Spectrogram Evaluation of Seismic Risk in Managua, Nicaragua

Jonas Hedberg

Master of Science Thesis, 2005

Department of Engineering Geology Lund Institute of Technology Lund University

Spectrogram Evaluation of Seismic Risk in Managua, Nicaragua

Jonas Hedberg

Department of Engineering Geology Lund University Sweden

ISRN LUTVDG/TVTG--5093--SE

Printed in Sweden

Resumen

Titulo:	Spectrogram Evaluation of Seismic Risk in Managua, Nicaragua
Autor:	Jonas Hedberg
Supervisor:	Peter Ulriksen, Department of Engineering Geology, Lund University.
Co-supervisor:	Rainer Manolo Parrales Espinoza, Centro de Investigaciones Geoscientificas, Universidad Nacional Autonoma de Nicaragua.
Descripción del problema	Managua ha sido expuesto a dos grandes terremotos durante el siglo pasado, lo qual ha resultado en grandes pérdida humanas. La destrucción fue particularmente grande en zonas definidas de la ciudad, incluyendo su antiguo centro. Este fenómeno puede ser relacionado con amplificación en los depositos superficiales causada por cambios en impedancia y efectos de resonancia.
Objetivos:	El objetivo es de probar un metodo de evaluar resonancia y atenuación de los depositos superficiales utilizando la representación en espectrogramas de la respuesta al impacto. Sería un método rápido para identificar sitios sensitivos ante eventos sismicos, para despues hacer investigaciones de las propiedades dinámicas del suelo con otros métodos.
Metodología:	El método utiliza la respuesta del suelo a impactos producidos por vehiculos pesados. Es logrado colocando un obstaculo sobre el pavimiento que hace los vehículos impactar verticalmente el suelo. La respuesta del terreno al impacto es grabada y representado en un espectrograma, que muestra el attenuación en cada frequencia.
	Las grabaciones de la respuesta del suelo fueron realizadas en 128 puntos a lo largo de carretera norte y sur de la Pan-Americana, cruzando la ciudad en el terreno bajo cerca del Lago Xolotlán, donde los sedimentos más espesos son previstos. El area incluye el antiguo centro de Managua.

	Como método de evaluación el análisis de amenaza frecuencia-tiempo "time-frequency hazard analysis" es desarollado para el estudio. Hace la convolución de la espectrograma en cada instante con un espectro típico de terremoto y un espectro de respuesta de casa para obtener una estimación del riesgo local ante los sismos.
Conclusiones:	En general frequencias de resonancia no son presentes en los espectrogramas. Solo cinco sitios muestran una frequencia prevalente.
	La característica transiente de los señales grabadas puede resultar en picos menos distinctos al respecto de aquellos obtenidos con un análisis de microtremores, dado que la resolución en frequencia mejora con ventanas más largas en el tiempo. Resonancias débiles entonces pueden ser dificiles de interpretar, pero resonancias que amplifica considerablemente amplitudes de oscillación aparecen, dado que el impacto del vehiculo contiene frequencias suficientemente bajas para excitar la frequencia de resonancia fundamental de los depósitos superficiales.
	El "time-frequency hazard analysis" da una medida integral de la resonancia y atenuación sin precisar una interpretación subjetiva.
	La interpretación de espectrogramas y los resultados del análisis de amenaza frecuencia-tiempo "time-frequency hazard analysis" muestran que los depósitos superficiales en general son bastante competentes para no producir amplificaciones debidas a resonancia, con la excepción de zonas muy locales y el area del antiguo centro de ciudad.
Palabras claves:	Terremotos, Managua, Nicaragua, Respuesta de sitio, Espectrograma, Riesgo local, Vulnerabilidad, Tectonica, Fallas, Resonancia, Atenuación, Amortiguamento, Impedancia, Nakamura, Propriedades dínamicas, Depositos superficiales, Sedimentos, Suelo, Geofísica, Analisis espectral, Desastres naturales, CIGEO, UNAN, ASDI, MFS, Geología.

Abstract

Title: Spectrogram Evaluation of Seismic Risk in Managua, Nicaragua Author: Jonas Hedberg Peter Ulriksen, Department of Engineering Geology, Lund Supervisor: University. **Co-supervisor:** Rainer Manolo Parrales Espinoza, Centro de Investigaciones Geoscientificas, Universidad Nacional Autonoma de Nicaragua. **Problem description:** Managua has experienced two devastating earthquakes during the last century resulting in major human loss. The destruction in the earthquake of 1972 was particularly severe in defined areas of the city, including the former city centre, which is now unused terrain. This may have been because of amplification in those areas due to impedance contrasts and resonance effects in the surface layers. **Objective:** The aim is to test a method of evaluating resonance and attenuation in the surface layers by imaging the traffic impulse response in a spectrogram. This would be a fast method of identifying earthquake-sensitive sites for more thorough investigation of the dynamic properties with other methods. Methodology: The traffic impulse response method uses heavy vehicles as a seismic source. This is done by placing an obstacle over the road which causes the vehicles to vertically impact the ground. The ground response to that impact is then recorded and represented in a spectrogram image, where the attenuation with time on each frequency can be seen. Measurements are carried out at 128 sites along the Pan-American Highway crossing the city in the low area close to Lake Xolotlán where the sediments can be expected to be the thickest. These include the area where the former city centre was located. The time-frequency hazard analysis is developed as an evaluation method for this study. It convolves the spectrogram at each time instant with a typical earthquake

spectrum and a building response spectrum in order to obtain an estimate of the local seismic risk.

Conclusions: In the measurements resonances are generally not seen in the spectrograms. Only five sites exhibit clear prevailing frequencies.

The transient nature of the impulse response may provide resonance peaks less distinct than in microtremor analysis, as the frequency resolution improves with a longer time window. Weak resonances may thus be hard to interpret from the spectrogram but resonances that can considerably amplify earthquake motion will show, as long as the vehicle impact contains power at sufficiently low frequencies to not miss the surface layer resonance peak.

The time-frequency hazard analysis gives an integrate measure of resonance and attenuation without having to rely on subjective interpretation.

The spectrogram interpretation and the time-frequency hazard analysis show that the surface layers along the Pan-American Highway are generally competent enough not to give rise to any resonance amplification, with the exception of very localized zones and in the area of the city centre.

Keywords: Earthquakes, Managua, Nicaragua, Site response, Traffic impulse response, Spectrogram, Time-frequenzy hazard analysis, Local risk, Vulnerability, Earthquake-sensitivity, Short-term Fourier transform, Tectonics, Faults, Elastic rebound, Resonance, Attenuation, Damping, Impedance, Nakamura, Dynamic properties, Surface layers, Sediment, Soil, Geophysics, In-situ testing, Frequency analysis, Natural disasters, CIGEO, UNAN, SIDA, ASDI, MFS, Geology. Spectrogram Evaluation of Seismic Risk in Managua, Nicaragua

LUNDS TEKNISKA HÖGSKOLA Lunds universitet

Lund University Lund Institute of Technology Department of Engineering Geology

This study has been carried out within the framework of the Minor Field Studies (MFS) Scholarship Programme, which is funded by the Swedish International Development Cooperation Agency, Sida.

The MFS Scholarship Programme offers Swedish university students an opportunity to carry out two months' field work in a developing country resulting in a graduation thesis work, a Master's dissertation or a similar in-depth study. These studies are primarily conducted within subject areas that are important from an international development perspective and in a country supported by Swedish international development assistance.

The main purpose of the MFS Programme is to enhance Swedish university students' knowledge and understanding of developing countries and their problems. An MFS should provide the student with initial experience of conditions in such a country. A further purpose is to widen the human resource base for recruitment into international co-operation. Further information can be reached at the following internet address: <u>http://www.tg.lth.se/mfs</u>

The responsibility for the accuracy of the information presented in this MFS report rests entirely with the authors and their supervisors.

Gerhand Barme

Gerhard Barmen Local MFS Programme Officer

Preface

This study has been carried out as part of the collaboration between Centro de Investigaciones Geoscientificas (CIGEO) at Universidad Nacional Autonoma de Nicaragua in Managua, and the Department of Engineering Geology at Lund University.

Rainer Parrales, engineer from CIGEO in Managua, is carrying out a study on the earthquake sensitivity of soils in the Managua area. This work is intended to form part of that study.

I would like to give my gratitude to the supervisor of this project, Peter Ulriksen, for his generous support and valuable feedback.

An equally great thanks to co-supervisor Rainer Parrales for giving me the support I needed in Managua and for making me feel at home there. He also proved an excellent field work partner.

A special thanks to Dionisio Rodriguez, head of department at CIGEO, and Marvin Valle, vice head of department, for providing the logistic support necessary to carry out the measurements along the Pan-American Highway.

To Roger Blandón for valuable support and coming with creative solutions in the field.

To Orlando Hernandez Rubio of the Managua Municipality for providing material used in this study.

To all the staff at CIGEO for giving me a good stay in Nicaragua and for practical support.

I would also like to give my gratitude to the Swedish International Development Cooperation Agency for providing the financial possibility to carry through with this project.

Finally but most importantly to the drivers of Managua for their spiritfull driving, without them this project could not have been realized.

Jonas Hedberg, Lund 16th of May 2005.

Table of contents

1	Introduction	13
	1.1 Background	13
	1.2 Objectives	13
2	Tectonics	17
	2.1 Moving plates	17
	2.1.1 The mechanism of plate drift	17
	2.1.2 Divergent boundaries	18
	2.1.3 Collision boundaries	18
	2.1.4 Subduction boundaries	19
	2.1.5 Transform boundaries	19
	2.2 Fault kinematics	20
	2.2.1 Elastic rebound	20
	2.2.2 Fault geometry	21
	2.3 Regional tectonic setting	21
	2.4 The faulting in Managua	22
	2.5 Seismic sources	25
	2.5.1 The subduction zone	25
	2.5.2 The volcanoes	25
	2.5.3 The local faults	25
3	Geology	27
	3.1 The geological setting of Managua	27
	3.1.1 Geomorphology	27
	3.1.2 Geological provinces of Nicaragua	29
	3.1.3 The Nicaraguan Depression	31
	3.2 Stratigraphy in Managua	32
	3.2.1 The basement	33
	3.2.2 The surface layers	33
4	Site response	35
	4.1 Seismic wave propagation	36
	4.1.1 Body waves	36
	4.1.2 Surface waves	37
	4.1.3 Passage from earthquake focus to surface	38
	4.1.4 Determination of earthquake epicentre	39
	4.2 Dynamic properties of soil	40
	4.2.1 Soil properties and wave propagation velocity	40
	4.2.2 Impedance	41
	4.2.3 Attenuation	42
	4.3 Site effects	45
	4.3.1 Amplification in surface layers	46
	4.3.2 Resonance	46
	4.3.3 Nonlinear soil behaviour	47
	4.3.4 Dangerous ground motion	48

S	nectrogram	Evaluation	of Seismic	Risk in	Managua	Nicaragua
\mathbf{v}	pecuogram	Lvaluation	of bershine	ICISIC III	managua,	Theatagua

5	Methodology.		49
	5.1 The Nak	amura technique	
	5.1.1 Nakar	nura's theory	
	5.1.2 Ampli	fication of P- and S-waves	51
	5.2 The traff	ic impulse response	53
	5.2.1 Dwarf	ing of ambient noise	54
	5.2.2 Waves	s generated	55
	5.2.3 Source	e-inherent effects	
	5.3 Field wo	rk	
	5.3.1 Equip	ment	59
	5.3.2 Measu	rement Strategy	
	5.4 Signal pr	ocessing	63
	5.4.1 Initial	data treatment	64
	5.4.2 Transf	form from time to frequency domain	64
	5.4.3 Coher	ence between vertical and horizontal components	67
	5.4.4 Correl	ation between sensors	68
	5.4.5 The S	pectrogram	
	5.4.6 Implic	ations of the short-term Fourier transform	70
	5.5 Time-fre	quency hazard analysis	70
	5.5.1 Instan	taneous risk	70
	5.5.2 Local	risk	72
	5.5.3 Consta	ant background removal	74
6	Results		75
	6.1 Coherene	ce between the accelerograph axes	75
	6.2 Correlati	on between the vertical axes of the sensors	
	6.3 Site spec	trograms	
	6.4 Seismic	risk zonation along the Pan-American Highway	
	6.4.1 Reson	ance and attenuation	
	6.4.2 Local	risk	
_	6.5 Correlati	on between results and geomorphology	
7	Discussion		
	7.1 Assessm	ent of the method	
~	7.2 Further S	Studies	
8	Conclusions		101
9	References		103

1 Introduction

1.1 Background

Managua, the capital of Nicaragua, lies in a seismically active part of the country. Its population has experienced two catastrophic earthquakes in the past century with major human loss as a consequence. These occurred in 1931 and 1972.

The Earthquake of 1972 caused the destruction of the old city centre of Managua and the loss of approximately 10000 human lives (Incer Barquero et al., 2000). The major destruction occurred in defined areas of the city, which may indicate that the thickness of surface layers played an important role in the resulting surface movement and rendered some parts of the city more vulnerable than others. This led to a prohibition of construction in the most damaged areas of the city centre which still is in effect.

Figure 1.1 A collapsed five-story building in the 1972 earthquake.

Managua is a growing city and in need of the areas now deemed unfit for construction. If the earthquake vulnerable areas are mapped out and the dynamic properties of their surface layers investigated, earthquake-safe buildings could be constructed on the now unexploited grounds.

1.2 Objectives

This work is aimed at testing the Spectrogram Evaluation Technique as a method of fast identification of earthquake-sensitive sites. This operation would be a first step in a strategy to evaluate Seismic Risk in Managua. After that more thorough

investigations to evaluate the soil's dynamic properties at the vulnerable sites can be undertaken.

A vulnerable site can be the result of various properties in the soil strata. For one the passage of the earthquake shockwaves from hard bedrock to softer surface materials will cause a growth in vibration amplitude. In addition to that the surface layers may enter into resonance. This can occur if the combined layers have a resonance frequency within the frequency domain of the earthquake, and in addition a sufficiently low attenuation to permit a build-up of energy in the resonance mode during the duration of the earthquake. Therefore the resonance modes and the attenuation are of special interest in the identification of vulnerable sites.

A microzonation study using the Nakamura technique has already been carried out in the central parts of Managua by Stål and Westberg (Stål and Westberg, 1996). The Nakamura technique is ideal for use in urban areas as it uses microtremors as seismic source and thus benefits from the background noise that presents an obstacle to most other seismic surveys. It gives the fundamental resonance frequency and the shear wave transfer function of the sedimentary layers.

It is not possible, however, to determine the soil attenuation with Nakamura's technique.

Use of the Spectrogram Evaluation Method could provide all the resonance modes (not only the fundamental), and an estimate of the soil attenuation.

The spectrogram evaluation technique uses heavy traffic as seismic source and is thus quick to use, although the necessity of proximity to major routes means a certain limitation. In Managua the passage of the Pan-American Highway through the city in a right-angle to the faulting direction provides us with an ideal seismic source along which the measurements can be made. It crosses the area of Managua bordering to Lake Xonotlán where the former city centre lay before the earthquake of -72.

In the field study measurements of both microtremors and active traffic sources have been made to enable the use of both the Nakamura and the Spectrogram Evaluation Technique, but the analysis with Nakamura's technique is outside the scope of this masters' thesis.

Spectrogram Evaluation of Seismic Risk in Managua, Nicaragua

Figure 1.2 Map of Nicaragua (CIA, 1997).

2 Tectonics

2.1 Moving plates

It is today known that the Earth's lithosphere is divided into several tectonic plates that move relative to one another (Figure 2.2). Although the mechanism behind this motion cannot be seen, it is believed to be caused by convection in the semi-solid Mantle of the earth (Figure 2.1). In this chapter information is taken from the U.S. Geological Survey (Kious and Tilling).

2.1.1 The mechanism of plate drift

The traces that can be seen on the earth's surface of this supposed convection process are the mid-ocean ridges and oceanic trenches. The ridges are formed by magma pushing up from the mantle and causing spreading of the sea-floor, a divergent

boundary. The best known divergent boundary is the Mid-Atlantic Ridge that spreads the Atlantic sea-floor at a relative rate of 2.5 cm per year.

The spreading of the seafloor implicates the collision plates along of other. convergent, boundaries. If an oceanic plate encounters a continental plate, the continental plate will force down the heavier oceanic plate into the Mantle. This will cause the most profound depths of the ocean, the trenches. Below a depth of

Figure 2.1 Convection cell in Mantle (USGS)

about 700 km, the descending plate begins to soften and lose its form because of the increasing heat. The material sinks closer to the earth's core where it gets reheated and lighter and starts to rise again, completing the convection cell.

A convection cell needs a source of heat to be initiated and kept alive. The heat comes from two sources: radioactive decay of elements in the earth's core and residual heat left from the collapse and compression of material at the birth of the planet.

Until the 1990s the sea-floor spreading prevailed as the chief motive force behind the continental drift. Today the subduction in the convergent zones is considered a bigger motive force. The sinking subdued slab pulls the rest of the plate with it in its fall through the Mantle.

Spectrogram Evaluation of Seismic Risk in Managua, Nicaragua

Figure 2.2 Tectonic plates of the world (Kious and Tilling).

The interaction between plates is the main cause of earthquakes. Even if the relative velocity between plates is only a few centimetres per year the mass of the motion builds up an enormous potential energy, which is released when the local shear strength of the material is exceeded. There are four basic ways in which two plates can interact along a boundary to build up stresses in the Earth's crust. These are called divergent boundaries, collision boundaries, subduction boundaries and transform boundaries.

2.1.2 Divergent boundaries

In the divergent boundaries magma is pushing up from the mantle and creates new crust material. In this process the plates are pushed apart and a spreading ridge is formed. The Mid-Atlantic ridge is a submerged spreading ridge that stretches from the Arctic region to beyond the southern tip of Africa. Most spreading ridges occur in the oceans, but the Great Rift Valley is an example of a continental spreading centre. It stretches from Lebanon, through Eastern Africa and all the way to Mocambique.

2.1.3 Collision boundaries

When two continental plates collide head-on (Figure 2.3) neither is subdued, because both are relatively light and resist downward motion. Instead they tend to buckle and push each other upwards or sideways. One will usually override the other and crumple up to create a mountain range, like in the case of Himalaya.

Subduction boundaries 2.1.4

A plate subduction occurs either when an oceanic plate collides with a continental plate, or when two oceanic plates collide (Figure 2.3).

In the first case the heavier oceanic plate will be forced down under the thicker but lighter continental plate. The continental plate crumples up under the stress to form a coastal mountain range. Normally there is volcanic activity in connection with the subduction zone, but if the source of the magma is the melting of the subdued slab or the continental slab, or both, is still not known.

If two oceanic plates collide one will be forced down under the other to form a trench. Like in the case of oceanic-continental convergence volcanoes form parallel to the trench. After millions of years piling up volcanic debris on the sea-floor they can form Island arcs, like the Marianas and the Aleutian Islands.

2.1.5 Transform boundaries

Two plates sliding past one another form transform boundaries. Normally they occur on the ocean floor, where they offset the spreading ridges and create the zig-zag pattern seen in for example the Mid-Atlantic Ridge.

But the San Andreas Fault in California is an example of a transform boundary that crosses land. It connects the East Pacific Rise, a spreading ridge to the south, with the South Gorda-Juan de Fuca-Explorer Ridge to the north (Figure 2.4).

Along it the Pacific Plate has been grinding past the North American Plate for 10 million years at a rate of 5 cm per year.

Continental-continental convergence

Oceanic-continental convergence

Oceanic-oceanic convergence

Figure 2.3 Convergent boundaries. Two Continental plates moving together form ล Collision boundary. An oceanic and a continental plate, or two oceanic plates, moving together form a subduction boundary (Kious and Tilling).

Figure 2.4 The San Andreas Fault and some ocean floor transform faults (Kious and Tilling).

2.2 Fault kinematics

In the boundaries between tectonic plates great stresses build up. The part of the tectonic plate close to the boundary deforms under the stress and fractures. This gives rise to heavy faulting close to plate boundaries. Like with plate boundaries the faces of the fault build up stress under the deformation until their shear strength is reached and they rupture. This is explained in the Elastic Rebound Theory.

2.2.1 Elastic rebound

When shear deformation occurs in the crust, elastic strain energy will build up in the rock. This build-up will go on until the shear strength in the rock is reached along the weakest plane. The weakest plane will usually be along a pre-existent fault. The rock faces of a fault are usually rough and enable enormous stresses to build up before slipping.

In Figure 2.5 the process of stress build-up and rupture in a strike-slip fault is shown. The fence crossing the fault shows the deformation in the ground.

Initially the ground is not deformed and the fence goes in a straight line over the fault. Then tectonical movement causes shear forces in the ground, but the interlock friction between the fault faces resist slip. The ground deforms and builds up elastic strain energy.

When the friction cannot resist anymore the fault slips and the ground ruptures. The

Figure 2.5 Elastic Rebound in a strike-slip fault (Mahin).

edges of the fault try to catch up with the middle as they release their potential energy, but don't quite make it due to fault drag. The fence remains slightly curved.

It follows that if the rock strength, fault length and slip rate are known, it is possible to calculate the time it will take to build up enough strain energy to cause an earthquake, and its probable magnitude.

When rupture occurs and the stress drops in one fault, other faults in the same system will have to carry its load. Frequently other faults will then rupture as a consequence of the first, a fault swarm is released. If other faults in the system do not rupture their next slip will in any case be rescheduled to an earlier date due to the added shear load they have received.

2.2.2 Fault geometry

Figure 2.6 Normal faulting, reverse faulting and strike-slip faulting (Rey, 2003).

There are three ways in which two blocks can move relative to one another in a fault (Figure 2.6).

Normal faults and **reverse faults** are both dip-slip faults which implicates a dipped fault plane with a vertical relative movement between the blocks.

In a normal fault the two blocks move away from one other and the hanging wall is sinking relative to the footwall. In a reverse fault the two blocks are pushed together and the hanging wall rises above the footwall.

A **strike-slip fault** has no dip and the walls move only horizontally relative to one another. It is dextral if the motion is clockwise and sinistral if the motion is counter-clockwise.

These fault types rarely occur in their pure forms. Usually a fault has a combined dipslip and strike-slip motion.

2.3 Regional tectonic setting

Nicaragua occupies a segment of the Central American land strip connecting North America to South America, thus having both a Caribbean and a Pacific Coastline. It lies on the so called Ring of Fire (Figure 2.7) encircling the Pacific Ocean, with a high rate of seismic and volcanic activity.

About 120 km off the Pacific coast runs the Middle American trench, marking the border between the Cocos and the Caribbean tectonic plate (Figure 2.2). The two plates are converging at a relative velocity of about 8 cm/year. In the collision the Cocos Plate is subdued by the Caribbean plate and thrust down at an angle of approximately 80° (Cowan et al., 2000). The collision has given rise to the Central American Volcanic Front running parallell the Middle American Trench at a distance of about 170 km into the Caribbean Plate and stretching from Costa Rica to Guatemala.

Figure 2.7 The Pacific Ring of Fire (Kious and Tilling).

2.4 The faulting in Managua

The Central American Volcanic Front is abruptly displaced in the area of Managua (Figure 2.8). The reason for this displacement is not clear. One theory suggests that the Cocos Plate may be segmented under the Caribbean Plate. The plate segments are subducted at different angles and create a lateral offset in the volcanic chain. Another suggestion is that the volcanic chain is actually a spreading rift. The displacement would then be analogous to the offset caused by transform boundaries seen in ocean spreading ridges and in the Great Rift Valley (see chapter 2.1.5). It remains to be investigated if there's an active extension going on in the Nicaraguan depression.

Figure 2.8 Topographic map showing the interruption of the volcanic front at Managua. The black lines indicate major faults, the jagged line indicates the subduction zone of the Middle American Trench (French and Schenk).

Whatever the explanation is for the displacement, the consequence is a pull-apart graben with numerous quaternary fault systems running through it (the quaternary is a geological time period which can be seen in Figure 3.2 in chapter 3).

The western boundary of the graben is defined by volcanic cinder cones and collapse pits extending south from the Apoyeque Caldera, known as the Nejapa-Miraflores alignment. The Asososca-Acahualinca and San Judas Faults (NI-04 in Figure 2.9) form east-facing escarpments along this alignment. The eastern boundary is formed by the Cofradia fault system (NI-09 in Figure 2.9), a prominent west-facing escarpment rising up to 15 meters above the graben floor.

Figure 2.9 Quaternary faults in the vicinity of Managua (Cowan et al., 2000).

	LAS FALLAS CUATERNARIAS DE NICARAGUA							
Number	Name of structure	Sense of movement (maior/minor)	Time of most recent movement	Slip rate (mm/vr)				
Número	Nombre de estructura	Sentido de movimiento (mayor/menor)	Edad del último movimiento	Tasa de movimiento (mm/año)				
NI-01	La Pelona fault zone	Unknown	<15 ka	<1.0				
NI-02	La Paz Centro fault zone	Unknown	<15 ka	0.2-1.0				
NI-03	Mateare fault zone	Unknown	<1.6 Ma	0.2-1.0 (?)				
NI-04	Asososca-Acahualinca and San Judas fault zone (Managua graben)	Unknown	<15 ka	0.2-1.0 (?)				
NI-05	Estadio fault	Left-lateral	Historic (1931)	0.2-1.0 (?)				
NI-06	Tiscapa fault	Left-lateral	Historic (1972)	0.2-1.0 (?)				
NI-07	Aeropuerto fault	Strike slip	Historic (1650-1880, possibly 1765 or 1772)	5 0.2-1.0 (?)				
NI-08	Unnamed faults, Eastern Managua graben	Strike slip	<15ka, possibly historic (1772?)	0.2-1.0 (?)				
NI-09	Cofradia Fault, Eastern Managua graben	Normal	<15 ka	<1.2				
NI-10	Ochomogo fault zone	Not reported	<15 ka	0.2-1.0 (?)				

QUATERNARY FAULTS OF NICARAGUA

Table 2.1 Quaternary faults in the vicinity of Managua (Cowan et al., 2000).

The graben hosts a closely spaced system of NE-SW-trending strike-slip and obliquenormal faults. Many of the faults are slightly curved. The strike-slip faults for which the sense of movement has been determined show a sinistral (counter-clockwise) movement, which seems anomalous in view of the dextral offset in the volcanic chain. This relation has not yet been resolved, neither has the curvature of the faults. The regional kinematics is not clear.

The faults within the Managua Graben have been responsible for the two catastrophic earthquakes in the 20^{th} century. Though the magnitude of the events is small or moderate they are capable of producing severe damages because of their shallow depth. The earthquakes occur in cycles at depths between 5 to 12 km (Parrales Espinoza and Picado Romero, 2001).

The elastic rebound in the Estadio Fault (NI-05 in Figure 2.9) in 1931 caused a 2 km long surface rupture and the loss of approximately 1000 human lives.

The Tiscapa Fault (NI-06 in Figure 2.9) was the cause of the 1972 Earthquake, in which around 10000 people died and the downtown area was destroyed. The movement occurred in 4 faults in the system with rupture lengths from 1.6 to 5.9 km, totalling 15.4 km.

Another fault which has shown to be active in historic time is the Aeropuerto fault (NI-07 in Figure 2.9) running through the eastern part of the city and continuing in Lake Xonotlán with a NE-SW orientation. Palaeontologists have

Figure 2.10 A ground rupture in the pavement in the 1972 earthquake.

detected historical events in the fault, the last one of which occurred sometime between 1650 and 1880.

All the faults in and around the Managua graben should be considered active; even the faults for which no historical event has been registered.

2.5 Seismic sources

There are three sources capable of creating seismic events in the Pacific Region of Nicaragua:

- The subduction zone
- The volcanoes
- The local faults

All sources are connected to the subduction process of the Cocos Plate beneath the Caribbean Plate.

2.5.1 The subduction zone

The Cocos plate is subducted beneath the Caribbean plate at a rate of about 8 cm per year. But it is not a constant process. Enormous stresses are built up until the local shear strength is reached. Then the elastic rebound takes place and releases the strain energy in the form of seismic shockwaves that travel through the crust in all directions. These ruptures occur in segments at a time, creating earthquakes in cycles. The earthquakes with focus in the subduction zone are often very powerful but luckily have to travel a long distance before reaching the surface and are attenuated before reaching populated areas. They are normally characterized by long-period surface waves, as the short-period components have been attenuated in the passage through the crust.

2.5.2 The volcanoes

The volcanoes may also create seismic events. Beneath the volcanoes the lithosphere is thinner. The time before a volcanic eruption takes place, the crust is in a state of increasingly high stress which may result in the elastic rebound of surrounding faults.

2.5.3 The local faults

The earthquakes that occur in the local faults in and around the Managua Graben are relatively small in magnitude, but because of the shallow focal depth they get much less attenuated before reaching surface. Also they will have a higher frequency content, probably with specific kinds of damages associated to it. The Earthquake of 1972 had the moderate magnitude of 5.6 but still succeeded in destroying the capital. 10.000 lost their lives, 20.000 were injured and 250.000 were left without a home (Incer Barquero et al., 2000).

The faults in the Managua area are highly active and are responsible for most of the seismic activity in the region (Parrales Espinoza and Picado Romero, 2001).

3 Geology

3.1 The geological setting of Managua

3.1.1 Geomorphology

A low plain known as the Nicaraguan depression dominates Western Nicaragua. It encompasses Lake Xolotlàn and Lake Cocibolca (also known as Lake Managua and Lake Nicaragua). The capital city of Managua lies on the southern shores of Lake Xolotlàn in the highly active Managua Graben.

The Nicaraguan depression is limited to the northeast by the Interior Highlands and to the southwest by the Pacific Ocean. South of Puerto Sandino begins the Cordillera del Pacifico, locally known as Las Sierras de Managua, forming a coastal mountain range separating the southern part of the depression from the Ocean.

The still active Central American Volcanic Front runs through the Nicaraguan

Figure 3.1 Geomorphological map of western Nicaragua (van Wyk de Vries, 1993).

Depression from the Cosigüina volcano in the northwest to the Maderas volcano in Lake Nicaragua. The whole volcanic front stretches all the way from Tacaná Volcano in Guatemala to Irazú in Costa Rica (van Wyk de Vries, 1993).

