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Abstract

Nitrogen in the green biomass of vegetation plays an important role in many biochemical
processes in the terrestrial ecosystems, and often used as an input parameter to ecosystem
models. It strongly influences photosynthetic rate, decomposition, and
evaportanspiration, to name a few. Measuring nitrogen in field involves a lot of time and
money, and it would be valuable if this part of the data collection could be done with
remotely sensed data. In recent research, different methods has been used, statistical
relationship, empirical/mathematical approaches or more sophisticated with the use of
advance reflectance modeling, that all attempts to estimate or find a connection to
nitrogen through remotely sensed data. Most of them have the thing in common that they

use high-resolution reflectance data, so called hyper-spectral data.

In this study an investigation was done to find out how useful the spectral information
from Landsat TM is, and if the reflectance values has any connection the needle nitrogen
concentration of Norway spruce (Picea abis (L.) Karst.). Moreover, an evaluation of the
PROSPECT model was done, both to find out the importance of each input parameter
and to find out how they affect the reflectance. A fieldwork was carried out in the spring
of 2000 where ten different Norway spruce stands in Scania were visited and various

parameters measured, including the concentration of nitrogen in the needles.

No correlation was found between the reflectance data and nitrogen in the needles, the
highest correlation coefficient was 0.48 (N.S). However, in a stepwise regression two TM
channels were selected, TM1 and TM2, with an R?-value of 0.72. This relationship, based
on other studies, is assumed to origin from the correlation between nitrogen and

chlorophyll and not the direct relation between reflectance and the needle nitrogen.

The evaluation of the PROSPECT model showed that nitrogen concentrations in leaves
have little effect on the simulated reflectance. The biggest influence on the reflectance
seems to be the active number of cell layers in the leaf and the leaves’ chlorophyll

concentration.
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A gradient from west to east in the leaves nitrogen concentration was found, this with a
regression analysis between easting coordinate (X) and nitrogen concentration (R* =
0.77). The gradient could not be observed in the remotely sensed data.
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Sammafattning

Kvévekoncentrationen i den grona biomassan hos vegetation ar involverad i manga olika
biokemiska processer i det terrestra ekosystemet. Till exempel sd paverkar den
fotosyntesen, formultning och evaportanspirationen, for att namna nagra. Darfor ar den
ocksa ofta en av grundparametrarna och drivkraften i olika ekosystem-modeller. Att méata
kvéavehalten hos blad/barr i falt kan vara bade tidsédande och dyrt, varfor det vore
vardefullt att kunna uppskatta den med hjéalp av fjarranalys. | olika studier har man
anvant: statistiska-, empiriska/matematiska metoder, eller lite mer sofistikerade
reflektansmodeller. Alla vilka &mnar uppskatta eller hitta samband mellan reflektans och
kvéavekoncentrationen i 16v. De flesta av studierna har den gemensamma namnaren att de

anvant sig av hog upplosande reflektansdata, eller sa kallad hyper-spektral data.

| denna studie har en undersokning utforts som utvéarderar hur lamplig den spektrala
information man kan tillhandahalla fran Landsat TM &r. Och ifall dess reflektansvérden
har nagon koppling till kvavehalten i barren hos gran (Picea abis (L.) Karst.). Ut6ver det
har dven en utvéardering av reflektansmodellen PROSPECT gjorts, bade for att fa veta
vilka parametrar som &r viktigast och for att se hur de paverkar den modellerade
reflektansen. Ett faltarbeta utfordes pa varen ar 2000 dar tio stycken granskogsbestand

besoktes i falt. Olika bestandsparametrar mattes, daribland kvavehalten hos barren.

Ingen korrelation kunde faststallas mellan reflektansdatan och kvavehalten i barren, den
hogsta korrelations koefficienten var 0.48 (N.S). Daremot sa gjordes dven en stepwise
regression dér tvd TM kanaler valdes ut, TM1 och TM2, detta med ett R*-varde pa 0.72.
Detta samband, baserat pa andra studier, anses komma fran korrelation mellan kvave och

klorofyll och inte det direkta férhallandet mellan reflektans och kvéve i barren.

Utvarderingen av PROSPECT modellen visade att kvdvehalten hade véldigt litet
inflytande pa den simulerade reflektansen. Det storsta inflytande hade antalet aktiva

cellager i 16vet och dess klorofyllkoncentration.
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En gradient fran vaster till oster i bladets kvavehalt har upptackts, detta med hjélp av
regressionsanalys mellan X-koordinat och kvave koncentration (R? = 0.77). Gradienten

kunde inte observeras i fjarranalys datan.
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1. Introduction

Many of the biogeochemical processes, such as photosynthesis, net primary production,
evapotranspiration, and decomposition are related to the content of chlorophyll, nitrogen,
water, lignin, and cellulose in leaves (Dawson et al., 1999; Jacquemoud et al., 1996). For
example, a single leaf with high photosynthetic rate has high biochemical concentration,
such as chlorophyll or nitrogen concentration (Endo et al., 2000). The different
biochemical concentrations and the processes are used in models of forest ecosystems
(Curran et al., 2001), for yield prediction in agricultural systems, (Hosgood et al., 1995)
for estimation of vegetation stress, and to identifying tree species (O’Neill et al., 2002).
By using remote sensing to estimate the concentrations of the biochemical contents in the
leaves, one would be able to collect data over a wider ranger, both faster and eventually
cheaper then a normal data collection through fieldwork (Serrano et al., 2002; Kokaly &
Clark, 1999).

In recent research, different methods have been used for estimating nitrogen (surrogate of
protein (Jacquemoud et al., 1996)), or other biochemical constituents, often with the use
of a hyper-spectral data, like the data from AVIRIS sensor (Airborne Visible / Infrared
Imaging Spectrometer). Nitrogen data (and/or other biochemical constituent) are
collected in the field and processed together with hyper-spectral data, for example with
the use of multiple stepwise regressions. Kokaly and Clark (1999) received good results
correlating biochemical data from dried leaves and reflectance data gathered with a
hyper-spectral sensor. For the investigation of reflectance properties of leaves with
different biochemical composition, theoretical models are useful. One example of such a
model is PROSPECT by Jacquemoud & Baret (1990) and Jacquemoud et al. (1996).
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1.1. Aim

The aim with this study is to investigate how nitrogen in the needles of Norway spruce
(Picea abis (L.) Karst) influences the canopy reflectance observed with Landsat 5

Thematic Mapper (TM). Partial goals were formulated:

- To obtain correct reflectance values at ground level through an atmospheric
correction scheme

- To investigate the theoretical response of the reflectance, due to nitrogen
concentration, with use of a radiative transfer model

- To find statistical relationship between various field data and the reflectance
measured with remotely sensed data.

