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Abstract: A model of the human stereopsis mechanism is presented. As foundation for the model lies a number of ideas that
has arisen from redefining the correspondence problem. Instead of establishing potential matches by the detection and
matching of some set of “predefined” features, e.g. edges (zero-crossings) or bars (peaks/throughs), matches are sought by
comparing the overall configuration of contrast within delimited regions of the two images. The main disambiguating
power of the model is provided by combining the results of the matchings from a number of independent channels of
different coarseness (in regard to the resolution of the contrast information). The idea is that the information in the coarser
channels can be used to restrict the domain of potential matches, to be considered, within the finer channels. Important for
this assumption is the concept of figural continuity. To further reduce the set of potential matches, the model relies on the
constraint of uniqueness. A computer implementation of the model is presented, which from the input consisting of a
stereogram, produces a representation of the binocular disparity present within the stereogram. A number of results
obtained from this computer implementation are also presented and discussed.

1 INTRODUCTION
One of the major functions of the human brain is to
construct a representation of the world surrounding us.
For a human being, and many other animals, the
perhaps most important sense for accomplishing this
task is the visual sense. Without it we would be
severely handicapped because it alone allows us to
perceive and represent a great number of aspects of our
environment. One such aspect that is of fundamental
importance is that of spatial relationships. Since space
is three-dimensional we have to perceive all three
dimensions in order to acquire a full representation of
these relationships. The problem is that the images that
reaches our eyes, considered individually, only reveals
the two-dimensional spatial relationships. However,
taken together they contain sufficient information to
allow the third dimension to be recovered. Thus, in
order for the brain to reconstruct the 3-D structure of the
environment, the information in the two separate
images must somehow be combined. How then is this
transformation from 2-D images to a 3-D representation
of the world achieved? The recovery of the third
dimension is really not the result of one process, but of
several more or less independent ones. The conscious
awareness of depth that we perceive is therefore a
product of the whole mind and can not be ascribed to
one particular system. However, as we shall see there is
one outstanding mechanism in the brain, referred to as
stereopsis, that is of crucial importance for our ability
to perceive depth.

Before going into the details of the stereopsis
mechanism, I would first like to present some other
cues to depth that are thought to be used by the brain.

Two physiological cues that are important for depth
perception are the convergence of the eyes and the
accomodation of the lenses. The degree to which our
eyes converge depends on where we fixate our eyes. If
we fix them on something near they converge more
than they do if we look at something far away. The
accomodation of the lens, in turn, is determined by
where we focus. When focusing on something far away,
the muscles around the lens are relaxed and the lens is
therefore relatively thin, but in order to bring a closer
scene into focus the lens has to change shape. The
muscles around the lens therefore contracts to form the
lens appropriately. These different types of information,
about the degree of muscle contractions, are not by
themselves useful to the brain, but in combination with
the visual input they are essential for the ability to
perceive depth.

There are several monocular cues to depth as well. If
you have only one eye open and move your head from
side to side, you will experience a sensation of depth.
This phenomenon is called motion parallax. The
shading of an object or a scene can also provide an
impression of depth. Usually, we are not even aware of
the existence of such cues, but there are other cues that
only makes sense in combination with higher
knowledge or learned relationships. For example, if one
surface/object partially covers another one, it is possible
to determine that the covered surface/object is furthest
away. This might seem very obvious but in fact
requires that, at least, a partial identification of the two
objects/surfaces has taken place, so that their spatial
extensions can be established. Another such cue has to
do with the size of objects. If the size of an object is
priorly known, it will appear far away if it produces a
small image on the retina, and vice versa if it produces a



2

large image. These are just a few examples of
monocular cues, and there are several others (e.g.
perspective, texture gradients, e.t.c.). As mentioned
above, the extent to which higher knowledge is
involved in making use of these cues varies, and
sometimes it might be more appropriate to say that we
are dealing with pure reasoning rather than cues.

However this might be, the by far richest source of
depth-information comes from combining the
information from the two eyes. Due to the fact that our
eyes are horizontally separated, the image that falls on
one eye will differ slightly in perspective from that of
the other. This means that the different features, making
up the images, will not fall on the exact same locations
in the two retinas (Fig.1). The magnitude of this
horizontal displacement, or binocular disparity, is
decided by two factors: the convergence of the eyes and
the distance to the surfaces, giving raise to the features
on the retinas. Now, signals about the convergence of
the eyes are directly transmitted to the brain, and the
binocular disparity can indirectly be measured from the
combined information in the retinal images. Thus, all
the necessary information is available for the brain to
compute the depth of the scene. The ability, of the
brain, to perform these computations is referred to as
stereopsis.

Images falling onto the retinas

Figure 1. Due to the diference in perspective, the
images of the dots will fall onto slightly different
locations in the two retinas.

The first to appreciate the role binocular disparity has in
seeing depth was Wheatstone, whom in 1838 invented
the first stereoscope. The stereoscope became a quite
popular gadget in those days, but any deeper analysis of
the phenomenon was hindered due to lack of appropriate
tools to investigate it with, and due to an immature
general knowledge of how the brain functions. The
prevalent view of stereopsis was that it depended heavily
on monocular form recognition. It was thought that the
image from each eye was separately analysed, and all the
components of the images was identified and recognised
before they could be binocularly combined. This belief
placed the phenomenon of stereopsis at a relatively high
level, in the cognitive chain, since it – according to
these conclusions – had to occur after object
recognition.

It was not until a century later that it would be
proven otherwise, when Bela Julesz (1960) developed
the random-dot stereogram. A random-dot stereogram
(Fig.2) contains no information of monocular form.
When viewed separately, all one can see are black dots
spread out over a white surface. Only when the images
are fused in a stereoscope, or by crossing ones eyes, is
it possible to perceive the shape and depth of the scene.
The only information available to the brain is the
binocular disparity that separates the dots in one image

from the corresponding dots in the other image. This
clearly shows that binocular disparity alone is sufficient
to perceive depth, and that stereopsis therefore does not
have to occur after object recognition. In fact, it is now
known that stereopsis occurs at an early level in the
visual pathway. An important neurophysiological
finding showing this was made by Barlowe, Blakemore
and Pettigrew (1967) who discovered neurons in area V1
that are selective for horizontal disparity between the
input from the two eyes.

Figure 2. A random-dot stereogram contains no
monocular depth-cues. The 3-D structure hidden in the
stereogram can only be percieved when the images are
binocularly fused in a stereoscope or by crossing the
eyes.

The problem of stereopsis then basically boils down to
the matching of corresponding features in the two
images that are projected into the eyes. This is often
referred to as the correspondence problem. Conceptually,
it can be clarifying to consider the matching process as
being divided into, using Julesz terminology, a “local”
and a “global” matching process. In the local matching
process, possible candidates to which a feature may
match are sought. If each feature could be uniquely
described there would be only one possible match in the
opposite image, and thus would there be no
correspondence problem. Naturally, this demand for
uniqueness is not very realistic (I will return to the
reasons for this in the following section). In fact, the
result of the local matching is often highly ambiguous.
The mechanism that resolves this ambiguity, and sorts
the correct matches from the “ghosts”, is in this
framework referred to as the global matching process.

I will in this paper present a model of human
stereopsis, which in a number of aspects simulates the
behaviour of the human stereopsis mechanism. In the
following sections, I will first discuss what primitives
could be used as input to such a mechanism? I will then
go on to discuss how different constraints could be
imposed on the matching process in order to dissolve
ambiguous matches. Finally, will I present the model
and the outlines of a computer implementation that
from the input, consisting of a stereogram, reconstructs
the 3-D structure of the scene.

Anyone trying to model human stereopsis, or any
other information-processing system, has to face a
number of decisions about what is to be calculated,
what information and representation is to be used, what
transformations should be performed and why they
should be performed. Marr (1982) has thoroughly
analysed which questions, like those above, are relevant
to ask for such a task, and also what has to be known
about any information-processing system before it could
be said to be fully understood. His main idea is that any



3

information-processing system can be explained at
different levels of abstraction, and he emphasises the
importance of understanding each of these levels
separately, before the whole system can be understood.
Marr has chosen to divide this analysis into three
different levels: the level of computational theory, the
algorithm- and representational-level, and the level of
implementation. At the first level, one has to make
clear what the goal of the computation is and how this
goal can be accomplished? What strategy is to be used
and what makes it justified? Applied to the analysis of
stereopsis, an important part of this involves finding
constraints, imposed by the physical world, that can be
used to justify the global matching processes. At the
second level, the type of information and representation
has to be considered. What is the input and output, and
what algorithm could perform this transformation? The
final level is concerned with the details of the physical
implementation of the algorithm.