ERA	DERICO			EPOCH		AGE	Million years	Abbreviation	Duration (Ma)
	OUM			HOLOCE	NE		0.1	Hol	0.1
	aun		-1.1	PLEISTOC	CENE		1.6	Ple	1.5
			PL	IOCENE	upper	PIACENZIAN	35 -	Pla	1.9
					lower	ZANCLIAN	52 -	Zan	2.3
0		e c			upper	MESSINIAN	6.3 -	Mes	1.1
-		8	MIOCENE			TORTONIAN	10.2 -	Tor	4.9
0		ž			middle	SERRAVALLIAN	15.2 -	SIV	5
N	\geq					LANGHIAN	16.2 -	Lan	1
0	Æ				lower	BURDIGALIENSE	20	But	3.8
z	E				unner	AUUTANIAN	25.2 -	Aqu	0.2
ш	臣		OL	IGOCENE	lower		30	Git	4.0
0		9			upper	DRIABONIAN	— 36 —	Prb	3.4
		Dec				BARTONIAN	39.4 -	Brt	2.6
		8	E	OCENE	middle	LUTETIAN	42 -	Lut	2.0
		Pa			lower	YPRESIAN	49	Ypr	7
				FOOTUE	upper	THANETIAN	- 54	Tha	3.8
			PAI	LEOCENE	lower	DANIAN	60.2	Dan	6.3
						MAASTRICHTIAN	66.5	Маа	7.5
	Cretaceous		upper estate		jage -	CAMPANIAN	- 4	Cmp	10
					C.S.	SANTONIAN		San	4
					CONIACIAN		Con	1	
					TURONIAN	92	Tur	3	
					CENOMANIAN	95 -	Cen	4	
					ALBIAN	108 -	Alb	12	
					APTIAN	113 -	Apt	5	
			lower			BARREMIAN	- 116.5 -	Brm	3.5
					105	HAUTERIVIAN	121	Hau	4.5
o			ALL STREET		1000	VALANGINIAN	128 -	Vig	9
_			4		TITHONIAN	134 -	Th	6	
0			Malm (Late Jurassic)			KIMMERIDGIAN	139 —	Kim	7
N					sic)	OXEORDIAN	146	Oxf	6
2						CALLOVIAN	152 -	Cly	5
	.5	2		Dogger		BATHONIAN	- 157	Bth	9
00	8	ŝ	- (1	Middle Juras	isic)	BAJOCIAN	166 -	Bal	5
ш	1	5			AALINIAN	171 -	Aal	8	
Σ						TORCIAN	179	Toa	7
				Lias		PLIENSBACHIAN	186	Plb	8
			(Lower Juras	sic)	SINEMURIAN	204	Sin	7
					HETTANGIAN	201	Het	9	
						RHAETIAN	210	Rht	5
		2		Tr3		NORIAN	223	Nor	8
	.0	2				CARNIAN	231 -	Crn	8
	ei.	2	Tr2		LADINIAN	236 -	Lad	5	
	F			0		ANISIAN	240 -	Ans	4
			Scythian		(3 stages)	250	SCy	10	

Figure 3.2 The Geological Timetable, the Mesozoic and Cenozoic eras (Lapiedra).

ERA	PERIOD	EPOCH		AGE	Million years	Abbreviation	Duration (Ma)
		upper		TATARIAN	250 -	Tat	5
	E .			KAZANIAN	260 -	Kaz	5
	Ē			KUNGURIAN	270 -	Kun	10
	ē			ARTINSKIAN	- 275 -	Art	5
	-	104	ver	SAKMARIAN	— 280 —	Sak	5
				ASSELIAN	290 -	Ass	10
	40	STEPHANIAN	GZELIAN	2 stages	295 -	Gze	5
	n n		KASIMUVIAN	3 stages	303 -	Kas	8
	fer	WESTPHALIAN	MOSCOVIAN	4 stages	311 -	M05	8
	Qui	NAME OF AN	BASHKIRIAN	5 stages	323 -	Bah	12
	ę	NAMURIAN	SERPUNKNOV.	4 stages	333 -	Spk	10
	õ	VISE	EAN	5 stages	350 -	Vis	17
		TOURNAISIAN		2 stages	362 -	Tou	12
0	e	D3		FAMENNIAN	367 -	Fam	5
_				FRASNIAN	377 -	Frs	10
0	n ie	D2		GIVETIAN	381 -	GIV	4
N	8			EIFELIAN	386 -	Elf	5
0	å			EMSIAN	390 -	Ems	4
		D	1	PRGIAN	395 -	Pra	6
	PRIC			LOCHKOVIAN	408 -	Lok	12
			PRIDOLI		- 411 -	Prl	3
<	ğ		LUDLOW	2 stages	415 -	Ldf	4
۵.	- Silo		WENLOCK	3 stages	430 -	Wen	15
	Ø	l	LLANDOVERY	3 stages	439	Liy	9
	6	Bala	ASHGILL	4 stages	443 -	Ash	4
			CARADOC	7 stages	464 -	Crd	21
	wic	Dyfed	LLANDELO	3 stages	468 -	Llo	4
	ě		LLANVIRN	2 stages	476 -	Lin	8
	0	Canadian	ARENIG		493 -	PIA	17
			TREMADOC		510 -	Tre	17
	18/1	Merioneth St David's		2 stages	517 -	C3	7
	camb			2 stages	536 -	C2	19
	00	Cae	erfai	3 stages	570	C1	34
		PRE	ЕСА	MBRIA	A N		

Spectrogram Evaluation of Seismic Risk in Managua, Nicaragua

Figure 3.3 The Geological Timetable, the Paleozoic era (Lapiedra).

3.1.2 Geological provinces of Nicaragua

Nicaragua can be divided into four geological provinces in terms of the origins of the bedrock (van Wyk de Vries, 1993). They run parallel to the Middle American Trench and the Pacific coastline.

1. The Pacific Coastal Plain is composed of tertiary (see geological timetable in Figure 3.2) marine sediments and ignimbrites of volcanic origin. The closeness to the subduction zone gives rise to folding of the tertiary marine rocks and a faulting that runs parallel to the Middle American Trench. The Brito and Rivas slopes (marked as B and R in Figure 3.4) are tertiary marine rocks lifted up by the intense compression from the colliding tectonic plates. They are highest to the southwest were deformation is greatest. Further northwest they are covered by the less tilted El Fraile formation (marked as F in Figure 3.4). This in turn is limited to the north by undeformed rock of shallow marine, lacustrine and terrestrial sediments with interspersed ignimbrites, belonging to the Tamarindo formation (marked as T in Figure 3.4).

The Pacific Region has its origin in an offshore basin formed in The Miocene-Pliocene by the subduction process. In it the sediments that became the Rivas, Brito, Masachapa and El Fraile formations were deposited. The basin, now called the Nicaraguan Trough, rose from the Sea in the Pliocene-Pleistocene.

Figure 3.4 Geological map of western Nicaragua (van Wyk de Vries, 1993). Volcanoes: 1. Cosigüina, 2. San Cristobal, 3. Casita, 4. La Pelona, 5. Telica, 6. Rota, 7. El Hoyo, 8. Monte Galan, 9. Momotombo, 10. Momotombito, 11. Malpaisillo caldera, 12. Chiltepe, 13. Masaya/Las Sierras, 14. Apoyo, 15. Mombacho, 16. Zapatera, 17. Concepción, 18. Maderas.

2. The Nicaraguan depression is filled with quaternary volcanic deposits originating from the active volcanic chain running through it. The volcanic rocks are divided into two major groups: the Marrabios and Las Sierras formations. Below the quaternary deposits there is a basement of tertiary origin. The Nicaraguan Depression is described further in chapter 3.1.3.

- **3.** The Interior Highlands has a Palaeozoic metamorphic basement. Except for the northern part of the area limiting to Honduras the metamorphic rock is covered by tertiary volcanic rocks. These originate from ancient volcanic fields in El Salvador, Guatemala and Honduras. The tertiary rock has then been overprinted by later ignimbrite eruptions. The El Coyol group bordering the Nicaraguan depression from Honduras to Costa Rica is one of the groups consisting of tertiary volcanic rock. The El Coyol rock also outcrops on the Solentiname and Puerto Diaz Islands in Lake Nicaragua and around Telica in the northwestern part of the Nicaraguan depression.
- **4.** The Atlantic Coastal Plain is mostly alluvium from Miocene to quaternary origin.

3.1.3 The Nicaraguan Depression

The Nicaraguan depression runs through the length of Nicaragua along the pacific coast. It is filled with quaternary volcanic deposits created by eruptions from the active volcanoes running through it.

3.1.3.1 The volcanic chain

The volcanic chain begins at the Cosigüina volcano $(1)^1$ forming a peninsula in the northwest of Nicaragua. It is formed over an earlier quaternary volcanic centre, which in turn lies over tertiary volcanics and sediments.

The chain continues with the Cordillera Marrabios ranging from the San Cristobal volcano to the Momotombito volcano (2 to 10). From El Hoyo to Momotombito (7 to 10) the volcanoes are built on the ignimbrites of the Malpaisillo caldera (11), forming part of the Las Sierras group.

Further southwest the Chiltepe volcano (12) and the Nejapa alignment formed by the Masaya, Apoyo and Mombacho (13, 14 and 15) volcanoes lies on the Las Sierras ignimbrites, erupted from the Las Sierras caldera surrounding the Masaya volcano (13).

In Lake Managua lie the last three volcanoes of the volcanic front before entering in Costa Rica: Zapatera, Concepción and Maderas (16, 17 and 18).

Between the volcanoes sequences of alluvium and lacustrine sediment interlayer with tephra deposits (van Wyk de Vries, 1993).

The thickness of the quaternary rock is not accurately determined, but given that the tertiary basement outcrops at several locations within the Nicaragua depression it probably constitutes only a thin layer (van Wyk de Vries, 1993).

The Central American Volcanic Chain is segmented by zones of transverse faulting. These zones contain volcanoes with a tendency for explosive eruptions (van Wyk de Vries, 1993). One of the zones of transverse faulting cuts right through Managua (see Figure 2.8) and constitutes the main seismic source in the area.

¹ Numbers in parenthesis refers to the map in Figure 3.4.

3.1.3.2 The origin of the depression

The origin of the Nicaraguan depression is a subject of debate. It has been interpreted as a graben formed by coast-parallel strike-slip faulting in The Mateare fault zone, running along the north-eastern side of the Las Sierras hills, and the fault zone at the northeast depression boundary at Cuesta Coyol (as seen in Figure 2.8). These fracture zones are believed to be the result of the Cocos plate flexing the edge of the Caribbean plate with its unceasing pressure (Incer Barquero et al., 2000).

Van Wyk de Vries (van Wyk de Vries, 1993) however, argues that the adjacent fault zones cannot have caused a graben structure. The Mateare fault zone is only continuous for about 30 km. Furthermore the strata in the Las Sierras hills dip radially from an axis located in the Masaya Caldera, not westwards as would be expected if having caused the depression.

On the other hand the fault zone at Cuesta Coyol, forming the north-eastern boundary of the depression is a series of faults dipping toward the depression. However they are covered by undeformed Quaternary Las Sierras ignimbrites, indicating that they have not moved in the Quaternary period.

The alternative explanation suggested by van Wyk de Vries is that the land has sunk due to isostatic readjustment. This would be due to the massive deposition of volcanic material in the Interior Highlands during the Tertiary period. The thicker crust in the Interior Highlands would then cause isostatic readjustment of surrounding regions.

3.2 Stratigraphy in Managua

Managua is located on land sloping from the Cordillera de Pacifico down to Lake Xolotlán (Figure 3.5).

All cenozoic formations in the Managua area are of volcanic origin. The basement is a pyroclastic sequence called the Las Sierras group. Las Sierras is covered by deposits from recent volcanic activity.

Figure 3.5 Cross-section of the geological structures near Managua (Anton, 1996).

3.2.1 The basement

The basement consists of the volcanic tuff of the upper Las Sierras group, locally known as "cantera". Tuff is consolidated pyroclastic materials from volcanic eruptions. It dates from early quaternary volcanism. Although in a geological context the Las Sierras Group forms the rock basement, geophysical studies have placed the halfspace at a depth varying between 2 and 9 meters (Ekholm and Norberg, 1998). This is because in earthquake engineering materials with a shear wave velocity above 700 m/s are considered basement.

In fact the stiffness of the soil increases gradually with depth and a clearly marked border between the basement and surface layers is not easily found.

3.2.2 The surface layers

The Las Sierras basement is covered by pyroclastic materials from the Holocene volcanism of the Central American Volcanic Front interlayered by organic soils deposited in between the eruptions. The soils can be classified as mainly non-cohesive silt, sand and gravel with varying degree of consolidation and cementation (Ekholm and Norberg, 1998). Generally they have high porosity and low density. The layers are well defined, but vary thickness and compactation in degree between different locations in Managua. There can be big differences even between sites very

close to one another (Parrales Espinoza and Picado Romero, 2001). Figure 3.6 shows the stratigraphy but the depths are only examples as they can vary between sites. The following information on the layers is based on (Ekholm and Norberg, 1998).

The Retiro tuff is a layer of indurated, fine grained basaltic tuff.

Figure 3.6 Typical stratigraphic column below Managua (Parrales Espinoza and Picado Romero, 2001)

The San Judas formation is a triple layer of indurated tuff, with lapilli and basaltic ash in between layers.

The Apoyeque pumice is pumice erupted from the Apoyeque volcano during the Holocene and late Pleistocene.

The Masaya lapilli is uncemented basaltic lapilli with contents of sandand silt-sized ash, with origin from the activity of the Masaya volcano. Lapilli is gravel of concentrical spheres formed when the material from a volcano flies through the air.

The surface layers of Managua seem to be composed by stiff sequences interspersed between more compliant sequences. This will mean a stiffer over all behaviour, perhaps similar to that of steel laminated rubber used as attenuators in for example bridges. Compliant soil laminated by stiff soil would certainly result in less deformability than a homogenously compliant soil.

Figure 3.7 In this cut by the side of the road the layered structure can clearly be seen.

4 Site response

The purpose of the Spectrogram Evaluation Technique is to evaluate the site response in the case of an earthquake. In the passage through surface layers the seismic waves emitted from the earthquake will change their characteristics. Wave amplitudes may grow and cause a more destructive kind of movement than if they were transmitted directly through rock.

In the 1972 earthquake the most severe damages were seen in the city centre. The centre of the city was practically demolished (Figure 4.1).

Figure 4.1 Air foto from 1972 of the demolished city centre.

The intensities experienced by different parts of Managua can be seen in Figure 4.2. Marked in the figure is also the location of the accelerograph whose recordings are used for the risk evaluation later in this work.

High intensities were of course experienced over the Tiscapa fault where the rupture occurred, but another high intensity zone is seen right in the city centre, to the west of the fault. This may be due to the site response of the surface sediments.

The dynamic interaction between seismic waves, rock and soil will be clarified in this chapter. First the fundamental wave dynamics is treated, then the soil's dynamic properties, and finally the interaction between the two to create the resulting site response.

Figure 4.2 Intensities experienced in different parts of Managua in the 1972 earthquake.

4.1 Seismic wave propagation

The seismic waves propagate through an infinite space as body waves and through a semi-infinite space also as surface waves. That is, only close to a surface or an interface between two media the surface waves exist. It is important to remember that none of these waves implies the transport of matter. A wave is merely a propagating oscillation.

4.1.1 Body waves

When waves travel through an infinite space they propagate by means of compressional and dilatational forces or shear forces.

(Modified from Bruce A. Bolt, Earthquakes: A Animer: W.H. Freeman & Company, 1978.)

Figure 4.3 The P-wave (Anderson, 1998).

The compressional or longitudinal wave is a pressure wave that propagates through the elastic media. The particles oscillate longitudinally back and forth, with periodic compressions and dilatations as a result (Figure 4.3).

The compression wave has the highest propagation velocity and is therefore termed Primary wave or P-wave, as it arrives first at an observation point at a certain distance from the seismic source.

In the shear wave the particles oscillate transversely to the direction of propagation and transmit the movement by means of shear forces between one another (Figure 4.4). This implies that the shear wave does not exist in liquids or gasses because of them being unable to transmit shear forces. Shear waves are much slower than the compressional wave and therefore termed Secondary waves or S-waves.

(Modified from Bruce A. Bolt, Earthquakes: A Printer: W.H. Freeman & Company. 1978.)

Figure 4.4 The S-wave (Anderson, 1998).

4.1.2 Surface waves

The surface waves occur in the surface of a material and are of two types. The Rayleigh wave travels along the surface of a material and it penetrates to a depth of about one wavelength. It propagates with an elliptical retrograde (counter-clockwise) particle motion (Figure 4.5). The velocity of the Rayleigh wave varies depending on the Poisson ratio between $0.92*V_s$ and $0.95*V_s$ (Richart et al., 1970). It is very similar to a water wave, except that a water wave propagates with a prograde elliptical particle motion.

The other type is the Love wave which occurs when a low velocity layer lies over a high velocity half space. Because of multiple reflections the layer acts as a waveguide retaining horizontal shear waves within the surface layer and creating a transverse rocking motion of the surface (Figure 4.6). It is slightly faster than the Rayleigh wave and has a velocity close to the S-wave velocity.

Surface waves are the result of interaction between P- and S-waves near the surface and do not represent physical waveforms but rather propagation modes.

(Modified from Bruce A. Bolt, Earthquakes: A Primer: W.H. Freeman & Company, 1978)

Figure 4.5 The Rayleigh wave (Anderson, 1998)

(Modified from Bruce A. Bolt, Earthquakes: A Animer: W.H. Freeman & Company. 1978.)

Figure 4.6 The Love wave (Anderson, 1998).

4.1.3 Passage from earthquake focus to surface

The energy released in the elastic rebound of a fault will be spread in all directions from the focal point in the form of seismic shockwaves. The seismic waves will propagate in the form of P-waves, S-waves and surface waves.

As the P-waves are the fastest they will be the first to arrive. Then comes a relatively quiet period leading up to the arrival of the S-wave and after that the surface waves arrive. The arrivals of the P-wave and the S-wave are referred to as the minor tremor while the arrival of the surface waves is called the major tremor (Figure 4.7). The major tremor is often the one creating the most extreme ground movements at the site.

Figure 4.7 Arrival of the P-wave, S-wave and Rayleigh wave. (a) The horizontal motion and (b) the vertical motion (Richart et al., 1970).

As the seismic waves pass through the crust the high-frequency components will be damped to a higher degree than the low-frequency components and thus filtered out. The body waves are attenuated in proportion to 1/r, while the Rayleigh wave is attenuated in proportion to $1/\sqrt{r}$. Thus, being far from the focus of an earthquake, it is often the long-period Rayleigh waves that are most destructive at the site. On the other hand, in Managua, the most destructive earthquakes have occurred at shallow depth below or close to the city. Such earthquakes could result in a considerable part of short-period vibrations as well, originating from body waves.

The waves will pass through the crust and on through the surface layers where their characteristics will change (see paragraph 4.3.1). If the earthquake focus is close and the seismic waves travel through surface layers it could mean the amplification of short-period waves. The result would be short-period waves with large amplitudes, which could reveal itself very destructive.

4.1.4 Determination of earthquake epicentre

The epicentre is the earthquake focus projected to the surface. That is, the point on the surface directly above the focus. With a single seismograph registering the arrivals of the P- and S-waves from the earthquake focus, it is possible to determine the distance from seismograph to epicentre. Given that the velocities of the P- and S-waves through the crust are known, the time elapsed between the arrival of the P-wave and the S-wave will give the distance to the earthquake epicentre.

Having the data from two seismographs at different locations it is possible to narrow down to two points where the earthquake could have occurred. With three seismographs located at different sites it is possible to pinpoint where the earthquake took place. Where the three circles drawn with the source distance as radii all coincide, is the epicentre of the earthquake.

Figure 4.8 Pinpointing the earthquake epicentre.

4.2 Dynamic properties of soil

4.2.1 Soil properties and wave propagation velocity

The propagation velocity of a wave depends on the soil material parameters such as the Young's modulus, the shear modulus and the Poisson ratio. They are all related parameters.

The Young's modulus E describes the elastic properties of a material when subjected to a compressive or tensile force. It is defined as the ratio of normal stress to normal strain.

The shear modulus G describes the elastic properties of the soil under the action of a transversal internal force. It is defined as the ratio of shear stress to shear strain. The shear modulus is related to the Young's modulus by

$$G = \frac{E}{2(1+\nu)} \tag{4.1}$$

where the Poisson ratio v is the rate of transverse contraction strain as a response to longitudinal extension strain. It is defined as the ratio of transversal strain to longitudinal strain.

The P- and S-wave velocities depend on the shear modulus and the Poisson ratio as follows:

$$V_{p} = \sqrt{\frac{G(2-2\nu)}{\rho(1-2\nu)}}$$

$$V_{s} = \sqrt{\frac{G}{\rho}}$$
(4.2)

How the equations (4.2) and (4.3) are derived from the equations of motion can be seen in (Richart et al., 1970). Because of the relation between Young's modulus and shear modulus in (4.1), equations (4.2) and (4.3) can be written:

$$V_{p} = \sqrt{\frac{(1-\nu)E_{dyn}}{(1+\nu)(1-2\nu)\rho}}$$
(4.4)

and:

$$V_s = \sqrt{\frac{E_{dyn}}{(1+\nu)2\rho}} \tag{4.5}$$

From these equations an expression for calculating the Poisson ratio can be derived:

$$\frac{V_P}{V_S} = \sqrt{\frac{1-\nu}{\frac{1}{2}-\nu}} \Longrightarrow \nu = \frac{\left(\frac{V_P}{V_S}\right)^2 - 2}{2\left(\left(\frac{V_P}{V_S}\right)^2 - 1\right)}$$
(4.6)

Thus the ratio between P- and S-wave velocities is strictly determined by the Poisson ratio of the material. Knowing the P- and S-wave velocity the material's shear modulus, Young's modulus and Poisson ratio can be determined from equations (4.2), (4.3), (4.4), (4.5) and (4.6). Alternatively knowing the Poisson ratio and Young's modulus or shear modulus, the S- and P-wave velocities can be determined.

4.2.2 Impedance

The impedance of the soil can be compared with the stiffness of a spring. If mounting two springs with different spring constants to each other and compressing them, the one with the lower constant will have to deform more in order to balance the force exerted by the other. The same goes for the passage of a wave from a stiff material to a compliant material. When the wave motion in the stiff material exerts its force on the compliant material, the compliant material will have to deform more in order to balance the force. It follows that wave amplitudes will grow as the medium deforms more.

The impedance is defined as the product between material density ρ and the wave velocity V in the material.

$$Z = \rho \times V \tag{4.7}$$

When a wave encounters a boundary which is neither completely rigid nor free, some of the wave will be reflected and part will be transmitted across the boundary. The amplitudes of the reflected and transmitted waves are determined as a function of the impedance change.

$$A_{r} = \frac{z_{1}/z_{2}-1}{z_{1}/z_{2}+1} \cdot A_{0} \qquad \qquad A_{t} = \frac{2}{1+z_{2}/z_{1}} \cdot A_{0} \qquad (4.8)$$

The sum of the reflected and transmitted amplitudes can thus be higher than the original wave amplitude. This is due to the greater deformability of the low impedance material.

4.2.3 Attenuation

The wave amplitude decreases as the wave train propagate through an elastic medium. This attenuation takes place in the form of geometrical and material damping.

As the wave front propagates from the source the energy has to spread over a wider area and thus the amplitude decreases with an increased distance from the source. This is known as geometrical damping.

Material damping is caused by energy dissipated and transformed into heat within the soil skeleton. For cohesionless soil the dominating mechanisms of energy dissipation is the friction between particles and fluid flow losses because of the relative movement between the solid and the fluid phases (Rix et al., 2000).

Material damping causes the cyclic stress-strain curve to exhibit a hysteretic loop as shown in Figure 4.9.

Figure 4.9 Cyclic stress-strain curve (Rix et al., 2000)

There exist many damping descriptors. The parameter traditionally used in geotechnical engineering is the *material damping ratio D*. It is defined as

$$D = \frac{\Delta E}{4\pi E} \tag{4.9}$$

Where ΔE is the energy dissipated during one cycle at the angular frequency ω and E is the maximum strain energy stored during the cycle. The dissipated energy ΔE is the area enclosed by the loop in Figure 4.9 and the stored energy E is the area of the triangle shown.

Seismologists often use the *quality factor* Q, by Knopoff called the "specific attenuation factor", to describe attenuation. Its inverse is termed dissipation factor and defined as:

$$Q^{-1} = \frac{\Delta E}{2\pi E} = 2D$$
 (4.10)

The damping ratio D is generally frequency dependent, but experiments have shown that it can be considered frequency independent for $0.1 \le f \le 10$ Hz (Rix et al., 2000).

Figure 4.10 Frequency dependence of damping in soil (Rix et al., 2000).

Other measures of damping are the *attenuation coefficient* α and the *logarithmic decrement* δ .

They are related to the damping ratio by the expression

$$D = \frac{\alpha v}{\omega - \frac{v^2}{\omega}} = \frac{\delta}{2\pi} \frac{1}{\sqrt{1 + \left(\frac{\delta}{2\pi}\right)^2}}$$
(4.11)

where v is the seismic velocity and ω is the angular frequency. For small values of damping (D<10%) the second order terms become very small and can be ignored which results in the expression (Rix et al., 2000):

$$D = \frac{\alpha v}{\omega} = \frac{\delta}{2\pi} \tag{4.12}$$

If the seismic oscillation is in the linear domain of elasticity the attenuation of a harmonic signal is exponential. It may then be described as a *logarithmic decrement* δ . That is assuming that the decay is similar to that predicted by the theory for viscously damped free vibrations, although soils do not have a viscous behaviour (Richart et al., 1970). It is defined as the natural logarithm of two successive amplitudes of motion z_1 and z_2 .

$$\delta = \ln \frac{z_1}{z_2} = \frac{2\pi D}{\sqrt{1 - D^2}}$$
(4.13)

The logarithmic decrement is obtained experimentally, for example from the resonant column test. It sets a soil sample into steady-state forced vibration. When shutting off the driving power the decay of the amplitude with time is recorded.

The *attenuation coefficient* α measures the energy loss as a function of distance (Richart et al., 1970). For small damping values it is related to the logarithmic decrement by

$$\delta = \frac{2\pi v\alpha}{\omega} = L\alpha \tag{4.14}$$

where L is the wavelength, and to the dissipation factor by

$$Q^{-1} = \frac{2v\alpha}{\omega} \tag{4.15}$$

as can be seen from equation (4.12).

For modal damping based on frequency response it comes natural to measure the halfpower bandwidth. In this method the width of the dynamic response curve around the resonance peak is measured. For small values the quality factor can be defined from the bandwidth by

$$Q = \frac{f_r}{(f_2 - f_1)}$$
(4.16)

where f is the resonance frequency and f_1 and f_2 are the frequencies at which the power has dropped to half of its peak value (Parrales Espinoza, 2004). That is when the amplitude is 0.707 times the amplitude at the resonance frequency (Figure 4.11). This is done for example with a resonant column or an impulse response test.

Figure 4.11 Damping measurement on sand using the half-power bandwidth method (Rix et al., 2000).

It follows from the relation between the quality factor and damping ratio (equation (4.10)) that the damping ratio is given from the bandwidth by

$$D = \frac{(f_2 - f_1)}{2f_r} \tag{4.17}$$

The material damping is a reducing factor counteracting the amplification caused by impedance changes and resonance effects in the surface layers. It is therefore highly interesting when talking about seismic risk.

4.3 Site effects

The seismic waves emitted from the earthquake focus are filtered by the different geological materials through which it passes. The superficial sediments at the site is the geological entity which can affect the frequency content and amplitudes the most and determine what kind of vibration will be felt on the site. The site effects include amplification of wave amplitudes through impedance change and resonance effects, but also positive effects that renders the site less earthquake-sensitive, like attenuation.

4.3.1 Amplification in surface layers

It has long been known that surface layers can amplify ground motion relative to bedrock. The amplification of a wave train passing through surface layers depends on various factors like the thickness of surface layers, the impedance contrast and the material damping.

Soil deposits will tend to amplify some components of ground motion and attenuate others. The strongest amplified components will be those at or near the characteristic frequency of the site. This characteristic frequency is a function of the stiffness and thickness of the soil deposit.

The contrast in impedance between geological materials causes the wave amplitudes to grow (see chapter 4.2.2) due to the condition of conservation of energy. The passage of a wave train from a stiff medium like rock with a high shear modulus, to a compliant medium like soil with a low shear modulus amplifies especially the S-wave. But also a stiff soil can increase the earthquake sensitivity of a site. If the earthquake focus lies close to the site, a compliant soil can have the effect of damping the acceleration felt on the surface. Instead a stiff soil would permit more of the earthquake energy to reach the site with stronger surface acceleration as a result.

4.3.2 Resonance

Resonance effects can occur where abrupt impedance contrast exists. Every soil profile has several resonant frequencies with different displacement modes.

The fundamental resonance frequency (marked as 1 in Figure 4.12) occurs when the wavelength is equal to four times the thickness of the soil deposit. Thus it can be calculated like:

$$f_r = \frac{v(2n-1)}{4h}$$
(4.18)

where v is the velocity of the wave, h is the thickness of the soil deposit and n is the mode number. This is valid for a homogenous deposit with constant velocity.

Usually the surface sediments consist of various layers of different geological materials, as is the case of Managua, and

Figure 4.12 The first three resonance modes in a homogenous soil deposit. The maximum displacement is set to one.

therefore the picture becomes more complex. The thickness of the surface layers also varies from site to site.

Analytical solutions for resonance frequencies and modes in soil deposits with varying velocity gradient can be found in (Gazetas, 1982).

A rough estimate of the fundamental resonance frequency for structures as a function of the number of stories N is given by (Stål and Westberg, 1996):

$$f_r = \frac{10}{N} \tag{4.19}$$

If the basement vibrates at the same frequency for which there is resonance in the soil, energy will be pumped into the soil layers for each new oscillation of the basement. If in combination with this there is a low soil attenuation the result can be a build-up in vibration amplitudes for the duration of the earthquake. A building with a resonance frequency within the dominating frequency band of the resulting surface motion can further amplify the acceleration the structure is exposed to.

4.3.3 Nonlinear soil behaviour

At large strains the soil begins to yield and the site response enters into the nonlinear domain. This means that the damping will increase and reduce the surface layer amplification. Thus the surface layer amplification may be overestimated in the strong ground motion produced by larger earthquakes. Nonlinear soil behaviour can also create a shift in resonance frequencies.

The linear elastic behaviour is only an approximation, even at low strains. The question is at what point nonlinearity becomes important.

(Knopoff, 1964) claims that except for nonlinear behaviour near earthquake foci, seismic strains are small and seismic oscillations take place in the linear domain of elasticity. Experiments show that nonlinearity starts at strains in excess of 10^{-5} or 10^{-6} . This indicates that the attenuation mechanism in solids is not the same as for liquids, where the attenuation factor varies as the square of frequency. In solids the attenuation factor varies as the first power of frequency.

There is however uncertainty as to whether the degree of amplification varies with the level of input motion. (Field et al., 1997) reports that ground motion amplification in the main shock of the 1994 Northridge earthquake was up to a factor two less than in the aftershocks and that resonance that were clear in the weak motion were absent in the strong motion.