1.2 Chapter summary

This summary aims to give the reader a brief outline of the different chapters in this
essay. Chapter 2 contains the theoretical background concerning leaves, leaf reflectance,
and canopy reflectance. Chapter 3 describes some of the methods used when trying to
estimate the biochemical concentrations from leaves using remotely sensed data. The
different processes to archive a correct satellite image is described in chapter 4. Chapters

5, 6, and 7 contain methods, results, and discussion from this study respectively.

10
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2. Leaf structure

To understand spectral properties of vegetation, knowledge of the internal structure of
individual leaves is needed. In Figure 1, a cross section of a typical leaf is demonstrated.
The upper layer of the leaf, called upper epidermis, is made up of specialized cells
arranged so that no gaps or openings exist. On the surface of these cells there is a wax
layer called cuticule, which prevents moisture loss from within the leaf. A similar layer as
the upper epidermis exists on the underside of the leaf, called lower epidermis. The only
difference is the stomates, and the two guard cells on each stomata, that control the
gaseous transport to and from the leaf and to regulate the leaf’s temperature. Below the
upper epidermis is a layer called palisade tissue that is build up by vertically elongated
cells. Palisade cells include chloroplasts, which are cells composed of chlorophyll and
other pigments that are active in the photosynthesis. Under the palisade tissue, there is a
layer of spongy mesophyll tissue, with irregular shaped cells separated by interconnected
openings. Here processes involving carbon dioxide and oxygen exchange occur, which is

necessary for photosynthesis and respiration (Campbell, 1996).

CUTICLE
—l4— UFPPER EPIDERMIS

AT T . 3
;';’J’ PALISADE LAYER

&
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." "..\;’.. -‘.Q“, ‘.‘"g 4— SPONGY TISSUE
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A—
AND CUTICLE

STOMATES AND GUARD CELLS

Figure 1. A cross section of a typical leaf (Campbell, 1996).

11
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2.1. Spectral behavior of a leaf

The spectral response of a leaf is mainly controlled by the photosynthetic pigments
(chlorophyll a, chlorophyll b and carotenoids) in the visible part (400-700 nm) of the
spectrum (Danson, 1995). The pigments absorb both blue and red light for use in the
photosynthesis, while somewhat more of the green light is reflected. Eventually 70-90%
of the incoming radiation in blue and red wavelengths is absorbed (Campbell, 1996). The
internal structure of a leaf is the cause of the near infrared (700-1300 nm) reflectance of
living vegetation (Campbell, 1996), especially the arrangements and the number of air
spaces between the cells are important (Danson, 1995). Both the epidermis and the
cuticle are very transparent to infrared radiation and the majority of the radiation is
transmitted to the spongy mesophyll tissue. The spongy mesophyll tissue scatters the
infrared radiation both upward and downward and only a fraction is absorbed (Campbell,
1996). In some regions, both in near infrared and middle infrared (1300-3000 nm), the
reflectance is affected by leaf water content. The water absorption bands are located at
approximately 1950, 1450, 1175 and 970 nm. Absorption also occurs in different
wavelengths by other biochemical constituents in leaves such as protein, lignin and
cellulose (Danson, 1995). Nitrogen has been reported to have several different absorption
features throughout the spectrum; most of them are located in the infrared- and middle
infrared wavelengths. Curran & Kupiec (1995) suggests 1020, 910 and 2350 nm and
Wessman 1510, 1980, 2060, 2180 and 2300 nm as the main absorption wavelength’s for

nitrogen/protein.

2.2. Canopy reflectance

To explain the spectral characteristics of a canopy not only information of the leaves’
spectral behavior is needed, but also about several other factors. The canopy consists of
many individual trees; each tree has a set of branches and each branch a set of leaves. The
leaves may differ in size, orientation and shape, creating, together with the ground,
shadowing and the structural variables as stems and branches, a complex structure of

elements that influence the canopy reflectance as whole. The shadowing from the upper

12
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leaves decreases the overall reflectance of the canopy, but the reduction is not uniform
over the spectrum. In a canopy, the decrease of reflectance may be as high as 70 % in the
visible part of the spectrum while only 30% in the near infrared part, compared to a
single leaf. This as the incoming radiation has to travel through the canopy and the visible
part is affected by chlorophyll absorption while the leaves transmit or reflect the radiation

in near infrared to a higher grade (Campbell, 1996).
Danson (1995) describes the most important factors affecting the canopy reflectance as:

- Leaf area index (LAI), the area leaf over an area ground (m%/m?

- Leaf optical properties — reflectance, transmittance and absorptance

- Leaf location in three-dimensional space - vertical and horizontal distribution of
leaves and degree of ‘clumping’

- Leaf orientation in three-dimensional space — leaf inclination angle distribution
and leaf azimuth angle distribution

- Reflectance of the understorey vegetation, soil or other background

- Geometry of illumination and view.

One important variable not mentioned above is canopy cover. Generally, in agricultural
crops, the LAI and canopy cover are closely related, but in a forest, these variables may
differ substantially. The canopy cover controls the amount of understorey vegetation or

soil that is visible from above (Danson, 1995).

Other stand variables such as stand density, age, tree height and basal area may be
correlated to the canopy reflectance. However, they are often regarded to have a non-
casual relationship as they usually are closely related to LAI or canopy cover (Danson,
1995).

13
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3. Estimation of leaf biochemical parameters from reflectance

3.1. Mathematical approach

The mathematical approach to determine leaf biochemical constituents involves several
different methods. One method, called spectral mixture analysis, compresses the spectral
information p(A) of a complex target into independent sources of variability, the end-
members (Jacquemoud, 1993). At leaf level, one considers the specific absorption
coefficients kij(A) of chlorophyll, water, protein, cellulose, lignin, and more as end-
members and the coefficients C; are the concentrations to retrieve. The concentrations of
C;i are the values that produce the best fit of p(A) (Jacquemoud & Ustin, 2001). For

further description of the technique, Goetz et al. (1990) is recommended.