One can only agree that this is a most reasonable
approach and it has therefore been somewhat of a
guideline to my thoughts during my attempt to model
human stereopsis. I have also had as an aim, with this
paper, to cover most of these different aspects of the
stereopsis problem.

2 MATCHING PRIMITIVES
From a philosophical or computational point of view,
one could say that there is a trade-off to be made
between the representational capacity, and the amount of
processing, needed to solve the correspondence problem
that depends on the complexity of the features used in
the matching process.

On the one extreme, using low-level features (e.g.
like the intensity value in each point of the image)
would require little representational capacity, but also
make it quite impossible to establish the correct set of
matches simply by comparing features, since such a
procedure – in the general case – would cause a large
amount of ambiguous matches. An extensive amount of
(global) processing would therefore be needed to sort the
correct matches from the “ghosts” – if at all possible.

On the other extreme, if one could divide the image
into a number of more complex features (e.g. objects or
sub-regions containing a particular texture e.t.c.) that
allowed each feature to be “uniquely” described,
practically no matching-process would be necessary
since the “uniqueness” would assure a one-to-one
correspondence between features. This strategy would
however put high demands on the representational
capacity, since it would have to be able to represent,
very accurately, an enormous number of different
features in order to allow for discrimination among
these. In fact, the later of these strategies is not
plausible, in its extreme form, even if we had an
infinite representational capacity. The reason for this is
that the demand for uniqueness is not realistic in the
general case. The answer in turn to why uniqueness is
not realistic depends somewhat on how one chooses to
interpret the complexity of a feature and is not
straightforward to answer completely, but I will give
two simple examples that gives a general idea. The first
is simply that two, or several, features that give raise to
the exact same projection on the retina, obviously will

have to be represented exactly the same way too. Thus,
will they be impossible to discriminate from each other
by comparison alone, no matter how elaborate and
exhaustive the representation of them are. Second, since
the disparity we are seeking has the effect of producing
different images in our eyes, the corresponding features
will often appear slightly differently, and this makes the
one-to-one correspondence based on uniqueness
impossible.

As seen above, both strategies have their benefits and
shortcomings concerning the need for representational
capacity and processing power. Neither of them, in their
extreme form, seems likely to be used by the human
brain. Instead, what one should look for is some kind of
compromise in which the best properties could be
combined. I will at the end of this section suggest a
way in which this might be accomplished.

Philosophical or computational considerations alone
will not tell us what matching primitives are used by
the brain, but they can guide the search in the right
direction. In order to tie these ideas to reality, one has to
know something about the neuronal machinery and the
information it feeds on. In the light of discussing this
next I will present some of the various matching
primitives that have been suggested to be used by the
brain, and I will also present some evidence in favour
and against these.

It was early proposed that a point-by-point matching
of brightness values could be conducted, but for various
reasons this idea has now little support. In most types
of images the intensity changes smoothly over surfaces
and is often constant within relatively large regions.
The probability of establishing a one-to-one
correspondence between all points in the images,
simply by comparing brightness values, would therefore
seem to be low due to the large number of potential
matches. It would also be difficult to defend such a
strategy in the light of findings made by Julesz (1971),
who showed that images with different degree of
contrast could easily be fused. Another important reason
why this seems unlikely is that the information of the
absolute light intensity, measured by the receptors in
the retina, is not directly transmitted to the cortex where
fusion occurs. The information leaving the eye, the
output of the retinal ganglion cells, in fact represents
something quite different from the raw light intensity
values reaching the retina.

There are two major kinds of retinal ganglion cells:
on-centre and off-centre cells (Fig. 3). The on-centre
cells responds most strongly when light hits the central
part of their receptive field. If diffuse light covers both
the excitatory centre and the inhibitory periphery the
response is weakened, and if only the peripheral parts
are exposed the response will be suppressed. The off-
centre cells have a reversed response pattern since their
central parts are inhibited by light and the surround is
excited. There are many different sizes of these receptive
fields and they could roughly be said to grow with the
distance from the fovea, but there are large ones in the
central parts as well. Also important is that
neighbouring cells’ receptive fields overlap almost
completely, so that they together cover the whole visual
field (Hubel 1988). Considering the compositions of
these receptive fields, it is clear that these cells does not
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respond to the absolute amount of light hitting the
retina, but rather to the difference between the light
falling on the central and the surrounding parts of their
receptive fields. In other words, the output of the eye
basically contains information about the relationship of
contrast within the retinal image.

+ = exitatory region
    = inhibitory region

off-center

+

on-center

+

Figure 3. Receptive field mapping of the retinal
ganglion cells.

Still this information is not directly used by the
stereopsis mechanism, but as we shall see it is used by
other cortical cells which output, in turn, is used as
input to the stereopsis mechanism. Before discussing
stereopsis in more detail, I will therefore first describe
some of these “other” cells and explain to what type of
stimuli they react.

Hubel and Wiesel were the first to make successful
recordings from cells in the cortex of cats (Hubel &
Wiesel 1959) and later monkeys. They found a number
of cells, which they divided into two major groups,
simple and complex cells, depending on their response
to different types of stimuli. Simple cells all have in
common that they respond most strongly when a
particular configuration of light fall within their
receptive field. A typical simple cell gives a strong
response if a rectangularly shaped area of light, with a
particular orientation, falls within its receptive field
(Fig. 4a). If the light falls too much outside of the
central part of the receptive field, the response will be
low or suppressed. There are many variations of simple
cells and some respond best to a border, between light
and darkness, of a certain orientation (Fig. 4b). The
sizes and distribution of the simple cells’ receptive
fields coincide fairly well with those of the retinal
ganglion cells’.

Complex cells have slightly larger receptive fields
than simple cells. These cells also give a strong
response for border- and “bar”-shaped stimuli of a certain
orientation, but there are other factors determining their
response as well. Some complex cells respond equally
well to a particular stimulus, with the right orientation,
no matter where it falls within its receptive field. Others
only respond if the stimulus, except from being of a
certain kind and orientation, moves across the receptive
field as well.

A special group of complex cells, called
hypercomplex or end-stopped cells, have receptive fields
similar to the complex cells’ described above, but for
one exception. For instance, if the stimulus is a bar-

shaped light with the right orientation, the cell will
respond equally strong no matter where the light falls
within the receptive field, as long as the bar does not
extend over a certain border. If it does the response will
be weakened or suppressed (Hubel 1988).

+ = exitatory region
    = inhibitory region

+
b)

+

a)

Figure 4. Receptive fields of two typical simple cells.

The simple and complex cells above were all described
as taking their input from only one eye, but both
simple and complex cells with binocular receptive fields
have been found as well. Even more important
considering stereopsis is that cells have been discovered
in area V1 that respond optimally to stimuli with a
certain horizontal disparity between the eyes (Barlowe,
Blakemore & Pettigrew 1967). Studies of cells in
macaque monkeys, an animal which has a capacity to
perceive depth very similar to that of humans, found
that as many as 60–70% of the cells in striate cortex,
and an even larger number in prestriate cortex, were
sensitive to horizontal disparity, and that many of these
showed properties like those of simple and complex
cells (Poggio & Poggio 1984). As we can see the
necessary input for the stereopsis mechanism seems to
be available, and the interesting question therefore
becomes how this information is used? Are the simple
and complex cells actual “feature-detectors” or is the
information they provide used to produce some more
elaborate description?

