
Event Notification for Mobile Clients

Örjan Berglin

Carl-Emil Lagerstedt

Examensarbete för 20 p

Institutionen för datavetenskap,

Naturvetenskapliga fakulteten, Lunds universitet

Thesis for a diploma in computer science, 20 credit points

Department of Computer Science,

Faculty of Science, Lund University

Abstract

With many Internet services, it is necessary to distribute information to

clients as soon as it is available. Information should not only be delivered, it

should be delivered as soon as possible. An example is weblog monitoring.

As a weblog is usually updated irregularly, it is impossible to know when to

check for updates. Clients do not want to waste resources on checking for

new entries, they want a way to be notified when a new entry is posted. To

accomplish this, we present an architecture to provide event notifications for

mobile clients. In this thesis, we review some of the available systems for

event notification (Siena and Elvin) before showing how XMPP (Extensible

Messaging and Presence Protocol) can be used in conjunction with JEP-

to provide a publish/subscribe framework. We then describe our prototype,

which consists of two parts: one server part, that provides a weblog service;

and one client part, that uses XMPP to interact with the weblog.

Sammanfattning

För många Internettjänster är det viktigt att distribuera information till

sina klienter så snart som den finns tillgänglig. Informationen ska inte bara

levereras, den ska levereras så snart sommöjligt. Ett exempel är bevakning av

enweblog. E ersomenweblog o ast uppdateras oregelbundet är det omöjligt

att veta när man ska kontrollera om den har blivit uppdaterad. Klienter vill

inte använda sina resurser till att kontrollera om ett nytt inlägg har skrivits.

De vill ha ett sätt att bli aviserade när ett nytt inlägg har skrivits. För att åstad-

komma detta presenterar vi en arkitektur för att skicka aviseringar till mobi-

la klienter. I den här uppsatsen går vi igenom några av de befintliga aviser-

ingssystemen (Siena och Elvin), vare er vi visar hur XMPP (Extensible Mes-

saging and Presence Protocol) kan användas tillsammans med JEP- för

att skapa ett ramverk för publish/subscribe. Vi har utvecklat en prototyp som

består av två delar: en serverdel som tillhandahåller en weblogtjänst och en

klientdel, som använder XMPP för att interagera med webloggen.

i

Contents

 Introduction

. Sony Ericsson .

 Use Cases

. Use Case: Blogging .

. Use Case: Share Picture .

. Use Case: Log Call Info .

. Use Case: Music Logging .

. Use Case: Remote Monitoring .

. Use Case: Location Logger .

 Publish/Subscribe Systems

. Events, notifications and metadata

. Taxonomy .

.. Notification Filtering .

.. Subscription Types .

.. Federation .

. S .

. Elvin .

. Mobility Issues in Publish/Subscribe Systems

 Architecture

. XMPP .

. JEP- .

. Why XMPP? .

 RelatedWork

. WAP Push .

. OMA IMPS Architecture .

. IP Multimedia Subsystem .

ii

.. How IMS works .

 Security & User Integrity

 Prototype: A Blogging Service
. Client So ware .

.. Architecture .
.. Java Platform, Micro Edition
.. Smack .

. Server .
.. ¿eWeblog .
.. ¿e XMPP server .

 Results & Conclusions
. JME .
. OPA—Open Platform API .
. XMPP Performance .

 Future Work
. General Suggestions .
. Re-Implementation in OPA .
. Compression of XMPP Data .
. User Surveys .

References

Glossary

Index

iii

List of Figures
 Blogging .
 User sharing a picture .
 User sharing call log .
 Music Logging .
 Remote Monitoring .
 Location Logger .
 Architecture for Notification Service
 Alternative Architecture for Notification Service
 XMPP Overview .
 Establishing an XMPP Connection
 WAP Push Architecture .
 IMS Overview .

Acknowledgements

THERE ARE MANY people who, in one way or the other, have contributed to
the making of this thesis. First of all, we would like to thank our supervisor

at Sony Ericsson, David Pettersson, for his never-ending patience with us.
It is a tough job, but someone has to do it — thanks to Marcus Offesson and

Stefan Johansson for reading and commenting on dra s of this thesis.
¿anks to Ovidiu Gheorghies, the author of MetaUML, who released a new

version of MetaUML with the features we needed.
Also, thanks to¿ore Husfeldt, our supervisor at the Department of Computer

Science at Lund University.

I WOULD LIKE TO THANK CARIN, for supporting me and being the reason
(literally) that I get up in the morning. Seriously, I could not have done it if you
hadn’t kicked me out of bed each morning.

//Carl-Emil

THANKS TO SOPHIA, for your patience and support. If it hadn’t been for you,
this thesis wouldn’t be finished by now.

//Örjan

MetaUMLwas used to draw the use case diagrams in Section . More information can be found
at the MetaUML web site: http://metauml.sourceforge.net

http://metauml.sourceforge.net

1

Introduction 1
AS MOBILE CLIENTS get more advanced, users will expect mobile access to

features hitherto available only on desktop computers. People want to read
their e-mail or access web pages and files while on the move. However, the usage
pattern of mobile client differs from that of stationary clients. To illustrate how
such usage patterns can differ we begin with an example: blogging.

In the past few years, a new Internet phenomenon has emerged: blogging. ¿e
word blog is short for web log, and blogging is writing such a log. A blog is a web
based online journal where the blog owner can publish text and readers can leave
comments. Blogging applications have mostly focused on desktop users, who use
their personal computer to publish and read blogs. Some effort has been made
to enable mobile users to interact with web logs, but most of them provide only a
rudimentary service. Currently, most mobile blogging services are used by send-
ing SMS or MMS messages to a gateway, where the messages are processed and
published. ¿ese services are targeted at the publisher of the blog, they have no
functionality for reading blogs. ¿e greatest concern with using SMS and MMS is
that there is no feedback model. With SMS and MMS you get, at most, a delivery
notification for the message that was sent. ¿e SMS/MMS infrastructure does not
provide any other form of notification besides the delivery notification. Some mo-
bile phones can send e-mail, and that makes blogging trivial — there already exist
e-mail interfaces formany blog services, whichmeans that any phone that can send
e-mail can also be used for blogging.

¿ere are usually two ways to get notified when something happens on a web

2

log. You either refresh your browser manually or you use an RSS reader that regu-
larly check the weblog for updates. Both of these methods work by issuing HTTP
GET requests to the weblog, in essence, they are user/client initiated. ¿ere is cur-
rently noway for the weblog itself to tell a user that it has been updated. ¿ismeans
that there might be a substantial amount of time between the time that an event
occurs and the time that the user knows about it. HTTP is always client initiated,
whichmeans that the weblog has no way of telling the client to refresh her browser.

We believe that this model is not optimal for mobile users. Constant refresh-
ing of a web page is not practical — it costs both time and money to use mobile
data access, and the user might be busy doing something else. Using our proposed
architecture, however, the user will simply get a message to the phone, which in-
forms her that something has changed in one of the resources she is subscribing
to. However, this is not the only advantage of our architecture. By extending the
world of instant messaging we have created instant blogging.

¿is is not a problemwhenbrowsing the Internet on aPC, the user just refreshes
the page to reveal updates. ¿is is, however, not a good practice for mobile clients,
since mobile users tend to have other things to consider besides surfing the net.
Instead, a client will want to be notified when an update occurs. For example, if
a blog is updated, a notification should be sent to any client who wants to know
when the blog is updated. ¿e biggest issue at hand is that a web server cannot
take the initiative to create a connection to a client; it is always the client that
initiates a connection to the server. Our solution was to implement a new protocol
level for event notification. On the event notification level, the client can receive
notifications from the server.

¿e purpose of this thesis is to describe an architecture that allows notifications
from the world to be sent to mobile clients. Normally, a server is not able to initiate

By definition, an HTTP server is “An application program that accepts connections in order to
service requests by sending back responses” (Fielding et al.,). ¿is means that the client has to
establish the connection, but that the server is then free to send data over this connection without
having to ask the client. More information about HTTP can be found in section ??,HTTP Protocol,
on page ??.

3

communication with a client — all communication is initiated by the client(there
exist push services for, for example, e-mail notification, but these services are not
general).