As the level of strain increases a systematic shift in resonance peaks toward lower frequencies takes place. It may even bifurcate into two lower amplitude peaks, with a third peak growing up at a lower frequency. These effects originates in interaction between frequency components which shifts the energy distribution across the spectrum (Field et al.).

4.3.4 Dangerous ground motion

The collapse of a structure occurs when the carrying elements in it fails. This frequently happens when the weight of the structure acts outside the paths it is designed for. That is why especially horizontal or rocking oscillations are considered when evaluating the vulnerability of sites. These oscillations cause the displacements that make the structure's weight act outside the normal load distribution paths. However, also vertical oscillation can cause dynamic loads that cause structure collapse, and should be accounted for. In the case of Managua, where earthquakes frequently occur at shallow depth close to or under the city, powerful vertical oscillations that can damage buildings are likely to occur.

5 Methodology

The Spectrogram Evaluation Technique utilizes the impulse response and its attenuation as a method to identify resonance frequencies inherent in the soil strata. Heavy vehicles are used to create a wide-band frequency impulse into the ground. In the ground response from the impact the acceleration will prevail at resonance frequencies.

The ground acceleration is measured with a combination of two sensors. These are a tri-axial accelerograph and a uni-axial accelerometer-A/D converter acquisition system. An original plan was to use a tri-axial accelerometer connected to a Geode recorder, but troubles were encountered with the DC-input in the connection. When it was discovered at arrival in Managua that CIGEO is the owner of a K2 tri-axial accelerograph the decision was made to use it instead as it provides three-component information of acceleration without connecting to any other apparatus than the laptop. The uni-axial accelerometer-A/D converter acquisition system is used as comparison because, if it provides viable results and the additional information from the K2 accelerograph proves redundant, measurements with a uni-axial accelerometer are cheaper and faster. Furthermore it provides higher resolution and has a wider bandwidth, although it doesn't reach as low down in the frequencies as the K2 accelerograph.

First in this chapter the Nakamura technique will be looked into as the method widely used to identify resonance frequencies and to evaluate the transfer function in surface layers. Then in section 5.2 the traffic impulse response used in the spectrogram evaluation technique will be discussed. In section 5.3 the field work procedures and strategy are treated, and in section 5.4 the data processing methods used for evaluation of the acquired data are explained. Finally, in section 5.5, the time-frequency hazard analysis, developed for this study for an objective evaluation of site response data, is explained.

5.1 The Nakamura technique

Nakamura's technique is a method that uses microtremors in the evaluation of surface layer amplification. It produces the fundamental frequency and the transfer function in the surface layers.

The method introduced by Nakamura in 1989 uses a single three-component accelerometer. The amplification of the soil can be calculated as the ratio between the vertical and horizontal frequency spectra as will be shown. The fundamental resonance frequency is where the amplification is strongest and thus where a peak can be seen in the H/V-ratio.

The theory of the technique presented here is taken from his paper (Nakamura, 2000) and the masters thesis of (Stål and Westberg, 1996).

5.1.1 Nakamura's theory

The amplification of a wave train passing through the surface sedimentary layers can be written as the ratio between the wave amplitude at the surface and the amplitude at the rock basement.

If an accelerometer were to be placed at the surface and another at the level of the rock basement, the amplification could be estimated from the ratio of amplitudes. This can be done in a borehole and would be the most accurate method, however costly and time-consuming. It can also be

Figure 5.1 A sedimentary basin with vertical (V) and horizontal (H) wave amplitudes at basement (b), surface (f) and outcropping rock (r) (Nakamura, 2000).

done by comparing to an outcropping rock reference site if available, where the wave amplitudes can be said to represent those at the basement (Figure 5.1). The Nakamura technique offers a less complicated method.

The transfer function of the surface layers is defined by:

$$S_T = \frac{S_{HS}}{S_{HB}} \tag{5.1}$$

Where S_{HS} is the spectra of horizontal motion at the surface and S_{HB} is the spectra of horizontal motion at the basement.

The $S_{\rm HS}$ spectra may be affected by surface waves as it is measured at the surface. Artificial noise is mostly propagated as Rayleigh waves. The content of Rayleigh waves can be removed from $S_{\rm HS}$ by introducing a correction factor.

Nakamura assumes that the vertical motion is not amplified by the surface layers, the nature of this assumption will be treated in paragraph 5.1.2.

Because the vertical motion is not amplified by the surface layers the effect of the Rayleigh wave can be seen by comparing the vertical motion at the surface with the vertical motion at the basement. Any extra frequency content that the surface vertical motion has with respect to the vertical basement motion would be due to Rayleigh waves. The ratio E_S gives the effect of Rayleigh waves on vertical motion.

$$E_S = \frac{S_{VS}}{S_{VB}} \tag{5.2}$$

It is also assumed that the effect of Rayleigh waves is equal in vertical and horizontal components. Then the transfer function can be corrected by dividing it with the ratio E_s of Rayleigh wave effect.

$$S_{TT} = \frac{S_T}{E_S} \tag{5.3}$$

Inserting equations (5.1) and (5.2) into equation (5.3) we get:

$$S_{TT} = \frac{S_T}{E_S} = \frac{S_{HS}}{S_{HB}} \cdot \frac{S_{VB}}{S_{VS}} = \frac{S_{HS}}{S_{VS}} \cdot \frac{S_{VB}}{S_{HB}}$$
(5.4)

As the vertical and horizontal wave amplitudes are assumed to be nearly equal at the basement, and thus $\frac{S_{VB}}{S_{HB}} \rightarrow 1$, we are left with:

$$S_{TT} = \frac{S_{HS}}{S_{VS}}$$
(5.5)

which Nakamura calls the Quasi-Transfer Spectrum. It gives the amplification of horizontal motion in surface layers. In practice it is determined from tri-axial recordings as the resultant of the horizontal component amplitude spectra divided by the vertical component power spectrum (Teves Costa and Matias, 1995):

$$S_{TT} = \frac{\sqrt{NS(\omega)^2 + EW(\omega)^2}}{Z(\omega)}$$
(5.6)

where *NS* is the amplitude spectrum of the North-South oriented horizontal axis and *EW* is the amplitude spectrum of the East-West oriented horizontal axis.

5.1.2 Amplification of P- and S-waves

Nakamura does the assumption that no amplification of the vertical motion takes place in the surface layers. The theoretical background is not completely clear as to that assumption, but the method has proven to give good results.

As described in paragraph 4.2.2 the impedance change when passing from a stiff to a compliant material will force the waves to increase their amplitude in order to conserve the same amount of energy. The energy is namely proportional to the amplitude squared. This goes for P-waves as well as S-waves, and thus for both vertical and horizontal motion.

The basement can be expected to have a much lower Poisson ratio than the overlying surface layers. The ratio between S- and P-wave velocity is strictly determined by the Poisson ratio by the expression derived from equations (4.4) and (4.5):

$$\frac{V_P}{V_S} = \sqrt{\frac{1-\nu}{\frac{1}{2}-\nu}}$$
(5.7)

It can be seen from equation (5.7) that with a decreasing Poisson ratio, the ratio V_P/V_S increases. This implies that in the passage from consolidated basement material to an unconsolidated surface material the P-wave velocity will decrease to less degree than the S-wave velocity. The impedance change for the P-waves will then be smaller than for the S-waves and thus the amplification of the P-wave smaller.

In Managua the basement is volcanic tuff, and the surface layers consist of noncohesive silt, sand and gravel with varying consolidation degree. Let us consider the passage of a wave train through the border between the Las Sierras group and the Masaya lapilli (see stratigraphy in figure 3.7). As an estimate the Las Sierras group would have a Poisson ratio similar to "lithic tuff from Howard Prairie Dam, Oregon" of 0.11 (Clark, 1966), and the Poisson ratio of lapilli would roughly be in the order of 0.4 (loose to medium sand (Craig, 1997)). The ratio of the P-wave velocity to S-wave velocity is then 1.51 in the tuff and 2.45 in the lapilli according to equation (5.7). That means that the impedance change for the S-wave is a factor 1.6 greater than for the Pwave, with greater amplitude amplification for the S-wave as a result.

Suppose the lapilli has a P-wave velocity of 1000 m/s and an S-wave velocity of 400 m/s (loose sand (Clark,1966)), and that the Las Sierras tuff has a P-wave velocity of 2160 m/s (volcanic tuff, New Zeeland (Clark,1966)) and an S-wave velocity of 1430 m/s (because V_p/V_s is 1.51). Taking the density for "lithic tuff from Howard Prairie Dam, Oregon" (Clark, 1966) on 1450 kg/m³ and for the lapilli a density of roughly 1000 kg/m³, the reflected and transmitted amplitudes become, according to the expressions in (4.8):

$$A_{p,r} = 0.52A_0 \quad A_{p,t} = 1.52A_0 \tag{5.8}$$

$$A_{st} = 0.68A_0 \qquad A_{st} = 1.68A_0 \tag{5.9}$$

where the subscript r denotes reflected and t transmitted wave amplitude. It should be pointed out that these calculated amplitudes are meant to demonstrate the phenomenon of wave amplification due to impedance changes in surface layers. The characteristics of the surface layers in Managua are much more complex with layers of varying impedance as seen in Figure 3.6 in the geology chapter.

In site response analysis generally the horizontal amplification is looked at. In a wave train coming in from below this is analogous to the S-wave, but incident waves from the earthquake can come in from other directions. The horizontal motion represents a more dangerous motion than the vertical for structures founded in the soil as explained in chapter 4.3.4.

Figure 5.2 Example of vertical (Vf) and horizontal (Hf) acceleration at surface and the horizontal transfer function calculated by comparing them to an outcropping rock reference site. Also Nakamura's spectral ratio (QTS) is shown as comparison (Nakamura, 2000).

Generally it can be seen from the example given in this section that both vertical and horizontal motion can be amplified when passing through surface layers.

The assumption Nakamura makes that the vertical motion remains unchanged when it passes through surface layers should rather be viewed in the context of resonance amplification. As stated in section 4.3.2 the resonance of the P-wave, which is generally associated to vertical motion, occurs at a higher frequency than the resonance of the S-wave, due to its higher velocity.

As can be seen in Figure 5.2 this means that the amplification of vertical motion is close to one at the frequency where S-wave amplification is highest due to resonance.

In fact the Nakamura technique can only be used to estimate the amplification at the fundamental frequency of the surface layers, as the QTS spectral ratio will show no amplification, or even attenuation at the second resonance peak (see Figure 5.2). Of course this is not true. However, the technique is valid because the maximum amplification occurs at the fundamental resonance frequency.

5.2 The traffic impulse response

The idea behind the Spectrogram Evaluation Technique is to develop a method for fast identification of earthquake-sensitive sites. A critical point as to the speed in seismic methods is the kind of source used. Methods using ambient noise like for example the Nakamura technique are easy to use as the seismic sources already exists in the urban ambient. But the required observation times are long relative to the method suggested here.

Spectrogram Evaluation of Seismic Risk in Managua, Nicaragua

Figure 5.3 The rear wheel axis of a bus gives a powerful and distinct impact.

In the traffic impulse response approach ambient sources are used to create impacts. The ground response to that impact is then recorded for evaluation.

The seismic source consists of a heavy vehicle crossing an obstacle on the roadway, which creates a downward impulse into the ground. Also a shear impulse polarized in the direction of travel will be generated. The obstacle used in this study is a cable protector of heavy-duty rubber and the vehicle typically would be a truck, trailer truck or a bus, but can be any heavy vehicle. In Managua city buses proved to give a strong and distinct signal due to their rebuilt rear ends (Figure 5.3). The long rear end loads the rear axis heavily, especially when the bus is loaded with people.

Beside the roadway, in a straight line from the obstacle, a tri-axial accelerograph is located to record the vibrations from the impact.

5.2.1 Dwarfing of ambient noise

It is the hypothesis that the vehicle axis passing over the cable protector will create an impact onto the ground strong enough to dwarf the ambient noise. That means that the dominant frequency content of the signal would be the ground response to the actual impact and not to the ambient noise.

It is important that the impact creates strong oscillation amplitudes over a wide band of frequencies, especially in the lower frequencies where earthquakes have their dominant frequency content. The bandwidth and power generated depends on the following properties:

- The stiffness of the road
- The stiffness of the vehicle suspension

- The speed of the vehicle
- The load on the vehicle axis

5.2.2 Waves generated

Figure 5.4 (a) shows the waves generated from the impact on a circular footing. The waves generated from the vehicle impact can be expected to exhibit a similar spreading pattern.

Wave Type	Per Cent of Total Energy
Rayleigh	67
Shear	26
Compression	7

(b)

Figure 5.4 (a) Waves generated from the impact on a circular footing. The P-wave propagates first in the form of a omni-directional pressurefront. Then comes the S-wave which also propagates along a hemispherical wavefront. Shortly after the S-wave comes the Rayleigh wave propagating in a cylindrical wavefront reaching to the depth of about one wavelength. (b) The percentage of energy spread in the form of P-waves, S-waves and Rayleigh waves (Richart et al., 1970).

The P-wave and S-wave are both spread along a hemispherical wave front, while the Rayleigh wave spread along a cylindrical wave front penetrating to the depth of about its wavelength. The shaded zones along the wave fronts in Figure 5.4 show the particle displacement. The particle motion of the P-wave is a push-pull motion

parallel to the direction of propagation and the particle motion of the shear wave is a transverse displacement orthogonal to the direction of propagation. The region of the shear wave front where the largest amplitudes occur is referred to as the shear window. The vertical and horizontal components of the Rayleigh wave vary with the depth as shown in the figure.

Figure 5.5 The Rayleigh wave particle motion (Richart et al., 1970).

The amplitude of the body waves decreases due to geometrical damping in proportion to 1/r, except for in the surface, where it decreases in proportion to $1/r^2$. The amplitude of the Rayleigh wave decreases in proportion to $1/\sqrt{r}$.

When the wheel pair passes over the obstacle it will create both forces in the direction of travel and downwards into the ground. As the wheels first hit the cable protector, it will create an impulse with a horizontal component in the direction of travel and a vertical component into the ground (Figure 5.6). The same directional components will be experienced when the wheels thump into the ground after the obstacle. It is expected that the downward directed impulse will

Figure 5.6 Forces excerted by the impacting wheel axis.

be much greater than the shear impulse generated in the direction of travel.

The rubber obstacle used in the field work (Figure 5.6) is about 20 cm wide. Theoretically the wheel will generate an impact of a time length corresponding to the time it takes for it to move up to the crest of the obstacle. If the vehicle impacts at a velocity of 60 km/h (16.7 m/s) the time length of the impact will thus be (0.1/16.7 s) 6 milliseconds. Figure 5.7 shows the bandwidth a 6 ms Gaussian impulse will give rise to. As seen it generates a relatively wide band impulse, which covers the low frequencies. In other words, the wheel impact should generate an impulse that stimulates a wide band of frequencies and do not miss the fundamental frequency of the surface layers.

Figure 5.7 A 6 ms impulse and its bandwidth.

The downward directed impulse can be expected to generate a P-wave that travels in a hemispherical wave front from the point of impact. Furthermore it will generate a vertically polarized S-wave (SV) spreading in the same manner but with a lower velocity.

The impulse component in the direction of travel will generate a horizontal S-wave (SH) polarized in the direction of travel. No horizontal S-wave polarized perpendicular to the direction of travel is expected to be generated from the passage. A Rayleigh wave is also generated that spreads in a cylindrical wave front from the source of impact.

The energy spread from the downward directed impact on a circular footing is distributed over the wave propagation modes as shown in Figure 5.4 (b). 67 % of the energy is spread in the form of Rayleigh waves, 26 % in the form of S-waves and only 7 % in the form of P-waves. The energy spread from the vertical impact of the vehicle wheel axis is probably distributed similarly over the propagation modes.

Apart from these waves created by the passage of the vehicle over the obstacle there will be other waves generated that cloud the picture. The surrounding traffic and the source vehicle itself emit noise from engines and wheels rolling over the pavement.

Because the sensors are located close to the source it is the hypothesis that both the impulse onto the ground and the response of the ground is registered. The impulse would be represented by the direct P-and S-waves arriving to the sensors, while the response is represented by indirect waves, having passed through the surface layers and been reflected at a layer interface or at the bedrock.

5.2.3 Source-inherent effects

The vehicle will give rise to unwanted effects in the passage over the obstacle. Its suspension will create an oscillating motion that is transmitted to the ground long after the time of impact with the ground after the obstacle.

The time between wheel axes impacts will stimulate a frequency correlating to that period. For a boggie of a truck with an axes distance of 1.5 meters travelling at the speed of 60 km /h, the time elapsed between wheel impacts will be 0.09 seconds. A frequency of around (1/0.09) 11 Hz will then be stimulated by the double impact.

Another frequency component will be stimulated by the double impact of a single wheel axis passing over the obstacle seen in Figure 5.6. That is, the initial impact with the obstacle, followed by the landing of the wheel axis on the other side of the obstacle.

For the trailer trucks motions of the vehicle such as pitch or roll rotation of tractor and/or trailer can stimulate certain frequencies.

5.3 Field work

The field work is carried out along the Pan-American Highway in a jeep provided by CIGEO. The work is organized so that the two data acquisition systems are connected and ready for use in the rear compartment of the vehicle (Figure 5.8).

Figure 5.8 The equipment ready in the rear compartment of the jeep.

As the vehicle advances along the route and a site is selected for measurement, only the sensors are lowered onto the ground (Figure 5.9). They are carefully levelled and arranged for good contact with the ground, and then the obstacle is placed on the road

Figure 5.9 The sensors are lowered from the rear compartment of the jeep at the arrival at the site. In this picture only the accelerograph has been placed on the sidewalk.

in a straight line from the sensors. After that the sensors are triggered manually at the passage of a suitable vehicle. Before leaving the site the coordinates are taken with a handheld GPS.

At all sites at least one traffic impulse record simultaneous on both sensors is made, and one noise record when no vehicles are passing. At most sites several traffic impulse and noise records are collected because of uncertainty as to the quality of the records. The simultaneous recordings are synchronized by triggering from both laptop keyboards simultaneously.

5.3.1 Equipment

The equipment used for this study consists of a road obstacle and two data acquisition systems as described in the following sections.

5.3.1.1 Cable protector road obstacle

The obstacle used to have passing vehicles generate an impulse is a cable protector of the type used in road works. It is sufficiently big to have the wheel axes of the vehicles create a distinct impulse, but at the same time sufficiently small to have the drivers, in the most cases, go past it without reducing their speed.

5.3.1.2 Tri-axial accelerograph

The tri-axial accelerograph is of the type Kinemetrics K2. It is a digital recorder with an accelerometer of the type EpiSensor mounted to it. It is connected to a laptop, from

which it is operated. It may also be left standing without a computer connection with a set trigger threshold for seismic event recording. In this study the possibility to manually trigger the accelerograph is wanted, and therefore it is connected to a laptop for operation. The most important characteristics of the accelerometer and recorder of the K2 are given in Table 5.1.

Figure 5.10 Cable protector and tri-axial accelerometer in their positions.

Accelerometer EpiSensor

Sensitivity:	$5.0V/g / 0.510 V/m \times s^{-2}$
Measurement range:	$\pm 1g$
Output range:	±2.5 V
Resonance:	not known
Dynamic range:	155 dB
Bandwidth:	less than 5 $\%$ error in range DC - 80 Hz

Recorder Kinemetrics K2

Input range:	±2.5 V
Sampling rate:	100 - 250 Sa/s (set to 250 Sa/s)
Dynamic range:	114 dB
Bandwidth:	DC- 120 Hz

Table 5.1 Some important characteristics of the K2 accelerograph (Kinemetrics).

The accelerograph has three axes denominated x, y, and z, marked on the cover of the accelerograph. In all the recordings the x-axis is oriented in the direction of the traffic flow, the yaxis perpendicular to the traffic flow and the z-axis vertically (Figure 5.11). The accelerograph is carefully levelled by means of its three adjustable feet and with the aid of a spirit level.

The x-axis is expected to register the horizontal S-wave (SH_x) originating from the travel parallel impulse created by the wheel. It cannot experience any contribution from the Rayleigh wave generated by the traffic impulse as it is oriented perpendicular to the propagation

Figure 5.11 Waves spread from the impacting vehicle and recorded by the tri-axial accelerograph.

direction of the Rayleigh wave. It may experience noise-inherent Rayleigh waves however.

The y-axis will register the horizontal component of the Rayleigh wave, and the direct P-wave. It may also register indirect horizontally polarized shear waves having been reflected in the surface layer boundaries.

The z-axis will register the P-wave, the vertically polarized S-wave (SV) and the vertical component of the Rayleigh wave.

As seen the accelerations detected on each axis of the accelerograph is not easily isolated as resulting from any particular propagation mode, except for the x-axis where the acceleration has to belong to S-waves parallel to the direction of travel (SH_x) . The measured accelerations are best treated without bias simply identifying resonances and attenuation regardless of propagation mode.

Normally the data collected with the accelerograph is transferred to the laptop at the end of the field work day.

5.3.1.3 Uni-axial accelerometer-A/D converter data acquisition system

This data acquisition system consists of a uni-axial accelerometer connected to an A/D converter (analogue to digital converter), which in turn is connected to a laptop in order to save recorded data.

The data acquisition system has a uni-axial accelerometer of the type PCB 393A03 as sensor. The accelerometer gives a voltage output signal proportional to the ground acceleration. This is connected through an amplifier to the Lawson Labs 301 24-bit A/D converter, which converts the analogue signal to a digital in order to permit the laptop to read the data. In Table 5.2 some of the important characteristics of the data acquisition system can be seen.

Accelerometer PCB 393A03

Sensitivity:	1.0 V/g / 0.102 V/ m×s ⁻²
Measurement range:	$\pm 5g$
Resonance frequency:	>10 kHz
Bandwidth:	less than 5% error in range 0.5 - 2000 Hz

A/D converter Lawson Labs 301

Input range:	±5.0 V
Sampling rate:	50 - 1000 Sa/s (set to 500 Sa/s)
Bandwidth:	DC - 0.262 * sampling rate

Table 5.2 Some important characteristics of the uni-axial accelerometer-A/D converter data acquisition system (Piezotronics, 2002).

5.3.2 Measurement Strategy

The Pan-American Highway was chosen as the route on which to evaluate the Spectrogram Evaluation Technique. It passes through the whole of Managua, first from east to west in the northern parts of the city close to Lake Xolotlán, then turning south just after the city centre going uphill to the higher ground of south-western Managua. The route was chosen for several reasons. Most of the heavy traffic passes through Managua on this route making it an ideal seismic source. It passes through the lowest part of Managua in the vicinity of Lake Xolotlán, were the thickest surface layers should be, due to the transportation of sediments by surface runoff (Figure 5.12). In the fault zones these sediment layers would be expected to be thickest. When the route turns south and goes uphill topographic effects can be seen. Furthermore the Pan-American Highway passes through the old city centre of Managua and the parts of the city that were demolished in the 1972 earthquake.

Figure 5.12 Surface runoff and expected sediment thickness in Managua.

The measurements are made as close to one another as possible, but not closer than 50 meters. Along certain segments of the route it is not possible to carry out

measurements due to traffic lights with heavy queuing and resulting low velocities and unfavourable noise. Along other segments the impossibility to stop the vehicle due to security reasons leaves blanks in the data acquisition. An example of that is in front of the United States' embassy where a gap, which can clearly be seen in the map, had to be left open (Figure 5.13).

Figure 5.13 Topographic map of Managua with measurement sites marked as dots.

Where abrupt differences in surface layer thickness can be expected measurements are carried out in closer intervals if possible. That is in this case in the vicinity of suspected or documented faults, water channels or surface streams.

5.4 Signal processing

The collected data is analyzed with the use of Matlab. Mostly the analysis is made with respect to frequency content of the recorded ground response signal.

First in this chapter is a paragraph on the initial organisation of the data necessary for further processing. After that the transform of a signal from time to frequency domain, which is the basis for all frequency analysis, is shortly described.

Before moving on to the hazard analysis, a coherence analysis is made between the vertical and horizontal components of the accelerograph. Then a cross-correlation analysis is made to compare simultaneous recordings from the tri-axial accelerograph and the uni-axial accelerometer.

Finally in this chapter the theory behind the spectrogram is explained, which is the basis of the time-frequency hazard analysis explained in chapter 5.5.

5.4.1 Initial data treatment

Before evaluation events are picked visually from the recorded vehicle passages. First the recorded data is sorted and graded according to quality for each site. Then the best event in each record is screened by assigning a start sample point and an end sample point and applying a hanning window. The event is the impact of one wheel axis and the decaying oscillations experienced by the ground afterwards. The characteristics considered when choosing an event is the power of the signal and the amount of background noise. An ideal event has so much power as to dwarf sources of noise (paragraph 5.2.1). It also needs to have frequency components in a wide spectrum, especially in the lower frequencies were an earthquake has its dominating frequency content.

The average of the signal is subtracted from it, in order to remove the DC-component and have the signal oscillate around zero volt. The acceleration values given in the data files are in volts and have to be scaled according to the sensitivity of the accelerometers. The EpiSensor accelerometer of the K2 accelerograph has a sensitivity of 5.0 V/g or 0.510 V/m×s⁻² (Table 5.1) and the PCB 393A03 uni-axial accelerometer has a sensitivity of 1.0 V/g or 0.102 V/ m×s⁻² (Table 5.2).

5.4.2 Transform from time to frequency domain

The mathematical basis of frequency analysis is the Fourier transform, i.e. the transform from time to frequency domain. The following explanation of the theory behind the Fourier transform is based on (Randall and Tech, 1987).

In the Fourier theory a signal is assumed to be composed of a number of sinusoidal or, if you wish, cosinusoidal components at various frequencies. Each of them has its own amplitude A and initial phase φ .

Figure 5.14 Complex representation of a sinusoidal component (Randall and Tech, 1987).

A sinusoidal component may be represented by two vectors with a real and an imaginary part, rotating in contrary directions. Each has the amplitude A/2. One has

the initial phase angle φ and rotates with frequency f, and the other has the initial phase angle $-\varphi$ and rotation frequency -f (Figure 5.14).

As the vectors rotate with time the imaginary parts will always cancel out and therefore the resultant will always be real. In the real plane the oscillation would look like on the left side of Figure 5.14 and have amplitude A. The mathematical identity can be written:

$$A\cos\theta = \frac{A}{2}(e^{j\theta} + e^{-j\theta})$$
(5.10)

where $\theta = (2\pi ft + \varphi)$ and $j = \sqrt{-1}$

If this function is multiplied by the factor $e^{-j2\pi/t}$ the rotation freezes and the function integrates to a finite value. This is the basis of the Fourier transform.

Let us say that we have a periodic function which according to the Fourier theory is a sum of sinusoidal components at equally spaced frequencies kf_1 (harmonics)

$$g(t) = g(t + nT) \tag{5.11}$$

where T is the period and n is any integer.

Then the *k*th frequency component is given by:

$$G(f_k) = \frac{1}{T} \int_{-T/2}^{T/2} g(t) e^{-j2\pi f_k t} dt$$
where $f_k = kf_1$ and $f_1 = 1/T$
(5.12)

Because the rotation freezes the component of frequency f_k will integrate to a finite value. All other frequency components will continue their rotation and integrate to zero (Figure 5.15).

Figure 5.15 (a) Because the rotation stops the frequency component integrates to a finite value. (b) All other frequency components continue their rotation and integrates to zero (Randall and Tech, 1987).

Thus equation (5.12) will extract the frequency component f_k from g(t). It also freezes the phase angle as that existing at time zero. If we multiply the initial value $G(f_k)$ with the oppositely rotating unit vector $e^{-j2\pi ft}$ we will again obtain the actual position of each vector and return to the signal g(t).

$$g(t) = \sum_{k=-\infty}^{\infty} G(f_k) e^{j2\pi f_k t}$$
(5.13)

In the Fourier transform equation (5.12) and (5.13) is extended to the general case by letting T go to infinity. The spacing between harmonics (1/T) then tends to zero and G(f) becomes a continuous function of f.

$$G(f) = \int_{-\infty}^{\infty} g(t)e^{-j2\pi f t} dt$$
(5.14)

is known as the forward Fourier transform and

$$g(t) = \int_{-\infty}^{\infty} G(f) e^{j2\pi f t} df$$
(5.15)

is the inverse Fourier transform. G(f) is the complex frequency spectrum.

In the case of a sampled signal the forward transform takes the form:

$$G(k) = \frac{1}{N} \sum_{n=0}^{N-1} g(n) e^{-j\frac{2\pi kn}{N}}$$
(5.16)

where N is the number of time samples. The inverse transform takes the form:

$$g(n) = \sum_{k=0}^{N-1} G(k) e^{j\frac{2\pi kn}{N}}$$
(5.17)

This is the Discrete Fourier Transform (DFT). To obtain N frequency components from N time samples requires N^2 complex multiplications. That is why in for example Matlab an algorithm called the "Fast Fourier Transform" or "FFT" which requires only N log₂N operations is used. It gives the same result.

In this way one can change between the time domain acceleration signal and the frequency domain complex spectrum.

The complex representation of an oscillation with a real and an imaginary part can be interpreted as the interaction between potential and kinetic energy in a wave motion. The square of the real part represents potential energy and the square of the imaginary part represents kinetic energy.

When the potential energy is at its maximum at the extremity of an oscillation the velocity is zero (i.e. the kinetic energy is zero) and all energy is in the form of internal strain energy.

When no strain energy exists at the centre of the oscillation, the velocity and the kinetic energy is at its maximum.

5.4.3 Coherence between vertical and horizontal components

The coherence analysis is made to create an idea of how the motions detected on the axes of the accelerograph are related.

The coherence gives a measure of the degree of linear dependence between the acceleration recorded on each accelerometer axis, as a function of frequency.

First the cross-spectrum of the two signals has to be calculated. It is done by multiplying the complex spectra of one signal with the conjugate of the other's. The cross spectrum from A to B is:

$$S_{AB}(f) = A^*(f) \cdot B(f) \tag{5.18}$$

The cross spectrum from B to A would have the same amplitude, but opposite phase.

The coherence is calculated like:

$$\gamma^{2}(f) = \frac{|G_{AB}(f)|^{2}}{G_{AA}(f) \cdot G_{BB}(f)}$$
(5.19)

where G_{AA} and G_{BB} is the autospectra of each signal.

In Matlab the function "mscohere" does the operation described. A coherence of "1" means a perfect linear relationship between the two signals at that frequency, while "0" means there is no linear relationship at all.

There are basically four reasons to why the coherence may be low between two signals a(t) and b(t) (Randall and Tech, 1987):

- 1. The presence of uncorrelated noise in a(t) and/or b(t) (Figure 5.16).
- 2. Non-linear relationship between a(t) and b(t).
- 3. Leakage due to insufficient resolution, and/or wrong choice of window function. That is the power from discrete frequency components leaks into adjacent bands.
- 4. Time delay between the signals, where this is in the order of the length of record.