Marr and Hildreth (1980) have argued that an
important result of early vision is the construction of a
“raw primal sketch”. In short this is a symbolic
description of the different primitives making up the
image (e.g. edges, bars, and blobs) that contains
information about their size, orientation and position
within the image. In order to discover such primitives
in an image a first step is to detect changes in the light
intensity values. A number of different derivatives, or
“filters”, could be used for this purpose. Marr and
Hildreth (1980) have for various computational reasons
argued that the operator most suitable to detect such
changes is the filter ∇ 2G, where ∇ 2 is the Laplacian
operator(δ2/δx2+δ2/δy2) and G the two-dimensional
Gaussian distribution

G(x, y) = e
− x 2 + y2

2πσ 2

with standard deviation σ. The Gaussian part of this
function has the effect of blurring the image by
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a) b) c) d)

Figure 5. (a) Showing an image (128x128 pixels) and the results after having convoluted the image with the ∇ 2G-
operator. The space constant σ has the values of 1, 2 and 4 pixels in (b), (c) and (d) respectively.

whiping out all details smaller than the space
constant σ (Fig. 5). Since contrast is a relative concept
and occurs at different scales within an image, one must
use several different values for the space constant in
order to get a complete description of the light intensity
changes. The next step in the construction of the raw
primal sketch is to detect zero-crossings (a change in
light intensity along a certain dimension will give rise
to a peak or through in the first derivative and to a zero-
crossing in the second derivative, Fig. 6) in the filtered
image from which in turn the different primitives can be
detected. What is interesting in the context of stereopsis
is not so much the raw primal sketch itself, but the
zero-crossings used to construct it. Marr and Poggio
(1979) has suggested that zero-crossings are the most
important, but not the only, input to the stereopsis
mechanism.The idea of using zero-crossings seems to
be, at least somewhat, supported by the
neurophysiological findings described above. The output
of the retinal ganglion cells is probably quite similar to
that of an image convoluted with a number of ∇ 2G-
operators with different σ-values. And the purpose of
the simple and complex cells, responding to borders
between brighter and darker areas, could possibly be to
detect such zero-crossings within different spatial
frequencies.

b)

zero-crossing

c)a)

Figure 6. A change in light intensity (a) will rise to a
peak (b) in its first derivative, and to a zero-crossing (c)
in its second derivative.

However other primitives have been suggested to be
important as well. Mayhew and Frisby (1981) showed
in an experiment (using stereograms of saw tooth
luminance gratings of the same period but with slightly
different shapes) that the experienced percept could not
be satisfactorily explained simply by considering zero-
crossings. They therefore suggested that the “peaks” and
“throughs” in the convoluted images should be matched
as well. In this context, peaks and throughs refers to the
maximum and minimum values in the convoluted
image (Fig. 6c).

No doubt, the information corresponding to
peaks/throughs and zero-crossings is of essential value
to the matching process, but I believe that human
stereopsis might be better described by a rather different
framework than in terms of the detection and isolated
matching of such features. I also believe that stating
that the exclusive purposes of the simple and complex
cells are to detect such features is a somewhat hasty, or
at least too narrow, conclusion. To shed some light on
my proposed alternative framework, I will describe two
subtly, but yet fundamentally, different ways of
interpreting the correspondence problem which are
important to the context.

The most common interpretation of the
correspondence problem is that the matching is
conducted by first identifying some set of predefined
features (e.g. bars or edges) in one image, and then
finding the corresponding features in the other image.
Theories relying on peaks/throughs, zero-crossings or
other similar measurements for this purpose could
therefore be said to be feature-oriented approaches.

Another way of looking at the correspondence
problem is that a sub region (a delimited area) of one
image is compared to other, similarly composed, sub
regions in the other image (kind of like laying a jigsaw
puzzle). A strategy like this would not be dependent of
any particular set of predefined features, but would
instead rely on the similarity of the overall
configuration of light within different regions. In
contrast to being feature-oriented, this approach could be
said to be region-oriented, since the descriptive element
to be matched is a delimited region of the image.

With this alternative interpretation of the
correspondence problem as a foundation, I will suggest
a strategy in which the matching is conducted by
comparing the configuration of contrast within
elements/regions of different but fixed sizes. That the
information of contrast is preferred rather than raw light
intensity values should be evident from the discussion
earlier in this section. Now, in order to fairly well
describe an image in termsof contrast (remember that
contrast is a relative measure), this information has to
be gathered from within a number of different spatial
frequencies. To efficiently make use of this information
and to make the matching meaningful, only elements
containing contrast information of the same spatial
r e s o l u t i o n  s h o u l d  b e  m a t c h e d .
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Figure 7. (a) Schematic organisation of the suggested groups of simple and complex cells, showing the sizes and
compositions of these cells' receptive fields. 7 (b) is supposed to illustrate how the overall configuration of contrast,
within the receptive fields, could be reconstructed from the “superimposed” respons of the cells in the group.

Finally, for reasons that I will return to, I suggest that
the sizes of these elements should be proportional to the
spatial wavelength from within the information of
contrast was detected. Thus, the larger elements will
contain low-resolution contrast information and the
smaller ones will contain high-resolution information.

What I believe is an advantage of this region-oriented
strategy is that the matching can be carried out on a
lower, “non-symbolic”, level that is richer in
information contents, since the matching is performed
directly on the contrast values. In feature-oriented
strategies, relying on the matching of a set of predefined
features, these features would first have to be extracted
from the information of contrast, and would thus be of a
more symbolic nature since part of the information has
been lost in the process of extracting them. I am
therefore convinced that the suggested region-oriented
approach would provide the matching process with a
greater power of discrimination (allowing a greater
reduction of false matches), than would any feature-
oriented strategy relying on more “symbolic”/predefined
features as matching primitives.

Since my ambition is to model the human stereopsis
process, the suggested strategy would be of little value
if the neurophysiological findings described earlier could
not be accounted for by my model. I will therefore try
to show, by interpreting these findings slightly
differently, how they could be explained within the
suggested model.

At first reflection the requirement that the matching
should be conducted directly on the contrast values,
corresponding to the output of the retinal ganglion
cells, seems to lack any support in the
neurophysiological findings. No cells with binocular
receptive fields have been found that responds to the
information at such a low level. What have been found
are the simple and complex cells, which each responds
optimally when a particular configuration of light is
present, and thus only indirectly to “raw” contrast.
These cells have therefore often been interpreted as
being “feature-detectors”. However, from the fact that
these cells respond optimally to certain configurations
of light does not necessarily follow that their purpose
simply are to detect such isolated features in the image.
I believe that the functionality of the simple and
complex cells should not be explained, in isolation
from each other, as feature-detectors. Instead I believe
that the combined response from a group of such cells,

sharing the same receptive field, could be seen as just
another way of representing the information of contrast
within their common receptive field.

To better see why such an interpretation makes
sense, it is important to recall that there is a great
variety of simple and complex cells. Both concerning
the sizes of their receptive fields and concerning the
configurations of light they are tuned to detect. Also
important is that for any part of the visual field, there is
a great number of such different cells that have common
receptive fields. Now imagine how these various types
of cells could be organised into groups, or columns, so
that all cells belonging to a particular group would have
the same receptive field, both in matter of size and
location within the visual field (Fig 7a). These groups
in turn could then be organised according to the sizes of
their receptive fields into different layers, so that each
separate layer only consisted of groups of cells with
similar sized receptive fields. Now suppose that the
matching does not rely on the individual responses from
these different types of cells, but on the combined
response from all the cells within such a group/column.
In that case a more appropriate description of the
purpose of the simple and complex cells might be that
they could function as a form of tuned detectors. By
tuned detectors I mean that these cells on a more
continuous scale could measure, or “sample”, to what
degree their tuned configuration of contrast is present
within their receptive field, rather than just detect the
presence, or non-presence, of a particular feature. With
this view, the individual responses from these cells
would be of subordinate importance to the matching
process, and instead it would be the summed, or
“superimposed”, response from all the cells within a
group that mattered (as a mathematical metaphor this
could be compared to how different wave functions can
be superimposed to form a new wave function that is
different from any of its individual parts but still
contains the same information). With such an
organisation in the back of the mind – not just literally
speaking – it is possible to imagine how the various
types of simple and complex cells, each and one, would
contribute to register different aspects of the contrast-
relationships, but that they together would represent the
overall contrast-configuration within their common
receptive field (Fig. 7b). Naturally would the resolution
of the contrast, measured by any such group, be
determined by the size of the common receptive field, or
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rather by the exact shapes and spatial extensions of the
light configurations to which the individual cells are
tuned to detect. However, by having several different
layers of such groups, were each layer only contains
groups of cells with similar sized receptive fields, this
problem can be avoided and the contrast can be
measured/“sampled” within several different spatial
frequencies.

I believe this account shows how the activity in the
simple and complex cells possibly could be interpreted
as being just another form of representing contrast, and
that this interpretation is as likely, or perhaps even
closer to the truth, than an interpretation where these
cells are described as “feature-detectors”. There is thus a
possibility that the human stereopsis mechanism relies
on the correspondence of contrast values in the
matching process.