We propose a solution where the server is able to initiate parts of the communi-
cation. We do this by requiring the client to establish a (semi)persistant connection
to the server, which is used as a service connection for sending events. One way to
see it is that the client initiates a session at the remote server, and then keeps the
connection alive for as long as it wishes to receive events. Over this connection,
the servers sends notifications and event notifications. An event is something that
happens in the world, for example, a change of temperature, or that a web site is
updated. A notification is a message of some kind that the recipient wants or is
requested to receive. An event notification is a message that contains information
about an event.

In this thesis, the use case that we have focused most strongly on is blogging.
¿e reason for this is that it is a good example of a service that provides information
that, more or less o en, is updated. ¿is leads to the situation where a reader of the
blog can not knowwhen to expect an update of the blog. ¿e reader’s only chance of
kowing if the blog has been updated is to refresh her browser. It is not of interest
to check for updates say, every hour, because most of the times there will be no
changes. ¿e client consumes bandwidth for nothing. ¿en again, when there is

an update, the user will want to review the new information as soon as possible,
and not wait until the next full hour to be informed of the changes.

¿e architecture that we described is not confined to the blogging domain, it
can be used for many types of applications. We decided to use the HTTP protocol
for transport of data to and from the web server. In addition, we have implemented
the XMPP protocol to send notifications and events. Both the clients and the web
server are logged in to anXMPP server. A client can subscribe to events originating

Note that this problem is not confined to mobile clients. All web applications have the same
problem: clients can not be notified when a web page changes

We consider RSS readers to be in the browser category. While they refresh contents automati-
cally, they have noway of knowingwhennew content has been posted. ¿us, theRSS only automates
the browser refreshing.

4

from a certain user. When that certain user updates his blog, the web server sends
an event to the event server. ¿e event server checks which clients are subscribing
to this event, and sends it to them. For us, this was an interesting challenge —
could we create a new architecture layer “on top” of the web, while maintaining the
current web functionality? ¿e answer was, in the end, that, yes, we could do that.

1.1 Sony Ericsson

¿is thesis workwas performed at Sony Ericsson in Lund. Sony Ericssonwas estab-
lished as a joint venture of Sony and Ericsson in . Sony Ericsson’s telephones
are based on hardware and so ware from Ericsson Mobile Platforms (EMP). EMP
provides an API to develop native applications for the telephone. ¿is API is called
OPA (Open Platform API). Sony Ericsson customizes the hardware platform for
different models. ¿e OPA layer is proprietary and is not accessible for third party
developers. ¿ere is also J2ME support in the phones, making it possible for third
party developers to create functionality.

5

Use Cases 2
TO FURTHER ILLUSTRATE the advantages of notification systems, we have

produced some use cases that illustrate how a notification service can en-
rich clients. ¿ese use cases illustrate a number of different situations where tradi-
tional communicationmethods are not adequate for sending notifications. ¿e use
cases are both similar and different. All of the use cases deal with information that
some agent wishes to publish, and that some other agent want to take part of. But
the types of information are very different. However, as can be seen in the figures
depicting the use cases, all of them share a common structure in publishing and
subscribing to notifications.

2.1 Use Case: Blogging

Marcel has a blog that he updates rather irregularly. His friends (Ross and Chan-

dler) are very interested in what he writes and theywish to know as soon as possible
when Marcel has written a new blog entry. However, Ross and Chandler mostly
use their cell phones to access Marcel’s blog. O en they access the blog, only to
discover that there are no new entries. ¿ey want a way to be notified when there
are new entries.

When Marcel writes a new blog entry, it is uploaded to a web server. ¿e web
server communicates with a notification server, that is responsible for notifying
Ross andChandlerwith the information that there is a newblog entry fromMarcel.

6

Marcel

Write
Blog Entry

Publish
Blog Entry

Webserver

Generate
Event

Notification
Server

Notify UsersChandler

Ross

Figure 1. Blogging

2.2 Use Case: Share Picture

In this use case the user, Phoebe, wants to use her cell phone to send a picture. She
also wants her friends to know that she has posted a new picture. Phoebe starts
the photo application on the mobile client and takes a picture. ¿is picture is sent
to a web server where it is published. A notification is also created, and sent to
the notification service. Phoebe’s friends (Joey and Rachel), who have chosen to
subscribe to her shared pictures, receive notifications from the server, telling them
that Phoebe has posted a new picture. ¿e subscribing users can then choose to
view the picture or ignore the notification.

7

Phoebe

Capture Photo Upload Photo

Webserver

Generate
Event

Notification
Server

Notify Friends

Joey

Rachel

Figure 2. User sharing a picture

2.3 Use Case: Log Call Info

¿is use case describes how the device can log call information and send the infor-
mation to a (password protected area of a) community. ¿e user, Chandler, wishes
to publish information about his phone calls on a web site. ¿is information isn’t
world readable, only Chandler and his colleagues can read it. When Chandler fin-
ishes a call, the phone number, duration, and time and date for the call is published
to the web site.

When Chandler’s coworkers receive the notification they can better plan their
work, since they do not have to make calls that Chandler already made. Another
reason to publish call info is for Chandler to be able to review his call history.

8

Chandler

Make Call Call
finished

Publish
Call Info

Webserver

Generate
Event

Notification
Server

Notify
CoworkersCoworker 1

Coworker 2

Figure 3. User sharing call log

2.4 Use Case: Music Logging

Here our user, Ross, wishes to share with the world which songs he listens to in his
phone. When a song plays, the artist and title of the song is posted on a web site.
¿e resulting list can be used to notify interested parts when a certain song is being
played.

2.5 Use Case: Remote Monitoring

Suppose a chemical plant somewhere that runs an array of processes where tem-
peratures must not exceed given values. To monitor these temperatures, an event
subscription is issued. ¿e subscription specifies which temperature events that are
of interest. ¿e publisher of these events is the thermometer unit. When an event is

9

Ross

Play Song Publish
Song Info

Webserver

Generate
Event

Notification
Server

Notify UsersUser 1

User 2

Figure 4. Music Logging

received, the application notifies the operator that a certain process’s temperature
is too high. ¿e operator takes appropriate action to adjust the temperature. When
the temperature is back to normal, a new event is issued by the thermometer unit.

Process

Temperature
Increases

Publish Temperature
Warning

Webserver

Generate
Event

Notification
Server

Notify
Operator

Operator

Figure 5. Remote Monitoring

10

2.6 Use Case: Location Logger

In this use case, the notification enabled application lets the user set a time interval
for position logging, say minutes. ¿en, every minutes, the client’s current
position is transmitted as an event to the notification service. ¿e receiving party
can then use a map service, e.g. Google Local, to plot the user’s movements on
a map. ¿is use case is yet another reason to use XMPP — there already exists a
Jabber Enhancement Proposal for location, which is based on a pub/sub paradigm
(Hildebrand and Saint-Andre,). ¿is enables the user to review visited loca-
tions. Another use for this is automatic tagging of pictures with location data.

Rachel

Determine
Position

Publish
Position

Webserver

Generate
EventNotification

Server

Notify UsersUser 1

User 2

Figure 6. Location Logger

Google Local, http://local.google.com, provides interactive maps and satellite photos of
large parts of the world.

http://local.google.com

11

Publish/Subscribe Systems 3
SOMETIMES A CLIENT needs (orwants) to be notified of events in theworld. A

real-world example is billing of services— normally, when a client uses some
service, a bill will, sooner or later, appear in their mailbox. ¿is is your notification

to pay the service provider. ¿is is a convenient method to get notified of due
payments, as the user does not have to take any specific action to get notified.
Another method to handle payment of bills would be the constant “polling” of the
service provider, constantly asking, “Do you have any bills for me to pay?”

3.1 Events, notifications and metadata

Publish/Subscribe systems (or shorter, pub/sub systems) intend to get rid of the
annoyances of polling by introducing event notifications and event subscriptions.

A publisher (also called producer) is an entity that publishes events. ¿e event
consists of data that the publisher wants to make known to the world. A notifi-
cation, containing meta data about the event, is propagated to all interested parts.
¿ese are denoted subscribers (also called consumers). When a notification arrives
at the subscribers, they are said to have been notified of the event. Many schemes
for handling events and notifications exist. Subscribers can subscribe to certain
types of events, or simply events that contain specific content. ¿ere are many ser-

Besides checking her mailbox.