Spectrogram Evaluation of Seismic Risk in Managua, Nicaragua

Figure 5.16 The effect of noise on coherence between signals (Randall and Tech, 1987).

5.4.4 Correlation between sensors

The cross-correlation function is used to see how accelerations registered on the vertical axis of the accelerograph correlates to those registered on the uni-axial accelerometer, as a function of time displacement between the two.

For transient signals the cross-correlation function is defined as:

$$R_{ab}(\tau) = \int_{-\infty}^{\infty} a(t)b(t+\tau)dt$$
(5.20)

where τ is the time displacement.

If the signal recorded on the uni-axial accelerometer is the same as that recorded on the vertical axis of the accelerograph, it would be expected that the two signals are practically identical. However they will inevitably be displaced by a time τ_0 , as the starting point of the events where not picked at exactly the same sample point. Then the cross-correlation of the two would be similar to the autocorrelation, but displaced with τ_0 .

5.4.5 The Spectrogram

The spectrogram shows how the frequency content of a signal changes with time. It is presented in a diagram with one time axis and one frequency axis. The magnitude of each frequency at each time is represented on a colour scale. The spectrogram is calculated by splitting the signal into overlapping sections with a window function. Each window is then Fourier transformed to the frequency domain. This gives the short-term frequency content which is taken as representative for an instant in time. It is termed Short-Term Fourier Transform (STFT) (Gade and Herlufsen, 1994). The principle of applying the short-term Fourier transform is shown in Figure 5.17.

Figure 5.17 The short-time Fourier transform extracts spectral information from the signal around time b (Randall and Tech, 1987).

The idea behind analyzing the data with a spectrogram is to clearly see at what frequencies the signal remains longest. Such frequencies could be resonance frequencies of the surface layers. Another advantage is that the Rayleigh wave and the direct P- and S-wave will pass the sensors quickly after the generated impact, and their frequency content thus disappears from the spectrogram image. Left will only be the frequency content of standing P- and S- waves.

Figure 5.18 Top: Spectrogram representation of the ground impulse response from a bus at Stortorget in Lund. Bottom: Instant frequency of the same impulse response.

Measurements were carried out at Stortorget in Lund by Rainer Parrales and Peter Ulriksen, before the field campaign started in Managua. The spot was chosen because it was known to experience heavy vibrations at the passage of city busses. These measurements show a clear resonance frequency around 11 Hz prevailing in the spectrogram (Figure 5.18).

The instant frequency plot in the same figure shows that the frequency content of the signal narrows down around the resonance frequency immediately after impact and then regains its normal distribution slowly as the impulse response is attenuated. The instant frequency is calculated as the angular difference between to successive sample points in the signal. This gives the instant angular frequency which is then converted to Hz.

5.4.6 Implications of the short-term Fourier transform

Screening a signal with the short-term Fourier transform allows us to see the short-term frequency content of the signal, and how the frequency content changes with time. But it also means a limitation in the low frequencies, due to the short sampling period.

A 1 Hz oscillation has a period of 1 second. It will need at least a one second long window in order to be "detected" by the Fourier transform and identified as a 1 Hz frequency. Otherwise it will end up as DC. Thus the shorter the window function applied in the STFT is, the higher the frequency threshold in the spectrogram will be.

5.5 Time-frequency hazard analysis

The objective of the data processing is to evaluate the seismic risk along the Pan-American Highway. This is done by a time-frequency hazard analysis of the site response which will be described in the following sections.

5.5.1 Instantaneous risk

The earthquake-sensitivity of a site is the result of the combined effect of the earthquake input motion, surface layer response and structure response. In other words the earthquake signal filtered through surface layers and structure.

In the time-frequency hazard analysis the characterization of a site is made by convolving an earthquake signal with a local ground response signal and a building response signal. This will give an estimate of the combined resultant motion, i.e. the site response.

The *sensitivity spectrum* is the frequency content of the site response in one time instant. It is estimated by convolving the measured ground response, i.e. the site spectrogram, for a time instant *t* with an earthquake spectrum and a building response spectrum. Convolving signals is the same as multiplying their spectra in the frequency domain.

 $\overline{S} = \overline{E} \cdot \overline{R} \cdot \overline{B} \tag{5.21}$

where \overline{S} is the sensitivity spectrum, \overline{E} is the earthquake spectrum, \overline{R} is the ground response spectrum and \overline{B} is the building response spectrum. The spectra are all normalized so that the integral over all frequency components becomes one. The ground response spectrogram is normalized so that the integral of frequencies is one at impact, and then attenuates. In this way a general measure of site response is obtained that is not dependent on the power of the impact measured.

Figure 5.19 Convolving the earthquake spectrum with the site response spectrum and the building response spectrum gives us the sensitivity spectrum.

The earthquake spectrum is taken from seismograph recordings of the 1972 earthquake (Figure 5.20), provided by Orlando Hernandez Rubio from the Managua Municipality. It is from the main shock recorded at the Esso refinery the 23rd of December, 06.29 in the morning. Its location can be seen in Figure 4.2.

Figure 5.20 Spectra from the main shock of the earthquake that struck Managua the 23 December, 1972. Top: the rough Fourier transforms. Below: The smoothened and normalized spectra.
The acceleration has been recorded in the directions south, east and downwards. When evaluating the vertical site response the accelerogram measuring the downward acceleration is used. For horizontal site response evaluation both directions south and east are entered into the model in order to see if it results in any differences.

The building response spectrum is taken from recordings of the response microtremors of a two-story brick house in Masaya (Figure 5.21), also carried out by Orlando Hernandez Rubio (Hernández-Rubio, 2005). The recordings were done by locating external sensors connected to the Kinemetrics K2 accelerograph close to the ceiling and oriented in the two principal directions of the building. A third sensor was located in a top corner of the building in order to register torsional motion. In this study one of the directional recordings is used when entered into the site response model. The recordings in both directions exhibit peaks at the same frequencies.

Figure 5.21 Response spectrum from microtremor recordings in a two-story brick building.

The building response spectrum shows a

distinct peak around the frequency 9 Hz, which is the fundamental resonance frequency of the building. Another less distinct peak is present at 20 Hz.

By taking the integral of the sensitivity spectrum, i.e. the sum of amplitudes over all frequencies, a measure of the *instantaneous risk* is obtained.

$$I = \int A(f)df \tag{5.22}$$

where A(f) is the amplitude of frequency component f.

5.5.2 Local risk

The spectrogram provided by the traffic impulse response approach, convolved for each time instant with the earthquake spectrum and the building response spectrum, gives the time history of the instantaneous risk. As mentioned in the previous section the instantaneous risk is defined as the integral of the sensitivity spectrum. The instantaneous risk will then vary over time as the motion is damped (Figure 5.22). This can be interpreted as the damping of the total frequency energy content.

The removal of noise can be done at this stage by simply removing the noise floor left where the instantaneous risk curve stabilizes and no more effects from the event can be seen. In an earthquake the motion of the bedrock will continue to pump in energy in the surface layers for some time. The damping will then be the factor that determines the magnitude of the energy build-up, if there is any. Thus the time-history of the instantaneous risk will be a direct measure of the earthquake sensitivity of the site, and the area enclosed under the instantaneous risk curve is a measure of the *local risk*. The local risk L is thus defined as:

$$L = \iint A(f) df dt \tag{5.23}$$

That is, *the double integral of amplitude over frequency and time*, or put differently the volume enclosed under the convolved spectrogram.

As all the convolved spectra are normalized in this study to have the integral of frequencies as one, the local risk will attain a very small value. Therefore the local risk is multiplied by a factor of 1000 to give a local risk index.

Local risk index = $1000 \times \iint A(f) df dt$

This is an index invented for this study but it does justly represent the local risk of a site, as it takes into account both resonance and attenuation of the site. It is an integrated measure of resonance and damping of surface layers.

Figure 5.22 Instantaneous risk curve.

5.5.3 Constant background removal

In the traffic impulse response measurements a number of effects not inherent in the surface layer characteristics are likely to be present. These include effects from the cable protector, source vehicle, road fill and background noise. Especially the road fill can create characteristic frequencies and resonances that have nothing to do with the site response experienced by other structures on the ground. Some of the effects are global and can be removed by subtracting the average of all site response spectra from the site response spectrum. This would remove background effects that most sites have in common. It would also remove effects from geological characteristics that the sites have in common, and leaves us with only the site specific effects.

$$S_{med} = \frac{\sum \overline{R}}{N}$$
(5.24)

where N is the total number of sites. The site specific response spectra can then be written:

$$R_{sitespec} = R - S_{med} \tag{5.25}$$

6 Results

The measurements carried out along the Pan-American Highway are in all 128 points, running from the eastern city limit to the south-western city limit of Managua as seen in the map in Appendix 1. For the recorded site response of each site an analysis of coherence between axes and correlation of the recordings from the two sensors is made. After that an interpretation of the spectrograms regarding resonances and damping is attempted. Finally the time-frequency hazard analysis is undertaken in order to get an estimate of the earthquake-sensitivity of the site.

6.1 Coherence between the accelerograph axes

A coherence analysis is performed in order to see to what degree the motions detected by the different axes in the K2 accelerograph are related to one another. The coherence tells us to what degree two signals are linearly dependent at each frequency. Thus it clarifies if the acceleration on two axes gives the same information, or if they exhibit independent motion characteristics.

Some of the sites show very high coherence between axes, while others show very low coherence. A high coherence means that we will get little extra information from the second axis regarding the ground response to impact.

Figure 6.1 Average coherence between the accelerograph x- and y-axes

The average coherence between x- and y-axes across all the sites is seen in Figure 6.1. On the horizontal axis is the frequency and on the vertical axis the coherence as a function of frequency is shown.

The coherence between the horizontal x- and y-axes is intermediate. This is the result of some sites showing high coherence, while others exhibit low to intermediate coherence. Several sites exhibit a coherence close to unity over a wide band of frequencies as can be seen for example in the plotted coherence of site 37 in Figure 6.2. Other sites exhibit very low correlation between the x- and y-axis as for example site 10 seen in Figure 6.3.

Figure 6.2 Coherence between x- and y-axis at site 37.

Figure 6.3 Coherence between x- and y-axis at site 10.

The coherence between x- and z-axis is of greater interest as it will show the linear dependence of vertical to horizontal motion. If the coherence between vertical and horizontal acceleration is high it means that an analysis of vertical acceleration on the uni-axial accelerometer can be used to estimate also resonances and attenuation in the horizontal direction. The average coherence between x- and z-axis is seen in Figure 6.4.

Figure 6.4 Average coherence between the accelerograph x- and z-axes

The average coherence over all sites is again intermediate. However, there are sites which exhibit coherence close to unity for a wide band of frequencies, especially up to 50 Hz. Again taking the case of site 37 this fact is seen (Figure 6.5). Others exhibit low coherence, like site 10 in Figure 6.6.

Figure 6.5 Coherence between x- and z-axis at site 37.

Figure 6.6 Coherence between x- and z-axis at site 10.

The average coherence between y- and z-axis is shown in Figure 6.7. The coherence curve shows a higher coherence below 50 Hz, which may be due to strong influence from surface waves that are detected as well on the y-axis as on the z-axis (see section 5.3.1.2).

Figure 6.7 Average coherence between the accelerograph y- and z-axes.

Again some sites, like for instance site 37 show high coherence (Figure 6.8), while others like site 10 exhibit very low coherence (Figure 6.9).

Figure 6.8 Coherence between y- and z-axis at site 37

Figure 6.9 Coherence between y- and z-axis at site 10.

The intermediate coherence between horizontal and vertical components indicates that the vertical and horizontal acceleration is not enough related to perform an analysis of them as representatives of the same vibration response. As seen in section 4.3.2 the S-waves and P-waves are expected to experience resonance at different frequencies due to different propagation velocities. If P- or S-waves can be expected to be detected primarily on either one of the three axis, it would not be a good idea to treat them as the same response from that point of view either.

As mentioned in section 5.3.1.2 the acceleration measured on each axis of the accelerograph is not easily linked to a unique propagation mode, and the coherence analysis emphasizes that suspicion. The tri-directional information the accelerograph provides can be used to create a more complete picture of the ground response. No information on the type of waves emitted from the source and measured as impulse response can be derived from it by simply looking at the directional acceleration.

Generally it is seen from all the averaged coherence plots that the coherence is intermediate. As stated in section 5.4.3 the low coherence between axes that several sites exhibit may have many reasons.

The time displacement between the signals is depreciable as the signals are registered at the same time and position, and the start of the screened events has been picked at exactly the same sample point. Thus it can not be the reason for a low coherence. The resolution should be high enough not to create any low coherence due to leakage. That leaves us with noise interference or nonlinear relation between vertical and horizontal motion as possible explanations to the low coherence.

The uncorrelated noise content of the signals affects the coherence negatively. In this case the recordings on all axes are made at the same time and at the same location and thus the noise would be expected to be well correlated between the axes.

The fact that some sites exhibit high coherence while others exhibit low, could mean that different kinds of vibrations are generated at different sites. Another probable explanation is that the distance to the source influences the coherence. If the sensors are located very close to the source the wave field may not yet be developed, and exhibit a more chaotic behaviour. This is not to be considered a flaw however, being that the most probable seismic source is located in the faults close to Managua. Such an earthquake is probable to exhibit a chaotic wave field rather than the developed wave field an earthquake in the subduction zone would give rise to.

The conclusion has to be that it is not safe to assume similar behaviour from the vertical and horizontal motion as the general case. The horizontal and vertical acceleration has to be treated as such, and not as different types of wave propagation. It should be noted, however, that in many of the measurements coherence close to unity between components is observed, in x/y-coherence, x/z-coherence and y/z-coherence alike. This can be observed for example from the coherence plot from site 37.

Figure 6.10 Response signals registered on x-, y- and z-axis at site 37 and site 10.

It may be the case that in sites with a high noise level relative to the impact, the coherence becomes lower. In this section site 37 has been taken as an example of high coherence between the components and site 10 as an example of low coherence. The coherence at site 37 and 10 is calculated from the impulse response signals shown in Figure 6.10.

It can be seen from the figures that the response signal of site 10 has less power and is also less distinct than the response signal of site 37. In other words it does not succeed as well in dwarfing the noise level. The noise after the impact probably comes from the vehicle's engine or suspension system. Worth is also noticing that the peak acceleration registered on the z-axis is higher than the one registered on the x-axis and y-axis. This is the general case in the recordings.

6.2 Correlation between the vertical axes of the sensors

The correlation analysis is carried out in order to see how well the response signals registered by the vertical axes of the two sensors match one another. That is, if the vertical axis of the accelerograph records the same motion as the vertical (and only) axis of the uni-axial accelerometer.

The uni-axial accelerometer recordings are down-sampled to half their original sample rate, in order to have the same sample rate as the accelerograph, which is 250 samples per second.

In the correlation analysis the signals are displaced one sample at a time with respect to one another, and the correlation is checked at each displacement according to equation (5.20). Thus the correlation is also used as a way of checking if the events picked from the two sensors correspond to one another. If the correlation peak is not distinct and unique, it is probable that the same event has not been chosen from the two sensors, or that the startpoint and endpoint of the events have been assigned differently.

After having corrected the event picking, the correlation analysis shows an over all good correlation between the sensors as seen in for example site 75 in Figure 6.11.

Figure 6.11 Cross-correlation between response signal of tri-axial accelerograph and uni-axial acclerometer

The autocorrelation of a signal at zero lag is one. Thus a correlation of one means

perfect positive correlation, while a correlation of -1 means perfect negative correlation. Zero correlation means there is no correlation at all between the signals. With the exception of five sites the max correlation is close to unity in all the sites. Therefore the conclusion is that, from the same event, vertical acceleration recorded either on the tri-axial accelerograph or the uni-axial accelerometer can be used for further evaluation, without any considerable recorder bias.

6.3 Site spectrograms

The site impulse responses are now represented as spectrograms to see whether resonance frequencies can be seen directly from the plots as explained in section 5.4.5. It was an hypothesis before carrying out the field work that such resonances could be read directly from the spectrogram and even that the damping might be estimated with the half-power bandwidth method, or some other method for evaluating attenuation described in section 4.2.3.

A window length of 128 samples is chosen for the uni-axial accelerometer measurements and of 64 samples for the tri-axial accelerograph. The window lengths are chosen differently because the uni-axial measurements have double the sample rate of the tri-axial measurements. In time this represents a 0.25 second window, which means that frequencies down to 4 Hz can be detected (section 5.4.6). The window length is chosen considering both the lower frequency threshold and the time resolution. A 0.25 second window gives a reasonable resolution in time and still the lower frequency threshold is most probably below the surface layer resonance peak. Most sites exhibit no clear prevailing frequencies. The impact from a truck at site 27 is taken to represent a typical spectrogram image from a good quality vehicle impact (Figure 6.12). The power is represented on a decibel scale of colours, with dark red representing highest spectral power and dark blue the lowest.

Figure 6.12 Spectrogram representation of the impulse response measured on the uniaxial accelerometer at site 27.

The impact is distinct and emits power in a wide frequency band all the way down to around 5 Hz, but no prevailing frequencies can be seen in the impulse response.

Figure 6.13 Top: Acceleration of the impulse response measured on the vertical axis at site 28. Middle: Spectrogram representation of the impulse response. Bottom: Instant frequencies of the impulse response history.

Some sites exhibit prevailing frequencies in the spectrogram representation of the impulse response, of which site 28 is the one showing the clearest prevailing frequency. The recording on the uni-axial accelerometer of a trailer truck impacting the obstacle at site 28 is represented as a spectrogram in Figure 6.13. The vehicle passage consists of the impact of the first axis of the tractor, then the double impact of the tractor boggie, and finally the boggie of the trailer. It is seen that around 10 Hz the impulse response clearly takes much longer time to be attenuated than at other frequencies in the impulse response, which implies a resonance frequency there.

The instant frequency plot in the same figure shows that the frequency content of the signal narrows down around the supposed resonance frequency immediately after impact and then regains its normal noise distribution gradually, as the impulse response is attenuated. As mentioned in section 5.4.5 on page 68 the instantaneous frequency is calculated from the angular difference between two successive sample points.

Picking out only the event produced by the tractor boggie of the trailer truck at site 28, which shows the strongest prevailing frequency in Figure 6.13, the spectrogram representation becomes like in Figure 6.14. The time lag between the signal and its spectrogram is due to that the frequency content calculated at a window position is assigned to the start sample point of the window. This will cause a time lag of approximately half a window length. In this figure the slow decay of spectral power due to resonance at the frequency 10 Hz is clear.

Figure 6.14 Spectrogram representation of a single event from site 28 and its aftermath. Top: Measured acceleration. Bottom: Spectrogram.

The same impulse response measured on the three axes of the accelerograph can be seen in Figure 6.15. These show more background noise, due to the accelerograph being more sensitive. On both the z-axis and the y-axis the same resonance frequency at 10 Hz is evident, although more pronounced on the z-axis.

The x-axis spectrogram shows less spectral power in the low frequencies and the prevailing signal in the area of 10 Hz is not seen (Figure 6.15). This can be seen in light of the less powerful signal generally registered on the x-axis. It is probably the

case that the dominating frequency power of the impact misses the resonance frequency.

In both the spectrogram obtained from the y-axis acceleration and the x-axis acceleration clear bands of ambient noise are present around the frequencies of 50 and 75 Hz.

Figure 6.15 Spectrogram representation of the impulse response measured on the accelerograph at site 28. Top: z-axis. Middle: y-axis. Bottom: z-axis.

Figure 6.16 shows only the event produced by the tractor boggie. Notice the similarity between the recording on the accelerograph z-axis and the recording on the uni-axial accelerometer shown in Figure 6.14. This confirms the good correlation between sensors found in section 6.2. In this figure it is seen that the 10 Hz resonance shows clearest on the z-axis, while it is missing on the x-axis recording.

Other sites that exhibit a prevailing frequency around 10 Hz in the spectrograms, are site 87, 99, 115 and 116, although not as clear as is the case of site 28.

Figure 6.16 Spectrogram representation of a single event from site 28 recorded on accelerograph. Top: z-axis. Middle: y-axis. Bottom: x-axis.

If we look at the power spectrum over the entire event, i.e. the impact of a wheel axis and its aftermath, the dominant frequencies are perhaps easier identified. In Figure 6.17 the spectral power below 25 Hz of the impulse response at each frequency is shown, as we are advancing along the Pan-American Highway. On the horizontal axis is the frequency and on the vertical axis is the distance along Pan-American Highway. The spectral power of the impulse response is shown on a greyscale where black represents most power. The impulse response is low-pass filtered at 25 Hz before a Welsh spectral estimate is applied. This is to see what peaks are present in the frequency area where the earthquake contains considerable power (as seen in Figure 5.20). Anyhow the earthquake spectrum is limited at 25 Hz, due to the sample rate at 50 Hz which gives the Nyquist frequency 25 Hz^2 . The reason of one site exhibiting spectral power above 25 Hz in the figure is due to an error in assigning the sample rate of the signal analyzed.

Figure 6.17 Normalized spectral power along the Pan-American Highway for vertical axis, y-axis and x-axis.

It can be seen from the figures that sites with a spectral peak of around 20 Hz dominates. Some sites exhibit peaks at lower frequencies down to 10 Hz and even lower. Compare this to the resonance frequency at 9 Hz of the building used as an example in this study.

The peaks appearing in these diagrams should not be taken directly as resonance frequencies as they reflect the spectral content of the event as a whole, which is therefore in part source-inherent. They do however give an idea on what predominant frequencies the surface layers along the Pan-American Highway give rise to.

Even if the spectrograms of most sites exhibit no resonances, five sites, of which site 28 is the clearest, show that the impulse response prevails at a frequency. This proves that resonance amplification will appear in the spectrogram. The soils of Managua are generally competent and the fact that no prevailing resonances can be seen in most spectrograms is probably because none occur.

Nonetheless, in view of the general absence of resonance in the spectrograms, the time-frequency hazard analysis has been developed for a non biased evaluation of the earthquake-sensitivity of a site.

 $^{^2}$ The Nyquist frequency is the upper detectable frequency with no risk of aliasing. For a description of aliasing see for example (Randall and Tech, 1997).

6.4 Seismic risk zonation along the Pan-American Highway

In order to evaluate the local risk the time-frequency hazard analysis is applied using the measured impulse responses along the Pan-American Highway. The theory behind it is explained in section 5.5.

First in this chapter is a section showing how resonances and attenuation affects the local risk. In section 6.4.2 an estimate of the local risk along the Pan American Highway is taken forth.

6.4.1 Resonance and attenuation

The time-frequency hazard analysis takes into account both resonance frequencies and attenuation of the surface layers, without having to rely on subjective interpretation. It measures the decay of the integrated amplitudes over the frequency spectra. That is, the attenuation of instantaneous risk for a specific building. As explained in section 5.5.1 the instantaneous risk is obtained from the sensitivity spectrum which is the convolved earthquake, site response and building spectra.

As it cannot be determined what wave types are registered on each axis, all of the axes are used in the hazard analysis. This will show how the results differ from one another. The x-axis in several cases shows bad signal to noise ratio as the accelerations registered are generally lower than on the y-axis and z-axis. This is due to a less powerful impulse given by the vehicles in that direction, as seen in section 5.2.2 and 6.1. But the impact generated horizontal shear wave it probably registers is interesting and thus an evaluation is attempted anyway.

Figure 6.18 Attenuation of instantaneous risk estimated from vertical acceleration.

The attenuation of instantaneous risk estimated from the vertical axis is shown in Figure 6.18. On the horizontal axis is the distance along the Pan American Highway and on the vertical axis is the time elapsed since the impact peak. Km zero is where the first measurement site is, a little to the east of the international airport (see Appendix 1). The instantaneous risk is shown on a greyscale, where black represents high instantaneous risk and white low instantaneous risk.

It can be seen that around km 4 there is a very powerful instantaneous risk that takes a long time to die off. This is at site 28 in front of the supermarket "Palí" on carretera

norte (The part of Pan-American Highway from the city centre and eastwards), which was shown in section 6.3 to have prevailing oscillations around 10 Hz (Figure 6.13). Also around km 10 there is an area where the instantaneous risk takes a long time to be attenuated. Over all there are very local high instantaneous risks, perhaps in connection to water channels and faults. The connection with geomorphology will be treated in section 6.5.

Figure 6.19 Attenuation of instantaneous risk estimated from y-axis and convolved with (above) southward earthquake acceleration and (below) eastward earthquake acceleration.

In the horizontal motion there are two earthquake input motions to choose from. The horizontal acceleration from the 1972 earthquake was measured in southward and eastward directions. In the analysis both are used to provide objectivity in the resulting hazard estimate. The instantaneous risk attenuation estimated from the y-axis from convolving with both southward and eastward earthquake acceleration is shown in Figure 6.19.

As seen the result from convolving with the acceleration measured in the two different directions is practically identical.

This picture shows a different pattern, although the high instantaneous risk with low attenuation at km 4 (site 28) remains. It does have a lower attenuation than that estimated from the vertical acceleration though. That the instantaneous risk attenuation is lower can be seen generally along the route.

Another area of high instantaneous risk and low attenuation can be seen from around km 9.5 to around km 11, which corresponds to the area where the former city centre was located. A zone of high instantaneous risk just after km 19 is present in both Figure 6.18 and Figure 6.19.

Figure 6.20 Attenuation of instantaneous risk estimated from x-axis and convolved with (above) southward earthquake acceleration and (below) eastward earthquake acceleration.

The instantaneous risk attenuation estimated from the x-axis is shown in Figure 6.20. The risk estimated from southward and eastward earthquake motion is practically identical, like in the case of the y-axis.

Again an area of high risk from around km 9.5 to 12, evident also in Figure 6.18 and Figure 6.19, can be seen. Another high risk area is present just after km 18.

Resonance causes the instantaneous risk attenuation to be lower, as does a low material damping. The lower the instantaneous risk attenuation is the more probable a build-up of wave amplitudes is in the case of an earthquake (section 4.3.2). Thus resonance in the surface layers in combination with low material damping causes high local risk.

6.4.2 Local risk

The local risk is here defined as the *double integral of amplitude over frequency and time:*

$$L = \iint A(f) df dt \tag{6.1}$$

It is thus the integration of the instantaneous risk attenuation seen in Figure 6.18 to Figure 6.20, along the time axis. The local risk index is obtained by multiplying the local risk with a factor of 1000 (see section 5.5.2) in order to have figures more easily related to. It is a purely relative index of earthquake-sensitivity. The variation in local risk along the Pan American Highway, estimated from vertical acceleration is shown in Figure 6.21. On the horizontal axis is the distance along the Pan American Highway and on the vertical axis the local risk index can be read.

Figure 6.21 Local risk index along Pan American Highway.

Site 28 stands out around km 4 again. Then there is a zone of higher risk around the former city centre and another at the end of the route, close to the south western city limit. Other than that there are local high risk indices present.

The local risk estimated from the acceleration measured on the y-axis is shown in Figure 6.22. Only the local risk obtained from convolving with the southward measured earthquake acceleration is shown, as the one convolved with the eastward acceleration is practically identical, which was also seen in Figure 6.19. They can all be seen in Appendix 4.

The local peak of site 28 is again present. Then between km 6 to km 12 passing the city centre the values change between high risk indices and low risk indices with an area between 10 and 12 km with high local risk. This is in the area of the former city centre.

Figure 6.22 Local risk evaluated from y-axis acceleration, convolved with southward measured earthquake acceleration.

In Figure 6.23 the local risk estimated from the x-axis is shown. Care should be taken when interpreting these values as the signals registered are quite weak and the criteria of dwarfing ambient noise is poorly fulfilled. The peak present in the vertical axis and the y-axis corresponding to site 28 is not present. This was expected as the impulse response recorded on the x-axis on site 28 exhibits no prevailing frequencies, contrary to the z- and y-axis (Figure 6.16).

The area of high risk around the city centre is present also here however. At the end of the line is another high risk zone which is also seen in all the previous figures.

Figure 6.23 Local risk evaluated from x-axis acceleration, convolved with southward measured earthquake acceleration.

These pictures confirm the image given by the figures of instantaneous risk attenuation. There is a couple of very local high risk zones and then two larger high risk zones between km 10 to 12 in the city centre, and at the end of the route close to the south western city limit from around km 18 to km 20.

A more general estimation of local risk is obtained by averaging the local risk obtained from the impulse response measured on the different axes of the accelerograph (Figure 6.24).

Figure 6.24 Local risk obtained as an average between directionally computed local risks.

Here we see the very local high risk obtained from the impulse response at site 28. The city centre between km 10 and 12 is a high risk zone and a segment after km 18 also give high risk indices. Outside these areas the local risk index varies with some very local high risk sites.

6.5 Correlation between results and geomorphology

It has been assumed before carrying out the field work that the most earthquakesensitive sites is to be found close to Lake Xolotlán, where sediment thickness due to surface runoff would be greatest. It has also been a hypothesis that sediments would be thickest in the vicinity of faults, and where water flows. The presence of faults and water channels is probably related in most cases.

The local risk estimated from vertical impulse response and plotted as we go along the Pan-American Highway can be seen in Figure 6.25. The water channels and streams crossing the route are also traced out.

There seems to be a concurrence in where high risk is found and where water flows crosses the route, although the highest peaks are not where water flows are present.

Figure 6.25 Local risk estimated from impulse response registered on the vertical axis plotted along the Pan-American Highway, with the tracing of water channels and streams marked.

Local risk index along the Pan-American Highway (estimated from y-axis and eastward earthquake motion)

Figure 6.26 Local risk estimated from the impulse response registered on the y-axis plotted along the Pan-American Highway, with the tracing of water channels and streams marked.

In Figure 6.26 the local risk estimated from the impulse response of the horizontal y-axis is shown.

In this picture it is clearer that the peaks in local risk occur where the water flows are. Also worth noticing is high local risk in the city centre, close to the waterline of Lake Xolotlán.

Figure 6.27 Local risk estimated from the impulse response registered on the y-axis plotted along the Pan-American Highway, with the tracing of water channels and streams marked.

The local risk estimated from the measured x-axis acceleration (Figure 6.27) confirms the high risk in the city centre, but exhibits a quite different pattern otherwise. Again peaks in local risk coincide with water flows.

It is repeated that the x-axis impulse response shows much weaker accelerations, and it is questioned if it fully succeeds in the criteria of dwarfing ambient noise.

Figure 6.28 Averaged local risk plotted along the Pan-American Highway.

The average local risk is finally plotted along the route as shown in Figure 6.28. Here it becomes evident that the local risk is greater in connection or close to water flows. The high local risk on the high ground at the end of the route may perhaps be explained by the fact that the road area is located in low ground passing between crests in the terrain. The surface runoff from the surrounding crests would then be concentrated here in its path towards Lake Xolotlán, with thicker sediments as a result.