Finally, one might wonder – if the “raw”contrast
information really is matched – why would the brain do
it in such an indirect way? One would imagine that the
most straightforward way to conduct a matching of
contrast values, would be to perform some kind of
cross-correlation of matrices containing these values.
One reason why no evidence of such an organisation is
to be found is probably because such operations would
be badly suited for a neural implementation. A point-
by-point correlation of contrast values would require a
much larger number of comparisons, that to be effective
would demand a very high, almost “digital”, precision.
It might just be that by implementing this through the
simple and complex cells, the same thing could be
achieved in a more “analogue” way better adapted to the
neural machinery. It is also possible that the
information represented by the simple and complex cells
are used by other systems within the visual pathway,
and that this “design” therefore would be a form of
“neural compromise” to simultaneously satisfy different
requirements.

3 CONSTRAINTS
No matter what matching primitives are used, false
matches can not completely be avoided. There will
always be ambiguous matches and in most images there
are areas that are impossible to match because they are
visible from one only eye. Further processing is
therefore needed to sort out the correct matches from the
false ones. Exactly what then is this further processing?
How can the right matches be separated from many
possible “ghosts”? Without any knowledge about how
the world behaves, this would be an impossible feat
since any match would be as likely to be the correct one
as the next. Fortunately, the world is bound by the laws
of nature which imposes certain constrains on the
behaviour of matter and energy. This makes some
aspects of the behaviour of matter and energy predictable
(e.g. solid matter is usually not transparent, a photon
follows a straight line after being emitted, e.t.c.). If
some of this knowledge was available to the brain, or
rather the stereopsis mechanism, it could be used to
constrain the search for the correct matches to certain
sub-domains within the total domain of all possible
matches. This would be possible since matches that
were not in congruence with this “knowledge” – and

thus not with the laws of nature – would be less likely
to be correct. Of course this knowledge is not of an
intellectual or conscious sort, but should rather be seen
as built into the visual system by millions of years of
evolution. The problem is to discover which of all
potential physical constraints that could be important
for the stereopsis mechanism. Many such constraints
have been suggested and some seems to be more useful
than others. Also, the suggested constraints are not
always clear cut so there is room for different
interpretations. For these reasons I will only discuss
those constraints, which I believe are most important
and relevant to my model.

The most important – and maybe most obvious –
physical constraint is the fact that the search for the
correct matches roughly can be restricted to a one-
dimensional horizontal search. This is possible since
our eyes are separated only horizontally, and the
difference in perspective will therefore not affect the
vertical positions of the features in the left/right
images. Naturally, this alignment is not perfect but in
practice correct enough to allow the search problem to
be reduced from a 2-D one to a 1-D search problem.

Marr and Poggio (1976) have formulated a constraint
of uniqueness, stating that any given point on a surface
can occupy only one location in space at a time. In a
strict mathematical sense this formulation is true, but
when applying this constraint to images caution has to
be taken. To interpret this constraint correctly one must
realise that the definition of a point can be ambiguous.
In mathematical terms a point has no extension in
space. When referring to a point in an image, the usual
meaning is that of a small area of the image (however
tiny the point might be it is still occupying a certain
area). Now since the images that reaches our eyes are 2-
D projections of 3-D structures, and due to the difference
in perspective, there is no guarantee that any particular
surface will be projected onto areas of equal sizes in the
two retinas (Fig. 8). It would therefore be wrong to
state that any particular point in one image should be
matched with only one other point in the other image. I
believe this observation is important and it shows that
this constraint should not be implemented in a too strict
sense (not in an exclusive/or manner), but in a way that
allow for some “overlap”. In fact, Panum’s limiting
case (Fig. 9) seems to indicate that the human
stereopsis mechanism makes use of a more relaxed form
of this constraint. In Panum’s limiting case, a feature in
one image can be matched with either of two identical,
horizontally separated, ones in the other image, and the
resulting perception is that of two identical features
hovering at different depths.
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Left view Right view

Figure 8. Due to the orientation of the surface, and the
difference in perspective, the light from the marked edge
will be projected onto regions of different sizes in the
two retinas.

Figure 9. Illustrating Panum's limiting case. The bar in
the left image can be matched with either of the two bars
in the right image. When fused the experienced percept is
that of two separate bars, hovering at different depths.

The main part of all light that reaches our eyes is
reflected from surfaces of solid matter. Solid matter is
per definition continuous. The atoms are closely and
strongly tied together into larger units (e.g. crystals,
rocks, cells, plants). The surfaces of solid matter will
therefore be more or less continuous or smooth. This
physical fact has been exploited in a number of
suggested constraints.

Marr and Poggio (1976) has formulated a constraint
of continuity stating that the disparity of matches
should vary smoothly over the image, except at the
boundaries of objects, because the distance to
neighbouring points on a surfaces generally varies
continuously.

Pollard, Mayhew and Frisby (1985) has for similar
reasons justified the use of a disparity-gradient limit to
constrain the search for matches. The disparity gradient
is a relative measure of the change of disparity between
two neighbouring points in an image. In a number of
psychophysical studies they found that the human
stereopsis system seems to favour matches that are
within a disparity gradient value of 1.

Mayhew and Frisby (1981) have also suggested a
constraint of figural continuity, which is a bit more
interesting in the context of the model to be presented.
Due to the continuity of matter and the generally
smooth changes of depth in an image, the relative
spatial relationships between features will usually be
preserved in the left/right image. A match will thus
more likely be correct if the features in its near vicinity
are similar to the ones in the image from which the
matching was initiated. This constraint of figural
continuity has a central role in the model I will present,
since it is inherent in the choice of matching primitive.

4 SPATIAL FREQUENCY CHANNELS
There is a great deal of evidence suggesting that the
visual system relies upon a set of independent channels,
of different coarseness, in the monocular analysis of the
image, probably corresponding to receptive fields of
different sizes (Poggio & Poggio, 1984). It therefore
seems likely that such channels also could be important
for stereopsis. In fact, there are evidence indicating that
the matching, at least to a certain degree, is conducted
independently within such channels. For instance has it
been known since long that images with high frequency
noise added to them (resulting in rivalry within the
higher resolutions) still can be binocularly fused if the
noise leaves the lower frequency information unaffected,
which thus still can be correlated (Julez & Hill, 1978).
One assumption about these channels, supported by
psychophysical observations (Felton, 1972;
Kulikowski, 1978; Levinson & Blake, 1979), is that
the coarser channels detect large disparities while the
finer channels can match only small disparities.

However, the purpose of, and activity within, these
channels should probably not be described as being
completely isolated and independent of each other.
Although the initial part of the matching procedure
could be performed within independent channels, there is
still the possibility that the output, from this initial
matching, is combined at a later processing level, at the
level where ambiguous and false matches are dissolved.
Evidence in this direction has been found by Mayhew
and Frisby (1981) (with the “missing fundamental”
experiment and with spatial frequency filtered
stereograms portraying corrugated surfaces). The
important question then is how the information from
such independent channels could be combined to reduce
the set of false matches.

Before giving my own account for how I believe this
could be done, I will briefly describe a model of
stereopsis devised by Marr and Poggio (1979) that has
inspired me. The matching primitives used in this
algorithm were zero-crossings, derived from different
spatial resolutions. The main idea is that within the
lower resolutions the number of zero-crossings will be
relatively few, and not too close, and the matching will
therefore result in few false matches. Once the set of
potential matches has been established from the lowest
spatial resolution, this information is written down into
a memory buffer. The disparity information in this
buffer is then used as starting point for the matching of
zero-crossings of a higher resolution, within a smaller
range of disparity. When this procedure has been
repeated for all the successively finer resolutions, the
resulting set of matches can, with a high probability, be
considered to be the correct set, since most of the false
matches simply have been avoided (see Marr & Poggio,
1979, for a mathematical analysis of these conclusions).
Although my model is similar to the Marr-Poggio
model, there are still a number of important differences,
and my arguments for how the information from
different spatial channels are used are not directly built
upon any mathematical analysis, but instead closely tied
to the concept of figural continuity.