12

vices that can be improved upon by adding event notification functionality. For
example, chat services, web publishing and surveillance. In the chat service ex-
ample, the chat server would send out notification messages to trigger the client’s
retrieval of new material. In the web publishing example, a notification would be
sent out when a web page is updated. Finally, in the surveillance example, alarms
that are trigggered can be sent as notifications over existing network infrastructure,
eliminating the need for proprietary hardware for communication.

We continue this sectionwith a short definition of the taxonomy of event notifi-
cation services. ¿is is followed by descriptions of some of the available systems for
notification services, and a discussion of the issues that user mobility introduces.

3.2 Taxonomy

To be able to describe an event service, and to compare different services, a tax-
onomy is required. In this thesis, we will use the taxonomy for event services
as proposed by Meier and Cahill (), with some additional definitions from
(Carzaniga et al.,). ¿e taxonomy defines three models for event notification:

• Peer-to-peer

• Mediator

• Implicit

In the peer-to-peer model, event consumers and event producers exchange
events directly, without any intermediate servers. ¿e mediator model has a cen-
tral server where consumers subscribe to and producers publish events. ¿e server
then delivers events to subscribing parties. ¿e consumer subscribes to events that
originate from a certain user, regardless of their content. In the implicit event
model, consumers subscribe to an event type. When a producer posts an event,

13

its type is checked by the delivery subsystem and the event is delivered to inter-
ested parties. ¿is means that a subscriber does not need to know the publisher,
only the type of information that is desired.

3.2.1 Notification Filtering

Filters are used to allow the client to subscribe to desired subsets of event notifica-
tions. Every subscription can be defined as the set of events that matches a certain
filter. When an event is produced, it is matched against the existing consumer fil-
ters. ¿ere are three different locations where the event filtering can be performed:

. producer: in this case, the producer has a list of all the clients that has sub-
scribed to its event notifications. ¿is method is frugal, as the producer uses
bandwidth only when matching notifications are sent. Notifications that do
not match any filter are not sent. However, the producer needs access to a
list of subscribers. When this list is large, or if it is frequently changed, the
producer will use a lot of bandwidth just to maintain an accurate subscriber
list.

. consumer: thismakes it easy for the receiving client to dynamically change its
filter — all notifications are received by the client, but only those that match
the current filter are considered. ¿is method does not preserve bandwidth,
as the producer will always send a notification to every connected client.

. intermediate: in this case, the producer sends all notifications to an inter-
mediate server. Subscribers register their subscriptions with the intermidate
server. ¿e server then delivers notifications to the clients, based on their
preferences.

Meier and Cahill define four more filter models that are built by combining
two or more of the above: producer-consumer, producer-intermediate, consumer-

intermediate, and producer-consumer-intermediate. Of course, there could also be
no filtering at all. ¿is implies that all produced events are propagated to all of the
subscribers.

14

3.2.2 Subscription Types

Clients use subscriptions to indicate that they are interested in certain types of
events. ¿ere are three basic ways to express subscriptions (Carzaniga et al.,):

. channel-based: the client subscribes to events that are sent over a specific
channel.

. subject-based: in this scheme, the client subscribes to all events that have
been labeled with a specified subject, regardless of the producer. An example
would be events that have been labeled with the subject “temperature”.

. content-based: the client’s subscription is compared to the entire contents of
the event. ¿is means that we achieve a greater expressive power — events
that have the “wrong” subject will still be routed to interested clients.

Most pub/sub systems use content-based subscription, as it provides the most ex-
pressive way to formulate subscriptions.

3.2.3 Federation

By federationwemean a set of interconnectednotification servers (Segall andArnold,
). ¿e interconnected servers subscribe to each other’s events and thus make
it possible to distribute the server load and minimize latency for client events. For
example, different geographical locations could have their own notification server.
When a client at location A posts an event that should reach a client at location
B, the federated notification servers act as pipelines for the messages. Among the
different problems regarding federation is event routing. Traffic between the feder-
ated servers should be minimized. ¿erefore there must be some method to mon-
itor the events, so that they are not sent to servers where uninterested clients are
connected. However, since XMPP, whichwe have chosen to use for our notification
service, already supports federation, we do not consider this problem.

15

3.3 S IENA

¿e SIENA event notification service, described in Carzaniga et al. (), is a dis-
tributed servicewith a set of federated servers that the clients connect to. ¿enotifi-
cation servers are organized in a peer-to-peer network. SIENA uses content-based
routing. ¿ere are three basic operations in SIENA:

• Publish

• Subscribe

• Advertise

A notification consists of a number of attributes. Every attribute has a name,
a data type, and a value. Publishing and subscription is made by sending publish

and subscribemessages, respectively. Advertisements are a special type of notifica-
tions that are used to inform subscribers about which type of content the publisher
intends to broadcast. ¿is information is used by SIENA to improve delivery of
notifications. ¿e advertisements also makes it easier for potential subscribers to
decide if they are interested in notifications from a certain publisher.

3.4 Elvin

¿e Elvin notification service (Segall and Arnold, ; Segall et al.,), origi-
nally published by the Distributed Systems Technology Centre, University of
Queensland, but now maintained by Mantara So ware, is a notification service

¿e unsubscribe and unadvertise operations have been omitted for brevity.
http://www.mantara.com/

http://www.mantara.com/

16

that uses content-based filtering. Elvin’s service model is similar to that of SIENA.
¿ere are three basic operations:

• Notify

• Subscribe

• Quenching

¿e quenching feature is an important part of Elvin. ¿is feature makes it pos-
sible for publishers to determine if there are any clients that are subscribing to its
notifications. If there are no subscribers, the publisher will simply not send these
notifications. ¿is is an efficient way to preserve bandwidth.

3.5 Mobility Issues in Publish/Subscribe Systems

¿ere are several problems to consider when implementing pub/sub services for
mobile clients. One is location — where is the client connected? We have min-
imized the impact of this issue by not having any federation, all notifications are
handled by the same server. However, the XMPP protocol specifies how server
to server communication should be done, which makes it a trivial problem when
XMPP is used. Another problem is intermittent disconnections — we can not
know, at any given time, whether the client is still connected. ¿is is, of course,
also the case when dealing with stationary clients — but they can at least be ex-
pected to disconnect gracefully in most cases, whereas mobile clients could lose
connectivity at any time, due to e.g. network constraints or network outages.

We also have different constraints on the mobile client than on the stationary
client. ¿e mobile client typically has less computational power, which makes it
important to make event propagation less CPU intensive. ¿e mobile client will,
most probably, have much less screen estate than the stationary client. ¿is implies

Elvin also has an unsubscribe function.

17

that the presentation will have to be adjusted for the mobile client. Finally, the
space available for file storage is much less on a mobile client than it is for most
stationary agents. ¿is implies that we can not rely on the mobile client to cache a
lot of data.

19

Architecture 4
THE SUGGESTED ARCHITECTURE, as seen in Figure on the following page,

consists of two layers. ¿e first layer is the commonHTTP layer. ¿e second
layer uses XMPP to transmit event notifications. ¿e division into two layers has
the advantage that clients that do not support the notification layer still can use the
HTTP layer. ¿ey will, of course, not have the ability to be notified of events, but
in all other aspects they can perform the same tasks as the event-enabled clients.
In essence, we get a web with added notification.

To use the event layer, clients must first login to an XMPP server. ¿is estab-
lishes an XMPP connection between the client and the server. ¿rough this chan-
nel, notification data is passed. ¿e client can subscribe to notifications that are
generated at the notification server. For example, user Amight subscribe to blog
update event notifications generated by user B. When user B updates his blog, a
notification is sent to the notification server, stating that the blog has been updated.
¿e notification server then sends this notification to all subscribers of that event.
When the clients are notified of the update, they can choose to download the new
entry using HTTP (or any other transport protocol), or simply ignore it.

¿e notification layer can be used even with services that are not aware of the
notification layer. For instance, a user might have a blog at some unknown service
that has no notification capabilities.

