misconnections of the 
nerve fibres are not limited to a reorganization of a 
map in cortex, because receptors that are expected 
to project onto one area in the somatosensory cortex 
are suddenly projected onto another area that is a 
completely different map. For example a receptor 
that previously mediated touch, will suddenly 
convey its signals to a map that expects information 
from pain receptors. Therefore the reorganization in 
reality will never be complete, because the nerve 
fibre mixing is not bounded within a single cortical 
map.  
 
Another suggestion for further research, is a project 
that could take its start in the current work, and 
extend it to also include parts of motor cortex, 
influences from higher cortical areas, and a more 
advanced model of a hand. What I have in mind is 
an attempt to build a larger model of somatosensory 
cortex, that does not only consists of primary areas, 
but also secondary. I think of a model that is able, 
to some extent, of stereognosis, i.e. a model that is 
able to identify objects with the aid of 
somatosensory information. This model should 
consist of modules that took in information of touch 
and proprioception from, for example, a robot hand, 
or its simulated equivalent, and integrated this in 
secondary cortical area modules, enabling an 
identification of different kinds of object. This 
would be interesting from a pure scientific 
viewpoint, and it would also have practical values 
in for example robotics. 
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