Another technique that is frequently used is multiple stepwise regression (Zar, 1996).
Here, a direct regression equation is established between leaf reflectance (or
transmittance or absorptance) at a few wavelengths p(A;), and the biochemical content of
one of its constituents C. The wavelengths selected by the procedure are those that
minimize the RMSE (Root Mean Square Error) of the regression. This method requires
data for both establish the regressions (calibration set) and a data set (validation set) to
validate them (Jacquemoud & Ustin, 2001). Curran and Kupiec (1995) published good
results using this technique when relating high-resolution reflectance data from a forest

canopy and different concentrations of foliar biochemical’s.

Neural network is another method that has shown potential to estimate biochemical
parameters in a leaf (Jacquemoud & Ustin, 2001). The algorithms, caricature the way
information is processed in biological networks of neurons. They are defined mainly by
the type of neuron used, the way they are organized and connected (the network
architecture) and the learning rule. Neural networks have been recognized as a very
powerful tool to discriminate between variables or to relate one set of variables to another
(Baret, 1995).

14
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3.2. Modeling the canopy reflectance

With use of models, one tries to simulate the interaction between solar radiation and the
different vegetation elements. The models are built by the known processes, incorporate
the information into a model, which relates the vegetation characteristics and spectral
properties (as reflectance or spectral signatures). As described in chapter 2.2 the
reflectance of a canopy depends on the canopy characteristics or a set of parameters, here
C, wavelength (A), the direction of the incident solar radiation, and the view direction

(Goel, 1989). This can be described symbolically by:

S=R(t;\;0,;0,:6,;,;C) (1)

where:

S = spectral signature or reflectance of the canopy

t = the emergence time of the plant (temporal change in the vegetative spectral signature)
A = wavelength of the incident solar radiation

@ and ¢ = solar zenith and azimuth angles, respectively

6, and ¢, = view zenith and azimuth angles, respectively

C = canopy parameter (S)

R = the functional dependence of S on these parameters

However, the value of C is the one to determine from the remotely sensed data (S) and
the equation (Eq. 1) represents the direct approach, thus the equation need to be inverted.
This is done by finding the merit function F that best represent the inversion of the
model. The process to find F is usually complicated mathematically and may take a lot of

computation time (Goel, 1989).
3.2.1 PROSPECT and other leaf optical models

Sometimes a sub-model is included in canopy reflectance models that model the leaf

optical properties. The simplest leaf optical models simulate the leaf as a single scattering

15
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and absorbing layer. While the most advanced describes the cells in detail with
parameters like shape, size, position, and biochemical content (Jacquemoud & Ustin,
2001). Leaf optical models can be separated into four different types (Fig. 2a-d):

- Plate models (Fig. 2a), which represent the leaf as one or several absorbing plates
with rough surfaces giving rise to isotropic diffusion

- N-flux models (Fig. 2b), which considers the leaf as a slab of diffusing and
absorbing material

- Stochastic and other radiative transfer models (Fig. 2c), where the leaf is
partitioned into different tissues and its optical properties is simulated by a
Markov chain, or eventually based on the radiative transfer equation

- Ray tracing models (Fig. 2d), that require a detailed description of the internal
leaf structure and the optical constants of leaf material

a) b)
l Arp

s = scattering coefficient
k = absorption coefficient

)

Figure 2. Schematic description of different leaf optical models, a) Plate model, b) N-flux model, c)
Stochastic and radiative transfer model, and d) Ray tracing model (Jacquemoud & Ustin, 2001).

16
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The PROSPECT model (Jacquemoud & Baret, 1990; Jacquemoud et al., 1996) is an
example of a leaf optical model based upon the plate model in Figure 2a. This radiative
transfer model calculates the leaf hemispherical reflectance and transmittance in the
wavelengths 400 nm to 2500 nm. In the early version (Jacquemoud & Baret, 1990), the
input parameters were: N — the parameter that characterizing the leaf mesophyll structure,
Cab - chlorophyll (a+b) concentration and Cw — water depth. Later the model was pre-
defined (Jacquemoud et al., 1996) to include other biochemical constituents, Cp — protein
concentration and Cc — lignin and cellulose concentration. The model is invertible and
has been successfully incorporated in canopy reflectance models as LIBERTY (Dawson
et al., 1998), Forest reflectance model (Kuusk & Nilson, 2000) and SAIL (Jacquemoud,
1993).

4. Preprocessing of a satellite image

4.1. Radiometric and atmospheric correction of satellite data

The purpose with a radiometric correction is to convert the DN-values (digital numbers)
to absolute radiance values. Absolute radiance is required when utilizing temporal data
that may come from different sensors (normalize) or when using radiation as input to
mathematical/physical models. The relation between acquired DN-values and the
radiation is usually linear, an example of this linear relationship for Landsat-TM can be

seen in Figure 3a. It can also be described with the formula (Lillesand & Kiefer, 2000):

DN =G*L+B )

where

DN = digital number

G = channel gain

L = spectral radiation measured
B = channel offset

17
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By inversion of the radiometric response (Fig. 3b) the radiance may be calculated with:

L—< L max; * L min;
DN max

> DN + L min; A3)

where

L = spectral radiance

DN = digital number

DNmax = max value a DN can have
Lmin; = radiance at DN-value 0, channel i

Lmax; = radiance at max DN-value, channel i

Lmax and Lmin are known values for a specific sensor and the radiance unit is expressed

as mW/cm? sr pum (Lillesand & Kiefer, 2000).

LMAX [ === = s = mmm e e e mm e e e ey

LMAX — LMIN
Slope = 255

DN = Digital number

L = Spectral radiance ———m=

LMIN

LMIN LM# 1] 255

1. = Spectral radiance e g LT = LG8l UMD

Figure 3. The linear relationship between Landsat TM’s DN-values and radiation, a) normal relationship,
and b) inverted relationship (Lillesand & Kiefer, 2000).

Another part of the radiometric correction is to calculate at-satellite reflectance from the
radiance values. This operation corrects for different sun-zenith angels and a seasonal
change in the earth-sun distance. At-satellite reflectance can be calculated with
(Markham & Baker, 1986):

18
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pp)\ - Tt Li d 2
Esun; cos(v) )

where

ppA = Unit less effective at-satellite reflectance

L; = Spectral radiance (mW/cm? sr um) from Equation 3

d = Earth-sun distance in astronomical units

Esun; = Mean solar exoatmospheric spectral irradiance in mwW/(cm? pm)

V = Solar zenith angle in degrees

4.1.1 Atmospheric effects and its correction

The atmosphere can influence the direct solar radiation and the radiation reflected back
by targets on earth’s surface, thus changing the signal received by a satellite sensor
(Kaufmann, 1989). The photons can be lost because of two processes: absorption and
scattering. Only a fraction of the photons coming from the target reaches the satellite
sensor, 80% at 0.85um and 50% at 0.45um. This makes the target look less reflecting
(Vermote, 1997a).