9

To see how the information, from different spatial
channels, could be combined in my suggested model, it
is important to understand some of the physical
properties of the proposed matching primitive – or
rather matching unit (delimited regions containing
arbitrary contrast configurations). These properties in
turn are determined by factors, inherent in the
correspondence problem, which has to do with the fact
that the world is made up of 3-D objects, while the
images that hits our eyes are 2-D projections of the
surfaces of these objects. The important thing to realise
is that within an image, the larger the considered region
is, the greater is the probability that the different
features are projections of surfaces at different depths.
Now, since the suggested matching procedure relies on
the similarity of the contrast configuration, within
different regions of the images, it becomes evident that
the sizes of the regions in consideration will affect how
the within-channel-matching results should be
interpreted. And since the matching is performed
independently on elements of different sizes, containing
contrast information of different resolution, the
conclusions that can be drawn from the results of this
matching will be quite different from channel to
channel. Roughly speaking, it is a matter of trade-off
between the accuracy of the measured disparity and the
probability that a match is correct.

Considering the larger matching elements, which
contain lower frequency spatial information, each of
these cover a relatively large region of the image and
will thus be more likely to contain information from
surfaces with larger variation in depth. This fact has two
important implications. First, the slight distortion
between the two images, due to the larger variation in
disparity, will have the effect that certain parts within
two correctly matched elements might be uncorrelated or
even negatively correlated. However, due to the lower
resolution, which has the effect of blurring the contrast
information, and the fact that the relative spatial
relationships almost always are preserved, the total
correlation of two correctly matched elements will be
positive. Second, due to the mixture of the disparity
information within these elements, the result of two
correctly matched elements will only give a rough
estimate, or average, of the actual disparity within that
region. To resume, the negative aspect of using larger
elements is that the result from the matching will not
be very specific, but will instead give an estimate of a
sub-domain in which the correct disparity is to be
found. The positive aspect is, because a larger region of
the image is considered, that it is unlikely that any
region outside of this sub-domain will show the same
figural continuity. In other words will the result of the
matching not be very precise, but it will with a high
probability indicate within which range, or sub-domain,
the correct disparity lies.

Turning to the smaller elements, by simply inverting
the arguments, these will be shown to display the
opposite properties. Since these elements are used to
match the higher resolution information, within smaller
regions of the image, the different features within these
elements are more likely to correspond to surfaces lying
at similar depths. Thus will the distortion between two
correctly matched elements be quite low. This means

that the disparity measure, for two correctly matched
elements, will be quite specific, and also that the
resulting correlation will be relatively strong. The
negative side of the coin is that the high resolution, and
the small sizes of the considered regions, means that
there will be a greater number of regions that exhibit
similar configurations of contrast. Thus, due to the high
resolution but lack of reliance on figural continuity, the
matching within the finer channels will result in quite
specific disparity measurements, but also give raise to a
considerably higher amount of false matches.

Considering the conclusions above, it would clearly
be desirable if one could combine the best properties of
the information provided by these different channels.
Preferably, this would be done by somehow letting the
coarser channels, corresponding to the larger elements,
guide the matching of the smaller elements, similar to
the idea described earlier in the model of Marr and
Poggio. Before describing the whole of my model and
putting the parts togheter in the next section, I will
close this section by briefly commenting on some of
the main differences compared to the model of Marr and
Poggio.

Apart from the different choices of matching
primitives, the major difference is the reliance of figural
continuity in my model, while this is not considered in
the Marr-Poggio model. No matter what mathematical
arguments they use to justify that the false matches
simply can be avoided (by considering the channels one
at the time and in order from coarser to finer), this still
requires that the zero-crossing used to initiate the
matching is the correct one from the beginning. In my
opinion, this problem (of finding the correct “starting-
point”) can not be solved without considering figural
continuity. Further, in Marr and Poggio’s algorithm the
matching is performed in steps of successively finer
resolutions, where at the end of each step the result is
written down into a memory buffer, which then is used
as the starting point for the next level. In the model I
am suggesting, the matching is performed
simultaneously within the different channels, and the
activation in the larger channels are directly affecting the
activation in the finer channels. There will thus be no
unnecessary delay caused by the waiting for input from
the coarser channels, nor is there any need for an extra
memory buffer storing intermediate results.

5 THE MODEL
In the following two sections I will present a model of
human stereopsis that is built upon the different ideas
discussed in the earlier sections. For pedagogical reasons
I have chosen to divide this presentation into two
levels. In this section I will give only a general account
for how the main ideas could be implemented, and
present an overview of how the different processing
levels are structured and how the information is passed
between these different levels. In the following section a
computer implementation of the model is presented
which better describes some of the details. However,
before starting this presentation I would like to jump
ahead for a minute and discuss an exception in the
model that deserves special attention. This exception
concerns a simplification in the implementation of the
matching process.
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One aim I have had with this paper is to show that
the correspondence problem can be solved more
efficiently if the matching is conducted by a direct
comparison of contrast values, rather than by comparing
a set of more “symbolic” features. I have also tried to
show, by interpreting the functionality of the simple
and complex cells slightly differently, how these cells
possibly could represent the information of contrast. An
important assumption for the validity of the model is
therefore that the proposed groups of simple and
complex cells actually are capable of representing the
contrast information, with a precision equal to that of
the output of the retinal ganglion cells. In order to
support this assumption it would be desirable if such a
model could simulate the individual responses from each
and one of these cells. Unfortunately, the algorithm in
question is not designed to model the stereopsis process
in such an elaborate way. In short there are two major
reasons why it would be difficult to implement such a
model. First of all, the physiological knowledge of the
visual system is not complete enough to allow for the
construction of such an exact model. Not only is it
uncertain exactly to what kind of stimuli many of these
cells respond optimally to, nor is it known exactly how
they are distributed over the visual field. The second
reason is of more practical nature and concerns the fact
that such an implementation would require a
considerable amount of memory and processing
capacity. Unfortunately, due to limitations in computer
power, such an explicit implementation has been out of
the question, and instead I have been forced to
implement a somewhat simplified matching process
that relies on a form of cross-correlation of contrast
values.

Thus, the validity of this model relies on that the
above assumption, about the functionality of the simple
and complex cells, holds. However, to my defence I
would like to say that although my model relies on a
critical assumption, I believe this assumption is not
more daring than the assumptions of most other
models, and it should therefore be judged with this in
mind. With all this said I will now return to the
presentation of the model.

5.1 Input and convolution
Starting with the input, consisting of the raw intensity
values of the two images (Fig. 10, level A), the first
step is to extract the contrast information within the
images. To detect the contrast information within
different spatial frequencies, each image is convoluted
with the 2-dimensional operator ∇ 2G, with three
different values for the space constant σ (Fig. 10, level
1). Apart from computational reasons presented by Marr
and Hildreth (1980), I have chosen this operator because
the result of an image convoluted with this filter seems
to resemble that of the output of the retinal ganglion
cells. I will save the exact details about the sizes of
these filters for the next section, but here it will be
enough to say that the radius of the central part of the
filter is doubled for each successively larger filter. After
the images have been convoluted we thus have six sets,
or three pairs, of separate contrast representations (level
B), where the spatial resolution of the contrast

information for each pair is determined by the size of
the filter (the space constant σ) used to produce it.

Levels

A) Input images

1) Convolving

B) Contrast
      representation

2) "Local" matching

C) Disparity-spaces
3) "Global" Matching

4) Cross-channel combination

D) Combined disparity-space

Figure 10. Schematic overview of the different levels
of representation and processing. Representational states
are shown as squares/cubes and are labeled with letters
(A–D). Processing stages are displayed as circles and are
labeled with numbers (1–4). (A) The input stereogram. (1)
Each image is convoluted with three different ∇ 2G -
operators. (B) Contrast representations. (2) Initial, or
“local”, matching. (C) Disparity-spaces. (3) “Global”
matching. The constraints of uniqueness and continuity
are implemented by the inhibition and excitation of
nodes/cells within the disparity-spaces. (4) Cross-
channel combination. (D) Combined disparity-space
(“result”).

5.2 Matching procedure
The next step is to perform the initial, or “local”,
matching procedure (Fig. 10, level 2) to establish the
set of all potential matches. This matching is conducted
independently, and in parallel, on the three pairs of
contrast representations, thus resulting in three different
sets of potential matches (Fig. 10, level C). As
suggested earlier the general idea is that each contrast
representation is divided into a large number of partly
overlapping regions, corresponding to the receptive
fields of the suggested groups/columns of simple and
complex cells, and that the contrast values within these
regions are then cross-correlated with the contrast values
within such regions in the other image. An important
matter that remains to be considered is how large these
regions should be in relation to the spatial resolution of
the contrast information.