7 Discussion

7.1 Assessment of the method

This study has been carried out to test the spectrogram evaluation of the traffic impulse response as a fast method of identifying earthquake-sensitive sites. It is emphasized that when these sites have been identified, more time-consuming techniques should be used for a better evaluation of the soil's dynamic parameters.

When analyzing the spectrograms only few sites show clear prevailing frequencies. The measurements at these sites, in combination with the ones carried out at Stortorget in Lund, prove that strong resonances will show in the spectrogram in the expected way.

A key issue is to assure measurements containing a strong impulse with lowfrequency content and little ambient noise present. This is ideally a heavy vehicle coming in alone with no traffic around. A trailer truck or, in the case of Managua, a city bus loaded with people, provides good impulse characteristics. The single axis of the city bus provides a more distinct impact than the boggie of the trailer truck, and gives no risk of stimulating any particular frequency.

An excellent idea, which is attributed to Roger Blándon, is to carry out measurements early in the morning (four or five o'clock). At this time the truck drivers have already started their working day but few small vehicles

traffic the streets.

The use of the time-frequency hazard analysis results in a measure of local risk which should provide a correct estimate. The key issue is again that the impulses measured fulfil the criteria of dwarfing ambient noise and having low-frequency content. It is crucial that the impulses recorded all show good quality so that the impulse response can be considered nonbiased and does not miss the fundamental frequency of the surface layers.

At several sites in this study it has been troublesome to obtain good quality records, due to high levels of ambient noise or little heavy traffic. This may affect the local risk obtained through the time-frequency hazard analysis.

This leads to a limitation of the technique. It has to be carried out along routes with high levels of heavy traffic, but with sufficiently low traffic levels to allow the vehicles pass at high speed. Again the ideal is to carry out the measurements

Figure 7.1 Gate standing tall in the 1972 earthquake.

in the morning hours when these criteria will be fulfilled and little microtremor is present.

A concern is that the impulses given by the vehicles have too little frequency content at low frequencies, and it may be the case that the impulse response measured misses the dominating frequency content of the earthquake as seen in Figure 5.20. But with the layered and rather competent structure of the surface layers it is not probable that they exhibit resonance peaks at such low frequencies. Furthermore the two-story building that is used as an example in this study exhibits a fundamental resonance frequency at 9 Hz. Almost all houses in Managua are single-story, and would not exhibit resonance peaks any lower than that. The bigger complexes may exhibit resonance peaks at lower frequencies.

Figure 7.2 This high-rise building has been raged by fire in the 1972 earthquake.

The accelerations measured on the different axes of the tri-axial accelerograph provide diverse information. The vertical axis and the y-axis show similar peaks, but the x-axis shows much lower peak acceleration.

The spectrograms obtained from the vertical axis and y-axis are also similar, while the ones obtained from the x-axis are much less clear.

When put into the time-frequency hazard model the instantaneous risk evaluated from the y-axis takes longer time to be attenuated than the vertical axis. The local risk obtained from them shows different patterns, while the x-axis concurs quite well with the y-axis in the local risk indices obtained. However, the quality of the x-axis acceleration records is generally too poor to be relied on.

The similarity in peaks of vertical and yaxis acceleration may suggest that their peak can be attributed mainly to Rayleigh wave content.

The x-axis is believed to register mainly Swave content and its similarity to the risk

attenuation and local risk estimated from the y-axis suggests that the impulse response measured on the y-axis can also be attributed largely to S-waves. This would render the acceleration on the y-axis the candidate for evaluation of shear wave resonance.

This conclusion is further enhanced by the fact that as to S-wave vertical resonances, the vertical axis is less apt as it is probable to register mainly standing P-waves. Vertically polarized S-waves registered on the z-axis are direct and do not create

resonance in the surface layers. The acceleration registered on the x-axis is simply to low to securely fulfil the criteria of ambient noise dwarfing.

It is seen from the above that the uni-axial accelerometer alone does not measure the complete impulse response. Shear waves are probable to be registered mainly on the two horizontal axis, and thus the uni-axial accelerometer will measure mainly Rayleigh wave content and P-wave resonances in the surface layers.

A source of uncertainty is the road fill overlying the surface layers. It is possible that horizontal Lamb wave resonances can occur in the road body. The lamb wave resonances are then incorrectly attributed to the impulse response of the surface layers. The lamb waves are surface waves propagating in thin media working as wave guides.

Another question raised is to whether the acceleration measured is both the impulse and the ground response or if it is just the ground response. It is not known whether the first peak in the spectrogram can be considered the frequency content of the impulse, and the decay of it the ground response. It is probable that this is so because of the closeness of the sensors to the source.

A way to be sure to register also the unfiltered impulse from the vehicle would be to locate another accelerometer inside of the rubber cable protector. This way the transfer function could also be determined by deconvolving the impulse spectrum measured by the cable protector mounted accelerometer from the ground response spectrum measured by the tri-axial accelerograph on the side of the roadway. For example the Piezotronics Model 3703G2FD3G tri-axial accelerometer first intended for this study could be used for this purpose, if made to work in connection with a recorder.

7.2 Further Studies

The data collected from the measurements recorded along the Pan-American Highway is far from exhausted. In this study the evaluation of noise recordings carried out at the same sites as the impulse response recordings is not done at all. If these can be said to consist of microtremors the Nakamura Technique can be applied to them and another independent estimate of resonance peaks and amplification of surface layer is obtained. This can be compared to the results from the spectrogram evaluation technique and its validity be tested.

As seen in the discussion on which type of waves are emitted from the vehicle impact, further investigation is needed.

The type of waves emitted can be looked at by locating an array of geophones at one of the measurement sites in straight lines parallel and perpendicular to the direction of traffic. Then Multi-channel Analysis of Surface Waves (MASW) can be done, and the content of different wave types in the impulse response clarified.

8 Conclusions

The conclusions that can be drawn regarding the Spectrogram Evaluation Technique are:

- Vehicles used as seismic source need to be heavy in order to create an impact with power in the low frequencies. The vehicles should be isolated with no other vehicles coming in at the same time in order to create a distinct impact that dwarfs the ambient noise. Multiple wheel axes may stimulate a frequency with period corresponding to the distance between axes. Using the impact from the last wheel axis is preferable, as the whole decay of the signal can be recorded and the noise floor, after the signal has died out, can be removed from the impulse response. The city busses of Managua meet these criteria excellently as they have a single, very heavily loaded, rear axis. Furthermore it is recommended to measure the impulse responses early in the morning (three, four or five o'clock) as there is a lot of heavy traffic but few smaller vehicles and little ambient noise present at these hours.
- If the above criteria are met, strong fundamental resonance peaks will be detected by analysing the traffic impulse response with the spectrogram method. The measurements on site 28 (Figure 6.13) and on Stortorget in Lund (Figure 5.18) proves this.
- A further understanding on the type of waves emitted from the source vehicle is needed. This can be investigated by for example placing an L-shaped array of geophones and analysing the waves measured with MASW (Multichannel Analysis of Surface Waves).
- Tri-axial measurements provide information on the vibration which uni-axial measurements do not contain. It is probable that a single vertical accelerometer detects mostly P-wave resonances.

Conclusions to be drawn regarding the time-frequency hazard analysis are:

- The time-frequency hazard analysis provides an integrate measure of resonances and attenuation, without any subjective interpretation.
- The best estimate on shear wave resonance is probably obtained from the horizontal y-axis of the tri-axial accelerograph.
- Special care should be taken as to whether the impulse response measured covers the relevant frequency band and do not miss the resonance frequencies in the surface layers. The impact measured must contain power at low frequencies in order to detect a fundamental resonance frequency.

• The method should be validated by carrying out microtremor analysis with the Nakamura method (or another suitable method) on some of the noise recordings that were done at each site, to see if the estimates on where the local risk is greatest concur.

Figure 8.1 Destruction in the city centre after the 1972 earthquake.

9 References

- Anderson, G., "Lecture 11-Global Seismology", http://topex.ucsd.edu/es10/lectures/lecture11/lecture11.html.
- Anton, D.J., "Ciudades Sedientas-Agua y ambientes urbanos en América Latina", <u>http://web.idrc.ca/es/ev-9313-201-1-DO_TOPIC.html</u>.
- CIA, "Nicaragua (Shaded Relief)", <u>http://www.infoplease.com/atlas/country/nicaragua.html</u>.
- Clark, S.P., 1966, "Handbook of physical constants": New Haven, Connecticut, The Geological Society of America.
- Cowan, H., Machette, M.N., Amador, X., Morgan, K.S., R.L., D., and Bradley, L., "Map and Database of Quaternary Faults in the Vicinity of Managua, Nicaragua", <u>http://pubs.usgs.gov/of/2000/ofr-00-0437/ofr-00-0437/pamphlet.pdf</u>.
- Craig, P.F., 1997, "Soil mechanics", E & FN Spon, 485 p.
- Ekholm, P., and Norberg, O., 1998, "SASW measurements in Managua, Nicaragua" [Masters thesis thesis]: Stockholm, Kungliga Tekniska Högskolan.
- Field, E.H., Johnson, P.A., Beresnev, I.A., and Zeng, Y., 1997, "Nonlinear ground-motion amplification by sediments during the 1994 Northridge earthquake": Nature, v. 390, p. 599-601.
- Field, E.H., Kramer, S., Elgamal, A.W., Bray, J.D., Matasovic, N., Johnson, P.A., Cramer, C., Roblee, C., Wald, D.J., Bonilla, L.F., Dimitriu, P.P., and Anderson, J.G., "Nonlinear site response", <u>http://www.scec.org/instanet/newsletter/39nonlinear.html</u>.
- French, C.D., and Schenk, C.J., "Map Showing Geology, Oil and Gas Fields, and Geological Provinces of the Caribbean Region", <u>http://certmapper.cr.usgs.gov/data/test/graphic/caribzoom.html</u>.
- Gade, S., and Herlufsen, H., 1994, "Digital Filter Techniques vs FFT Techniques for Damping Measurements", *in* Kjaer, B.

- Gazetas, G., 1982, "Vibrational characteristics of soil deposits with variable wave velocity": International Journal for numerical and analytical methods in geomechanics, v. 6, p. 1-20.
- Hernández-Rubio, O.U.-M., 2005, "Reevaluación del efecto de sitio en Managua, Nicaragua" [{unpublished} MSc thesis]: Managua, UNAN.
- Incer Barquero, J., Wheelock Román, J., Cardenal Sevilla, L., and Rodríguez, A.C., 2000, "Desastres naturales de Nicaragua - Guia para conocerlos y prevenirlos": Managua, HISPAMER.
- Kinemetrics, "Earthquake and Seismic Monitoring", <u>http://www.kinemetrics.com/products.asp</u>.
- Kious, W.J., and Tilling, R.I., "This Dynamic Earth: The Story of Plate Tectonics", <u>http://pubs.usgs.gov/publications/text/dynamic.html</u>.
- Knopoff, L., 1964, "Q": Reviews of Geophysics, v. 2, p. 625-660.
- Lapiedra, J.M., "Utilities related to the world of geotechnics", <u>http://www.jordimoreno.com/extras.htm#9</u>.
- Mahin, S.A., "An Interactive Course in Earthquake Engineering", <u>http://peer.berkeley.edu/~jrodgers/</u>.
- Nakamura, Y., 2000, "Clear Identification of Fundamental Idea of Nakamura's Technique and its Applications".
- Parrales Espinoza, R.M., 2004, "Different definitions of energy dissipation in geological materials".
- Parrales Espinoza, R.M., and Picado Romero, M.J., 2001, "Análisis de espectros de respuesta en el área de la ciudad de Managua" [MSc thesis]: Managua, Universidad Nacional de Ingeniería.
- Piezotronics, P., 2002, "Model 393A03 Piezoelectric Accelerometer-Installation and Operating Manual", PCB Piezotronics-Vibration Division.
- Randall, R.B., and Tech, B., 1987, "Frequency analysis": Glostrup, Denmark, Brüel & Kjaer, 344 p.
- Rey, P.F., 2003, "Faults, Folds and Mountain belts", School of Geosciences, Division of Geology & Geophysics, The University of Sydney, NSW

2006, Australia., http://www.geosci.usyd.edu.au/users/prey/Teaching/Geol-1002/Geol1002.htm.

- Richart, F.E., Hall, J.R., and Woods, R.D., 1970, "Vibrations of Soils and Foundations": Englewood Cliffs, New Jersey, Prentice-Hall, 414 p.
- Rix, G.J., Lai, C.G., and Spang, A.W., 2000, "In situ measurement of damping ratio using surface waves": Journal of geotechnical and geoenvironmental engineering, p. 472-480.
- Stål, F., and Westberg, G., 1996, "Microzonation Study in Managua, Nicaragua" [M.Sc. thesis]: Stockholm, Royal Institute of Technology.
- Teves Costa, P., and Matias, L., 1995, "Seismic behaviour estimation of thin alluvium layers using microtremor recordings": Soil Dynamics and earthquake Engineering, v. 15, p. 201-209.
- USGS, "Plate Tectonics and Hot Spot Images", <u>http://earthsci.org/geopro/platec/plate.html</u>.
- Walther, C.H.E., Flueh, E.R., Ranero, C.R., von Huene, R., and Strauch, W., 2000, "Crustal Structure across the Pacific margin of Nicaragua: evidence for ophiolitic basement and shallow mantle sliver": Geophysical Journal International, p. 759-777, www.ineter.gob.ni/geofisica/tect/struct/sonne96/walther-et-al-en.html.
- van Wyk de Vries, B., 1993, "Tectonics and Magma Evolution of Nicaraguan Volcanic Systems" [Unpublished Ph.D. thesis]: Open University, Milton Keynes, UK., http://www.margins.wustl.edu/PDF/vanwykdevries.pdf.

Appendix 1: Map over measurement sites
DIR_X	S43W	S51W	S54W	S60W	S61W	S/4W	Ceste	N88W	Oeste	N84W	Oeste	N86W	N84W	N87W	N87W	Oeste	N87W	N86W	N88W	Ueste Nezw	NO/W NR6W	NB9W	NB6W	SB4W	NB3W	S84W	N88W	S88W	N84W	N87W	Oeste	Oeste	N84W	200W Deste	NBBW	N.	N86W	N88W	N89W	S88W	S86W	N88W	×	N85W	SB6W	S86VV NI28M	NOOV
NOTES		en carretera		en carretera	Acera opuesta	en carretera	Acera opuesta Antes del nuente	en acera	Fte Portón 6 Aeropuerto	en carretera, al lado de cauce	en carretera, parada de Buses	Fte Club Fuerza Aérea	en carretera, mucho viento	Aproximac W	Contg puente	Fte Portón 1 Aeropuerto	en carretera		Fite Comedor La Estancia	Unos metros al oeste	Kativo 50 m al este	Acera onuesta	Andra optication		Acera opuesta	Cruz Lorena. xx m al este	en acera alta	Fte Ant Mansión del Reggae	en acera alta	en acera	Fte Laboratorios Ramos	Fte ENACAL	en acera	Al ple del puente		en acera baia		en entrada al lado de carretera		en acera, al lado de cauce	cerca cauce	al lado de cauce	en acera		en acera	sensores en tierra	en carretera
CE CUM_DIST	0	57	292	431	561	/08	900 1107	1324	1581	1800	1839	2010	2241	2485	2747	3026	3242	3441	36/8	C014	4550	4868	5065	5296	5512	5803	6105	6213	6344	6448	6521	6735	6886	7357	7544	7678	7921	8121	8227	8359	8518	8811	8905	9011	9117	9282	2403
DISTAN	0	57	235	139	129	807	19/	127	258	219	39	171	231	244	261	280	216	199	238	976	248	309	197	231	216	291	302	108	131	105	73	213	152	346	187	135	243	200	106	132	159	293	94	106	106	49 5 5	171
COORD_N	1342862	1342832	1342728	1342678	1342601	1342557	1342570	1342590	1342618	1342683	1342644	1342664	1342683	1342709	1342743	1342764	1342792	1342817	1342835	1342881	1342919	1342949	1342969	1342996	1343005	1343040	1343060	1343074	1343073	1343084	1343077	1343107	1343120	1343167	1343183	1343196	1343218	1343218	1343246	1343262	1343269	1343290	1343290	1343286	1343321	1343333	1040040
COORD_E	591373	591325	591114	590984	590880	1/9065	5902490	590124	589868	589659	589659	589489	589259	589016	588757	588478	588264	190886	58/830	004/90	586954	586646	586450	586221	586005	585716	585415	585308	585177	585073	585000	584789	584638	CI CHOC	583984	583850	583608	583408	583306	583175	583016	582724	582630	582524	582424	582260	8017QC
LOCATION	Zona Franca	UNA - Fte Zona Franca	UNA	UNA - Ent dormitorios	Fte Aeropuerto/UNA	Fte Porton 10 Aeropuerto	rte Potton 9 Aeropuerto Hotel I as Mercedes	Hotel Las Mercedes	Shell Aeropuerto	Fte entrada Fuerza Aerea	Entrada Balneario Los Sábalos	Esso Aeropuerto	Muro blanco del Hotel Camino Re	Puente Fuerza Aérea	Entrada ppal Hotel Camino Real	Entrada serv Hotel Camino Real	Texaco	Parada "Kentucky Las Mercedes"	La Subasta	PTE ESTAC POIICIA LA SUDASTA Solido SINTED/CONTEC	Galida Olini EN CONTEO Fta FDT	Ete Palí Carret Norte	Corte Supremo	Entrada TANIC	Bocacalle Fte entrada Shell	Bahía parada de buses	Pronica	Fte Island Taste	Fte Gemina	Fte Siemens	Frigoríficos de Carret Norte	1a entrada Casa Pellas	Incesa	UTION FEROSA FOREZUEIO Nahisco	Oficentro Norte	Parmalat	Zona de parqueo Grupo Q	Coca Cola	Coca Cola	RARPE	Restaurante Rincon Chino	Empresa Impasa	Antes de Polos de Desarollo	Programa Polos de Desaroll	Cituentes Ferreteria	ULAM Ecrimica Dactoria	rerreteria mastoria
COD	Jk2013	Jk2086	Jk2014	Jk2087	Jk2015		JK2010	Jk2089	Jk2018	Jk2091	Jk2090	Jk2019	Jk2092	Jk2020	Jk2021	Jk2022	Jk2093		JK2024	300071		.Ik2028	.Ik2094	.Ik2029	Jk2030	Jk2031	Jk2095	Jk2032	Jk2096	Jk2097	Jk2033	Jk2034 " 2000	JK2098	JK2035	JK2037	Jk2099	Jk2038	Jk2100	Jk2039	Jk2101	Jk2040	Jk2041	Jk2102	Jk2042	JK2103	JK2043	JKZ 104
O SITE	13	86	14	87	15	8	<u>0</u>	89	18	91	06	19	92	20	21	22	93 03	5.2	4 C	07 7	27	28	207	50	30	31	95	32	96	67	33	34	80 80 1	6 9 9	37	66	38	100	39	101	40	41	102	42	103	43 101	+0-I
SEQ_N	-	2	en s	4	ഹ	o 1	- 8	00	10	11	12	13	14	15	16	17	18	16	07 20	17 6	18	24	52	26	27	28	29	30	31	32	33	34	88	37	88	90 90	40	41	42	43	44	45	46	47	84 8	4 G	nc

Appendix 2: Coordinates of measurement sites

SITE COD LOCATION COORD_E COORD_N DISTANCE CUM_DIST 44 JK2044 Sistemas Aereos 582034 1343352 106 9508 12 JK2012 Errac Dalicid size/ Delicida 5818.44 1343352 106 9508	D LOCATION COORD_E COORD_N DISTANCE CUM_DIST 444 Sistemas Aereos 582034 1343352 106 9508 443 Sistemas Aereos 5812034 1343352 106 9508	LOCATION COORD_E COORD_N DISTANCE CUM_DIST Sistemas Aereos 582034 1343352 106 9508 Ferror Endicide 5818.06 1343352 106 9508	COORD_E COORD_N DISTANCE CUM_DIST 582034 1343352 106 9508 58446 1343332 180 6607	E COORD_N DISTANCE CUM_DIST 1343352 106 9508 9508 1343332 180 0607 9608	DISTANCE CUM_DIST 106 9508 180 8607	E CUM_DIST 9508 0607	NOTES en tierra	DIR_X S88W S86E
12 Jk2012 Estac Policía Ajax Delgado 581846 1343338 189 9697 11 Jk2011 Contig Aquatec 581569 1343359 278 9975	112 Estac Policia Ajax Delgado 581846 1343338 189 9697 111 Contg Aquatec 581569 1343359 278 9975	Estac Policía Ajax Delgado 581846 1343338 189 9697 Contg Aquatec 581569 1343359 278 9975	581846 134338 189 9697 581569 1343359 278 9975	1343338 189 9697 1343359 278 9975	189 9697 278 9975	9697 9975	Dos tramos después	S86E S88E
45 Jk2045 Frenie Aquatec 581521 1343407 68 10043	145 Frente Aquatec 581521 1343407 68 10043	Frente Aquatec 581521 1343407 68 10043	581521 1343407 68 10043	1343407 68 10043	68 10043	10043		NB7W
10 JK2010 Fte Ant La Perfecta 581339 13433/5 185 1022/ 46 Jk2046 Campo de Balloncesto de Co 581247 1343422 103 10331	710 Fte Ant La Perfecta 581339 134375 185 10227 146 Campo de Balloncesto de Co 581247 1343422 103 10331	Fte Ant La Perfecta 581339 13433/5 185 1022/ Campo de Balloncesto de Co 581247 1343422 103 10331	581339 1343375 185 10227 581247 1343422 103 10331	1343375 185 10227 1343422 103 10331	185 10227 103 10331	1022/ 10331	Acera opuesta	Este W
9 Jk2009 Fte Ctro Esc Quinta Nina 581134 1343390 117 10448	009 Fte Ctro Esc Quinta Nina 581134 1343390 117 10448	Fte Ctro Esc Quinta Nina 581134 1343390 117 10448 Eurosceis Orisettel E81047 1243344 105 10540	581134 1343390 117 10448 501017 134314 101 10540	1343390 117 10448	117 10448	10448	Acera opuesta	S88E Social
8 Jk2008 Contg Ferret Bühler 580984 1343421 66 10615	008 Contg Ferret Bühler 580984 1343421 66 10615	Contg Ferret Bühler 580984 1343421 66 10615	580984 1343421 66 10615	1343421 66 10615	66 10615	10615		S73E
/ JK2UU/ Ferret Blandon Moreno 580/66 13434U8 218 1U834 48Ik2048 Frente "Disns v Azulains" 580599 1343467 177 11011	0/ Ferret Blandon Moreno 580/66 1343408 218 10834 148 Frente "Pisos v Azulaios" 580599 1343467 177 11011	Ferret Blandon Moreno 580/66 1343408 218 10834 Franta "Pisos v Azulaios" 580599 1343467 177 11011	580769 1343408 218 10834 580599 1343467 177 11011	1343408 Z18 10834 1343467 177 11011	218 10834 177 11011	10834	siguiente casa	S//E W
6 Jk2006 Final Dupla Norte 580336 1343461 263 11274	06 Final Dupla Norte 580336 1343461 263 11274	Final Dupla Norte 580336 1343461 263 11274	580336 1343461 263 11274	1343461 263 11274	263 11274	11274	Paralela Carret Norte	Sur
49 Jk2049 Venta de Madera "Amistad" 580114 1343520 230 11503	49 Venta de Madera "Amistad" 580114 1343520 230 11503	Venta de Madera "Amistad" 580114 1343520 230 11503	580114 1343520 230 11503	1343520 230 11503	230 11503	11503		S79W
5 Jk2005 Esq E Colegio Loyola 579965 1343432 173 11676	005 Esq E Colegio Loyola 579965 1343432 173 11676	Esq E Colegio Loyola 579965 1343432 173 11676	579965 1343432 173 11676	1343432 173 11676	173 11676	11676	Callejón cerrado *	N84E
50 JK2050 Loyola 5745502 103 11/79 4 Ik2004 Contre Bablia Calacia Levala 576703 1243502 114 117 11/79	150 Loyola 5745 575 5755 5755 103 11779 11779 11779 11779 11779 11779 11779 11779 11779 11779 11779 11779 11779	LOyola 579302 1343502 103 11/79 11/79 Conta Babía Colonia I avala 570703 1343440 111 140	5/9890 1343502 103 11//9 570703 1343440 111 103 11//9	1343502 103 11779	103 11//9	11//9	*** *	283VV N87E
4 JACOUT CUTIN BATTIA CUTENIO EUVOLA UN	04 Cuirig Barira Cueglo Loyora 078733 1040449 111 11080 151 calle frante ESSO I ovola 579738 1343523 92 11982	Collig Balila Colegio Loyola 07/87/30 1040449 111 11080 calle frante ESSO I ovola 579738 1343523 92 11982	579738 1343573 92 110 11080 579738 1343573 92 11082	1343523 92 11982	92 11982	11982		N86W
52 Jk2052 Frente a Sede Petronic 579609 1343544 131 12112	152 Frente a Sede Petronic 579609 1343544 131 12112	Frente a Sede Petronic 579609 1343544 131 12112	579609 1343544 131 12112	1343544 131 12112	131 12112	12112	sensores en acera	N85W
3 Jk2003 Fte Ant Cine Margot 579492 1343487 130 12243	03 Fte Ant Cine Margot 579492 1343487 130 12243	Fte Ant Cine Margot 579492 1343487 130 12243	579492 1343487 130 12243	1343487 130 12243	130 12243	12243	Contg 2a Bahía La Paz *	Sur
2 Jk2002 Parque La Paz 579281 1343479 211 12454	002 Parque La Paz 579281 1343479 211 12454	Parque La Paz 579281 1343479 211 12454	579281 1343479 211 12454	1343479 211 12454	211 12454	12454		N71E
1 JK2001 Parada de buses 5/9151 1343491 131 12584	001 Parada de buses 5/9151 1343491 131 12584	Parada de buses 5/9151 1343491 131 12584	5/9151 1343491 131 12584 578006 1212261 200 12785	1343491 131 12584	131 12584	12584	Detras Palacio Nacional *	Sur
128 JKZ126 Cancellena	26 Cancelleria 27 Parrule Luis Alfonso Velasciuez Flores 578987 1343224 140 12925	Cancelleria 2003 0103990 0343304 200 12763 Parriue Luis Alfonso Velasquiez Flores 578987 1342224 140 13955	5/8990 1343304 200 12/83 578987 1343224 140 12/83	1343304 ZUU 12783 1343224 140 12925	2007 12/85 140 12925	12/025	en acera, ruegos armiciales y ana musica en acera	NU/E N04F
126 Jk2126 Segunda curva Dupla Sur 578830 1343145 176 13101	26 Segunda curva Dupla Sur 578830 1343145 176 13101	Segunda curva Dupla Sur 578830 1343145 176 13101	578830 1343145 176 13101	1343145 176 13101	176 13101	13101	en tierra en acera, cerca de semaforo	N77E
125 Jk2125 Curva Dupla Sur 578746 1343109 91 13192	25 Curva Dupla Sur 578746 1343109 91 13192	Curva Dupla Sur 578746 1343109 91 13192	578746 1343109 91 13192	1343109 91 13192	91 13192	13192	en carretera	N61E
124 Jk2124 Colegio Monte de Sion 578668 1343099 79 13271	24 Colegio Monte de Sion 578668 1343099 79 13271	Colegio Monte de Sion 578668 1343099 79 13271	578668 1343099 79 13271	1343099 79 13271	79 13271	13271	en tierra en acera	S84E
123 Jk2123 Dupla Sur 578580 1343117 90 13361	23 Dupla Sur 578580 1343117 90 13361	Dupla Sur 578580 1343117 90 13361	578580 1343117 90 13361	1343117 90 13361	90 13361	13361	en tierra en acera	S86E
122 JK2122 Bania Dupia Sur 5/8416 134310/ 164 13525 131 Jk2131 Decension del Extendio 57005 1343127 213 13720	22 Bania Dupia Sur 5/8416 134310/ 164 13525 24 December 12005 1243107 242 13525	Bania Dupia Sur 5/8416 134310/ 164 13525 Decension dol Ectodio 57000 570005 1343107 313 13720	5/8416 134310/ 164 13525 E7820E 1343137 212 13228	134310/ 164 13525 13720 15421 13528	164 13525	13525	en carretera	S80E N81E
121 JNZ121 Farqued verestauro 373000 1343137 213 13730 85 Jk2085 Estadio Nacional 577982 1343141 223 13961	zi raiqueo dei Estadio 185 Estadio Nacional 577982 1343141 223 13961	Estadio Nacional 577982 1343141 223 13961	577982 1343141 223 13961	1343141 223 13961	223 13961	13961	en acera en acera	N71E
60 Jk2060 Repuestos J. Zelaya 577811 1343035 201 14162	160 Repuestos J. Zelaya 577811 1343035 201 14162	Repuestos J. Zelaya 577811 1343035 201 14162	577811 1343035 201 14162	1343035 201 14162	201 14162	14162	 en acera, adoquines, vibraciones se sienten	S34W
84 Jk2084 Restaurante Rincon Español 577714 1342928 144 14307	184 Restaurante Rincon Español 577714 1342928 144 14307	Restaurante Rincon Español 577714 1342928 144 14307	577714 1342928 144 14307	1342928 144 14307	144 14307	14307	en acera, adoquines	N57E
01 JK2U01 KUTa Maya 577410 1342845 131 1443 83 JK2083 Lina Colchones 577410 1342656 277 1471	161 Kuta Maya 577410 1342845 131 1443 183 Luna Colchones 577410 1342656 277 14715	Kuta Maya 577410 1342845 131 1443 Luna Colchones 577410 1342656 277 14715	5//613 1342845 131 1443/ 577410 1342656 277 14715	1342845 131 1443/ 1342656 277 14745	777 1471F	1443/	 tierra en acera, adoquines en acera	S38W N57F
82 Jk2082 Frente Banco Caley Dagnall 577320 1342595 109 14823	082 Frente Banco Caley Dagnall 577320 1342595 109 14823	Frente Banco Caley Dagnall 577320 1342595 109 14823	577320 1342595 109 14823	1342595 109 14823	109 14823	14823	 tierra en acera	N60E
81 Jk2081 Frente BDF-Gonzalez Pasos 577193 1342492 164 14987	081 Frente BDF-Gonzalez Pasos 577193 1342492 164 14987	Frente BDF-Gonzalez Pasos 577193 1342492 164 14987	577193 1342492 164 14987	1342492 164 14987	164 14987	14987	en acera	N60E
80 Jk2080 Plaza Brazil 577123 1342434 91 15078	80 Plaza Brazil 577123 1342434 91 15078	Plaza Brazil 577123 1342434 91 15078	577123 1342434 91 15078	1342434 91 15078	91 15078	15078	en acera	N61E
79 Jk2079 La Fosforrera 576998 1342335 159 15237	179 La Fosforrera 576998 1342335 159 15237	La Fosforrera 576998 1342335 159 15237	576998 1342335 159 15237	1342335 159 15237	159 15237	15237	en acera	N64E
78 Jk2078 Casa de Campaña PLC 576910 1342250 122 15360	778 Casa de Campaña PLC 576910 1342250 122 15360	Casa de Campaña PLC 576910 1342250 122 15360	576910 1342250 122 15360	1342250 122 15360	122 15360	15360	-	N60E
// Jk20// Frente Hermoso y Vigil S.A 5/6821 1342192 106 15466	0// Frente Hermoso y Vigil S.A 5/6821 1342192 106 15466	Frente Hermoso y Vigil S.A 5/6821 1342192 106 15466	5/6821 1342192 106 15466	1342192 106 15466	106 15466	15466	en tierra al lado, cauce al lado sur de car	N62E
76 Jk2076 Distribudor Mercedes 576715 1342100 140 15606	776 Distribudor Mercedes 576715 1342100 140 15606	Distribudor Mercedes 576715 1342100 140 15606	576715 1342100 140 15606	1342100 140 15606	140 15606	15606	en acera, cauce al lado sur de carretera	NGOE
75 Jk2075 Frente Swell Batanola 576524 1341959 237 15844	75 Frente Shell Batahola 576524 1341959 237 15844	Frente Shell Batahola 576524 1341959 237 15844	576524 1341959 237 15844	1341959 237 15844	237 15844	15844	en acera, cauce al lado sur de carretera	N58E
74 Jk2074 Frente Talleres del Minist 576440 1341903 101 15945	774 Frente Talleres del Minist 576440 1341903 101 15945	Frente Talleres del Minist 576440 1341903 101 15945	576440 1341903 101 15945	1341903 101 15945	101 15945	15945	en acera, cauce al lado sur de carretera	N57E
73 JK2U/3 Frence El cligame 5/0288 1341829 169 16114	7/3 Frente El Gigante 5/6288 1341829 169 16114	Frente El Gigame 5/6288 1341829 169 16114	5/0288 1341829 169 169 16114	1341829 169 16114	109 10114	10114	en acera, cauce al lado sur de carretera	N85E
72 Jk2072 Barberia Bethel 576157 1341803 134 16247	772 Barberia Bethel 576157 1341803 134 16247	Barberia Bethel 576157 1341803 134 16247	576157 1341803 134 16247	1341803 134 16247	134 16247 170 16247	16247	en acera, cauce al lado sur de carretera	N84E
71 JK201 Aldea SOS 55587 1341718 478 16725	0/1 Aldea SOS 5/568/ 1341718 4/8 16/25	Aldea SOS 575687 1341718 478 16725	5/5687 1341/18 4/8 16/25	1341718 478 16725	478 16725	16725	en acera, cauce al lado sur de carretera	N88E
70 Jk2070 Batahola sur 575557 1341702 131 16856	070 Batahola sur 575557 1341702 131 16856	Batahola sur 575557 1341702 131 16856	575557 1341702 131 16856	1341702 131 16856	131 16856	16856	en acera, cauce al lado sur de carretera	N88E
						00601	en acera, cauce al lado sur de carrerera	N/0E
oo Jikzooo rienie rospital Fsiquatii - 373313 1341003 133 17119 67 Jk2067 Laguna Asososca con un hoy - 575217 1341451 183 - 17301	06 Frenie Tospital Forquiatii - 373313 1341003 133 17119 167 Laguna Asososca con un hoy - 575217 1341451 183 17301	riente rospitat ristquiatit 375217 1341003 133 17119 Laguna Asososca con un hoy 575217 1341451 183 17301	575217 1341451 183 17301	1341451 183 17301	183 17301	17301	en acera en tierra al lado de la carretera	NBOE N34E
· ·	× 1							