Vermote (1997a) describes the different processes how the photons are scattered by the

atmosphere on the Sun-surface and surface-satellite path:

- Some of the photons, traveling from the sun towards earth, will not reach the
surface and are backscattered toward space. As this signal never reach the earth it
will be independent of the surface reflectance and have the same value for a
uniform, non-uniform, or non-Lambertian surfaces. It will only be a term of
interference and may cause a loss of contrast in the image (Vermote, 1997a;
Kaufman, 1989).

- The remaining photons contribute to the illumination of the ground by the way of

scattering paths and compensate the attenuation of the direct solar paths. This

diffuse component has therefore to be considered in the useful signal.

19
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- By the same way, a fraction will be scattered toward the sensor, making photons
not inside the sensors field of view to be received by the satellite. If the surface is
uniform, it is a useful component but if the surface has a patchy structure, this

term will introduce environment effects that will be a perturbation.

- A fraction of the photons reflected by the surface will be backscattered by the
atmosphere to the surface. This creates a third component of its illumination
called the trapping effect.

As the atmosphere has its own signature, it is important to correct for this when trying to
derivate biochemical parameters at canopy level or when the signal is used in canopy
reflectance models (Baret, 1995). There are different approaches to do the absolute
calibration of the satellite reflectance, some more sophisticated then others. Some of
methods are: histogram minimum method (HMM), covariance matrix method (CMM)
and physical models (Campbell, 1996). Most widely used physical models are
LOWTRAN (Kniezys et al., 1988), MODTRAN (Berk et al., 1989) and 6S (Vermote,
1997a; Vermote, 1997b).

4.2. Geometric correction

Geometric errors often occur in remotely sensed images. The distortions may come from
variations in altitude, attitude and velocity of the sensor platform. When studying
different objects in a satellite scene it is desired to have the coordinates as correct as
possible. To correct for these errors, ground control points (GCP’s) are collected and
analyzed. GCP’s represent objects of known location in both the geometric correct map
(or GPS-points) and the distorted image, road intersections and distinct shorelines make
good points. The GCP’s, which includes information of the distorted image coordinates
(row, column) and reference map coordinates (x-, y-values), are used in a least square
regression analysis. The outcome of the analysis is functions to interrelate the
uncorrected image to the geometric correct coordinates (Lillesand & Kiefer, 2000).

20
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Example:

x = f,(X,Y)
y = f,(X,Y) (5)

where
(x, y) = distorted-image coordinates (column, row)
(X, Y) = correct (map) coordinates

f1, f2 = transformation functions

The transformation functions (fi1, f2) may be polynoms of different orders, 1st to 5th.
Generally, the higher the order of the polynomial transformation, the better accurate fit in
the near surrounding area of the GCP’s. However, away from the GCP’s, worse errors
may be introduced into the image than were to be corrected (GCPWorks, reference
manual 6.2, 1997).

A part of the correction scheme is to resolve the new pixel values from the uncorrected
image to the corrected image, resampling. There are different methods for resampling:
Nearest neighbor technique being the simplest, by letting the new pixel DN represent the
closest pixel’s DN from the original image. Bilinear interpolation calculates the new
values based on distance-weighted average of the DN’s from the four closest pixels. In
addition, cubic convolusion method, where the new pixels values are resolved by
evaluation of the block of 16 pixels in the uncorrected image that surrounds each pixel in
the new image. Nearest neighbor have the advantage with no pixels value being altered
while both bilinear interpolation and cubic convolusion alter the original pixel values
(Lillesand & Kiefer, 2000).

21
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5. Methods

5.1. Data and instruments

The instruments used in this study were:

A Magellan hand-held DGPS was used to get the coordinates for the different
stands. Approximate precision is ~5m

An inclinometer was used to obtain tree height and crown inception (latter used to
obtain crown height)

A diameter-tape measure was used to get a tree’s breast height diameter

A ‘mirror crown-radius measure” was used to obtain a tree’s crown radius.

The data used in this study were:

Atmospheric data (7 April, 2000) from Thomas Person was used in the
atmospheric correction scheme

Destructive measurements of different needle distribution in a Norway spruce tree
(Gunnar Thelin, personal communication). This was used to calculate the percent
distribution of different needle-ages.

A Landsat 5 TM scene (194/21 7 April 2000) was used to obtain reflectance
values from the different stands

Rasterized topographic map (Grona kartan) was used in the geometric correction

scheme.

5.2. The stands and the fieldwork

In the last fifteen to twenty years, a project that aims to investigate forest detriment has

established permanent study sites in Sweden (Skanes Samradsgrupp mot Skogsskador,
1986; 1987; 1992a; 1992b; 1993 and 1997). Most of these stands are of coniferous type
but a few deciduous stands also exist. All the coniferous stands were visited in field, but

only ten Norway spruce stands were selected for this study (Fig. 4 and Tab. 1). They

were selected on the basis:

22
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- It had to be a Norway spruce stand (not Scots pine)

- The stand had to be homogenous and represent at least 90m X 90m (the same as 3
X 3 pixels in a Landsat TM scene)

- Some of the Norway spruce stands were affected by the autumn storm -99, the

stand should not have visual effects from this.
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Figure 4. Map of the stands in central Scania, Sweden. The specific coordinates, size and age is shown in
Table 1.
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Table 1. The selected stands used in the study. X- and Y-coordinates are in reference system RT90.