The problem is to establish some kind of
relationship between these two factors, that could reflect
the relationship between the resolution of the contrast,
“sampled” by a group of simple and complex cells, and
the size of their common receptive field. Naturally, it is
hard to justify any such relationship in a strict
mathematical sense. However, if one considers what
type of stimuli these individual cells responds optimally
to, it is clear that there must be a limit to how high
this resolution, or to how complex the overall
configuration of contrast within this receptive field, can
be.
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Figure 11. (a & c) Present stimuli within the receptive
field of a group of simple and complex cells. (b & d)
Showing the (assumed) “sampled” response.

As an example, consider two parallel “bar”-like features
that are present within the receptive field of such a
group (Fig. 11a). If these were too close to each other,
the resulting “sampled” response would probably be
more similar to that of one thicker bar (Fig. 11b). On
the other hand if they were further apart (Fig. 11c), they
would more likely be detected as two separate bars (Fig.
11d). My point with this example is to show that the
resolution, of the contrast information that such a group
of cells could measure, probably would depend very
much on how close the changes in light-intensity are.
In more mathematical terms, if one considers the
second-derivative of the light-intensity values along any
dimension within the receptive field, one could say that
there should not be too many such changes (zero-
crossings) of the same sign, and that they should not be
too close, if the present configuration of contrast is to
be measured/sampled “correctly”. To relate this
observation to my algorithm and formulate a more
concrete relationship, I have decided to restrict the size
of the regions, to be cross-correlated, to the size roughly
corresponding with the central part of the filter that was
used for the convolution. It can be shown that within
such a region, of a filtered image, there in the general
case (or with randomly produced light-intensity values),
with a high probability, will be only one zero-crossing
with a particular sign and orientation along any
dimension within the region (see Marr, 1982, for a full
mathematical analysis).

Having divided each contrast-representation into
partly overlapping regions, of sizes determined by the
sizes of the filters used for the convolutions, the
matching within each “channel” is performed as
follows.

To establish the degree of correspondence between
two regions, a point-by-point cross-correlation is
performed on the contrast values within these regions.

A problem with performing an “ordinary” correlation is
that two (equal) low-contrast values will result in an as
good correlation as will two (equal) high-contrast
values. Two regions containing no contrast would thus
be considered as perfectly matched. This would go badly
with the fact that the individual simple and complex
cells only responds to stimuli where there is change in
the light intensity. To reflect this in the matching
procedure, each point-by-point correlation is weighted
with a factor that is proportional to the strength of the
weakest of the two contrast values. The result of these
correlations are then added up and divided with the total
number of correlations within the region in order to
receive a normalised value. These normalised values
will then all lie in the range between –1.0 and 1.0. A
high such value indicates that the two regions
correspond fairly well, and that they contain a high
amount of contrast. A low value indicates either low
contrast, and will thus be of little interest, or that there
within the region are different sub-regions that
considered individually are positively and negatively
correlated, but when taken together will cancel out the
value for the whole region. Finally, a high negative
value simply indicates that the two regions do not
match well at all. Now this particular algorithm is only
concerned with the degree of similarity of two regions,
and therefore will only the positive values be of
interest. All negative values are therefore set to zero and
will consequently be considered as bad matches.

Since the purpose of the matching procedure is to
establish the disparity between two corresponding
regions, each region has to be matched with a number
of different regions in the contrast representation of the
opposite image (Fig. 12a). As described earlier this
search can basically be restricted to consider only
regions that are horizontally shifted, but since it is
(practically) hard to perfectly align two images, the
search is performed within a small vertical range as
well. The area delimiting this search can be seen as the
equivalent of Panum’s fusional area. In human
stereopsis, Panum’s fusional area refers to the binocular
region in which two features must lie in order to be
correctly fused (Poggio & Poggio, 1984).The results of
these individual comparisons are then mapped into a 3-
dimensional, topologically ordered, disparity-space
(DS). A horizontal cross-section of such a disparity-
space is shown in figure 12b. This structure consists of
a large number of nodes, or “cells”, where the degree of
activation in each cell represents the result of a
c o m p a r i s o n  o f
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Column containing all potential matches
for the marked region in the left image

Disparity

far

near

       Centre
(zero disparity)

Columns

(Horizontal cross-section of the disparity space)
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Figure 12 (a) The search for potential matches is restricted to consider only regions, in the opposite image, that are
horizontally shifted, and which lies within a certain range from the same relative position as the region from which the
matching was initiated. (b) The result of each of these comparisons are then mapped into the corresponding column in the
disparity-space.

two regions. Each column in a disparity-space thus
corresponds to a particular region of the image, and each
node within these columns represents a particular
disparity, with zero-disparity at the centre node. After
each region has been matched and mapped into the
disparity-space, the “local” matching procedure is
completed and the result is that of three separate
disparity-spaces (schematically portrayed as cubes in fig.
10, level C), produced from the three different pairs of
convolutions. The rest of the algorithm is basically
concerned with one problem, and that is to determine
which nodes, of all the active ones, that indicate correct
disparity values, and which have been activated due to
false matches.

5.3 Implementation of the constraints
To solve the problem of false matches some of the
constraints that were discussed in the two earlier
sections have been incorporated into the algorithm. Of
particular interest are the constraints of uniqueness and
continuity, but also how the information from the
different channels can be combined to further reduce the
set of potential matches. The way I have chosen to
implement the first two of these constraints have been
greatly inspired by an early cooperative model of Marr
and Poggio (1976), in which these constraints were
implemented by the inhibition and excitation of
interconnected “neurones”, in a structure similar to the
disparity-space described above.

To recapitulate, the constraint of uniqueness suggests
that any point on a physical surface can have only one
3-D location in space, and thus any feature in an image
should be matched with only one feature in the other
image. Apart from the objections presented earlier this
conclusion is fairly correct, and since a feature per
definition is bound to have a 2-D spatial extension in

the image, the same basic argument holds when
matching regions. Considering the disparity-spaces
described above, this means that only one of the active
nodes, in each column, can represent the correct
disparity.

The constraint of continuity in turn is motivated by
the fact that surfaces generally are smooth and
continuous, except at their boundaries, and the measured
disparity should therefore also vary smoothly over the
image. For the same reason the relative ordering of the
features, in the two images, should also be preserved.
This latter aspect is often referred to as f igural
cont inui ty or as the order ing constraint. Thus
considering the disparity-spaces, active neighbouring
cells representing similar disparities should be preferred
instead of isolated active cells.

To see how these constraints can be implemented,
consider a horizontal cross-section of the disparity-
spaces (Fig. 13). Now the constraint of uniqueness is
implemented simply by letting all the cells in a column
inhibit the activity of each other, where the strength of
the inhibition is proportional to the total activity of the
cells in the column. Since each cell in the disparity-
space is a member of two columns, one corresponding
to a region in the left image and vice versa, each cell
will be inhibited by the activity in two columns.

The constraint of continuity is implemented in a
similar, but opposite way, by letting the activity in
each cell positively influence neighbouring cells in
surrounding columns, which represents matched regions
of the same binocular disparity (Fig. 14). Each cell is
thus exciting their neighbours within a disc-shaped
region of the disparity-space, in the horizontal-vertical
plane and with the centre at the exciting cell.
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= Inhibition

Line of sight
from the left eye

Line of sight
from the right eye

Figure 13. Horizontal cross-section of a disparity-
space. The constraint of uniqueness is implemented by
letting all cells, along the two lines of sight, inhibit
each other.

= Excitation

Figure 14. Vertical cross-section of a disparity-space.
The constraint of continuity is implemented by letting
all active cells excite the cells, in neighbouring columns,
that representing similar binocular disparity.

5.4 Cross-channel-combination
This mutual inhibition and excitation of cells is
performed independently within each of the three
disparity-spaces, thus leading to somewhat different
results. As argued in the previous section the matching
process could benefit from combining these different
results by letting the activity in the coarser disparity-
spaces guide the activity in the finer channels. To
implement this idea a fourth disparity-space is
introduced (Fig. 10, level D), in which each cell is
excited by the combined activity of the three cells, with
the same relative 3-D position within the three original
disparity-spaces. Thus, cells in this combined disparity-
space (CDS) that are excited by all three channels will
be more activated than those only receiving activation
from one or two channels. Now to recall the discussion
in the previous section, the activity in the coarser
channels will be more diffuse, but also more
concentrated to certain sub-regions, within the disparity-
space, that are more likely to hold the correct matches.
Thus could cells in the CDS that lie within such sub-
regions, and that also are excited by cells from the finer

channels, be considered as more likely to indicate the
correct disparity than those that lie outside of these sub-
regions.