An alternative version of the architecture is Figure on page . Here, the web
server is not aware of the XMPP server. It is the client’s responsibility to produce
an event and publish this event on the XMPP server. ¿is model has the advantage

20

��������

���	��

 ��������������	��

 ������������ ���������

25.34

����������������� �����������������

 ������������ ���������
 ������������ ���������

Figure 7. Architecture for Notification Service

that any and all services can be used with notification, since it relies on the client
to provide notifications. One drawback is that the client must send more data —
in addition to the posting to the web site, an XMPP message has to be composed
and sent. Another drawback is that it becomes impossible to deliver notifications
if the client has no notification support, the only time notifications are delivered is
when the client sends one.

When a notification is produced, it should always be delivered as soon as possi-
ble. ¿e notification server should put in a best effort to deliver notifications. Noti-
fications are perishable, and if they are delayed they might no longer be of interest.
So, the notification server’s task is to get rid of (i.e. deliver) incoming notifications
as quick as possible.

If, for some reason, a notification can not be delivered, the notification is stored
on the notification server and is put in a queue for later delivery. Undelivered no-
tifications have a maximum Time To Live (TTL). When the TTL is exceeded, the
notification is deleted and will not be delivered to the client. ¿is is done because
otherwise a massive amount of notifications might accumulate at the server, and

21

��������

���	��

 ��������������	��

25.34

����������������� �����������������

 ������������ ���������
 ������������ ���������

Figure 8. Alternative Architecture for Notification Service

these notifications are sent when the client is available again. ¿us, we get notifi-
cation flooding. Different types of notifications, or even notifications originating
from different producers, can have different TTL’s. For example, a client subscrib-
ing to a news ticker is probably not interested in news that are several days old.
On the other hand, blog updates might still be interesting even a er a week. ¿ere
is a thin line to walk to determine the TTL of different notifications — we want
the client to receive just as many notifications as he would like, but not too many.
¿ere are two main models of handling notification delivery: notifications may be
delivered exactly once, or they might be delivered at most once. ¿e latter model
means that some notifications will never reach the client, while the first implies that
the client really will get all the notifications that are sent to it. We suggest a mix of
these two models, where some notifications that are more important are delivered
according to the first model, while less critical notifications are delivered according
to the second model.

¿e notification consist only of metadata, data about changes. For example,
posting a new blog entry does not produce a notification containing the text of

22

the entry. ¿e notification contains information about the post, such as the name
of the blog that was updated. It is then up to the subscriber to decide whether to
download the data or not. ¿is way, we keep the notification size at a minimum,
and the size of each message can be predicted.

Notification filtering is done at the notification server, not at the subscribing
client. ¿e clients have, when they subscribed for notifications at the notification
server, stated which notification types that they wish to receive. It is the client’s own
responsibility to unsubscribe to notifications that are no longer desired. Otherwise,
it is assumed that the client will alwayswant to receive subscribed notifications. ¿e
type of service to subscribe to can be on one of several different levels:) client level

notifications: when a certain client publishes an event, the subscriber is notified;)
service level notifications: when a certain service publishes an event, regardless of
the publishing client, the subscriber is notified; and) public notifications: notifi-
cations that are transmitted to all clients. Clients can choose not to accept public
notifications. Ideally, this type of notifications should be kept at lowest possible
level.

¿enotification server does notmerely pass onnotifications; itmay alsomodify
notifications according to a predefined scheme. For example,mobile and stationary
clients might want to receive different types of notifications for the same event.
When a mobile client receives a notification, the payload should be as small as
possible and only contain metadata about the event. A stationary agent, on the
other hand, can receive larger notifications, that contain not only metadata, but
also the event data. An example of this is picture notifications. A mobile client
will receive a notification that a new picture was posted, but not the picture itself
(a thumbnail version of the picture could be included). A stationary client will
receive a notification that also contains the picture. One could argue that it is not
the notification service’s task to deliver anything except metadata, as this could
put considerable load on the notification service. It is probably best to not use the
notification service for delivery of anything other than metadata.

23

4.1 XMPP

Toprovide the notification service, we decided, a ermuch consideration, to use the
XMPP protocol (Saint-Andre,). XMPP (Extensible Messaging and Presence
Protocol) is a protocol for instant messaging, based on XML (Extensible Markup
Language). XMPP was originally developed by the Jabber community and later
adapted and standardised by IETF.¿e core parts of the protocol that provide basic
functionality are described in RFC through (Saint-Andre, a,b,c,d).
¿eXMPP architecture is illustrated by Figure on the following page. As its name
suggests, XMPP was designed with extensibility in mind. Any extension to XMPP
is specified in a JEP (Jabber Enhancement Proposal). ¿is structuremakes the pro-
tocol modular and makes it easy to add new functionality. From an implementer’s
point of view, the modularity means that only those parts of the protocol that are
of interest for the current application needs to be implemented.

XMPP uses the concept of XML streams to enable clients to
communicate through a mediating server. Specially formatted XML statements
are written to the stream and are read and interpreted by the recipient. An exam-
ple can be seen in Figure on page . XMPP communication is typically done
over TCP/IP, but the protocol is not bound to any particular network technology.
In XMPP, a user is identified by a user name and a server name, separated by the
@ sign, for example user@XMPPServer.com. ¿e user identity is denoted XMPP

ID.

¿e canonical way of describing how XMPP messages are exchanged is by in-
troducing two users; juliet@capulet.com and romeo@montague.net. When
Juliet wants to chat with Romeo, her XMPP client sends her message to the XMPP
server at capulet.com, which relays the message to the XMPP server at
montague.net. ¿e receiving XMPP server delivers the message to Romeo, if he
is online, or saves the message for later delivery.

24

��������

� �����	

��

������	�

��

������	�

� �����	�

� �����	�

� �����	�

Figure 9. XMPP Overview

Since XMPP was not designed to preserve bandwith and XML is resource in-
tense to parse, it could be argued that using a specialized and more compact pro-
tocol, such as Binary XML, for notification would be more efficient. ¿is is a valid
remark, as mobile data services are expensive, and cell phones typically encom-
passes only a fraction of the computing resources found in a desktop PC. But the
bandwith issue is most likely going away with time. Current UMTS technology
offers data rates of up to kbit/s which is already more than enough for XMPP.
Coming generations of mobile networks will provide speeds of several mbits/s. Al-
though we could do better to preserve bandwith, we do the world a favor by not
introducing a new protocol.

¿e same logic applies to computing power. Current medium priced handsets
uses CPUs that are about as fast as a Pentium, this is already enough for our needs.
In a couple of years this will also be true for the cheapest of handsets. Consid-
ering this, XML, and particulary XMPP, has many attractive features. First, it is
simple and self documenting, hence easy to understand. ¿is makes it easy for im-
plementors to adopt. Second, since all XML-based languages are structured in the

25

Client:

<?xml version="1.0"?>

<stream:stream

to="example.com"

xmlns="jabber:client"

xmlns:stream="http:// etherx.jabber.org/streams"

version="1.0">

Server:

<?xml version="1.0"?>

<stream:stream

from="example.com"

id="someid"

xmlns="jabber:client"

xmlns:stream="http:// etherx.jabber.org/streams"

version="1.0">

Figure 10. Establishing an XMPP Connection

same way, general XML-parsers and serializers can be used, which reduces the ef-
fort that goes into supporting the protocol. ¿ird, XMPP already defines a generic
publish/subscribe framework as a JEP, namely JEP- (Millard et al.,).

4.2 JEP-0060

According to JEP-, an event is either persistent or transient. It is also either a
pure notification or a notification that has a payload.

A persistent notification will be saved for later transmission if the subscriber is
currently disconnected. Transient notifications will not be saved for later delivery.
A typical example of a transient notification is a real-time stock ticker — it makes
no sense to display notifications that are several hours, or even days, old. An update

26

to a blog, on the other hand, might be of interest to a subscriber even if the update
was made days ago. In this case a persistent notification should be used.

Another reason to make the distinction between persistent and transient no-
tifications is to prevent notification buildup at the server. If all notifications were
persistent, it could potentially lead to storage problems at the server.

When a publisher creates an event, it is either a pure notification or a noti-
fication with a payload. In the case of pure notification, the event is transferred
unchanged to the subscribers. If the notification has a payload, the subscriber’s set-
tings decide whether the server will deliver the payload or not. ¿is makes XMPP
with JEP-0060 the perfect candidate for implementing publish/subscribe services
in mobile clients, since payload download is user initiated.