Stand ID Northing () Easting (X) Size (m?) Age (2000)
L1.1 6252648 1322168 400 39
L1.2 6252830 1322232 400 54
L3.3 6247120 1353340 400 49
L4.1 6250790 1377070 600 59
L4.2 6249454 1390274 800 54
L5.2 6240274 1402956 400 39
L7.1 6229940 1375526 900 49
L8.2 6210300 1375570 400 39
L8.5 6229706 1357944 400 54
M1.2 6200360 1364375 900 69

The fieldwork took place in March to April 2000, and various stand parameters were
collected. Breast-height diameter (DBH, denoted d) was taken from all trees in the area of
interest (defined permanent study site). The height (h) and crown length (kl) of the trees
were measured with an inclinometer, this on a sample of ten trees in each stand. On five
trees, crown radius (cr) was measured using ‘mirror crown-radius instrument’. The
measurement was done on five different spots around the tree to adjust for irregular tree
crowns. Five GPS-points were taken in each of the ten stands, one for each corner and
one in the middle of the stand. The GPS-points were measured with an average of three
minutes, and then a center value of the stand was calculated. Moreover, a sample of
needles was taken from the top of five trees in each stand, to be measured in laboratory
and to extract nitrogen concentrations. The amount of nitrogen in the needles was
extracted using Kjelldahl’s method (Balsberg-Phalson, 1990). The needles were not only
from the current year shoots, but also from one, two and three years back (denoted as C,
C+1, C+2 and C+3, where C is year 2000, C+1 is year 1999 etc.). A weighted average of
the nitrogen amount (wc) was calculated from needle distribution data from Gunnar

Thelin (personal communication).

LAI was calculated using a method described in Nilson et al. (1999). The method relates
the tree’s needle-biomass (Eq. 6) with a conversion factor for the needles weight per area
(one-sided needle area). The needle biomass were calculated using one of Marklund
(1988) regressions for biomass in spruce:
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_ d
In(M) = -15732 +84127 - ~15628In(h) +14032 In(Kl) ©)

where

M = Needle biomass (kg)

d = Breast-height diameter (cm)
h = Tree height (m)

kI = Crown length (m)

The LAI values were calculated using the specific leaf weight of 152 g/m? (Nilson et al.,
1999).

5.3 Landsat TM processing

5.3.1 Pre-processing

Both a geometric- and a radiometric correction were performed on the Landsat TM scene.
The geometric correction was performed in GCPWorks (GCPWorks, reference manual
6.2, 1997) and with the use of rasterized Grona kartan. A set of 58 GCP’s were collected
from different parts of Scania and applied to the image with use of 3" grade polynoms
and nearest neighbor resampling technique. At this stage, 3 x 3 pixel-values of each stand
were extracted from the center of each stand using the GPS points collected in field. A
radiometric correction was perform on the DN-values using Equations 3 and 4 and the
values in Table 2. To be noticed, the values of Lmin and Lmax for each TM-channel are
new correction values from the satellite manufacture as the sensor has gone through a

smaller degradation over the years (ESA, 2002).
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Table 2. Values used in the radiometric correction scheme. Unit of Lmin, Lmax and Esun is mW/cm? sr um.

NIR is the short for near infrared and MIR short for middle infrared. The wavelength is in the unit zm.

TM-channel ™M1 TM2 TM3 TM4 TM5 ™7 Source

Part of spectrum Blue Green  Red NIR MIR MIR

Wavelength 0.45-0.520.52-0.600.63-0.690.76-0.90 1.55-1.75 2.08-2.35

Lmin -0.15 -0.31 -0.27 -0.25 -0.045 -0.03 ESA (2002)

Lmax 18.5 34.2 24.5 27 3.6 1.9 ESA (2002)

Esun 195.7 1829 1557 104.7  21.93 7.452 Markham & Baker (1986)

5.3.2 Atmospheric correction with 6S-model

6S stands for “Second simulation of the Satellite Signal in the Solar Spectrum”, and is a
model that modulates the atmospheric effects on satellite signal from various atmospheric
properties. For a thorough description of the model and input parameters, see Vermote et
al. (1997a) and Vermote et al. (1997b).

The atmospheric conditions were described with the help of data received from Swedish
Meteorological and Hydrological Institute, measured the same day and time as the
satellite scene. The data included water vapor, ozone value and a B-value (Angstrém's
turbidity factor) that is used to calculate the atmospheric optical thickness at 550 nm
(t*(550)) (Kuusk, 1994). A maritime aerosol model was used to describe the aerosol
conditions in the atmosphere as no data of aerosol content could be obtained, this is a pre-
defined sub-model in 6S. The ground type was set to homogenous and vegetated with use
of no directional model. An example of an input file can be seen in Appendix 1. The
value of the atmospheric corrected reflectance was calculated for each Landsat TM-
channel and for each stand, an example of the output can be seen in Appendix 2.
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5.3.3 Spectral indices
To further extend the satellite data analysis different indices were introduced. These are

well described and have been used before with success. The indices are shown in Table 3.

Table 3. The indices created from the different TM-channels.

Index Equation Reference

SR TM4/TM3 Jordan (1969)

MSI TM5/TM4 Vogelmann (1990)
NDVI (TM4-TM3) / (TM4+TM3) Rouse et al. (1974)
NDV14:7 (TM4-TM7) | (TM4+TM7) Nemani et al. (1993)

5.4. Reflectance modeling with the PROSPECT-model

A sensitivity analysis was performed on the PROSPECT-model (chapter 3.2.1.). The idea
of the sensitivity analysis is to investigate how much each input parameter (N, Cab, Cw,
Cp and Cc) of the model contributes to the output, in this case reflectance values. Each
input parameter has a base value, which was obtained from e-mail correspondence with
Andres Kuusk. These values are only theoretical and has no connection to the stands
investigated in this study. Modeling is executed on one input parameter at a time, from
continues series of -30%, -20%, -10%, +0%,..., +30% of the base value, while the rest of
the parameters are kept fixed to their base value. The result of this is a set of reflectance
data that correspond to the continues change in that input parameter. This is done for all
input parameter, creating a set of reflectance data for each input parameter that can be
visually viewed and analyzed. The different values, including the base values that were

used in the sensitivity analysis is shown in Table 4.
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Table 4. The values of the different PROSPECT-parameters used in the sensitivity analysis. N is number of
cell-layers, Cab is chlorophyll (a+b) in zg/cm? Cw is water thickness in cm, Cp is protein in g/cm? and Cc

is cellulose and lignin concentration in g/cm?.

Percent N Cab Cw Cp Cc

-30 1.11342 49 0.025571 0.00014 0.00133
-20 1.27248 56 0.029224 0.00016 0.00152
-10 1.43154 63 0.032877 0.00018 0.00171
0 1.5906 70 0.03653 0.0002 0.0019
10 1.74966 77 0.040183 0.00022 0.00209
20 1.90872 84 0.043836 0.00024 0.00228
30 2.06778 91 0.047489 0.00026 0.00247

To better understand what impact each parameter had on the reflectance, a dimensionless

index of sensibility () was used (slightly modified from: Friend, 1995):

:|X1—X0/p1—p0|
P % P | (7)

where:

B = dimensionless index of sensibility

x1 = simulated value of the reflectance for parameter p;

Xo = simulated value of the reflectance for parameter po

p1 = parameter that represent the reflectance in x; (e.g. 30% change)
po = parameter that represent the reflectance value in X, (base value)

The B-value was calculated for each parameters base value versus the value that
represents a +30% change in same parameter. To archive comparable data, the median
value of the reflectance (simulated) in the wavelength-boundaries for each Landsat TM-
channel were used (see Table 2 for the different wavelength-boundaries).