Finally, to favour the correctly activated cells in each
of the three original channels, the activity in the CDS
is feed back to the corresponding cells in each of these,
and the process is repeated until the activity of all the
cells has been stabilised.

6 IMPLEMENTATION
The program code of this implementation was written
in the C-language and is about 750 lines long. In order
to save some space and to make the program available
to readers not familiar with C, I will only present the
more important features of the implementation, and
instead of the original C-code I will use a more general
form of notation that hopefully could be understood by
a majority of readers.

Input : Each image is represented as a 128 x 128 byte
matrix, where each byte represents a light intensity
value ranging from 0–255 (0 = black, 255 = white).

(Step 1) Convolution: To detect the contrast
relationship within each image, the 2-dimensional ∇ 2G-
operator (described earlier) is used with three different
values for the space constant (σ=1, 2 and 4 pixels). To
normalize all contrast values, (Cx,y) {0<x<128,
0<y<128}, they are divided with the value of the
absolute product of the light intensity value and the
value given by the ∇ 2G-operator, summed over the
region covered by the filter centered at (x,y). More
formally, the normalized convoluted value, NC, at point
(x,y) are given by the following equation,

NC x ,y =
∇2G (s, t )I x +s ,y + t

t =− r

r

∑
s =− r

r

∑

∇2G (s, t )I x +s ,y + t
t =− r

r

∑
s =− r

r

∑
,

where r=4σ and I  is a matrix containing the light
intensity values.

(Step 2) Matching: Each contrast representation is
then divided into a number of regions that is equal to
the number of pixels in the original images. Thus, two
neighbouring regions will almost completely overlap
each other since they are shifted by only one pixel. To
establish all potential matches and construct the
disparity-spaces, each region is matched with 21
different regions in the other image. For example, to
establish the set of potential matches for a region in the
left image, centred at pixel (xL ,yL), the region in
question is matched with all regions in the right image
that are centered within a 10 pixel range of the pixel
(xR,yR) in the right image, which has the same relative
position as the center of the left region (xL=xR, yL=yR).
Each such set of comparisons corresponds to one
column in one of the disparity-spaces (see above).
The matching, or cross-correlation, of a region in the
left image centered at (xL,yL) with a region in the right
image centered at (xR,yR) is formally described by the
following equation,
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C = 1
(2r+1)2 sign(L x ,y ⋅ R x ,y ) ⋅[

y =− r

r

∑
x =− r

r

∑

⋅ min(
L x ,y

R x ,y

,
R x ,y

L x ,y

)⋅W (min( L x ,y , R x ,y ))],
where r  is the radius of the matched region, which is
equal to the space constant (σ) used for the particular
convolution. L  and R are matrices containing the
normalized contrast values for the left region centered
around (xL,yL), and the right region centered around
(xR,yR) respectively. The W(x) function

W (x ) = (2.0 − e

1

c1 +(1.0+c2 x )c3
)c4

returns a value beteween 0.0 and 1.0 that is proportional
to the strengt of the weakest of the two contrast values.
The constants c1, c2, c3 and c4 have the values of
0.4427, 5.0, 3.0 and 1.5 respectively. As explained
earlier, the purpose of this component is to avoid high
correlation values when there is low, or no, contrast
within a region. The result of the whole matching (C)
will be in the intervall [–1.0, 1.0], but since only the
positive values are of interest all negative values are set
to zero.

Note: Despite the complex appearance of the W(x)-
function, all the function does is to amplify the contrast
value so that the resulting correlation values will be
more evenly spread over the interval [0.0, 1.0]. I later
found that this function could be approximated by a
much simpler one;

W (x ) = 1 − e−c x
, c≈6.

(Step 3) Constraints: After the matching procedure
have been completed, every node, “or cell”, in the
disparity-spaces will have a value, or activation,
between 0.0 and 1.0. These values are now used as
input for the next layer of processing. The new value
each node will recieve is determined by three factors: the
current degree of activation, the strengt of inhibiting
“cells” lying along the same two lines of sight, and the
strengt of exciting neighbouring “cells” representing
similar disparity. The following functions descibes how
the new activation value (NA) is computed for a node in
a disparity space:,

NA (CA , P, N ) = CA + Excitation(P) − Inhibition(N ),

where CA is the current activation. P is the positive
contribution given from surrounding cells, with similar
disparity, that lies within a radius equal to the radius of
the regions that where matched to produce the particular
disparity-space. The contribution each of these cells
give is directly proportional to the activity in the
contributing cell, and proportional to the inverse of the
squared distance to the receiving cell. In other words,
more distant cells will contribute less to the excitation.
The purpose of the function

Excitation(P) = 1.0 − 1.0

1.0 + P

c

is to moderate the positive contribution to the cell so
that the change from the current value to the new one
will be smooth, and also to avoid that the new value
becomes larger than 1.0. The constant c is used to
normalise the value of P and is equal to the sum of the
squared inverse of each of the distances from the
receiving cell to the contributing cells. N is the
negative contribution (the summed activity of all cells
lying along the same two lines of sight). The purpose
of the function

Inhibition(N ) = 1.0 − 1.0

(1.0 + N )c

is (the same as for the function Excitation(P)) to avoid
too rapid changes of the activity in the cell. The c
constant (c=0.18) determines the strength of the
inhibition. This value was empirically found to balance
the average positive and negative contributions.

(Step 4) Cross-Channel Combination: The
combined disparity-space (CDS) is produced by simply
multiplying the values of all cells, that has the same
relative 3-D location, and then raise the product to one
third, so that the new value will be unchanged if all
three values are the same. A reason for multiplying the
values rather than just add them is that by doing so,
only matches that are present within all three channels
will survive.

(Step 5) Feedback: Before repeating the whole
sequence from step 3, each cell in the three original
disparity-spaces will receive a new value that is
determined by three factors: the result of the initial
matching, the current activity in the cell and the activity
of the cell in the CDS that has the same relative 3-D
location. These new values are produced in the same
manner as in the cross-channel combination (level 4),
by raising the product of these three values to one third.

7 RESULTS
The results presented in the following pages were all
produced by the computer implementation described
above. The results show the processings of five different
stereograms. The first three stereograms are made up of
artificially produced images. These stereograms were
partly designed to be as simple as possible, but also to
illustrate some of the different effects imposed by the
constraints. The last two stereograms are made up of
natural images, and therefore better shows how the
model behaves with more “natural” input.

Before going into the details of each processing a few
words about the form of the presentations are in place.
For each stereogram below the activity within the CDS
will be presented in three different ways. The first type
of result shows the activity within the CDS directly
after the initial matching procedure has been completed
(step 2 in the algorithm above). The activity within the
CDS is displayed “slice-by-slice” (vertical cross-
sections), with increasing depth from left to right, and
from top to bottom. Further, the activity within the
“cells” in each layer is displayed in a gray-scale, where
brighter regions indicate high activity and darker regions
indicate low, or no, activity. In the second type of
results, the activity is shown after a number of
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iterations (corresponding to the loop of step 3, 4 and 5
in the algorithm), after that the activity has stabilised
within the network of nodes. Here too the activity is
displayed in a “slice-by-slice” manner, but instead of
using a gray-scale, the original (left) image has been
mapped onto the regions that still are active (activity >
0.2 ), so that the reader better can see to which part of
the stereogram the active regions correspond. The last
type of result also shows the activity within the CDS
after a number of iterations, but here the maximally
activated nodes (within each column of the CDS) have
been tied together to form a wire-diagram.

7.1 Trial 1
Starting simple, figure 15 shows a stereogram with
three groups of thin vertical lines. For those readers not
capable of fusing stereoimages, the three groups form a
triangle (in the horizontal-depth plane) where the middle
group is closest and the rightmost group lays furthest
away. Although simple this example clearly
demonstrates how efficiently the cross-channel
combination resolves false matches. Figure 16 shows
the results of the convolutions with the three different
filters. If only the information within the finest channel
(fig. 16a) was considered, it would be difficult to
establish the correct set of matches since each line could
be matched with several other lines in the other image.
However, due to the facts that the resolution in the
coarser channel is lower, and the size of the matched
regions are larger, there will be no ambiguity in the
coarser channels since the thinner separate lines, within
the three groups, will not be present (fig. 16c).