4.3 Why XMPP?

¿ere are several reasons why we have chosen XMPP as the preferred protocol.
¿e first is that it is standardized by the IETF, which means that there is a com-
mon agreement on how the protocol should be implemented. ¿is makes it easy
to integrate XMPP with many different clients. XMPP is also free, in two aspects:
there is no license fee to pay for using XMPP. Also, full protocol documentation is
available (as opposed to proprietary protocols, the use of which usually means ei-
ther paying license fees or reverse engineering the protocol, since the specifications
has not been made public). ¿e final reason for using XMPP is that major corpo-
rations are beginning to add XMPP support in their products. Programs such as
Google Talk and Apple’s iChat have the capability to exchange messages with
other XMPP enabled clients. We believe that in the future, much as there is but
one protocol for communicating via the World Wide Web, there will be only one
protocol for instant messaging. If that protocol will be XMPP, only time can tell,

http://www.google.com/talk/
http://www.apple.com/macosx/features/ichat/

http://www.google.com/talk/
http://www.apple.com/macosx/features/ichat/

27

but it is most certainly a top candidate.
XMPP is also well suited for communication in MM (Machine to Machine)

applications.
For all the advantages of XMPP, there are also some drawbacks. For example,

XML is not bandwidth preserving, which means that when many clients subscribe
to the same events, there might be considerable traffic peaks.

We did consider some other protocols. One approach would have to go the way
of OMA IMPS— this wouldmean using Binary XML.We considered this protocol
to be rather limiting. ¿ere is no way to extend the protocol and still comply with
the standard. Also, there are few clients that actually implements OMA IMPS. An-
other approach would have to develop a proprietary binary protocol. ¿is would
have the benefit of being very efficient, since we would be able to customize the
protocol to our needs. In the end we decided that the effort to develop a new pro-
tocol was not worth the benefits. ¿ere is another obvious drawback— even fewer
clients would use our protocol than OMA IMPS.

¿is led to the conclusion that we should stick to XMPP, which is already stan-
dardized and in widespread use.

29

Related Work 5
IN THIS SECTION, we describe some of the current technologies for delivering

content to mobile clients. We begin with an overview of WAP Push and con-
tinue with overviews of the OMA Instant Messaging and Presence Service, and the
IP Multimedia Subsystem.

5.1 WAP Push

Onemight ask why we have decided to create a new architecture for notification—
a er all, we do have the WAP . Push framework, which is designed to do pretty
much the same thing that we want to do (Pashtan,). However, WAP Push
has some limitations that our architecture has not. To initiate push inWAP ., an
HTTP POST message is sent to the client. ¿is implies that the client acts as an
HTTP server. ¿e POST message contains a short message and an URL. ¿e text
is presented to the user who can choose to visit the accompanying URL.¿eWAP
architecture is outlined in Figure on the following page.

WAPhas two different push services: service indication and service load. When
content push is initiated, the push server sends and URI for the push content to
the client. ¿e client retrieves the content by issuing an HTTP GET request (in
WAP .x, a WSP GET request is issued). When the push message is of the type
service indication, the user is shown a short description of the push message, and

30

��������

���	
����
� ���� ����	
��������� � ��� ���

���	
� ������

���	
� �����
��������
� ���
�� ��
� �������

� ���
������
� ���
� �����

Figure 11. WAP Push Architecture

can choose to display it immmediately or to display it later. If the push message is
of the type service load, the contents are automatically saved to the client, and the
user settings determine if the contents should be shown immediately or cached.

We do admit that our architecture is similar to theWAP architecture — but we
are bold enough to claim that it is more general. WAP has a few limitations that
make it a less desirable candidate for event notification. First, WAP Push implies
that we have mobile clients, preferably cell phones. ¿is contrasts with our vision
of themobile phone as yet another Internet device, since this vision implies that the
same functionality should be available at the desktop as in the mobile client. We
know of no desktop application that supports WAP Push. Another reason for not
using WAP Push is that its use is dictated by the network operators — to be able
to send WAP Push messages, the sender must have an agreement with the opera-
tor, otherwise the push message will be blocked. ¿is makes it difficult for service
providers to offer the use of their services to customers in a flexible way. Also, the
push messages are sent at the network operator’s discretion— there is little insight
for the service provider in the operator’s agenda. But the biggest concernwithWAP
is the abscence of a pub/sub service. One could argue that, for example, WAP ser-
vice load could be used to provide a pub/sub service. However, there is no way to
determine if a certain client is online. ¿ismeans that a publisher could, potentially,
send large amounts of push messages that are not received by any client. It is also
extremely difficult to determine the IP address of a client. Further, there is no way
for a user to initiate a push session, which is required to enable the client to send
messages to other clients. WAP Push was designed for one-way communication.

31

5.2 OMA IMPS Architecture

In April , theWireless Village initiative was formed by Ericsson, Motorola and
Nokia (Ericsson et al.,). ¿e purpose of the initiative was to provide an archi-
tecture for instant messaging (IM) and presence service. Wireless Village has since
been incorporated into Open Mobile Alliance (OMA) and renamed to OMA In-

stant Messaging and Presence Service Enabler (OpenMobile Alliance, b), or,
shorter, OMA IMPS. OMA IMPS is not limited to mobile devices, the architec-
ture is designed to accomodate any type of user. IMPS also defines how gateways
to other instant messaging services should function.

IMPS has four Application Service Elements:

• Presence

• Instant Messaging

• Groups

• Shared Content

¿e Presence Element enables user to gain access to information about other
users, such as the status of the IMPS client so ware and the availability (online,
away, disconnected, etc) of the user.

¿e Instant Messaging Element provides IM support. Messages can be sent to
other IMPS users or users on proprietary systems. ¿e messages are sent either to
a single recipient or to a group of recipients. As IMPS could deliver any content
type, OMA has speficied a mandatory content type that every IMPS implementa-
tion should support. ¿is content type is UTF- encodedUnicode text. In addition
OMA lists four more content types as suggested content types. ¿ese are Multi-

media Message, Enhanced Short Message, Business Card, and Calendar Entry.
For example, MSNMessenger and ICQ.
¿ese content types will not be defined here, they are included for the sake of completeness

32

¿e purpose of the Group Service Element is to let a number of users interact
in a chat-room, as opposed to the person-to-person communication in IM. Groups
can be private or public. Group messaging is done using the IM component, with
the IMPS server responsible for distributing messages to all group members.

Finally, the Shared Content element provides amechanisms by which users can
share files, such as pictures, videos and documents, with other IMPS users.

5.3 IP Multimedia Subsystem

IMS (not to be confused with IMPS), the IP Multimedia Subsystem, is a standard
defined by GPP. ¿e purpose of IMS is to provide network operators with an
architecture for providing IP-based services and applications. ¿e architecture is
based on the SIP protocol. IMS will eventually provide services like user tracking,
where a user’s presence and availability are tracked across several different network
types (mobile, fixed, broadband, . . .)

¿e system is not limited to (new) packet switched phone systems, (old) circuit
switched phone systems (e.g. “classic” land-lines) are also supported (Ericsson AB,
; Attal,)

¿e IMS architecture consists of three layers:

. Application layer: user applications, such as telephony and video conferenc-
ing, reside in this layer

. Control layer: the control layer is responsible for managing call setup

. Connectivity layer: this layer provides packet transport

¿ere are, as shown in Figure on the next page, many server types in the
IMS architecture. ¿e figure is, in fact, heavily simplified. ¿e Application Layer

rd Generation Partnership Project
Actually, the IMS does not specify servers — it specifies functions. IMS vendors are free to

implement the functions in the way they choose. ¿is means that two functions may be handled

33

����������	

����

���� ��� ���

������������

� �	����������

� �		�������������

����

����������	

����

� �� � �� �

� ��

� � � �

� � �

Figure 12. IMS Overview

is self explanatory — this layer contains different types of user applications, and is
the part of IMS that is visible for end users.

5.3.1 How IMS works

Every phone is registered in a directory, the Home Subscriber Server (HSS). ¿e
HSS directory contains mappings from user names to IP addresses. When a user

by the same server in one vendor’s IMS solution, and by two different servers in another vendor’s
solution. Either way, it helps to think of the different functions as distinct servers.