5.5. Statistical analysis

The statistical part of the study focused on investigating connections between the
nitrogen values and the reflectance or eventually another stand parameter. A correlation
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analysis was performed on the data set to search out possible relationship between the
data. A stepwise regression was performed on the weighted average of nitrogen with all
the Landsat TM-channels as possible predictors. Method used to eliminate predictors was
‘backward selection” with an alpha-value set to 0.05. The different stands were also
classified into two classes (straight cut), high- and low nitrogen status. These were
plotted against the different TM-channels to eventually find indication of separabillity in
their spectral data. Based on the correlation results, a regression analysis was performed
for the weighted average of nitrogen and the stands’ X-coordinate.
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6. Results

6.1. Stand parameters and LAIl-calculation

The result from the fieldwork and the LAI-calculation is illustrated in Table 5. The table
also includes standard deviation and the average for all the stands.

Table 5. The different stand parameters measured in the field. SD = stand density, d = breast height
diameter (m), h = tree height (m), kI = crown length (m), cr = crown radius (m), ¢, c+1, c+2 and c+3 =
nitrogen amount for each year respectively (mg/g), wc = weighted average of nitrogen (mg/g) and LAl =

leaf area index.

StandID SD d h ki cr c c+1 c+2 c+3 wce LAI
L1.1 0.08 26.42 20.67 9.63 2.04 1533 1462 14.01 1287 1392 7.0
L1.2 0.10 2484 2186 9.23 154 1575 1466 13.79 12,69 14.03 6.86
L3.3 0.07 25.75 20.67 1029 1.78 13.32 1291 11.82 10.89 12.07 6.39
L4.1 0.08 2191 2265 1170 1.70 1190 1151 1046 10.81 10.85 6.28
L4.2 0.06 23.61 2320 9.75 153 10.12 10.07 10.05 9.36 9.55 3.96
L5.2 0.08 20.75 1850 9.05 154 11.44 1098 10.89 10.03 1053 5.35
L7.1 0.11 2375 2235 9.20 1.33 12.02 1092 10.62 9.27 10.61 6.96
L8.2 0.14 20.17 19.14 8.8 1.20 14.09 13.03 12.10 11.89 1253 7.19
L8.5 0.08 2240 19.17 8.71 1.49 13.02 1144 1025 1035 11.15 5.39
M1.2 0.05 3467 26.33 10.08 200 1186 12.06 1178 10.95 11.27 5.33

Average 0.08 2443 2145 958 161 1288 1222 1158 1091 1165 6.12
Std 0.03 4.14 2.35 0.97 027 1.78 1.56 1.41 1.25 1.47 1.10

6.2. Correction of the satellite image

The radiometric and atmospheric correction resulted in a linear equation that converts the
DN-value to the correct reflectance at ground level for each TM-channel. These are
presented in Table 6. The geometric correction resulted in a RMSE of 0.21 in the X-
coordinate and 0.17 in the Y-coordinate using 3" grade polynom.
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Table 6. The equations used to convert from DN-value (DN;) to an atmospheric corrected reflectance (R;)

where i = channel. R? = 1 for all the equations.

Channel Equation

T™M1 R, =-0.106 + 0.00257 DN,
TM2 R, =-0.0578 + 0.00471 DN,
TM3 R; =-0.0363 + 0.00368 DN,
TM4 R, =-0.0246 + 0.00565 DN,
TM5 Rs = -0.0130 + 0.00277 DN;
TM7 R; =-0.0250 + 0.00584 DN,

6.3. Sensitivity of PROSPECT

The sensitivity analysis resulted in a set of reflectance values for each parameter that had

been changed gradually. These values were then plotted versus the wavelength creating

diagrams that is shown in Figures 5a-5e.
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Figure 5a-e. The diagrams from the sensitivity analysis of the PROSPECT-model.

The number of cell layers increases the reflectance almost throughout the whole spectra
with peaks in green (0.5-0.6 pm), near infrared (0.72-1.3 pum) and middle infrared (1.3-
3.0 pum). This is also demonstrated with the high values of the relative dimensionless
index of sensibility (3, from Eq. 7) in table 7. An increasing amount of water increases
the absorption in near infrared and middle infrared. Chlorophyll has an absorption feature
in the visible part of the spectral with the biggest change in green light, while both
protein and cellulose + lignin has minor impact on the reflectance data.

Table 7. The dimensionless index of sensibility for each parameter (base versus 30% change) in the

wavelength boundary of each Landsat TM-channel.

Channel N Cab Cw Cp Cc
T™M1 0.172 0.063 0 0 0
TM2 0.878 0.495 0 0.004 0.008
TM3 0.453 0.196 0 0 0
TM4 0.461 0 0.005 0.007 0.031
TM5 0.784 0 0.548 0.006 0.040
T™M7 1.208 0 0.816 0.014 0.074

6.4. Statistical results

The result of the correlation analysis is shown in Table 8, where the correlation
coefficient (r) and eventually the p-value are presented. Overall, the correlation was quite
low for most of the parameters and the only parameters showing relative high correlation
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is reflectance data versus SD (r = 0.78 SD versus TM3) and the stands X-coordinate
versus nitrogen (r = -0.88 Wc versus X-coordinate). Nitrogen had no significant

correlation to any TM channel, the highest r-value is 0.49 to TM1.

Table 8. Correlation matrix between different stand parameter and the TM-channels, including the indices.

On a few selected the p-value (significant) is presented in brackets.