Appendix 2: Coordinates of measurement sites

													A	۱)	pj	p	eı	n	di	İX	x 2	2: (Co)(D	r	li	ir	18	at	te	s (of	ľ	n	e	ea	S	u	r	e	n	10	er	nt	S	it	e	S
×						~	~	~	~	~	~									~			>		35W	35E	79W		37W																				
DIR	N32E	N30E	N27E	N22E	N28E	S02W	S06M	S02W	SO3M	S03W	S06W	N34E	N32E	N30E	N32E	N24E	N12E	N12E	N12E	N02V	N20E		Z	2 2	tera No	β	É	≥	β	≥	8																		
	carretera	carretera			carretera	rretera					camiones van lentos co			e carretera, cerca cauce	de carretera	e carretera	rretera	rretera	rretera	e carretera	rretera		NOTES	INCIES	sensores en la carret	en tierra		en la carretera	en carretera	en carretera	en carretera																		
NOTES	en tierra al lado de la	en tierra al lado de la		ierra en acera	en tierra al lado de la	en tierra al lado de ca	en acera	en acera	en acera	en acera	en acera, pendiente (c	en carretera	en acera, cerca cauce	en concreto al lado de	en adoquines al lado o	en concreto al lado de	en tierra al lado de ca	en tierra al lado de ca	en tierra al lado de ca	en concreto al lado de	en tierra al lado de ca		таркат		Ð	141	293	410	624	719	891																		
CUM_DIST 1	17453 6	17546 6	17809	17896 t	18177 6	18306 €	18397 6	18468 6	18609	18679 €	18876 6	19021	19130	19233	19357	19463	19809	19895	20050	20197 €	20274 (13292	13553	13779	13858	14062	14227	14399																		
DISTANCE	152	93	263	86	281	129	91	72	141	70	197	145	109	102	124	106	346	86	155	146	77				367	453	508	498	537	489	172																		
E COORD_N	1341310	1341220	1340985	1340900	1340644	1340521	1340437	1340371	1340250	1340181	1339993	1339853	1339747	1339656	1339533	1339435	1339095	1339009	1338855	1338709	1338642				1343583	1343594	1343605	1343609	1343629	1343626	1343645																		
COORD_F	575161	575137	575018	575033	574917	574878	574843	574815	574743	574756	574697	574661	574634	574587	574569	574528	574465	574461	574443	574454	574416	2 90 90 P			578913	578772	578621	578504	578291	578195	578024																		
LOCATION	Laguna Asososca	Laguna Asososca con un hoy	Fte Bahía Buses Las Piedrecitas	Frente Enitel Las Piedrecitas	Hospital Fernando Velez Paiz	Cybercafé Las Piedrecitas	Rypsa Pinturas	Ceprodel	Sinapred	Librería Hispanic	ESSO del km siete sur	Almuerzo Casero	Fte Idlesia San Francisco	Fte Indicosa	Restaurante Oriental Express	Fte Sala de Belleza Stilo's	Las Acacias	Carne Asada Kilocho	Fte Veterinaria San Patricio	Fte Ferreteria 8 1/2	Jardines S.A.	Dirich of the former of the fo	I DUPIA NOITE PARAILEI TO 14	FUCATION	Palacio de las Communicaci	 Enitel-Casa Teran 	San Antonio	Frente Instalaciones Salaz	Frente Hogar Conrad Hilton	Frente Hogar Conrad Hilton	ESSO																		
сор	Jk2066	Jk2065	Jk2064	Jk2063	Jk2062	Jk2105	Jk2106	Jk2107	Jk2108	Jk2109	Jk2110	Jk2120	Jk2119	Jk2118	Jk2117	Jk2116	Jk2115	Jk2114	Jk2113	Jk2112	Jk2111				JK2053	Jk2054	Jk2055	Jk2056	Jk2057	Jk2058	Jk2059																		
SITE	66	65	64	63	62	105	106	107	108	109	110	120	119	118	117	116	115	114	113	112	111	10 201	is Guir		53	54	55	56	57	58	59																		
SEQ_NO	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121				123	124	125	126	127	128	129																		

				App	muix J.	She record
	1 represents best ent, 10 is not even I.	I – impact recording N – noise recording		Antish Axes lish Axes ion 3 5n, rastra 5 2.21 3 or 2 toteta 2 ioneta 2		
	rading: tality ev msiderec	ype:		Cam		
	5 t 3	É pu	ž	MALL DIC inglish uck aller truck actor arming trac ick-up ick-up	r band	r band and
Note	OBSI Sr 200 OBSI Sr 200 OBSI Sr 200 OBSI Sr 200 OBSI Sr 200 OBSI Sr 200	1 min with rubber be	truck trailer truck, small tr tractor dumper truck truck trailer truck	2 trailer trucks trailer truck trailer truck trailer truck 1 fr	trailer trucks truck 1 min without rubbe	truck bus 1 min without rubbe 1 min with rubber be
veh_stop			2700 1750 1500 1900			
veh_start			200 0 100 100			
Uni_Stop			1300 1400 1360 650			
Uni_Start			969 919 330 235			
Uni-axial			2.1.txt 2.2.txt 2.3.txt 2.4.txt			
K2_Stop	1555,0 1450,0 1355,0 1992,0 2665,0		2050,0 1700,0 2980,0 3275,0		5729,0 1652,0 610,0 -	- 2672,0 520,0 1780,0 3510,0 1025,0
K2_Start	1445,0 1232,0 1285,0 1505,0 1610,0		1505,0 1500,0 2940,0 3230,0		4220,0 1565,0 380,0 -	- 1760,0 375,0 1625,0 3388,0 550,0
K2	LB012 LB013 LB014 LB015 LB016	LB017 LB018 LB019 LB020 LB021	0T001 0T002 0T003 0T005 0T005 0T005	LG009 LG011 LG011 LG013 LG015 LG016 LG019 LG019 LG021 LG022 LG022 LG022 LG022 LG022 LG022 LG022	LH001 LH002 LH003 LH004 L1001 L1002	L1003 L1005 L1005 L1006 L1006 L1003 L1004
Type		z	z	z	z	z
Grading	4 - ი ი ი ,	26660	0 4 9 0 0 0 7 9 9 7 9 0 0 0 7 9	2 6 6 6 6 6 4 7 6 6 6 6 6 6 6 6 6 6 6 6 6	1 0 2 3 1	0 - 0 0 0 0 - 0
Site	-		0		ۍ 4	۵

Appendix 3: Site records

																											A	p	pp	e	n	di	X	3	•	S	it	e 1
DIR_X	sng	tractor	bus, 2 cars	pus	noise, pick-up on opposite lane	accidental trig: bus	bus - accelerating	truck	bus - coward driver!	truck	small truck	noise, mc	noise, pick-up on opposite lane	snq .	Sud	noise nick-un moving in	bus - the coward breaks	noise, bike and Lada	bus	bus, car	bus, car		trailer truck		bus, car	trailer truck	Sud		bus		bus, car	bus, small truck	snq	small truck	small truck	sire	truck, car	noise, van
NOTES	3000	2100	3300	2500			2200			2000	2000			2300	2500	2000	10000		3000	1800	1500		1400		2000	1500	1050		1400		1350	790	1700	1550		1600	1750	
CUM_DIST	570	380	520	600			150	-		200	470			550	170	F	7200		1450	750	250		160		700	450	350		180		430	60	590	540		500	099	
DISTANCE	3130	1080	2500	2530			2390			1600	2000			2000	1050	0000	9460		2930	1780	868		580		1830	1470	1010		1510		820	2430	1680	1500		1360	1530	
COORD_N	1840	520	1900	1620			1390	-		965	1060			1373	1 0 7E	0171	8590		2170	1302	370		180		1230	790	670		500		450	1760	1030	800		OOD	1080	
COORD_E	7.1.txt	7.2.txt	7.3.txt	7.4.txt			7.5 txt			7 6 txt	7.7.txt			8.1.txt	1^4 C a	0.2.171	8.3.txt		8.4.txt	9.1.txt	9.2.txt		9.3.txt		9.4.txt	10.1.txt	10.2.txt		10.3.txt		10.4.txt	10.5.txt	11.1.txt	11.2.txt		11 3 tvt	11.4.txt	
						1845 0	222	-		1960.0	2400,0			2100,0	0,0010	2,00,0	4000,0		8925,0	2760,0			6537,0	750,0	2520,0		2075.0		2350,0		2150,0	2610,0	2250,0	2180,0	1885,0		2140,0	
-						1717.0	2			1750.0	1774,0			1842,0	00000	0,0101	3774,0		5830,0	2020,0			6332,0	607,0	2330,0		1825.0		1710,0		1940,0	2475,0	2095,0	1765,0	1775,0		2010,0	
LOCATION					LN001		I N004	I N005	LN006	1 N007	LN008	LN009	LN010	L0001	LO002	L0003	LO005	LO006	LO007 LO008	LP001		LP002	LP002	LP003	LP004 LP005		L0001	LQ002	LQ003	LQ004	LQ005	LQ007	LR001	LR002	LR003	LK004	LR006	LR007
TE COD	_	-	-	_	ΖL	ш _				-		z	z			. z	:	z	_ Z	-	-	z	_	-	_ Z	-		z	-	z	_ 2	z _	-		_ 7	z _		z
a_NO SI	4	10	10	5	0	e	9	10	10	-	- 2	0	0	-	c	0 0	4	0	0 0	1	10	0	ę	10	0 0	c.	2	0	-	0	90	0 0	2	. .	4 () (, t	0
SE	~													œ						ი						10	2						1					

records

																								A	/]	pp	eı	n	li	X	3	: S	ite	e re
Note	truck	snq	2 buses	bus, car		military truck, car	2 trailer trucks (first one)	second trailer truck	trailar truck care			trailer truck	truck	truck	bus, truck	bus				IT ALLET LTUCK 1 ZU TUIT SECORDS	trailer truck	pus	truck, car	IFA truck	short noise recording		trailer truck	trailer truck	trailer truck	truck loaded with "biedra cantera"		trailer truck, half aside rubber band noise, mc passes in the beginning	truck SII truck (crosses obstacle with one wheel)	
veh_stop	1500	2700	1600	1700		1700		4400	1700	0071		1000	1000	800	2200	1000			0007	1900	1550	1040	1100	1700			2400	2200	2300			1800	1300 2250	
veh_start	400	870	120	440		0		2700	130	001		0	250	0	1100	160				0/1	80	280	450	140			320	400	260			240	470 360	
Uni_Stop	1350	2760	650	1500		1790	1510	4350	1500	0001		400	870	590	1800	1050				0051	006	1000	873	530			1480	2140	850			1420	900 1550	
Uni_Start	740	1800	250	1150		340	330	3400	1200	0071		170	390	169	1275	340				101	420	480	661	300			1000	783	646			804	703 930	2
Uni-axial	12.1.txt	12.2.txt	12.3.txt	12.4.txt		12.5.txt	13.1.txt	13.1.txt	13.0 +v+	10.2.01		14.1.txt	14.2.txt	14.3.txt	15.1.txt	15.2.txt				10.1.01	16.2.txt	17.1.txt	17.2.txt	17.3.txt			18.1.txt	18.2.txt	18.3.txt			18.4.txt	19.1.txt 19.2 tvt	
K2_Stop	2337,0	2430,0				630,0	2130,0	3250,0	2260.0	2200,0		1650,0	1650,0		2300,0	1870,0			18870,0	2903U,U	1935,0	2400,0	1955,0	1845,0		985,0		2620,0		2015.0		3915,0	2050,0	0
K2_Start	1880,0	2300,0				480,0	1755,0	3285,0	01010	2.124,0		1560,0	1600,0		2060,0	1695,0			18750,0	2883U,U	1750,0	1650,0	1860,0	1670,0		820,0		1900,0		1800.0	0	3810,0	1860,0 1970.0	
e K2	LS001 LS002	LS003		10001	LS005 LS005	LS006	LX001	LX001		LX004	LX005	LY001	LY002 LY003		LZ001	LZ002	LZ004	MA001	MA002	MA003	MA004	MB001	MB002	MB003	MB004	MB005 MB005		MD001		MD003	MD004	MD005 MD006	ME001 ME002	ME003
Type	_ z	<u>-</u>		_ 2	z z	-	_	_ 2	z _	_ Z	z		_ Z	z _	_	z _ 2	z	z		_ z	-	_	-	_	z	_ z	_		_ z	<u> </u>	. z	_ z		. z
Grading	- c	5 01	4	ოი	0 0	10	2	ოძ	C	- c	0	- c	NC	იი	+	0 0 0	0	0	~ (n 0	7	1	7	e	0	4 0	10		6	o m	00	0 0	1 0	2 0
Site	12						13					14			15			16				17					18						19	

ecords

																								A	p	pe	n	di	X	3:		Si	te	e	records
Note	trailer truck	trailer truck			trailer truck truck		bus, tractor trailer fruck		bus		trailer truck	-	truck, half trailer truck	ualier ruck noise, jonas is dragging rubber band, Lady passing	trailer truck, bus		small truck	trailer truck truck		Sha	trailer truck, breaks!!	trailer truck, 2 cars	snq		truck		snq	trailer truck		snq	Z trailer trucks	Z TRAILER TRUCKS	bus	KAMAZ truck	
veh_stop					1900 900	2	1200 2200	0044	200		2450		2300	2000	2200		1000	3800	0201	0/71		1000	1550		1500		520	1850		1800	0010	3100	850	1800	
veh_start					0 0	, ,	200 440	, F	60		360		180	000	450		350	1200	000	320		0	600		300		40	330		560	000	800	150	300	
Uni_Stop					1300 800	0000	1000 1840		580		1460		1780	0071	1300		680	3180	000	820		720	2138		1000		217	1330		1020	0110	0167	970	954	
Uni_Start					560 140	2	445 1430		270		855		1350	300	850		466	2670	000	030		380	1032		650		47	920		819	0000	ZU8U	367	656	
Uni-axial					20.1.txt 20.2.txt		21.1.txt 21.2 txt	101.2.12	21.3.txt		22.1.txt		22.2.txt	1X1.6.22	23.1.txt		23.2.txt	23.3.txt	11111	24.1.IXI		24.2.txt	24.3.txt		25.1.txt		25.2.txt	25.3.txt		26.1.txt	111000	1X1.2.02	26.3.txt	26.4.txt	
K2_Stop	1970,0	1545.0			2760.0	2 2 2 2	2420,0 1435 0	0.000			2700,0		2080,0	2010,0	2050,0			2130.0	1740.0	1/40,0	1460,0	1570,0	2300.0		1880,0		1650,0	2350,0 1660.0		1945,0	2940,0	0,07612	2080,0	1915,0	
K2_Start	1895,0	1455.0			2060.0	0,0001	1960,0 1280.0	0,002			1855,0		1915,0	100010	1830,0			1790.0	1676.0	0,6/01	1275,0	1485,0	1780.0		1785,0		1585,0	2137,0 1265.0		1750,0	2/45,0	21300,U	1784,0	1715,0	
K2	MF001	MF002	MF003	MF004	MF005	MF006	MG001	MG003		MG005 MG005	MH001	MH002	MH003	MH005	MI001	MI002 MI003		MI004	M 1004	MJ002	MJ003	MJ004	900FW	700LM	MK001	MK002 MK003	MK004	MK005 MK005	ML001	ML002	ML003		ML005	ML006	
Typ∈	_		z	ш		. z		.z	_ L	IJΖ	_	z.		- z	_ :	zz	_		- -	_ z	_	_ 7	z _	z	_	z z	: _		z			_ z	- 2	_	
Grading	10	10	0		6 -	. 0	t c	10	ю	0	1	0	, 10 10	0 0	- ·	00	e S	4 0	1 07	0- 0	7	ოთ	0 +	0	4	00	о с о	- 10	0	2	ю т	4 C	- -	10	
Site	20						21				22				23				r.c	44					25				26						

																			A	p	pe	n	di	x .	3:	S	it	e	re	eco	ords
Note	truck	pus		truck with boards	trailer truck with scrap	truck trailer truck		tractor truck	trailer truck	trucks	trailer trucks	truck	trailer truck (nan crossing band) trailer truck, bus	truck truck	short noise recording	trailer truck	trailer truck	trailer truck. pick-up	trailer truck	trailer truck		short noise recording	situt nuise recording noise		small truck with trailer small truck with trailer		bus		tractor	tarming tractor (really bad) GMC truck	
veh_stop	1150	1500		1450	2600	1200		1700 1400	2400	850	1400	650	3200			2000	3200	2250	2100	1950				1000	1400				1400	1300	
veh_start	370	340		310	480	250		400 150	720	230	350	80	1700			150	2000	580	140	250				000	330 470				400	230	
Uni_Stop	1200	1040		1077	2070	800		900 760	1600	OGR	740	540	900 2470			1710	3000	1400	1840	1760				001	1340				1200	006	
Uni_Start	570	800		695	1845	410		506 430	1072	300	520	290	6/0 1930			770	2419	926	1460	1120				001	069				647	460	
Uni-axial	27.1.txt	27.2.txt		27.3.txt	27.4.txt	28.1.txt		28.2.txt 28.3.txt	28.4.txt	20 1 tvt	29.2.txt	29.3.txt	29.5.txt			30.1.txt	30.2.txt	31.1.txt	31.2.txt	31.3.txt				11 1 00	32.1.txt 32.2.txt				33.1.txt	33.2.txt	
K2_Stop	2047,0			2680,0	2358,0	2830,0 2380,0		2000,0	2600,0	1850.0	2190,0		2500,0	1800,0		1950,0		1980.0						0 1444	1/0.001				2500,0	2100,0	
K2_Start	1730,0			2590,0	2175,0	2635,0 2130,0		1875,0	2290.0	1580.0	1965,0		2295,0	1465,0		1755,0		1770.0						0 001 1	1603.0				1690,0	1780,0	
5 K	MM001		MM002	MM003 MM004	MM005 MM006	MN001 MN002	MN003	MN004	MN005 MN006 MN007	MO001	MO003	MO004	MO005 MO006	MP001	MP003	MP004 MP005	MPOOR	MQ001			MQ003	MQ004	MQ006	MR001	MR003	MR004	MS001	MS003	MS004	MS005 MS006	
Type	_	_	z	_ z	_ z		z		zz_	z _		ш.	Z		.z	_ z	_ z	-	_	_ u	⊔ _	zz	zz	z.		z		. z	-		
Grading	1	10	0	0 10	0 0 0	2 10	0	0 10	007	0 +	10	0	0 1 0	2	20	ε		2 -	10	10	10	0 0	00	0 0	л г	0	10	2 0		10 2	
Site	27					28				29				30				31						32			33				

																																A	p	p	e	n	li	X	3	:	S	it	e	r	ec	20	r	d	5
Note	trailer truck	noise (Coca Cola truck)	tractor (screaming breaks)	2 cimultaneous trucke	z simunamedus muons trailar truck			-	trailer truck and truck simultaneously		tanker		bad noise recording		bus (bad one)	trailer truck, minibus, trailer truck		bus									bus, truck, bus (first bus)	bus, truck, bus (truck)	tractor	truck	trailer truck	truck	trailer truck		2 trailer trucks	truck	truck	tractor	bus, cab		Idlikel	trailer truck	trailer truck						
veh_stop	1600			1000	0001				2000						1100			1500	1550	1200	1000	2000	1000			1300	1600	3300		1300			2500		1450	1350	1500	1050				3000	2000						
veh_start	280			c	5				100						0			0	230	170	0	400	240			180	0	1800		360			390		100	130	430	100				680	2						
Uni_Stop	1600			1000	0001				1260						940			1250	1500	950	980	1430	790			1350	750	3120		1200			1140		1200	980	006	1000				2505	0004						
Uni_Start	1080			260	2007			ļ	870						150			400	840	440	440	890	460			413	446	2800		725			845		846	170	730	355				2005	0004						
Uni-axial	34.1.txt			34 2 144	04.6.101				34.3.txt						35.1.txt			35.2.txt	36.1.txt	36.2.txt	36.3.txt	36.4.txt	36.5.txt			36.6.txt	37.1.txt	37.1.txt		37.2.txt			37.3.txt		37.4.txt	1X1.C.15	38.1.txt	38.2.txt				38 3 tvt	101.000						
K2_Stop				3230.0	0,0040				1955,0						1545,0			1980,0		1980,0										2020,0			2535,0		1710,0			2000,0				2440.0	0.01+3						
K2_Start				2710.0	0,0174				1755,0						1430,0			1490,0		1685,0										1640,0			2350,0		1630,0			1710,0				2275.0	0,0						
e K2		MT001	MT002	MT002	MTOOA	MTOOF			MT007	MI 1 UU8	MU001	MU002	MU003	MU004	MU005	MU006	MU007	MU008		MV001		MV002	MV003	MV004	MV005				MW001	MW002	MW003	MW004	MW005	MW006	MW007	MW008		MX001	MX002	MX003	MX005	SOOXIM	MX007						
ading Typ	_	z	_			- Z	zz	z.	_ 7	z	_	z	z	z	-	-	z	_	-	_	-	_	-	-	-	-	_	_	_	-	-	-	_:	z.		_ Z	_	-	_ :	z -	_ z								
Site Gr	34 2	0	10	-				5	10	O	35 10	0	0	0	10	10	0	-	36 10	-	10	10	10	10	10	10	37 3	10	10	-	10	10	10	0 0	5	2 0	38 2	-	10	0		- F	10						

																										A	/ p	p	e	n	dix	ĸ.	3:	S	Si	te	records
Note		truck, mc	truck	pus	trailer truck	KAMAZ truck, car	bus,car,bus	truck (loud music)	truck	truck	tanker	trailer truck loaded with scrap	l oyota truck	trailer truck	small IFA truck	unloaded trailer truck (honking)		trailer truck, car	truck w. tiny trailer	bus (Lawson error)	trailer truck (Lawson error)	bus (Lawson error) tanker (Lawson error)	snq	small truck, car		tanker	truck, trailer truck, truck	MACK truck, Lawson Labs benaving curiously, samples at lower tarker 1 sween 1 she behaving curiously, samples at lower rate	tarineri, tawsori tawa bertaying canodary, samples at lower rate dumper	-	bus garbage truck			truck, accelerating trailar truck (rubbar band flinned over)	tialiet truck (ruudet dana riipped over) hus	trailer truck	
veh_stop		1530	1050	1200	1050	1500	1600				3600	2300	1200	2300	1200	2070		2300	1750				1300	1200		1600					1200 1300			2000 1500	1600	1500	
veh_start		400	180	300	0	260	0				1460	350	50	230	170	170		260	200				230	270		60	2000				0 0			400		00	
Uni_Stop		1140	780	960	760	1270	1050				3400	1690	1190	16/0	680	1360		1040	1370				1145	700		1170	3250	00/	000		600 600			1500	0001	800	
Uni_Start		830	432	605	460	630	800				2720	1390	406	C871	400	975		200	710				813	445		531	3092	210	000		210 404			1070 570	010	460	
Uni-axial		39.1.txt	39.2.txt	39.3.txt	39.4.txt	39.5.txt	40.1.txt				40.2.txt	41.1.txt	41.2.txt	41.3.IXI	41 4 txt	41.5.txt		42.1.txt	42.2.txt				44.1.txt	44.2.txt		44.3.txt	45.1.txt	45.2.1XI 45.3 tvt	121-0-04		45.4.txt 45.5.txt			46.1.txt 46.2 tvt	46.2 tvt	46.4.txt	
K2_Stop					2060,0	1930,0			350,0	0	2150,0	2230,0	2045,0	0,0622	1885 0			26260,0	2600,0	1700,0	2135,0	0,6671		1720,0		2479,0		1900,0	0.0		1750,0 1650.0				01000	1800,0	
K2_Start					1915,0	1625,0			119,0		2115,0	2155,0	1655,0	20/0/0	1805 0			26190,0	1960,0	1475,0	1860,0	1010,0		1655,0		1800,0	-	1620,0	0,000		1630,0 1600.0				1705.0	1730,0	
e K2	MY001				MY 002	MY 003 MY 004		MZ001	MZ002		M2004	NA001	NA002	NAU03	NA005		NB001	NB002	NB003 NB004	NC001	NC002	NCOUS		ND001	ND002	ND003	NE001	NE003	NE004	NE005	NE006 NE007	NF001	NF002		NEOO3	NF004	
I Typ	z	-	_	-	-	_ Z	-	_			-			_ Z	z _		z		_ z	-			-	-	z	-				z		z	z				
Grading	0	10	10	2	10	- 0	10	10		2	10	10		0-0	5 0	10	0	0	- 0	-	ოი	10	10	2	0	1	10	N	0 0	0	1 0	0	0	6 +	- c	10	
Site	39						40					4					42			43			44				45					46					

																									A	p	pe	en	d	ix	3	3:	S	Si	te	r	e	c	ords
Note	trailer truck, bus KAMAZ truck	jonas kicking the rubber band	farming tractor w. Trailer Mercedes truck		trailer truck	Volvo truck	NAMAZ ITUCK (recorded too late with Lawson Labs)	trailer truck, fast	trailer truck, fast + car	IVECO truck	noise / tanker	long and profound silence	trailer truck slow	truck, car	bus, 2 mc:s	-	trailer truck	garbage truck (nall off)	tractor trailer truck email truck		trailer truck	crane	Coca Cola truck		tanker (half off)	trailer truck (half off)	truck, car truck	noise(?)	sng	trailer truck, mc	truck. 2 cars	fast bus, small truck	KPA3 trailer truck	trailer truck, van	truck	MACK truck	tanker, 3 cars	bus	
veh_stop	2200 1000		2100 1200	004	1700	1000	ne/	2000	1500		2000		3000	1800	1100		1500	0071	1400 2300	2300	2300	1200	1100						1600	1200	1150	1100	1200	2000	1200	1200	1400	1500	
veh_start	430 180	2	0 0	b	220	330	D	370	0		520		240	80	0		0 0	0.0	047	410	160	150	270						330 9	180	350	100	0	330	120	230	200	0	
Uni_Stop	1600 600		1720 400	2	200	824	400	006	1100		1100		1200	600	500		1160	200	800 1600	1000	1400	916	700						006	300	850	600	400	1300	480	980	1000	500	
Uni_Start	1310 370	0	1338 235	8	517	510	D	670	460		850		006	386	206		600	001	490 1200	1230	076	375	558						640	460	560	385	305	1060	376	438	744	374	
Uni-axial	47.1.txt 47.2.txt		47.3.txt 47.4 tvt		47.5.txt	47.6.txt	47.7.1XI	48.1.txt	48.2.txt		48.3.txt		49 1 txt	49.2.txt	49.3.txt		49.4.txt	1X1.C.64	49.6.1XI 40.7 tvt	43.1.141	50 1 txt	50.2.txt	50.3.txt						51.1.txt	51.2.1XI	51.4.txt	51.5.txt	51.6.txt	51.7.txt	51.8.txt	51.9.txt	51.10.txt	51.11.txt	
K2_Stop			415,0 1750.0	0.00	1890,0	1868,0	0,6401		1870,0		1830,0						2060,0	1080,0	2000.0	2000,0		2060.0	0000							1046.0	1690.0		1730,0	2000,0		1919.0	1770,0		
K2_Start			360,0 1600 0	2000	1735,0	1705,0	1420,0		1700,0		1710,0						1635,0	1020,0	1640,0	0,0001		1400.0								0.0001	1580.0		1665,0	1865,0		1535.0	1645,0		
6 K2		NG001	NG002 NG003	NG004	NG005	NG006	NG008		NH001	NH002	NH003 NH004 NH005	NI001				NI002	N1003	N1004	GUUN		LOOPN	200LN		NJ003	NJ004	NJ005		NK001			NK003		NK004	NK005	NK006	NK007	NK008		
j Type		z		.z	_		_ z	_	_ 1	_ 2	z _ z	z	: _		-	z.				-	z _			z	_			z				_	-	_	_ Z	:	_	-	
Grading	10	0	10 %	00	4	c	0 0	3	-	90	0 0 0	0	94	. w	2	0,		29	200	2	0 0		- 2	0	10	10	000	0	99	2 -	1 01	10	10	10	0 10	, .	ς α	10	
Site	47							48				49	2							0	DC DC							51											