34

makes a call, the Call Session Control Function (CSCF), which is a SIP server, is
invoked. ¿e CSCF looks up the recipient’s IP adress in the HSS and connects the
two parties.

If the call is to (or from) a subscriber in the PSTN, the Media Gateway Con-

trol Function (MGCF) and Media Gateway (MGW) are invoked. ¿e MGCF and
MGW translates between IP based telephony and PSTN voice.

¿eMRF (MultimediaResource Function) is used to providemedia to the users.
¿eMRF can be used to play contents, allowmultimedia conferencing, and to per-
form data conversion, amongst others.

¿e above description of IMS has been heavily simplified. ¿ere is much more
to IMS than what we could describe in this space. We have noted that IMS is a
complex architecture, and should we have based our work on the IMS architecture
we would have had very little time to concentrate on the core of this thesis, which
is notification service. IMS is, in essence, an IP layer for mobile networks, to allow
IP communication. Using IMS would have meant that, not only should we create
our notification service, but we would also have had to develop a functioning IMS
implementation. Obviously, this was not possible to do. Instead, by using a more
generic architecture, we have been able to utilize existing, well documented proto-
cols for our prototype, but the concepts are transferable to IMS. In the future, when
IMS is more widely deployed, there may be no reason to use another solution. In
the meantime, we believe that we have a sound solution, based on open standards
and protocols.

Public Switched Telephone Network

35

Security & User Integrity 6
WE HAVE NOT paid any special attention to security issues in this thesis.

¿e main focus has been on functionality. Nonetheless, we have identi-
fied some issues that should be addressed:

• connection security

• user authentication

• data encryption

• notification flooding

RFC specifies how end–to–end signing and encryption should be applied
to XMPP. However, very few clients and servers support this at the time of writing.
¿is RFC effectively deals with the first and second item on the above list.

XMPP uses SASL (Simple Authentication and Security Layer) for authentica-
tion.

¿e remaining security threat is notification flooding, whereby one or more
users send excessive amounts of notifications, targeted at a single user. ¿is could
lead to denial of service for the targeted user. ¿ere is no obvious way to eliminate
this threat, but there are some ways by which we believe the problem may be less-
ened. ¿e first option is to limit the number of notifications that a server sends out
to a user per unit of time. ¿at approach would mean that there might still be at-
tempted notification flooding, but the attack stops at the server. Another approach
would be to have the server set thresholds for incoming notifications from a user.

36

When a user sends excessive amounts of notifications, the server may choose to
not accept these notifications (in other words, sending many notifications has an
inhibitory effect on the server), as it may be a sign of an attempted flooding attack.

Besides the technical aspects of security, there are also quite a few implications
for the user of the services. In the current implementation, the user is not informed
every time the application sends out data. ¿is means that the user could be un-
aware that her position data is beingmade available on someweb site. It alsomeans
that someone could activate the application on somebody’s phone in order to spy
on them. Even if the user is fully aware of the information that is sent out, there
should be some way for the user to stop the data collection and subsequent pub-
lishing. An example of when information publishing could be exploited is the the
service that logs a client’s position. Who should have access to this information? A
burglar might, for example, simply check a person’s position to determine if they
are at home. ¿is problem is not solved by requiring the client to log in to a server
to review position logs, since the server could be hacked. ¿at is, however, not a
situation that is unique to this example. Any server could, potentially, be compro-
mised.

37

Prototype: A Blogging Service 7
ABLOG, SHORT for Web Log, is simply an online journal where readers have

the possibility to comment the entries. Blogging, or to blog, refers to the
activity of maintaiqning a blog. Blogging has become very popular in recent years,
and many blogs have thousands of views everyday. However, the vast majority of
blogs are maintained by individuals who do it for fun. ¿eses blogs are mostly read
by friends and relatives. In a way, blogging has become the successor of personal
web site. ¿e most obvious advantage over a personal web site is that blogging
requires no HTML skills —most blogs use publishing systems such as WordPress,
Movable Type or blogger.com. Designer skills are of second concern in blogging,
instead it is largely content driven, where the content typically is text even though
audio and video blogging has become more popular over the last few years. In
other words, how you say something does not mean so much, it is what you say
that is in focus with blogging.

We have developed a working proof-of-conceptmodel of our architecture. ¿is
includes a web server, an XMPP server and XMPP enabled clients. For the proto-
type we have concentrated on blogging features. We have tested the prototype in a
real-world environment, however, the number of concurrent users was small, and
so we can not say for sure what the performance would be for a large scale deploy-
ment. But since the amount of data that is transported over XMPP has a relatively
small footprint, we believe that this will not be an issue. ¿is is, however, an is-
sue that needs to be more thoroughly investigated. Our prototype implements a
simple blogging system, with both manual and automated features. ¿e manual

38

features include the possibility to edit and post entries to blogs, as well as read-
ing them. ¿e automatic feature is associated with the media player in the phone.
When a user listens to a song, the ID information is extracted from the MP file
and is sent to the server. ¿e server tries to do a lookup at amazon.com to retrieve
album art for the song that is playing. ¿e album art, together with the song in-
formation, is presented on a music log. ¿e music log is, in essence, an automated
blog. Other automated features that we considered, but did not implement due to
time concerns, include automatic call history publishing and SMS/MMS history
publishing.

Note that the word “publishing” in this context does not necessarily imply that
the information should be made available to everyone; it could also mean that data
is uploaded to a private area on the Internet. For example, the following service,
“Automated Call History Publishing”, which we chose not to implement in our pro-
totype due to time constraints, is a service that uploads information about a call
when it is finished. ¿e service would log the number dialed, the duration of the
call, and the geographical location of the start and end of the call. ¿e location
could then be put on a map to allow the user to track his movements. An SM-
S/MMS history service would work in a similar way. ¿e client application of the
prototype was programmed in Java, using the JME specification. For the music
log feature, some C programming was necessary to gain access to the media player
in the telephone. ¿e server application consists of an Apache server with Struts,
and a collection of servlets and Java server pages.

So, what can the prototype do? We have implemented three basic services:

• Blogging

• Photo Sharing

• Music Logging
¿e position data could be provided by the network. However, GPS data provides higher ac-

curacy, and is thus preferrable. With the advent of the G positioning system, even higher
accuracy will be achieved.
G is the European Union’s effort to build a satellite navigation system (see
http://europa.eu.int/comm/dgs/energy_transport/galileo/ for further information.)

http://europa.eu.int/comm/dgs/energy_transport/galileo/

39

¿e blogging service is a simple interface for transmitting text provided by the
user. ¿e text is sent to a server and published. Photo Sharing lets the user take
pictures that are automatically sent to and published by a web server. Music Log-

ging sends information about played songs to the web server. Photo Sharing is
quite slow, due to the inherent speed limits in the cell phone networks. On aver-
age, it takes about seconds to send a picture. ¿e blogging service is less data
intensive, and thus much quicker. ¿e Music Logging service is run in the back-
ground, transparent to the user. Our implementation of event notification is very
basic: the user is notified of what type of event that was received, but no other data
is downloaded. One could argue that when the client receives a notification, the
event should also be downloaded. ¿is is, however, not always the best solution —
there is no way of knowing at any given time that the user really wants to see the
associated event. ¿erefore, event notification and event delivery should, in our
opinion, be separated.

7.1 Client Software

Most modernmobile phones have the ability to run third party code in some form.
¿is is not really a new feature, but even though this has been possible for some
years it has never really caught on with the users. Some users download games, of
course, but that is about it. One might ask why more advanced applications have
not had more success? ¿ere are probably many reasons. We believe one might be
that the applications that are available today have not been integrated with the rest
of the phone’s so ware; for an application to be successful the user should not even
have to think about it when she uses it. ¿e best example of such an application
is the one used to dial a phone number shown in Figure ??. ¿e user never thinks
about that she is actually using a piece of so ware when she dials a phone number,
many users probably do not even know it. ¿e bold goal for our so ware was that
it should be as easy to use as the dialing application.