Channel LAI SD Wc (mg/g) C (mg/g)
™1 0.65 0.72 (0.020) 0.49 0.48
T™M2 0.47 0.73 (0.018) 0.23 0.22
T™M3 0.43 0.78 (0.008) 0.16 0.17
T™M4 0.40 0.61 0.09 0.08
TM5 0.36 0.75 (0.012) 0.07 0.09
T™7 0.33 0.76 (0.011) 0.05 0.06
NDVI -0.39 -0.76 (0.011) -0.16 -0.17

SR -0.19 -0.53 -0.04 -0.04
MSI 0.32 0.77 (0.009) 0.04 0.06
NDVI 4,7 -0.24 -0.71 (0.022) 0.03 0.02
X-coordinate -0.58 0.04 -0.88 (0.001) -0.87 (0.001)
Y-coordinate 0.05 -0.18 0.15 0.15

The stepwise regression between reflectance data and nitrogen concentration resulted in
two TM-channels to be selected, TM1 and TM2 with an R?-value of 0.72 (wc = 14.1 +
690 TM1 - 451 TM2). In Figure 6a, the weighted average of nitrogen is plotted against
the fits and Figure 6b is showing the residuals versus fits. This is to detect if any
anomalous data or trends exists. Optimal, the residuals in Figure 6b should be spread
uniform over the plot, as homoscedasticity is required in the linear regression model (Zar,
1996).
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Figure 6. a) The relationship of wc versus fits and b) a plot of the residuals versus fits from the multiple

regression between wc, TM1 and TM2.
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In Figure 7, an example can be viewed of the plots between high- and low nitrogen status
and the respective reflectance value of one TM-channel. No indication has been found on

separability between these classes.
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Figure 7. A plot for the classes ‘high nitrogen’ and ‘low nitrogen’ versus the respective reflectance values

of Landsat channel TM2.
The regression for weighted average of nitrogen and the stands X-coordinate was

significant (p = 0.001) with a R? = 0.77. The linear relationship can be view in Figure 8.

wc [mg/g] = 78.2387 - 4.88*10E-05 X koord
R-85q=76.7% R-Sq(adj)=73.8% P= 0.001

15

Weighted Average C [mg/g]

—  Regression
________ 95% CI

9 |

T T T T T
1320000 1340000 1360000 1380000 1400000
X-coordinate

Figure 8. A linear relationship between the weighed average of nitrogen and the stands X-coordinate, R? =

0.77.
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7. Discussion

The sensitivity analysis of the PROSPECT model indicated highest influence of both
cell-structure and water thickness. Increasing the cell-structure creates a higher
reflectance in the whole spectrum whilst higher water thickness absorbs the incoming
radiation in the higher wavelength (near- and mid-infrared). Chlorophyll has an
absorption feature only in the visible part of the spectrum, with the highest sensitivity in
green. This may introduce a problem if the model is used in inverted mode (input data are
reflectance and a set of parameters, chlorophyll is the concentration to retrieve, chapter
3.2) as chlorophyll has an ‘absorptive’ response in green and the cell-structure has a
‘reflective’ response. Imagine a small additive error (1.7 instead of 1.6) in the parameter
cell-structure, this would mean an increase of reflectance in green light that would also
correspond to a lower concentration of chlorophyll. Hence, it is possible that the opposite
response of these two parameters could counteract each other, creating an uncertainly of
the modeled value, if the input data has errors. However, changing the cell-structure up to
+30% from the ‘normal’ value may not be a representative change. Jacquemoud et al.
(1996) reported a structure parameter that ranged from 1.5-2.5 for dicotyledons in
vegetation grown in a greenhouse, but the range does not seem to apply for vegetation
grown outside under natural conditions. Lignin+cellulose and protein showed only minor
absorption features in the simulated spectra. This is a known feature of the creator of the
model (Jacquemoud et al., 1996) and is explained by the low percentage of the
constituents in the leaves, for example only 1-5 % of the leaves mass is related to
nitrogen compounds. In addition, in inverted mode, the water absorption could eventually
mask the absorption feature of lignin+cellulose and protein in the middle infrared, as
water absorption is a lot stronger.

The different channels of Landsat TM had no correlation with nitrogen with the eventual
exception of TM1 (non-significant). This indicates that the Landsat TM-channels are not
able to detect the different absorption features of nitrogen. In contrast to this, the multiple
regression with TM1 and TM2 predicting nitrogen showed a promising result. However,
the correlation found in the regression can possible be related to chlorophyll contents
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instead of nitrogen, as they both are reported to be correlated and covariable
(Jacquemoud et al., 1996; Curran & Kupiec, 1995). This means the regression would
show the indirect relationship of nitrogen content through chlorophyll’s absorption
feature in the visible part of the spectrum. It is doubtful that the connections between
nitrogen and chlorophyll are strong enough to stand as a medium for estimation of
nitrogen concentration through their combined absorption features with the coarse
spectral resolution of Landsat TM. Due to the low number of observations (n = 10) the
statistics should be interpreted cautiously and the results is far from final. A more
accurate study with more observations would lead to a better result. This to better
distinguish whether or not, and to what possible extent, the reflectance values of Landsat

TM contains information of the nitrogen in the needles.

The high correlation of the X-coordinate and nitrogen amount suggests that an ‘outside’
factor influences the nitrogen level in the needles. That the gradient from west to east
exists (higher in west) is shown with the regression and there may be various causes for
this. However, one logical explanation to this phenomena is a higher deposition of
nitrogen on the west side of Scania, and the nitrogen in the needles are likely to have a
connection to the nitrogen available in the ground.

7.1 Sources of error

The following sources of errors have been identified and could possible have influenced

the results of this study:

1) Errors in the fieldwork and LAI-calculation
- The method used to calculate LAI is using a regression with a known confidence
level, Nilson et al. (1999) reported an error of approximately 20 % in the LAI
calculation. In addition, the conversion coefficient is from the same study, and
may not be representative for the stands used in this study.
- Other biochemical constituents should have been measured, as water thickness

and chlorophyll.
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- Nitrogen concentrations were measured from all needles of the five trees in each
stand, hence only reflect a mean value. It would have been desired to have each
trees’ nitrogen concentration measured separately, thus creating a mean value and
a standard deviation from each stand.

2) Errors in the sensitivity analysis of the PROSPECT model
- The different parameters are varied with the same scale (-30 % to +30 %) with the
assumption that this would be representative to a natural environment. However,
this may not be true.
- The correlation / covariance between the parameters are not taken into
consideration. Hence, when increasing nitrogen, chlorophyll would also increase
that would create a different outcome of the simulated spectra.