																												1	4	þ	þ	eI.	IC	11.	X	3	• k
Note		dumper, car, mc	trailer truck, car (band turned over by car)	tanker, Mercedes truck, 3 cars	tanker, cars	tanker		tanker	trailer truck, 2 cars, truck	2 trailer trucks with scrap (good one)	truck	trailer truck, tractor (tractor)		trailer truck, 3 cars	dumper	long noise sample	trailer truck, car	bus				trailer truck (half off), car		dumper	noise with mc		farming tractor	trailer truck (good one)			trailer truck car	trailer truck	tanker	noise with ambulance arriving	truck, 2 cars	trailer truck, mc, car, small truck	
veh_stop		1000	1050	1000	1100				1700	2200	1300			2700	2200		1500	1450				1900						2600	0007	0071	2300	0001	2500		1000	1400	
veh_start		100	200	300	60				150	0	0	3900		160	300		80	100				360						220		DG1	300	000	370		200	100	
Uni_Stop		750	700	700	400				1500	1800	800	4500	0	1350	006		1450	800				1250						1200		067	1600	000	1900		1000	1300	
Uni_Start		315	585	515	290				1053	1100	230	4250		1100	658		1070	420				988						829	010	340	1000	000	16663		445	0//	
Uni-axial		52.1.txt	52.2.txt	52.3.txt	52.4.txt				53.1.txt	53.2.txt	53.3.txt	53.4.txt		53.5.txt	54.1.txt		54.2.txt	54.3.txt				55.1.txt						55.2.txt		1X1.1.0C	56.2 txt		57.1.txt		57.2.txt	57.3.txt	
K2_Stop		1700,0	2005,0	1790,0					10920,0	1975,0		42020,0		2580,0	1780,0		2300,0	10470,0	11880,0	0,00061		1840,0						1890,0		0,0001	1855.0	0000-	1995,0		1860,0	1985,0	
K2_Start		1525,0	1925,0	1645,0					10760,0	1770,0		41980,0		2400,0	1720,0		2055,0	10360,0	11780,0	0,00001		1785,0						1700,0		n'nnet	1740.0	0.00	1870.0		1635,0	1775,0	
č K2	NL001	NL002	NL003	NL004		NL005	NL006	NL007	NM001	NM002		NM003	NM004	NM005	NN001	NN002	NN003	NN004		NINDOF	COUNIN	NO001	NO002	NO003	NO004	NO005	9000N	NO007	NP001		NP003	NQ001	NQ 002	NQ003	NQ004	NQ005	INCOUD
Typ∈	z	_	-	_	_	-	z	_	_	_	-	-	z.	-	_ :	z	-	_		V	N	_	z	_	z	z		-	z.	_ 2	z _	- -	_	z	-	_ 7	z
Grading	0	-	ю	2	4	10	0	10	10	10	10	10	0 ·	-	5	0	-	e		c	n	2	0	10	0	0	10	-	0,	- 0	5 0	10	10	0	-	0 0	5
Site	52								53						54							55							56			57					

Appendix 3: Site records

																				Å	1	pp	e	n	d	ix	K.	3		Sil
Note	bus, car	truck trailer truck	truck	truck	trailer truck very short noise recording	trailer truck dumper	fruck	trailer truck, mc, car	bus, car	truck, dumper, 3 cars	truck, car	tanker	truck			tractor, van	bus	truck, jeep	truck	truck	trailer truck, pick-up	truck	bus, mc, trailer truck	bus	pus	good noise	bus	bus, jeep	truck, car	
veh_stop		1000	1200 800	1200	2500	2000 1900	1600	2600	1150	1350	1460	1700	1800				1800	2100	1540	1200	4100			1000	1000		800	1400	1100	
veh_start		120	120 0	0 0	460	0 200	100	200	160	0	360	02 20	Ð			270	560	500	470	240	1800			150	230		70	140	120	
Uni_Stop		1000	1000 300	200	1200	1400 1000	006	1400	800	2300	006	1100	600			1000	1600	1500	1200	1000	2500			700	750		840	700	886	
Uni_Start		382	590 0	436	890	768 471	410	1070	426	1895	200	500	230			684	915	1150	866	546	2140			430	437		360	400	358	
Uni-axial		58.1.txt	59.1.txt 59.2 txt	59.3.txt	59.4.txt	60.1.txt 60.2.txt	60.3.txt	60.4.txt	60.5.txt	60.6.txt	60.7.txt	60.8.txt	60.9.txt			61.1.txt	61.2.txt	62.1.txt	62.2.txt	62.3.txt	62.4.txt			63.1.txt	63.2.txt		63.3.txt	64.1.txt	64.2.txt	
K2_Stop		25180,0	1900,0	1865,0	1700,0	1890.0			1800,0	1970,0	1540,0	0 01 01	1640,0			1780,0	2000,0	2290,0	1955,0	1850,0					1730,0		1900,0	2005,0	1850,0	
K2_Start		24470,0	1680,0	1720,0	1545,0	1530.0			1540,0	1700,0	1480,0		1545,0			1600,0	1700,0	2025,0	1770,0	1585,0					1530,0		1660,0	1735,0	1620,0	
в К2	NR001	NR003 NR004 NR004	NS001	NS002 NS003	NS004 NS005 NS006	NT001	NT002		NT003	NT004	NT005		N1006 NT007	NU001	NU002	NU003	NU004	NV001	NV002	NV003	NV004	NV005 NV006	NW001		NW002	NW003	NW004	NX001	NX002	NX004 NX004
Typ	_ z	2z		. z _	z _ z		z _		_				_ z	z	z	-	-	_	_		_	z _	-	-	_	z	-	_ 1	_ 2	zz
Grading	10	0 - 0 0	ر د	0 0 0	0 7 0	10 10	0	10	-	10	10	10	0 0	0	0	2	1	2	ო	-	10	0	10	10	2	0	1	7	- (00
Site	58		59			60								61				62					63					64		

3: Site records

																								1	A]	p	p	er	hd	ix	3	:	Si	te		re	C	ords
Note	very fast bus	long noise sample slow dumber	2 buses			trailer truck		truck truck		noise with car tanker	truck		truck, car	snq	sind	sud	trailer truck, car		truck, car	short record of noise		mercedes ruck trailer truck	truck. 3 cars		sng	truck		bus (second wheel pair) fruck		adulha		bus	sud	tractor	noise w. Music	noise w. Music 2 trucks	2 IIUUUS	
veh_stop	200		1000	1200	007	1300		1100		1200	1200	2	1100	1400	1800	1100	1300		800		0001	2500	1000		1000		000	900 1000	0001	1000		1800	1100	800		3200	2200	
veh_start	0		200	300	200	150		150		130	320	010	0	300	099	230	160		0		c		0.02		100			190 60	000	230		430	0	0		2100	2100	
Uni_Stop	400		600	750	202	1100		800		1000	1000		700	750	1000	600	550		750		002	2200	600		650		001	550	000	000		1200	600	550		2600	2000	
Uni_Start	190		425	480	8	696		506		650	530	0	323	564	837	400	343		210		000	1877	260		365			240 380	001	403		890	225	165		7365	COC7	
Uni-axial	65.1.txt		65.2.txt	65 3 tvt	101-0-00	65.4.txt		66.1.txt		66.2.txt	67 1 txt		67.2.txt	67.3.txt	67.4.tXI	67.5,txt	67.6.txt		68.1.txt		+*+ C 03	00.2.1X1 68 3 tvt	68.4.txt		68.5.txt			69.2.1.txt		121.0.60		70.1.txt	70.2.txt	71.1.txt		71 2 tvt	11.2.131	
K2_Stop				0000	20002	2300,0		1850.0		1995.0	1600.0	200	1780,0				1710,0		1700,0		0 0227	11760.0	36480.0					1900.0		0,0001		2055,0	1600 3150,0	1550,0		2900.0	2300'U	
K2_Start				1705.0	0,000	2010,0		1630.0		1785.0	1420.0	2	1640,0				1590,0		1440,0			11500.0	36380.0					1780.0	0 0 1 0 1	n'neal		1835,0	1420 3000,0	1405,0		2710.0	2/10,0	
K2	10000	NY 001 NY 002		NY003	NY005	NY006	NZ001	NZ002 NZ003	NZ004	NZ005 NZ006	OA001	0A002	OA003			6000	OA005	OA006	OB001	OB002		OB004	OB006	OB007		00008	OC001	00002	00003	0000	0D002	OD003	0D004 0D004	OE001	OE002	OE003	0004	
Type	_ 2	z _	_	z _	. z	_	z		z	z _	.	. z	-				_	z	_	zz	z _			z		_	z.		z.	- 2	zz	_		_	z	z _	-	
Grading	4 0	0	ŝ	0 0	4 0	1	0	2 10	0	0 +		. 0	2	ى ك	0	2-4	°.	0	•	0 0	5 0	v f	2-4	0	en 4	10	0 0	5 0	0,	- 0	00	2	- v	-	0	0 0	7	
Site	65						99				67	5							68								69			01	2			71				

																								A	۱p	p	en	di	ix	3	: 5	Sit	te	r	e	:0 1	rds
Note	MACK truck		GMC truck	Mercedes dumper	truck	bus	bus .	noise (poor)	Mercedes truck, 2 cars	bus (second wheel pair), truck, 2 veh	Isuzu tanker	Dodge truck			Coca Cola truck			trailer truck slow trailer truck	Marcadas truck		truck, 4 cars	111 (111	Nissan truck bus	pus	dumper, truck	truck. 3 cars	trailer truck	bus	KAMAZ trailer truck	good noise	snq	Marcadas truck (noor)	short noise record		truck dumor (noor)	small truck	
veh_stop	1000		1800	1000	1800	1300	1600	0007	1200	800	1100	1000			1300			1770 2600	1000	0001			650 1000	1000	1500	006	1300	1000			1200					1200	
veh_start	160		340	210	360	0	06	000	200	0	200	0			200		į	270 250	150	201		c	0 140	0	100	C	200	0			0					0	
Uni_Stop	800		1200	800	950	200	1500		1411	600	200	3625			1000			1400 1050	ROO	000		000	600 800	300	600	500	200	700			600					1000	
Uni_Start	400		413	514	580	0	420		0 1 0	0	420	420			620			1227 830	460	201		000	266 560	180	360	260	400	206			270					240	
Uni-axial	72.1.txt		72.2.txt	72.3.txt	73.1.txt	73.2.txt	73.3.txt		/ 3.4.1XI	74.1.txt	74.2.txt	74.3.txt			75.1.txt			76.2.txt 76.2.txt	76.3 txt	W1000			77.2.txt	78.1.txt	78.2.txt	78.3.txt	78.4.txt	79.1.txt			80.1.txt					80.2.txt	
K2_Stop			1695,0	1850,0		1530,0	1900,0	0 0 1 0 1	0,0681	500,0	2045,0	1940,0			1750,0			2610,0	0 0002	0,0004			1 / 00,0 1900,0		1875,0	1765.0	1900,0	1700,0								2200,0	
K2_Start			1500,0	1720,0		1415,0	1515,0	0 100 1	0,6001	250,0	1710,0	1825,0			1565,0			2530,0	1800.0	0,000			1520,0 1655,0		1660,0	1660.0	1760,0	1451,0								1965,0	
в К2		OF001	OF002	OF003		0G001	OG002	06003	0G005	0H001	OH002	OH003	OH004 OH005	OI001	01002	OI004	01001	01002	0.1003 0.1004	OK001	OK002	OK003	OK005 OK005		OL001	OL003	OL004	OM001	OM002	OM003 OM004		ON001	ON003	ON004	SUDINO	00002	
Typ	_:	z		-	-	_	_ :	z.	_z	-	-	-	z z	z		. z	z.		z _	z	<u>-</u>	z.		_	_ 7	z _	_ Z	-	_ :	zz	_ ¹	z _	. z	z	z _		
Grading	-	0	0	3	4	e	0	0,	- 0	-	2	ю	00	0		20	0	β	0 -	- c	10	0,	- 0	2	4 0	- m	- c		10	0 0	2	0	20	0 0	0 7	2 -	
Site	72				73					74				75			76			17	:			78				79			80						

															ŀ	4p	p	er	10	lix	3	:	Sit	te recor	ds
Note	bus, 2 cars	dumper	trailer truck MACK truck	trailer truck man passing close to K2	short noise record Mercedes truck (poor)	bus	Mercedes truck	snq	Ford truck trailer truck	trailer truck	MACN fruck GMC fruck	Mercedes truck	Mercedes truck 2 drimmers	trailer truck	trailer truck, small truck	2 trailer trucks	dumper heavily loaded	trailer truck	tonesome trailer truck (good one)	unier tradier truck (good one)	trailer truck	trailer truck			
veh_stop	800	800	1700 1000	1500		1000	1000	1400	2000	1770		1000	1600	1600	1900		1000		0001	1800	1750	1400			
veh_start	0	0	100 0	0 0		0	70	100	o	0		0 0	230	0	200		0	100	140	0	170	0			
Uni_Stop	700	300	950 480	563		800	600	800	300	1200		890	940	1500	1400		2700	0077	1220	006	630	600			
Uni_Start	230	80	814 350	280		360	330	392	100	842		335	522	670	969		2160	000	720	520	380	367			
Uni-axial	81.1.txt	81.2.txt	82.1.txt 82.2.txt	82.3.txt		83.1.txt	83.2.txt	84.1.txt	84.2.txt	85.1.txt		85.2.txt	85.4 txt	85.5.txt	85.6.txt		86.1.txt		00.2.1XI	86.4.txt	87.1.txt	87.2.txt			
K2_Stop	1700,0	1787,0		1660,0		1750,0	1800,0	2000,0	I	1980,0		1650,0		2000,0	480,0		2700,0	1900,0	1850,0	1930,0	1760,0	1945,0			
K2_Start	1440,0	1696,0		1500,0		1520,0	1595,0	1680,0	I	1840,0		1410,0		1705,0	325,0		2405,0	1605,0	0,0001	1770,0	1625,0	1625,0			
Je K2	00001 00002	00003 00004 00005		OP001 OP002 OP003	00001 00002	00004 00004	00000	OR001	OR002 OR003 OR004 OR005	0S001	OS003 OS003 OS004	OS005		0S006	OS007	00001	00003	OU004	SUUUU		00000	OV002	OV003 OV004		
ading Typ	z _	zz_		. z _ z	z _ 2	z _ z	z _	_ 2	z z		- Z _				-	_ z	:			Z	2 _	-	zz		
Site Gr	81 0 1	000	82 2 3	0-0	83 0 10	0 0 0	- 0	84 1	0 0 0 0	85 10	0 0 0	0 0	° 6		10	86 10 0	(~ 10	4 0	940	87 1	2	00		

_											_									A	v p	p	enc	lix	3	8:	S	ite	e I	re	cords
Note	Mercedes truck		trailer truck, bus	200	tanker, truck (truck)	Volvo truck, car	Concrete truck Mercedes truck	trailer truck, 3 cars	Mercedes truck, 2 cars	trailer truck	Mercedes truck	2 HINOS trucks	dumper		tanker				International truck	slow tanker	tanker		utarier ruck Roger putting the rubber band into place	Mercedes tanker	MACK trailer truck	small tanker	International truck, 2 cars trailar truck bus	trailer truck (honking)	trailar truck (hand turnad avar)		
veh_stop	1000		1400 2500	0067	1500	006	1600		800	2400	1000	1000	1400	0011	1500				1800	2800	2000	0001	1400	1500	1300	1400	1100	1400	1000	0001	
veh_start	200		160 1760	0071	630	0	370	0	0	280	0	0	130		230				200	240	200	000	000	200	150	0	140	130	100	2	
Uni_Stop	600		600	00027	950	600	1000	950	450	1222	300	650	700	100	00/				1150	800	1200	0001	0001	740	600	600	00/	1100	650	000	
Uni_Start	400		415 2060	0007	760	245	730	738	247	960	20	400	480	001	460				800	670	781	000	000	600	470	256	370	930	510	010	
Uni-axial	88.1.txt		88.2.txt	101.2.00	88.3.txt	89.1.txt	89.2.txt	89.3.txt	89.4.txt	89.5.txt	90.1.txt	90.2.txt	90.3.txt		91.1.txt				91.2.txt	91.3.txt	91.4.txt	11 1 10	91.J.KI	92.1.txt	92.2.txt	92.3.txt	92.4.txt 92.5 tvt	92.6.txt	00 7 tvt	22.1.101	
K2_Stop	1705,0		2550,0 2550,0	0,0662	1950,0	3200,0	1430,0	2690,0	1750,0	850,0	1550,0	1800,0	1870,0	0 1 1 0	655,0 18190.0	48710,0	77070,0	97640,0	102500,0	880,0	715,0	0,0001	0,0001	740,0	565,0	785,0	860,0 900.0	0,000			
K2_Start	1595,0		2380,0	0,0002	1830,0	2960,0	1360,0	2650,0	1630,0	810,0	1415,0	1625,0	1670,0	0.001	590,0 18060.0	48610,0	76690,0	97440,0	102200,0	720,0	650,0	0 302	0,667	680,0	520,0	675,0	695,0 640.0	0.010			
е K2	OW001	OW002 OW003	OW004	OW005	OW006	OX001	OX002 OX003	0X004	900XO	OX007 OX008	07001 02200	0Y003	0Y004 0Y005 0Y005	00100	PB001	PB002	PB002	PB002	PB002	PB003	PB005	PB000	PB008 PB008	PC001	PC003	PC004	PC005	-	PC007	PC008	
ting Typ.	_ :	zz		_ Z 1	-	-		_ 2	z _	_ Z		:	z _ 2	z .						_ z	<u> </u>		zz	_ z	: _				z _	- z	
ite Grac	8	00	¢, τ	- 0	4	9	4	9.0	0 m	0 10	0 2	2 - 1	0 0 0		1 ح	. 00 .	10	ით	2	2 0	0 4 r	0 •	- 0 0	2 5 0	94	ოთ	N +	10	0 0	20	

																						-			1	Ap	p	eı	n	li	X	3	•	Si	ite	e reco	rds
ote	ACK truck					ry slow trailer truck rd truck	iler truck	mper, cars		iler truck		w trailer truck	mper	iler truck		ctor	railer trucks	liar trick		her	iler truck, small truck		s	hker trailer truck	0	iler truck, car, mc	ck, car	ry slow trailer truck	ry slow truck	mper, car	er ceues truck, minitary truck b. Mercedes truck 2 cars		iler truck, tanker, car	lier truck	iler truck, car ort noise record		
stop Ne	Ŵ			-		9 G	tre	np		tre		SIC	qu	tre		tra	21	tra	211	ta	tre		ng .	tal	na	tra	tr	ve	ve	Ъ.	žĔ		tra	ura	tra sh		
veh					0010	3/00	5200			1600		3200		1700		1400	2200	1400	001	1900	1700			1700	200	1750	1500	2200	1400	960	1150		1600	2/80	1660		
veh_start					c	0 0	2500			300		540		550		430	250	170	011	370	250			480	170	720	360	0	400	190 î	350		160	067	380		
Uni_Stop					0000	2800	4200			1200		2050		1500		1100	1600	1400	001	1470	1600			1500	000	650	1500	1500	1300	700	900 560		900	1600	1350		
Uni_Start					0010	411	3680			006		1707		1220		707	1120	1000	0001	1050	720			1100 350	nec	470	705	1160	875	492	430		494 404	1345	1150		
Uni-axial					1.1 1.00	93.1.txt 93.2 txt	93.3.txt			94.1.txt		94.2.txt		95.1.txt		95.2.txt	96.1.txt	96.2 txt	101-7-00	97.1.txt	97.2.txt			98.1.txt	30.2.1XI	98.3.txt	99.1.txt	99.2.txt	99.3.txt	99.4.txt	99.5.1XI 99.6 txt		99.7.txt	99.8.IXI	99.9.txt		
K2_Stop					0 0001	1800,0 750.0	2480,0			1000,0						0'006	1100,0	1200.0	0'0071	1045.0	1200,0			0 002	0,007	940,0		1175,0	2155,0	585,0	625 ()		938,0				
K2_Start					0.01.01	1640,0 570.0	2285,0			840,0						640,0	825,0	950.0	0,000	825.0	703,0			0.001	n'noc	800,0		1030,0	2085,0	540,0	560 0		737,0				
K2	PD001	PD002	PD003	PD004	CUUUT	PD007	PD008	PE001	PE002	PE003	PE004		PE005 PE006		PF001	PF002 PF003	PG001	PG002	PH001	PH002	PH003	PH004	P1001		PID03	Ploo4		PJ001	PJ002	PJ003	P.1005	PJ006	PJ007		P.1008		
Type	_ :	z:	z	z.				_	z	_	z	_	_ z	_	z	_ z	_	z _	. z	:	_	z			_ Z	:_z	-	_	_			z			_ z		
Grading	10	0 0	0	0,	2,	N -	10	10	0	-	0	10	0 0	2	0	- 0	2	0 +	- 0	0 0	~	0	10	N 7	- c	0 10	, -	10	5	4 (r u	0	0 0	ΣI	۲ U		
Site	93							94						95			96		47	5			98				66										

																										A	p	p	e	nd	lix	3	3:	S	it	e	ľ	e	co	r	ds	5
Note	tanker	garbage truck, cars (poor one)	tanker, cars	2 trailer trucks		trailer truck tanker bis cars	slow trailer truck (interesting because of bounding posterior axis)			truck	dumper	tanker trailer truck	2 trailer trucks (second one)	trailer truck, small truck		trailer truck	trailer truck	tanker trailer truck	trailer truck	bau recording trailer truck (Lawson datafil saknas)	trailer truck, 3 cars	tanker, 3 cars (good one)		trailer truck, cars	trailer truck, cars	truck, tractor, trailer truck trailer truck	2 trailer trucks, many cars	trailer truck, cars, bus (bus)	MACK truck	trailer truck, IFA truck	bus	slow trailer truck			Nissan truck	aumper						
veh_stop		1300	1300	1500	0001	1900	2600			1300		1690	4700	1430		1030	1570	0101	1850		1820	940		1400	1900	1060	2800	1730		0171		2880			1200	1230						
veh_start		600	140	240	000	360 160	400	0		130		200	2540	0		0	400	010	3/0		230	140		0	300	D	1400	300	000	000		180			0 0	D						
Uni_Stop		1100	1100	600	0001	1300	2300			1100		1500	4200	2200		243	1500	0007	1800		1000	006		800	1500	0002	1150	3500	0000	0001		006			1000	0001						
Uni_Start	010	853	823	380	144	1038	1800			638		1035	3757	2020		0	1270	0101	1210		700	524		404	1190	G//L	850	3204	0101	0/71		200			375	360						
Uni-axial		100.1.txt	100.2.txt	100.3.txt	1001	100.5 txt	100.6 txt			101.1.txt		101.2.txt	101.3.txt	102.1.txt		102.2.txt	102.3.txt		103.1.txt		103.3.txt	103.4.txt		104.1.txt	104.2.txt	104.3.tXI	104.4.txt	104.5.txt		104.0.1X1		105.1.txt			105.2.txt	1X1.5.GUT						
K2_Stop	0.000	800,0		770,0	0,000	0,020				900,0		1100,0	1810,0	1750,0			1100,0				760,0	1000,0		1010,0	1135,0		1570,0		0 000	800,0		4560 35820.0	43530,0		850,0	1000,0						
K2_Start	0.001	596,0		630,0	746.0	0,617				699,0		874,0	1575,0	1612,0			957,0				640,0	806,0		720,0	880,0		1470,0		0,000	0,050		4420 35500.0	43340,0		610,0	0,250						
e K2	PK001	PK002		PK003		CUUNT		PK006	PL001	PL002	PL003	PL004	PL005 PL006	PM001	PM002		PM004	PN001		PN002	PN004	PN005	PN006	PO001	PO002	POOD3	PO004		PO005	PO007	PP001	PP002		PP003	PP004	60044	PFUUD					
Typ			_	_ 2	z -			. z	z	_	_	_	_ z	_ :	z z	<u> </u>	-		_ L	ш _	_	_ :	z					_		_ z	_	_		z		_ 2	z					
Grading	10		10	ოი	5 0	ч С	0 0	20	0	- -	10	2	ю 0	2	0 0	ი	-	10	r,	10	5	- (0	ں ع	со ^с	<u></u>	2 4	0	10	- 0	10	ო		0	(NC	D					
Site	100								101					102				103						104							105											

																			A	p	pe	n	di	X	3:	S	ite	e I	re	c	ords
Note	trailer truck Mercedes truck MAZ truck	bus 2 buscon (firset)	second bus	Mercedes truck dumber (noor one)	trailer truck	bus, car	SIL truck noise after SIL	trailer truck (very good)	trailer truck 2 trailers truck, car in between (first trailer truck)	second trailer truck		trailer truck, car		trailer truck	crane truck	noise before crane truck	duriper 2 buses	trailer truck, bus, trailer truck (last trailer truck)	truck, mc	namen uuuck MACK trailer truck	trailer truck, car (good one)	trailer truck	trailer truck, car	tanker trailer truck	concrete truck	bus, 2 trailer trucks (bus)	riast italier i tuck 2 dumpers (roaring engines)			KAMAZ dumper (poor one)	
veh_stop		1100	3320	650	2770	1050	2180	1630	1720	6120		1570					2030	6060	0676	1530	1670		2500	1900		1230	300				
veh_start		110	2050	120	0	280	0	300	0	3330		120					300	4360	160	0001	170		240	210		0	20				
Uni_Stop		400	2600	500	2300	750	800	1300	1400	5120		1000					1300	5600	000	300 1500	1000		2000	1500		1000	300				
Uni_Start		160	304 2320	180	2100	540	260	985	1030	4750		660					965	5090	660	300 860	660		1120	1080		547 10200	154				
Uni-axial		106.1.txt	106.2.txt	106.3.txt	106.4.txt	106.5.txt	106.6.txt	107.1.txt	107.2.txt	107.2.txt		107.3.txt					108.1.txt	108.2.txt	100.1 444	109.2.txt	109.3.txt		109.4.txt	109.5.txt		110.1.txt	110.1.1xt				
K2_Stop			auu,u 1735,0	750,0		845,0	800,0		1300,0			810,0					1100,0	2912,0		1230.0	1075,0		1290,0				1100,0				
K2_Start		GEF O	003,0 1685,0	625,0		740,0	665,0		1005,0			580,0					915,0	2800,0		715.0	0'006		730,0				775,0				
je K2	PQ001 PQ002 PQ003		PQ005	PQ006	PQ008	PQ009	P0011 P0011		PR001 PR002	PR002 PR003	PR004	PR005 PR006	PS001	PS003	PS004	PS004	BS006	PS007	PT001	PT002	PT003	PT004	PT006		PT008		PU001	PU002 PLI003	PU004	PU005	
ig Typ	Z	2 _ -				_ Z	2 _ Z	_		_ z	сш	_ Z	zz	<u> </u>	_ :	z.		-			_	_ 2	z _	_ :	z _		:	z _	. z	_	
Gradin	0 0 0 0	⊳ N 4	- ო	4 6	10	ഹറ	0000	+	з 1 0	10	0	0 0	0 0	10	10	0,	2 -	2	10	o -	7	90	10	10	0		2 0	0 6	20	10	
Site	106							107					108						109							110					

																			A	۱p	p	e	nd	liz	K.	3:		Sit	te	e re	ecord
Note	truck, various vehicles (not very good)	Nissan truck w. Sand	aumper bus	cargador (poor one) Mercodes truck (coor one)	bus	accelerating trailer truck, MACK truck	truck, small truck (not good) truck		bus, car MACK truck	International truck, car	and the second	solitary bus dumper, truck		truck	2 trailer trucks (first)	second trailer truck	trairer iruck, tariker noise afterwards		trailer truck trailer truck	namer upper noise in between trailer trucks	solitary bus	Mercedes truck (poor one)				bus (by the slue) Tovota truck. car	bus. 2 small trucks	Mercedes truck		dumper, 2 cars, van	
veh_stop		0277	14/0 1000		1060	2300	1300	000	990 1880	2030	0291	2230		1100	2160	7820	0080		2390 1310	22	1150	0000	2040			1040	1070	2160		2000	
veh_start		000	007		0	0	c	þ	0 0	0	00	30 170		200	0	5400	30		460 220	044	06	c	5			160	0	160		0	
Uni_Stop		000	900 659		400	1600	500	200	700 740	800	1000	1200		650	1200	6800	0001		1500		700	010	910			200	500	420		650	
Uni_Start		CL	326 326		185	1230	179		333 363	430	010	310 640		405	925	6377	00001		1040 050	000	360	100	204			334	100	265		350	
Uni-axial		*** * ***	111.1.1.txt 111.2.txt		111.3.txt	112.1.txt	112 2 txt	101-7-7	112.3.txt 112.4.txt	112.5.txt	111 1 011	113.1.1XI		114.1.txt	114.2.txt	114.2.txt	114.3.IXI		114.4.txt 114.5 tvt	14.0.14	115.1.txt	115 0 114	181.2.611			115.3.txt	116.1.txt	116.2.txt		116.3.txt	
K2_Stop			0,068		765,0	1300,0			635,0	750,0	0000	900,0 900,0			1010,0	3900,0			940,0 5460 0			0.010	040,0			855.0	800,0	610,0		4090,0	
K2_Start		0 223	0,110		620,0	1080,0			444,0	515,0	70E 0	635,0			890,0	3618,0			655,0 5300 0	0,0000		0 202	0'676			620.0	595.0	420,0		3875,0	
K2 K2	PW001 PW002 PW003 PW004	PW005	90004	PW007	PW009	PX001	PX002	PX003	PX004	PX005 PX006	PY001	PY 003	PY004 PY005		PZ001	PZ001	PZ002	PZ003	PZ004	PZ004		QA001	QA003	QA004	QA005	QA007	QB001	QB002	QB003	QB004 QB005	
1 Type	z _ z z	<u> </u>						. z		_ z	z .		zz	-	_		_ z	z		z	_		_z	z	z _		_	_	z	_ z	
Grading	0 1 0 0	90,	- 2	10	9 0	2	2,-	- 0	10	0 0	0 7	- 0	00	10	0		2 0	0	, 10 2	00	+	10	20	0	0	2- 2		10	0	0 10	
Site	111					112					113			114							115						116				