40

During the initial planning of the work we had to decide on what program-
ming languages and technologies we would use during the development of our
client so ware. ¿ere are currently two ways to develop so ware for the Sony Er-
icsson phones, either by using C and OPA, or by using JME. Both has its pros and
cons. OPA has a higher entry level than JME, but provides much more access to
the underlying system. JME, on the other hand, makes it easy to develop proto-
types. Since both authors had much experience Java and none with OPA and this
project only was intended as a research experiment with a limited time schedule
we decided to go with Java as it would allow us to develop more rapidly. Since we
had access to the system source code, we could develop our own Java APIs to acess
those parts of the system that we needed. But developing Java APIs is time con-
suming and error prone. Developing APIs to integrate our so ware with the rest
of the phones application the way we wanted was not feasible. It would be easier to
go with OPA. ¿is choice made it virtually impossible for us to fullfill our original
goal, but it was a sacrifice that had to be made.

7.1.1 Architecture

One goal when designing our architecture was to make the so ware as modular
as possible. All functionality was implemented as plugins, which means that it is
easy to add new functionality to the application. ¿ere were several reasons for this
approach. One was that we wanted it to be easy to extend the so ware with new
features in the future.

¿e prototype uses the notion of event generators, dispatchers and transports.
An event generator is a piece of so ware that injects an event into the system, where
an event for example might be a blog entry or a photograph. ¿e event dispatcher
is responsible for routing this event to a suitable transporter that knows how to
deal with the event. ¿e architecture permits any number of transporters and gen-
erators, one might for instance route photographs to Flickr!, blog entrys to Blog-
ger.com and diary entrys to diaryland.com. Choosing this design allows for a great
deal of decoupling. Generators does not have to know about the different types

41

of transporters, and the transports only need to know about how to deal with the
events they care about. ¿e JMe specification does not currently allow an appli-
cation to load code dynamically, but this might be supported in future versions. If
such support was to be added, our design would easily allow for third party genera-
tors and transports (we like to call them Bloglets) to be downloaded of the Internet
and run from the phone.

7.1.2 Java 2 Platform, Micro Edition

Java Micro Edition (JME) is a framework developed by Sun Microsystems to
provide Java support on embedded devices such asmobile phones, Personal Digital
Assistants or any other small devices with limited computional power andmemory.
JME is not one single standard but rather a group of individual JSRs (Java Speci-
fication Requests) that an implementation may support. ¿e two most important
of these regarding this thesis are Mobile Information Device Profile (MIDP) and
Connected Limited Device Configuration (CLDC).

7.1.3 Smack

Smack is an XMPP-library written in Java. It is released as Open Source under the
Apache License. From the Smack website:

Smack is an Open Source XMPP (Jabber) client library for instant messaging and

presence. A pure Java library, it can be embedded into your applications to create

anything from a full XMPP client to simple XMPP integrations such as sending

notification messages.

To get XMPP functionality we ported Smack from JSE to JMe. Our port is aptly
named Smack-ME (SmackMicro Edition), as it intended to run onmobile devices.
Our port was based on Smack . (the current version when this is written is .)
andmainly achieved by stripping Smack of (non-vital) functionality not supported

http://www.jivesoftware.org/smack/

http://www.jivesoftware.org/smack/

42

by JME and by reimplementing parts of the JSE API’s in a way suitable formobile
phones.

7.2 Server

¿e server system of our prototype consist of two parts, a weblog system and an
XMPP-server.

7.2.1 The Weblog

¿ere are a lot of open source weblog-systems available online, but we know of no
one that is XMPP aware. ¿erefore we decided to develop a simple one by ourself.
Our system is built on Tomcat and uses the Apache Struts and Apache Cocoon
libraries for presentation. For communication with the XMPP server we utilize the
Smack API.

7.2.2 The XMPP server

¿ere are several XMPP servers available and several are Open Source. ¿e dif-
ferent implementations all support the same base protocols but they differ in which
JEPs they support. JEP- is still a work in progress and there are not that many
implementations currently available. We tried two; Idavoll, which is an addon for
Jabberd, and the implemenation shipped with Ejabberd. We were unable to get
Idavoll to work and therefore went with Ejabberd.

 For the interested reader there is a thorough comparison of different XMPP servers available
at http://www.jabber.org/admin/jsc

http://www.jabber.org/admin/jsc

43

Results & Conclusions 8
WE BELIEVE THAT what lacks to take theWorldWideWeb to the next level

is a notification method. We wish to merge some of the features of in-
stant messaging with the web. While Instant Messaging provides fast interaction,
the contents of conversations is by default kept private and are o en of a transient
nature. No immediate way of publishing IM information on the web exists. ¿e
web, on the other hand, makes information available to the world. But it is a static
system, which does not allow for simple user feedback and interaction. As we have
showed in this thesis, it is indeed possible to merge these two worlds of communi-
cation, producing a new and enhanced web that handles instant messaging and the
serving of web pages using the same protocols. It is our firm belief that notification
is necessary if new and exciting mobile services are to emerge.

8.1 J2ME

While JME provides quick and easy access to advanced functions in the phones,
there are some issues. First, there is no way tomake a Java application an integrated
part of the phone’s so ware. By this we mean that we can not produce an applica-
tion that is automatically started and runs in the background. ¿e user will have to
manually start the application every time the phone is restarted, which means that
she is likely to miss some notifications, due to the client so ware not running.

44

Further, the Java UI possibilities are rather limited. ¿ere is little that the pro-
grammer can do to produce an aesthetically appealing JME program—unless she
decides to draw the entire UI by herself. ¿is is what we ended up doing, but it is
a practice that should not need to be resorted to.

As far as performance goes, we are satisfied. Once the application has started,
there is no perceived slowness compared to native programs. While we tested our
application, we were impressed by the network performance of the JME engine,
which was much more efficient than what we had thought.

8.2 OPA — Open Platform API

¿emost obvious drawback of OPA is that, despite the name, there is nothing open

about it — third party developers have no access to the API or its documentation.
Also, any OPA application needs to be added to the phone at the same time that all
other parts of the so ware are added. ¿ere is no way to add an OPA program to a
finished phone.

However, we did have full access to OPA— but we still did not use it. Why, you
wonder? Simply because OPA is a very large API, and our application would have
changed several OPA components. ¿erefore, it was not feasible for us to choose
this path.

8.3 XMPP Performance

While XMPP is standardized and used in many clients, there is the issue of perfor-
mance. AsXMPP is based onXML, it is a verbose protocol that has a large overhead
when sending data. One would imagine that this could have a negative impact on
the performance of mobile clients. However, as we realized, the data load is still

45

rather small, ranging in hundreds of bytes. ¿is means that the client’s Internet
connection does not have to be very fast to be able to communicate using XMPP.
We have come to the conclusion that XMPP is well suited to the domain of mobile
computing. Even though it is a erbose protocol, it is not so verbose as to negatively
affect a client’s ability to participate in notification services. Of course, when very
large amounts of notifications are sent to a client, it is possible that the client can
not cope with the data flow. ¿is is, however, not strictly XMPP related. ¿e same
thing could happen using any protocol.

47

Future Work 9
WE HAVE IDENTIFIED some areas that needs further investigation. ¿is in-

cludes issues such as implementation, data compression and user sur-
veys. ¿ese are not issues that we regard as less important, they are rather issues
that were not essential to develop a working prototype.

9.1 General Suggestions

Amore thorough investigation of the IPMultimedia Subsystem would be interest-
ing. Also, the prototype is very basic. To be able to use the service in a production
environment, the application needs more work in both user interface design and
functionality.

9.2 Re-Implementation in OPA

¿e services are implemented in the phone in Java, though all services could be
implemented in the native application layer. Our reason for this is that the native
application layer for Sony Ericsson phones was too complex for us to learn in the
time we had available to do the thesis work. Instead, to maximize productivity, we

48

decided to do all client side programming in Java. To achieve better transparency
for end users, all parts of the application that run in the phone should be ported to
OPA applications.

Another reason for porting to OPA is to make it easier to integrate pub/sub
services with existing phone applications, such as the phone book, media player,
and SMS/MMS storage. By integrating our implementation with the platform, it
would also be easier to create native graphical user interfaces for pub/sub services.