3) Errors in the statistical analysis
- The different analysis may only be interpreted as ‘an indication’ as the number of

measurements is a bit low.
The biggest source of error in this study is the low number of stands investigated. It

creates an obscurity in the statistical analysis and it would be desired to have at least
double the amount of measurements to be able to interpret the result correctly.
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8. Conclusion

The PROSPECT model showed a minor sensitivity to protein/nitrogen concentrations,
thus using the model to predict nitrogen amounts in needles is doubtful. Hence, it is
unlikely that other models, using PROSPECT to explain the leaf optical properties, are
able to predict nitrogen with a reasonable precision. The use of Landsat TM as source of
reflectance values for these types of studies is still not certain. However, an indication
can be seen that the coarse spectral resolution of the sensor may not provide the desired
information. Still, nitrogen has absorption features throughout the spectra, but only in
narrow parts. Thus, for further analysis, hyper-spectral data is recommended. The W-E
nitrogen gradient found in this study cannot be observed in the remotely sensed data, but
still it indicates that there may be other ways to simplify the collection of nitrogen

amounts in needles, for example through ground chemistry measurements.
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10. Appendixes

Appendix 1. An example of input-file to 6S- model.

7 ( LANDSAT)

4 7 9.4221 13.4507923 55.9131279 (nonth, day, hh.ddd, long., lat. 2000 04 07 kl:)
8 (User's nodel)

0.684 0.34 (H20, @)

2 (Aerosol nodel, maritine)

0 (NEXT VALUE | S THE AERO. OPT. THI CK. @50nm
0. 089145712 (AERO. OPT. THICK. @50nm

-0.1 (TARGET AT 0.1 km

- 1000 ( REMOTE SENSI NG SENSOR HEI GHT - DEFAULT VALUE)
25 (LANDSAT TM 5, BAND 1 = 25, BAND 7 = 30)

0 (GROUND TYPE, | . E. 0 = honpgeneous)

0 ( DI RECTI ONNAL EFFECTS)

1 (vegetated target surface)

- 0. 0835 (input at satellite reflect ance)
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Appendix 2. An example of an output-file from 6S-model.

kkkkkkhkkhkkhkkhkkkkhkkkkhkkkkkkkkkkkkkkhkkk GS VeI’SI on 4 1 kkkkkkkkhkkhkkkkhkkhkkkkkkhkkkkkhkkkkkkkk*x

geonetrical conditions identity

at nospheric nodel description
at nospheric nodel identity
user defined water content : uh2o0= 0.684 g/cnR2
user defined ozone content : uo3 = 0.340 cmatm
aerosol s type identity
Maritine aerosol s node
optical condition identity

spectral condition
tm 1
val ue of filter function
w inf= 0.430 mc W sup= 0.560 mc

target type
honmogeneous ground
spectral vegetation ground reflectance 0.104

target el evation description
ground pressure [nb] 1000.93
ground altitude [kn] 0.100
gaseous content at target |evel
uh20= 0. 684 g/cn® uo3= 0.340 cmatm

at nospheric correction activated

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* input apparent reflectance : 0.083
*

*

ER R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R

*

* integrated val ues of

e e e e e e e e e e .- -

* apparent reflectance 0.1565 appar. rad.(w nR2/sr/mc)
* total gaseous transmttance 0.982

*

IR EE R R SRR EEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE SRR SRR SRR SRS EEEE SRS RS
*

* coupling aerosol -w

* e e e e e e o

* wv above aerosol : 0. 157 w mxed with aeroso
* wv under aerosol : 0. 157

*

* int. normalized values of

o e e e e e e e e e e e m e e, e, —, . m -

* % of irradi ance at ground | eve

* %of direct irr. % of diffuse irr. % of enviro. irr
* 0. 750 0. 236 0. 015

* reflectance at satellite | eve

* atm intrin. ref. background ref. pixel reflectance

46

visibility : 73.51 km opt. thick. 550nm: 0.0891

t.m observation
month: 4 day : 7 universal time: 9.42 (hh.dd)
| atitude: 55.91 deg | ongi t ude: 13. 45 deg
sol ar zenith angl e: 53.08 deg solar azinmuthal angle: 147. 33 deg
view zeni th angl e: 0.00 deg view azinmuthal angle: 0. 00 deg
scattering angle: 126.92 deg azimuthal angle difference: 147.33 deg

LR R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R

58.516

0. 157

T T e T I R S T I



*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

ERE R R R R R EEEEEEEEEEEEEEEEEEEEEEEEEREEEEEEEREEEEEEEEEEEEREEEEEEEEEEREREEEREREREREEES

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

EE R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R

LR R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R

at nospheric correction result
0. 083
31.211
0.012
0.00347 0.09821 0.14347

*
*
*
*
*
*
*
*
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0. 075 0. 012
int. absolute val ues of
irr. at ground |level (w n2/mc)
direct solar irr. atm diffuse irr. environment irr
759. 657 238. 472
rad at satel. level (wnR/ sr/mc)
atm intrin. rad. background rad. pi xel radi ance
27.864 4.613
int. funct filter (in mc) int

0. 0604850

R R Sk S Sk Sk Sk S S S kS R Sk kS S kS kS kS kR S S S kS S kR Sk S kS kS S S S S S S S S

integrated val ues of

downwar d
gl obal gas. trans. 0. 98843
wat er " " 1. 00000
ozone " " 0. 98843
co2 " " 1. 00000
oxyg " " 1. 00000
no2 " " 1. 00000
ch4 " " 1. 00000
co " " 1. 00000
rayl. sca. trans. 0.87788
aeros. sca. " 0.97912
total sca. " 0. 86010

rayl ei gh
spherical al bedo 0. 12607
optical depth total: 0. 16317
optical depth plane: 0. 16317
refl ectance : 0. 06982
phase function : 1. 01975
sing. scat. al bedo : 1. 00000

R R R Sk Sk Sk R Sk S S S kS kS kS kS R S Sk Sk kS Sk kR R kS Sk Sk kS S S S S

i nput apparent reflectance
measur ed radi ance [w nR/sr/ mc]

eeo

PRRPPOPRO

aerosol s

at nospherical ly corrected refl ectance

coefficients xa xb xc

cooooo

02723
09195
09195
00423

. 09831
. 98957

y=xa*(neasured radi ance)-xb; acr=y/(1.+xc*y)

LR R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R R

47

spect (in w nR)
118. 245

t ot al

. 98157
00000
. 98157
00000
00000
00000
. 00000
. 00000

PRPPPRORO

. 80980
. 97126
. 78634

[eNeoNe]

tot al

14347
25512
25512
07581
. 68764
. 99624

cooooo
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