																							ŀ	٩ı	pp	e	nc	lix	x 3	3:	Sit	te	r	ec	or	ds
Note	Snd	iviel cedes it uck, cai KAMAZ truck: 2 cars. bus (bus)	trailer truck bus. car	trailor truck (roaring anging)	namer nuck (naming engine) Mercedes truck	Mercedes truck (poor one)	short noise register	truck	only second half of a trailer truck	trailer truck, 2 cars	SNG	bus and car simultaneously	trailer truck truck	trailer truck			bus, missan nuck bus (not that good)	Pepsi truck, small truck (pretty bad)	KAMAZ truck, van	slow trailer truck, car, dumper, car	bus, car			bus, car		truck	bus, car			dumper, truck solitary bus						
veh_stop	0011	1420	2380	2200	930 930			870	1870	1650	9/0	1100	1760	1950		1020	1440	1020	1400	2150	930			1360		1030	1650			1570						
veh_start	760	3000	220	1000	0			0	360	200	110	0	c	100		c	00	06	430	0	06			110		0	130			260						
Uni_Stop	010	3800 3800	3330	2500	630			610	820	1100	600	720	1200	760		002	600	600	1400	1720	950			200		500	270			1100						
Uni_Start	640	3310 3310	2870	2160	2007			140	480	111	3/0	235	ROD	530		006	285 285	383	805	1490	500			424		50	590			495						
Uni-axial	4474 444	117.2.txt	117.3.txt	110 1 144	118.2.txt			118.3.txt	118.4.txt	119.1.txt	119.2.txt	119.3.txt	120 1 txt	120.2.txt		100.0 104	120.4.txt	121.1.txt	121.2.txt	121.3.txt	121.4.txt			122.1.txt		122.2.txt	123.1.txt			123.2.txt						
K2_Stop	1076.0	795.0	2290.0	00044	750.0			0'006		840,0	830,0	1040,0		870.0		050.0	0,007	580,0	1060,0	3105,0				650,0		800,0	1050,0			1310.0	1					
K2_Start	1005.0	565.0	2050.0	0.0004	330.0			545,0		685,0	/00/	625,0		655.0		640.0	540,0 540,0	490,0	782,0	2900,0				510,0		605,0	905,0			745.0	1					
e K2	QC001	00003	QC004 QC005	0000	QD001	QD002	QD004	QD005		QE001	QE003	QE004	5	QF001	QF002	QF003	QF005	QG001	QG002	QG003		QG004 QG005	QH001	QH002	QH003 QH004	QH005	Q1001	Q1002	Q1003	Q1005						
Typ			. z _	- -		_ Z	zz	-	ш		_ z	_ z	-		zz	z _		-	_	-	_ :	zz	ш	_ 2	zz	-	_ 2	zz	z.							
Grading	10	2 ლ	00-	. c	ب ہ	9	00	2		10	- 0	00	10	10	0		- 2	3	2	10	-	00		~ (00	2	0 0	00	0	10						
Site	117			110	2					119			120	24				121					122				123									

																										A	ł	p)e	n	di	ix	3	: ;	Si	it	e	r	ece	or	ds	5
Note		truck, car	-	dumper, truck	bus, cai trailer trick			Coca Cola truck	Truck, 2 cars	missed rubber band	truck		truck, cars	bus, car	trailer truck	military truck, smaller vehicle (2nd vehicle)	truck, cars, truck (2nd truck)	sng	slow trailer truck	good noise record	truck, car	slow trailer truck (poor one)	pus		dumper, cars		snq	bus, cars	truck	very long noise record 2. certane trucks simultaneously	- yai zago navo sintananoany trailor truch (timurcho acina on)	trates truck (meworks going on) loud music	trailer truck (half off)	largely without music	tanker trailer truck. cars	bus (at full speed)	trailer truck					
veh_stop		2700		1200	1660	000		1190	1730		930		1130	1020	1980	1220	940	1360	2520		1060		1720		2470		1800	1230	2380	1650	1000	000	2300		3350	1270	1820					
veh_start		0		5 0	300	0		370	260		80		100	0	320	0	130	350	170		300		320		1290		006	420	140	580	170	D t	460		430	230	0					
Uni_Stop		1400		00/	1000	000		1000	710		550		625	630	1300	1820	2900	1160	2020		800		1000		300		1178	1150	1400	1600	0001	000	1400		1550	700	1000					
Uni_Start		980		315	330 635	200		772	550		320		348	310	960	1660	2763	620	1910		536		728		120		1037	800	1300	1110	001	001	1170		1280	460	800					
Uni-axial		124.1.txt		124.2.txt	124.3.1XI 124.4 txt			124.5.txt	124.6.txt		125.1.txt		125.2.txt	125.3.txt	125.4.txt	126.1.txt	126.2.txt	126.3.txt	126.4.txt		126.5.txt		126.6.txt		127.1.txt		127.2.txt	127.3.txt	127.4.txt	107 E tvt	100.0.121	120.1.141	128.2.txt		128.3.txt	128.4.txt	128.5.txt					
K2_Stop		1155,0	0.000	800,0 646.0	930.0 930.0	2000		790,0	675,0		665,0		730,0	800,0	955,0	1340,0	1885,0	890.0	1470,0		840,0		2355,0		1335,0		1015,0		925,0	080.0	50CE 0	0.000	11030,0	24160,0	1145.0	0'006	840,0					
K2_Start		1005,0		625,U	768.0	0.00		700,0	580,0		610,0		575,0	615,0	765,0	1240,0	1795,0	755.0	1400,0		735,0		2225,0		1155,0		930,0		800,0	885.0	505 0	0,000	10930,0	24120,0	1030.0	765,0	700,0					
K2	QL001	QL002	01.002	01003	QL004	QL006	QL007	QL008	QL009	QM001	QM002	QM003	QM004	300MQ	QM007	QN001	QN002 QN003	QN004	QN005	QN006	QN007	QN008 QN009	QN010	Q0001	QO002	00003 00004	QO005	QO006	QO007	00008		QP002	QP003	OP004	QP005	QP006	QP007	QP008				
Type	ш	_ 2	z.			. z	z	_	-	ш	_	z		_ z	_	_ 1	_ z	_	_	z	_	_ ш	_	z	_ :	zz	-	-	_	z _	- -	_ z	_	z			_	z				
Grading		ო ი	0 0	2	n -	- 0	0	9	4		e	0	-	0 10	4	4	m 0	5	10	0	-	10	10	0	4	0 0	0 00	-	10	0,	4 C	4 0	S	C	04	· -	5	0				
Site	124									125						126								127							100	071										

Appendix 5.1: Local risk maps

Appendix 5.2: Local risk maps

Appendix 5.3: Local risk maps

Appendix 5.4: Local risk maps

Appendix 5.5: Local risk maps

Appendix 5: Local risk maps

Appendix 6: Building response spectrum

The graph shows building response spectrums obtained from microtremor measurements on a two-story brick house in Masaya.

A is the spectrum obtained from the accelerometer mounted in one of the principal directions of the house and B is the spectrum obtained from the accelerometer mounted in the other direction.

A1 to A6 and B1 to B6 denotes spectrums obtained from six different time segments picked from the microtremor recordings.

PROM A is the average spectrum of recordings in direction A and PROM B is the average spectrum of direction B.

PROM is the average between direction A and B.
Appendix 7: Matlab codes for coherence and correlation

Run coherence analysis on all sites %sitecohe epgrad=1; %determine the grading of the event to run coherence analysis on at each site nrsites=0; coord: %script that read site coordinates and distances first=1; last=length(sites); for site=first:last %run through all sites sitenr=sites(site); %fetch site number from site vector [uni,tri,unistart,unistop,K2start,K2stop]=search(sitenr,epgrad); %find and read datafile C=isempty(tri); if C==0 %if there is a tri-axial record with event grading 1 run coherence on that co=isnan(K2start); if co==0 %code that estimates coherence between axes [Cxy,F1,Cxz,F2,Cyz,F3,xpick,ypick,zpick,N]=K2coherence(sitenr,tri,K2start,K2stop,slope); end; else %else look for event grading 2 epgrad=2; [uni,tri,unistart,unistop,K2start,K2stop]=search(sitenr,epgrad); co=isnan(K2start); if co==0 [Cxy,F1,Cxz,F2,Cyz,F3,xpick,ypick,zpick,N,]=K2coherence(sitenr,tri,K2start,K2stop,slope); end; epgrad=1; end: %Add the coherence to the summed coherence if site==first Cxysum=Cxy; Cxzsum=Cxz; Cyzsum=Cyz; else Cxysum=Cxysum+Cxy; Cxzsum=Cxzsum+Cxz; Cyzsum=Cyzsum+Cyz; end; %add coherence to matrix coxy(site,1:length(Cxy))=Cxy; coxz(site,1:length(Cxz))=Cxz; coyz(site,1:length(Cyz))=Cyz; nrsites=nrsites+1; end; %calculate average coherence Cxymed=Cxysum/nrsites; Cxzmed=Cxzsum/nrsites; Cyzmed=Cyzsum/nrsites; %plot coherence as a function of frequency and distance along the Pan Am imagesc(F1,dist,coxy) imagesc(F2,dist,coxz) imagesc(F3,dist,coyz) %plot average coherencies figure;plot(F1,Cxymed);title('Average x/y-coherence across all sites'); xlabel('Frequency(Hz)'),ylabel('Cxy'); figure;plot(F2,Cxzmed);title('Average x/z-coherence across all sites'); xlabel('Frequency(Hz)'),ylabel('Cxz'); figure;plot(F3,Cyzmed);title('Average y/z-coherence across all sites'); xlabel('Frequency(Hz)'),ylabel('Cyz');

Appendix 7: Matlab codes for coherence and correlation

Code that estimates coherence between axes

function [Cxy, F1, Cxz, F2, Cyz, F3, xpick, ypick, zpick, N] = K2 coherence (sitenr, tri, K2 start, K2 stop, slope);

slope=30; %size of start- and endslopes of hanning window wind=2*slope; startpoint=K2start-slope; if startpoint<1 startpoint=1; end N=K2stop-K2start; headr=[tri '.SHD']; xcomp=[tri '.001']; ycomp=[tri '.002']; zcomp=[tri '.003']; cd c:\altus\decomposed; %reading files and removing the dc-component [x]=textread(xcomp,'%f',N+wind,'headerlines',startpoint);x=x-mean(x); [y]=textread(ycomp,'%f',N+wind,'headerlines',startpoint);y=y-mean(y); [z]=textread(zcomp, '%f', N+wind, 'headerlines', startpoint); z=z-mean(z); %Envelope xh=hilbert(x);xenv=abs(xh); yh=hilbert(y);yenv=abs(yh); zh=hilbert(z);zenv=abs(zh); %finding peak [xval,xpeak]=max(xenv); [yval,ypeak]=max(yenv); [zval,zpeak]=max(zenv); firstpeak=min([xpeak,ypeak,zpeak]);%the peak of which component comes first? if firstpeak <= slope%slope must enter before the peak slope=firstpeak-1; wind=2*slope; end: w=hanning(wind); %hanning window xstart=x(firstpeak-slope:firstpeak-1).*w(1:slope); %applying hanning window to signal xend=x(N+1:N+slope).*w(slope+1:wind); xpick=[xstart' x(firstpeak:N)' xend']; ystart=y(firstpeak-slope:firstpeak-1).*w(1:slope); yend=y(N+1:N+slope).*w(slope+1:wind); ypick=[ystart' y(firstpeak:N)' yend']; zstart=z(firstpeak-slope:firstpeak-1).*w(1:slope); zend=z(N+1:N+slope).*w(slope+1:wind); zpick=[zstart' z(firstpeak:N)' zend']; fmax=sr/2; %nyquist nfft=1000; window=nfft/10; noverlap=window-1; [Cxy,F1]=mscohere(xpick,ypick,window,noverlap,nfft,sr);

[Cxy,F1]=mscohere(xpick,ypick,window,noverlap,nfft,sr); [Cxz,F2]=mscohere(xpick,zpick,window,noverlap,nfft,sr); [Cyz,F3]=mscohere(ypick,zpick,window,noverlap,nfft,sr);

```
Appendix 7: Matlab codes for coherence and correlation
Run correlation analysis for all sites
%sitecorr
firstsite=1; lastsite=128;
epgrad=1;slope=30;
for sitenr=firstsite:lastsite
  %find and read datafile
  [uni,tri,unistart,unistop,K2start,K2stop]=search(sitenr,epgrad);
  %read K2 components
  A=isempty(Libraries);
  B=isempty(tri);
  if (A | B)
    epgrad=epgrad+1;
    [uni,tri,unistart,unistop,K2start,K2stop]=search(sitenr,epgrad);
  end;
  if (A==0 & B==0)
      comp=isnan(unistart);
      co=isnan(K2start);
       if (comp==0 & co==0)
         [vert,wind]=unicorrpick(uni,unistart,unistop,slope); % code to pick out event for correlation from uni-axial
         [z,wind,slope]=K2corrpick(tri,vert,K2start,unistart,unistop,slope); %pick out event from K2
         [c,lags]=crosscorr(z,vert,sitenr);
                                                   % code to crosscorrelate the K2 vertical axis with the uni-axial
       end;
    end;
  end;
  epgrad=1;
end;
```

Appendix 8: Codes for calculating spectrogram Imaging spectrogram for K2 recordings

sitenr=28;epgrad=1;slope=50;

[uni,tri,unistart,unistop,K2start,K2stop,vehstart,vehstop]=search(sitenr,epgrad);

wind=2*slope; win=128;

sr=250; fmax=sr/2;

cd c:\Uniaxial\uniaxialdata;

[x,y,z,N,wind]=K2readev(sitenr,tri,K2start,K2stop,slope); %Code for reading K2 events [xpick,ypick,zpick,xval,yval,zval,xpeak,ypeak,zpeak]=evpick(x,y,z,slope,wind,N); %Code for windowingt K2 events

%calculating spectrogram [bx, fx, tx]=specgram(xpick,length(xpick),sr,win,win-1);

[freq,time]=size(bx);

%plotting recorded spectrogram figure;imagesc(tx,fx,log10(abs(bx)));axis([0 max(tx) 0 100]);axis xy;

title(['Site ' int2str(sitenr) ', horizontal motion spectrogram']);

figure;imagesc(ty,fy,log10(abs(by)));axis([0 max(ty) 0 100]);axis xy; title(['Site ' int2str(sitenr) ', horizontal motion spectrogram']);

figure;imagesc(tz,fz,log10(abs(bz)));axis([0 max(tz) 0 100]);axis xy; title(['Site ' int2str(sitenr) ', horizontal motion spectrogram']);

Imaging spectrogram for uni-axial recordings

first=28;last=first;epgrad=1;slope=30;

```
for sitenr=first:last
    [uni,tri,unistart,unistop,K2start,K2stop]=search(sitenr,epgrad);
B=isempty(Libraries);
if B
    epgrad=2;
    [uni,tri,unistart,unistop,K2start,K2stop]=search(sitenr,epgrad);
end;
if B==0
    wind=2*slope;
    win=64;sr=500;fmax=sr/2;
    %Code for reading and windowing uni-axial events
    [sr,vert,val,peak,y,unipick]=unievpick(uni,unistart,unistop,sitenr);
    u=[unipick zeros(1,win)];%zero padding at the end of signal
    %calculating spectrogram
    [bu, fu, tu]=specgram(u,2*win,sr,win,win-1);
    [freq,time]=size(bu);
```

```
%plotting recorded spectrogram
figure;
imagesc(tu,fu,log10(abs(bu)));axis([0 max(tu) 0 100]);axis xy;
title(['Site ' int2str(sitenr) ', file' uni]);
end;
epgrad=1;
end:
```

Appendix 9: Code for evaluating seismic risk earthquake acceleration in all directions

Risk evaluation for earthquake acceleration in all directions direction='vert'; siterisks; plotrisks; direction='south'; siterisks; plotrisks; direction='east'; siterisks; plotrisks;

Siterisks

%siterisks direction='vert'; name=['mn05' direction '.txt'];	%direction of earthquake r %name of earthquake file	notion
EQspec;	%script to create -72 earthquake spectrum	
building;	%script for calculating building response spectrum	
coord; dist=dist/1000; riskdecay=zeros(length(sites),1000);	%script to read site coordin %scaling distances to km	nates and distances between sites
firstsite=1; lastsite=length(sites);		
epgrad=1;	%event grade to search for	ſ
S=strcmp(direction,'south'); E=strcmp(direction,'east'); V=strcmp(direction,'vert');		
<pre>for site=firstsite:lastsite sitenr=sites(site);</pre>	%determine the site denon	nination
%find and read datafile for that site [uni,tri,unistart,unistop,K2start,K2stop]=sear	ch(sitenr,epgrad);	%read site data from excel sheet
A=isempty(Libraries); B=isempty(tri); if (A==0 & V) comp=isnan(unistart); if comp==0	%check if there is a uni-ax %check if there is a tri-axi %if there is a uni-axial rec %if there is an event picka	ial recording for that event al recording for that event ord and the direction is vertical
[sr vert val peak v uninick]=unievnick()	uni unistart uniston sitenr):	%read Uniavial event and nick out signal
[si,vei,vai,peak,y,umpick]=unevpick(uni,unistar,unistop,sitem), /iteau Omaxiai event and pick out si		
[st,H,w]=filtersignal(25,unipick,sr);unipick=sf;		%filter everything above 25 Hz
unidown = downsample(unipick,2);srdown=250;		%downsample to tri-axial sample rate
[Pssnorm,fs,Pss,sval,speak]=pspec(unidown,srdown,direction,30);		%calculate spectrum over entire event
vsitespec(site,1:length(Pssnorm))=Pssno	orm;	%Adding to spectrum matrix
%convolving all spectra and calculating risk attenuation [Avr,Avr1,tu,fu,df,dtu,maxtime,vr,sispec,esispec,esib]=integraldecay(uni,unipick,sitenr,epgrad,e,f,t,espec,fb25,bspec, dist,site); %code for convolving spectra and calculating risk attenuation timeaxes(site,1:length(tu))=tu; timelengths(site)=length(tu);		
riskdecay(site,1:length(Avr))=Avr;	%Adding the horizontal risk attenuation to matrix	

%calculating convolved power spectrum over whole eventconspec=sum(esib,2);Pesib=conspec.*conj(conspec);%power spectrum

siteindex(site)=sum(Avr).*dtu;

148

%Adding the vertical local risk to vector

vsitecon(site,1:length(Pesib))=Pesib; %adding it to spectrum matrix end; else %if there is no uni-axial vertical record take that of the tri-axial if B %if there is no tri-axial with epgrad 1 either epgrad=2; %in lack of epgrad 1 (event grading) for the tri-axial % find and read datafile with epgrad 2 instead [uni,tri,unistart,unistop,K2start,K2stop]=search(sitenr,epgrad); end: co=isnan(K2start); if co==0 [t,sr,x,y,z,N,wind,slope]=K2readev(sitenr,tri,K2start,K2stop); %read K2 events [xpick,ypick,zpick,xval,yval,zval,xpeak,ypeak,zpeak,slope]=evpick(x,y,z,slope,wind,N); %pick out signal %lowpass filter signal at 25 Hz [sf,H,w]=filtersignal(25,xpick,sr);x=sf; [sf,H,w]=filtersignal(25,ypick,sr);y=sf; [sf,H,w]=filtersignal(25,zpick,sr);z=sf; %calculate risk attenuation [K2xmaxtime,K2ymaxtime,K2zmaxtime,Avr,Ahrx,Ahry,exb,eyb,ezb,tx,ty,tz,dtx,dty,dtz]=K2integraldecay(uni,tri,x,y, z,sitenr,epgrad,dist,site,sr,e,f,espec,S,E,V,fb25,bspec); % code for convolving spectra and calculating risk attenuation K2xtimeaxes(site,1:length(tx))=tx; K2ytimeaxes(site,1:length(ty))=ty; K2xtimelengths(site)=length(tx); K2ytimelengths(site)=length(Libraries); %calculating convolved power spectrum over whole event xspec=sum(exb,2); %summing up frequency components over time Pxx=xspec.*conj(xspec); %power spectrum yspec=sum(eyb,2); %summing up frequency components over time Pyy=yspec.*conj(yspec); %power spectrum zspec=sum(ezb,2); %summing up frequency components over time Pzz=zspec.*conj(zspec); %power spectrum if (S | E)%calculate spectrum over entire event from x-axis [Pssnorm,fs,Pss,sval,speak]=pspec(x,sr,direction,30); %Adding to spectrum matrix xsitespec(site,1:length(Pssnorm))=Pssnorm; %calculate spectrum over entire event from y-axis [Pssnorm,fs,Pss,sval,speak]=pspec(y,sr,direction,30); %Adding to spectrum matrix ysitespec(site,1:length(Pssnorm))=Pssnorm; if S xsoriskdecay(site,1:length(Ahrx))=Ahrx; %Adding the horizontal risk attenuation to matrix ysoriskdecay(site,1:length(Ahry))=Ahry; %Adding the horizontal local risk to vector xsositeindex(site)=sum(Ahrx).*dtx; ysositeindex(site)=sum(Ahry).*dty; xsositecon(site,1:length(Pxx))=Pxx; %adding power spectrum to spectrum matri x ysositecon(site,1:length(Pyy))=Pyy; end: if E xeariskdecay(site,1:length(Ahrx))=Ahrx; %Adding the horizontal risk attenuation to matrix yeariskdecay(site,1:length(Ahry))=Ahry; xeasiteindex(site)=sum(Ahrx).*dtx; %Adding the horizontal local risk to vector yeasiteindex(site)=sum(Ahry).*dty;

```
xeasitecon(site,1:length(Pxx))=Pxx;
yeasitecon(site,1:length(Pyy))=Pyy;
                                                                                                                                                                                                                                                      %adding power spectrum to spectrum matrix
                                  end;
                          end;
                         if (A & V)
                                  %calculate spectrum over entire event
                                  [Pssnorm,fs,Pss,sval,speak]=pspec(z,sr,direction,30);
                                  %Adding to spectrum matrix
                                  vsitespec(site,1:length(Pssnorm))=Pssnorm;
                                  %calculating vertical risk attenuation from K2
                                  riskdecay(site,1:length(Avr))=Avr;
                                  %calculating vertical local risk from K2
                                  siteindex(site)=sum(Avr).*dtx;
                                  %adding power spectrum to spectrum matrix
                                  vsitecon(site,1:length(Pzz))=Pzz;
                         end;
                 end;
                 epgrad=1;
         end;
 end;
 Calculating instantaneous risk attenuation from uni-axial
 function [Avr, \bar{A}vr1, tu, fu, df, dtu, maxtime, vr, sispec, esispec, es
 5,bspec,dist,site);
 win=128;
                                                                                                                                                                    %window length to apply
gain=1; sr=500;
nfft=2*win;
 clear esispec esib;
```

%calculating spectrogram

maxtime=max(tu); dfu=fu(2)-fu(1); [m,n]=size(bu);

[bu, fu, tu]=specgram(unipick,nfft,sr,win,win-1);

dtu=tu(2)-tu(1); fulen=ceil(25/dfu+1); sispec=bu(1:fulen,1:n); fu=fu(1:fulen); [m,n]=size(sispec);

%removing frequencies over 25 Hz from spectrogram

fsum=sum(sispec,1); Au=fsum.*dfu; [Auval,Aupeak]=max(Walther et a fact=1/Auval; sispec=sispec(1:length(fu),Aupeak [mu,nu]=size(sispec); tu=tu(1:nu);	<pre>%normalizing spectrogram so that integrated spectrum amplitude is one at impact %integrated spectrum curve d.); %finding where it peaks %factor to normalize spectrum :n).*fact; %normalized spectrogram</pre>
sispec=interp2(tu',fu,sispec,tu',f); spectrum	%interploating so that spectrogram has the same df as earthq.
[k,l]=size(sispec);	
<pre>for p=1:l; esispec(1:k,p)=espec(1:k).*sispe</pre>	ec(1:k,p); %convolving with earthquake vertical spectrum
end;	
g=1; %interpo	lating so that convolved spectrogram has the same df as building spectrum

%convolving with building spectrum

while f(g)<fb25(1)
g=g+1;
end;
f=f(g:length(f));
esispec=esispec(g:length(f),1:l);
bspec=interp1(fb25,bspec,f);
[k,l]=size(esispec);
maxfreq=max(f);</pre>

for p=1:l; esib(1:k,p)=bspec(1:k).*esispec(1:k,p);

end;

vr=abs(esib);

%real spectrum

%calculating risk decay

%cutting the curve before peak

df=f(2)-f(1); fsum=sum(vr,1); Avr1=fsum.*df; maxfreq=max(f); maxtime=max(tu);

[Avrval,Avrpeak]=max(Avr1); Avr=Avr1(Avrpeak:length(Avr1));

[lowest,pt]=min(Avr); Avr=Avr1-lowest; Avr(pt:length(Avr))=0;

tu=tu(1:length(Avr));

%new time axis

%remove noise floor

Calculating instantaneous risk attenuation from the K2 accelerograph

function[K2xmaxtime,K2ymaxtime,K2zmaxtime,Avr,Ahrx,Ahry,exb,eyb,ezb,tx,ty,tz,dtx,dty,dtz]=K2integraldecay(u ni,tri,x,y,z,sitenr,epgrad,dist,site,sr,e,f,espec,S,E,V,fb25,bspec); win=64;%length of STFT window

clear exb eyb ezb ex ey ez;

[bx,fx,tx]=specgram(x,length(x),sr,win,win-1); %spectrograms [by,fy,ty]=specgram(y,length(y),sr,win,win-1); [bz,fz,tz]=specgram(z,length(z),sr,win,win-1); [m,n]=size(bx); K2maxtime=max(tx);

dfx=fx(2)-fx(1);dtx=tx(2)-tx(1); %removing frequencies over 25 Hz from spectrogram fxlen=ceil(25/dfx+1); bx25=bx(1:fxlen,1:n);by25=by(1:fxlen,1:n);bz25=bz(1:fxlen,1:n); fx=fx(1:fxlen); [m,n]=size(bx25);

%normalizing spectrogram so that integrated spectrum amplitude is one at %impact fxsum=sum(bx25,1);fysum=sum(by25,1);fzsum=sum(bz25,1); Ax=fxsum.*dfx;Ay=fysum.*dfx;Az=fzsum.*dfx; %integrated spectrum curve [Axval,Axpeak]=max(Ax);[Ayval,Aypeak]=max(Field et al.);[Azval,Azpeak]=max(Gazetas); %finding where it peaks factx=1/Axval;facty=1/Ayval;factz=1/Azval; %factor to normalize spectrum six=bx25(1:length(fx),Axpeak:n).*factx; %normalized spectrogram siy=by25(1:length(fx),Axpeak:n).*factz; [mx,nx]=size(six);[my,ny]=size(siy);[mz,nz]=size(siz); tx=tx(1:nx);ty=ty(1:ny);tz=tz(1:nz);

%interpolating so that spectrogram has the same df as earthq. spectrum six=interp2(tx',fx,six,tx',f); siy=interp2(ty',fx,siy,ty',f); siz=interp2(tz',fx,siz,tz',f); %seeing to that convolved spectrogram and building spectrum starts at same %frequency g=1; while f(g)<fb25(1) g=g+1; end: f=f(g:length(f));maxfreq=max(f);df=f(2)-f(1); bspec=interp1(fb25,bspec,f); %interpolating so that spectrogram has the same df as %building spectrum if V Ahrx=0;Ahry=0;exb=0;eyb=0;K2xmaxtime=0;K2ymaxtime=0;dtx=0;dty=0; [k,l]=size(siz); for p=1:1; ez(1:k,p)=espec(1:k).*siz(1:k,p);%convolving with vertical earthquake spectrum end; ez=ez(g:length(f),1:l); [k,l]=size(ez); for p=1:1; ezb(1:k,p)=bspec(1:k).*ez(1:k,p);%convolving with building spectrum end; vr=abs(ezb); %real spectrum fzsum=sum(vr,1); %calculating risk decay Avr1=fzsum.*df; maxfreq=max(f); [lowest,pt]=min(Avr1); %remove noise floor Avr=Avr1-lowest; Avr=Avr(1:pt); [Avrval,Avrpeak]=max(Avr); %cutting the curve before peak Avr=Avr(Avrpeak:length(Avr)); tz=tz(1:length(Avr)); K2zmaxtime=max(tz); dtz=tz(2)-tz(1);else Avr=0;ezb=0;K2zmaxtime=0;dtz=0; [k,l]=size(six); %convolving with horizontal earthquake spectrum for p=1:1; ex(1:k,p)=espec(1:k).*six(1:k,p); end; [k,o]=size(siy); for p=1:o; ey(1:k,p)=espec(1:k).*siy(1:k,p); end; ex=ex(g:length(f),1:l); ey=ey(g:length(f),1:o);

[k,l]=size(Libraries);

for p=1:1; %convolving with building spectrum Appendix 9: Code for evaluating seismic risk exb(1:k,p)=bspec(1:k).*ex(1:k,p); end; [k,o]=size(ey); for p=1:o; eyb(1:k,p)=bspec(1:k).*ey(1:k,p); end;

hrx=abs(exb);hry=abs(eyb); %real spectra

fxsum=sum(hrx,1);fysum=sum(hry,1); %calculating risk decay Ahrx=fxsum.*df;Ahry=fysum.*df;

[Ahrxval,Ahrxpeak]=max(Ahrx); %cutting the curve before peak Ahrx=Ahrx(Ahrxpeak:length(Ahrx)); [Ahryval,Ahrypeak]=max(Ahry); Ahry=Ahry(Ahrypeak:length(Ahry));

[lowestx,pt]=min(Ahrx); Ahrx=Ahrx-lowestx; %removing noise floor Ahrx=Ahrx(1:pt); [lowesty,pt]=min(Ahry); Ahry=Ahry-lowesty; Ahry=Ahry(1:pt);

tx=tx(1:length(Ahrx)); %new time axes dtx=tx(2)-tx(1); K2xmaxtime=max(tx); ty=ty(1:length(Ahry)); dty=ty(2)-ty(1); K2ymaxtime=max(Libraries); end;