9.3 Compression of XMPP Data

A problem with mobile clients is the slow data transfer speeds. While this is a
problem that is likely to disappear as mobile data services are developed, it is still
of interest to perform data compression on the XMPP data that is sent. ¿is is be-
cause XML (and thus XMPP) is a verbose protocol that contains a lot of overhead.
¿ere are essentially twoways to compress the data. ¿e first one is based on a com-
mon understanding between the server and client about how an XML message is
composed. ¿is approach is used in Binary XML (Open Mobile Alliance, a),
a proposed specification from Open Mobile Alliance. In this specification (which
is specific to IMPS), every XML tag in IMPS has been associated with a two-byte
token. ¿is means that, instead of using an arbitrary long text string, we can build
XML by using these tokens. ¿is can lead to a significant decrease in bandwidth
usage. ¿e other approach is to have the client compress the entire XMPPmessage
before it is sent, using some common compression library. ¿e server then has
to decompress the XML data.

So, which method should one choose? Binary XML uses very little bandwidth
for the XML tags. However, the data load is not compressed. Also, there is no way
to add a new XML tag. Normally, when using XML, anyone can define any tag
they want. To extend Binary XML, an OMA specification must first be produced

For example, zlib (http://www.zlib.net/)

http://www.zlib.net/

49

to ensure interoperability.
Using a compression library, on the other hand, preserves the spirit of XML:

that anyone can define a new tag. ¿ere is also compression on the whole of the
message (zlib achieves a compression rate of about), which means that we
probably achieve a better bandwidth usage than with Binary XML. However, bi-
nary data will have to be Base encoded (Freed and Borenstein,) before being
transported with XML. ¿is encoding adds to the data load. By compressing
the Base data, the size increase that results from Base encoding can be nulli-
fied (Greenfield and Ng,). While Base encoding provides a way to include
binary data in the XML message, a better approach would be to send the data out
of band. Instead of sending the data itself, an URL is sent. ¿is makes it possible
to send a much smaller XML message.

In summary, we firmly belief that compression algorithms should be favored
over Binary XML.

9.4 User Surveys

While we have concentrated mostly on implementing publish/subscribe and actu-
ally get it to work in a satisfying way, not much effort has gone into investigating
what potential users really want. We have no doubt that pub/sub services have a
large array of possible applications, but exactly which those applications, we do not
know. To address this issue, user surveys should be performed, to determine which
areas that are the most interesting for pub/sub services.

51

References

Dennis Attal. IMS: Internet age telephony. Alcatel Telecommunications Review,
(), . URL http://www.alcatel.com/atr/.

Antonio Carzaniga, David S. Rosenblum, and Alexander L.Wolf. Design and eval-
uation of a wide–area event notification service. ACM Transactions on Com-

puter Systems, ():–, August .

Ericsson, Motorola, and Nokia. ¿e wireless village inititative. White paper, OMA,
.

Ericsson AB. IMS — IP multimedia subsystem. White paper, Ericsson AB, .
URL http://www.ericsson.com/products/white_papers_pdf/ims_ip_

multimedia_subsystem.pdf.

R. Fielding, U.C. Irvine, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext transfer protocol — http/.. RFC , IETF, June
.

N. Freed and N. Borenstein. Multipurpose internet mail extensions (mime) part
one: Format of internet message bodies. RFC , IETF, November .

Paul Greenfield and Alex Ng. A study of the impact of compression and binary en-
coding on soap performance. In Proceedings of The Sixth Australasian Work-

shop on Software and System Architectures, pages –, Brisbane, Australia,
. Swinburne University of Technology.

Joe Hildebrand and Peter Saint-Andre. JEP–: User geolocation. JEP–,
Jabber So ware Foundation, May .

RenéMeier andVinnyCahill. Taxonomy of distributed event–based programming
systems. The Computer Journal, ():–, .

http://www.alcatel.com/atr/
http://www.ericsson.com/products/white_papers_pdf/ ims_ip_multimedia_subsystem.pdf
http://www.ericsson.com/products/white_papers_pdf/ ims_ip_multimedia_subsystem.pdf

52

PeterMillard, Peter Saint-Andre, and RalphMeijer. JEP–: Publish–subscribe.
JEP–, Jabber So ware Foundation, March .

OpenMobile Alliance. Client–server protocol binary xml definition and examples.
Specification, OMA, a.

Open Mobile Alliance. IMPS architecture. Architecture document, OMA, b.

Peter Saint-Andre. Extensiblemessaging andpresence protocol (xmpp): Core. RFC
, IETF, October a.

Peter Saint-Andre. Extensible messaging and presence protocol (xmpp): Instant
messaging and presence. RFC , IETF, October b.

Peter Saint-Andre. Mapping the extensible messaging and presence protocol
(xmpp) to common presence and instant messaging (cpim). RFC , IETF,
October c.

Peter Saint-Andre. End–to–end signing and object encryption for the extensible
messaging and presence protocol (xmpp). RFC , IETF, October d.

Peter Saint-Andre. Streaming xml with jabber/xmpp. IEEE Internet Computing,
():–, September .

Bill Segall and David Arnold. Elvin has le the building: A publish/subscribe no-
tification service with quenching, . URL http://elvin.dstc.com/doc/

papers/auug97/AUUG97.html.

Bill Segall, David Arnold, Julian Boot, Michael Henderson, and Ted Phelps. Con-
tent based routing with Elvin. In Proceedings AUUG2K, Canberra, Australia,
June .

http://elvin.dstc.com/doc/papers/auug97/AUUG97.html
http://elvin.dstc.com/doc/papers/auug97/AUUG97.html

53

Glossary

3GPP rd Generation Partnership Project

API Application Programming Interface

CGI Common Gateway Interface

GALILEO ¿eEuropean Union’s initiative to build a satellite
positioning system

GPS Global Positioning System

HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol

ID3 A metadata format for MP files that adds infor-
mation such as song title, artist, album, etc. to the
MP file

IETF Internet Engineering Task Force
IM Instant Messaging
IMPS Instant Messaging and Presence Service
IMS IP Multimedia Subsystem

J2ME Java Micro Edition
JEP Jabber Enhancement Proposal
JSR Java Specification Request

54

MMS Multimedia Message
MP3 MPEG- Audio Layer , a lossy format for audio

encoding
MPEG Motion Picture Experts Group

OMA Open Mobile Alliance
OPA Open Platform API

REST Representational State Transfer
RPC Remote Procedure Call

SASL Simple Authentication and Security Layer
SIP Session Initiation Protocol
Smack A Java API for creating XMPP clients
SMS Short Message Service
SOAP an XML-based protocol for exchanging struc-

tured and type information

WAP Wireless Application Protocol
WSP Wireless Session Protocol

XML Extensible Markup Language
XMPP Extensible Messaging and Presence Protocol

55

Index

GPP,

Binary XML,

Call Session Control Function,
CSCF,

Extensible Markup Language,

iChat,
ID,
IMPS,
IMS,
IP Multimedia Subsystem,

Jabber,

MM,
Machine to Machine,
MP,

OMA,
OPA,
Open Mobile Alliance,
Open Platform API,

Publish/Subscribe Systems,

SIENA,
SIP,
Smack,

Sony Ericsson,
Sun Microsystems,

XML,
XMPP, ,

zlib,

	Introduction
	Sony Ericsson

	Use Cases
	Use Case: Blogging
	Use Case: Share Picture
	Use Case: Log Call Info
	Use Case: Music Logging
	Use Case: Remote Monitoring
	Use Case: Location Logger

	Publish/Subscribe Systems
	Events, notifications and metadata
	Taxonomy
	Notification Filtering
	Subscription Types
	Federation

	Siena
	Elvin
	Mobility Issues in Publish/Subscribe Systems

	Architecture
	XMPP
	JEP-0060
	Why XMPP?

	Related Work
	WAP Push
	OMA IMPS Architecture
	IP Multimedia Subsystem
	How IMS works

	Security & User Integrity
	Prototype: A Blogging Service
	Client Software
	Architecture
	Java 2 Platform, Micro Edition
	Smack

	Server
	The Weblog
	The XMPP server

	Results & Conclusions
	J2ME
	OPA --- Open Platform API
	XMPP Performance

	Future Work
	General Suggestions
	Re-Implementation in OPA
	Compression of XMPP Data
	User Surveys

	References
	Glossary
	Index