As the results shows, the correct set of matches is
considerably more activated than the false ones, even
directly after the initial matching procedure (fig. 17).
And after only three iterations the false matches have
been dissolved almost completely (fig. 18 and19).

Unfortunately, the implementation of the cross-
channel combination also seems to cause a few side
effects. One of these can be noticed, in figure 18, in that
the established disparity extends a bit outwards from
each group of lines. Largely, this “filling in” (or in this
case “floating out”) effect could be ascribed to how the
constraint of continuity has been implemented (by the
excitation of neighbouring nodes in the disparity-
spaces), but in part also to the implementation of the
cross-channel combination. Since highly activated nodes
in the coarser channels spread their activity over
relatively larger regions in the finer channels. And thus
might activate nodes in the finer channels that were not
active initially. However, seen from a purely technical
view, it is difficult to definitely state that this behaviour
is incorrect, since it is impossible to establish any
depth information about the white background. If the
background had some kind of texture (which often is the
case in natural images), its depth could be established
and thus would the correct matches (for the background)
“override” the activation caused by the side effect

Figure 15. Input stereogram.

Figure 16. Result of the convolutions. If only the
information within the finest channel (a) was considered,
each of the thinner lines could be matched with any of the
three thin lines, in the corresponding group, in the other
image. However, in the coarser channels (b and
particularly c) there is no such ambiguity, and the
information within these channels will therefore “guide”
the activity within the finest channel, so that the false
matches can be dissolved.

Figure 17. Each image above shows the activity within
a vertical cross-section of the CDS. The brighter areas
indicate high activity (potential matches). Depth
increases from left to right, and from top to bottom.
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Figure 18. Activity within the CDS after 3 iterations.
The original (left) image of the stereogram has been
mapped ontop of areas that still are active.

Figure 19. Wire-diagram of the disparity (activity)
within the CDS after 3 iterations.7

 7.2 Trial 2
The next motif is a bit more complex. Figure 20 shows
a random-dot stereogram with a 25% density of black
dots. When fused three different planes can be perceived.
The closest plane frames the scene and has a rectangular
opening at its centre. The next plane lies further away
and also has a rectangular opening at its centre. The
third plane is located furthest away and can be seen
through the “hole” that is formed by the openings of the
two other planes.

Figure 20. Random-dot stereogram with a density of
25% black dots.

This example too shows how efficiently the false
matches are dissolved, by combining the information
within the three different channels. Again, if only the
information within the finest channel was considered it
is easily seen that any dot could be matched with
numerous other dots in the opposite image. However,
due to the greater reliance on figural continuity, within
the coarser channels, it is less likely that any two
incorrectly matched regions within these channels will
be highly correlated. And thus by combining the rough
estimate of disparity, from the coarser channels, with
the more precise information within the finer channels a
large amount of false matches can be ruled out.

Figure 21. Activity within the CDS after the initial
matching procedure.

As the results of the initial matching procedure (fig. 21)
shows, one can distinguish the three different planes
even before the constraints of uniqueness and continuity
has been applied. And after only 5 iterations (fig. 22 and
23), only a few false matches remain active.

Figure 22. Remaining activity after 5 iterations (with
the original left image mapped ontop).
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Figure 23. Wire-diagram of disparity (activity) within
the CDS after 5 iterations.

In the previous example (trial 1) I pointed to one of the
side effects, caused by how the cross-channel
combination was implemented, that for some motifs
can cause questionable results. In this example however,
the same side effect could be seen to have a positive
influence on the result. Since the activity within the
coarser channels is spread over to intermediate regions
of nodes in the finer disparity-spaces which were not
initially active, the resulting disparity-map will be more
continuous (i.e. the points in each plane will be tied
together).

7.3 Trial 3
One strength of the model is that it seems to be quite
robust, in the sense that it performs satisfiably even if a
substantial amount of “noise” (uncorrelated information)
is added to the stereogram, or if the individual images
are slightly shifted vertically.

Figure 24. Random-dot stereogram where only 75% of
the dots are correlated.

An example of the insensitivity to “noise” can be seen
above. The stereogram in figure 24 is the same as in
trial 2, except that an additional number of dots have
been introduced so that only a total of 75% of the dots
are correlated (i.e. 25% of the dots, in each image, have
no corresponding match in the other image).

Figure 25. Initial matching.

Figure 26. Activity after 7 iterations (left image
mapped ontop).

Figure 27. Active nodes after 7 iterations. Although
the three planes are somewhat distorted, due to remaining
false matches, they are still clearly distinguishable.
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Due to the added noise the resulting activity after the
initial matching (fig. 25) is much less pronounced than
what were the case in the in the two earlier examples.
Nevertheless, after 7 iterations (fig. 26 and 27), roughly
the same three planes have been produced. Naturally
there is a larger number of false matches still active, and
the planes are not as distinctly shaped as in the previous
example, but they can clearly be distinguished
(particularly in fig. 27 that shows the maximally
activated node within each column of the CDS).

7.4 Trial 4
The input in this and the following trial consists of
stereograms of natural images, and are simply intended
to demonstrate how the model performs with “natural”
input. In this example, the stereogram in figure 28 will
be fused (it shows a picture of the author, with some
bookshelves and a window in the background). Apart
from the earlier presentations, here the results from
some of the intermediate iterations will be displayed as
well. This is to show how the activity within the CDS
gradually changes and eventually becomes stabilised.

Figure 28. The author(s).

Figure 29 shows the activity directly after the initial
matching procedure. As can be seen there is a large
amount of activity at almost every level of the CDS.
Clearly most of these nodes have been incorrectly
activated.

Figure 29. Initial matching result.

After the first iteration (fig. 30) a large amount of
falsely activated nodes have been extinguished and the
surfaces of the face and background have become
(relatively) stronger activated. As the process continues,
for each successive iteration (fig. 31) there are less false
matches present and the correctly matched surfaces
grows more strongly activated. After the 7th iteration
(fig. 32 and 33), only a few false matches remain and
most of the active regions have been correctly matched.
For readers capable of fusing the stereogram above
(figure 28) this is easily verified.

Figure 30. Activity after the first iteration.

Figure 31. Third iteration.
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Figure 32. Activity after 7 iterations (with the original
left image mapped ontop of the most active regions).

Figure 33. Disparity-map after 7 iterations.

7.5 Trial 5
The last stereogram (fig. 34) shows my tutor holding a
white sheet of paper away from the camera. In the
background there is a student, a round table and a
supporting pillar (with increasing depth in that order).

Figure 34. Input (my tutor).

This last stereogram is the technically most complex
one and therefore the most difficult for the model to fuse
correctly. At a first glance it might not seem very
different from the one in the previous trial, but at a
closer look there are a few things about the motif that
causes problems for the model. First of all, considering
the higher resolution channels, there are several
relatively large regions where no contrast information
can be detected (e.g. the inner part of the paper, the
ceiling, my tutors shirt etc.). Another problem is that
there, in several regions within the image, is relatively
little horizontal disparity information. A majority of the
edges in the scene are in fact horizontal, which can be
seeen from the results of the initial matching (fig. 35).
As the results show the horizontal edges causes activity
in almost every level of the CDS, and are therefore
difficult for the model to extinguish.

Figure 35. Activity after the initial matching.

Due to these difficulties, the resulting disparity-map
after seven iterations (fig. 36 and 37) is not as “clean”
and continiuous as in the previous examples, but it is
still (on a rough scale) correct.

Figure 36. Active nodes after 7 iterations.
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Figure 37. Disparity-map after 7 iterations.

Before turning to the discussion I would like to point
out a positive aspect in the results, which I have not yet
mentioned. This positive aspect is the fact that the
results (the stabilised activity within the CDS) are
produced rather fast, i.e. the activity in the disparity-
spaces are stabilised after only a few “iterations”. I
believe this “speed” could be considered as a strength of
the model (as a model of the human stereopsis
mechanism). The reason for this is that if the human
stereopsis mechanism was a slow process, i.e. needed a
long time to dissolve the false matches, there would
seemingly have to be a delay in the experienced
sensation of depth, in comparison to what is
monocularly seen, and such a delay does not seem to
exist.

8 DISCUSSION
For natural reasons it is difficult to make any deeper
analysis of how well the results presented above
correspond to the “results”, or output, of the human
stereopsis mechanism. What makes this difficult is that
there is yet no efficient way of simultaneously
measuring the activity in a large number of cells in the
human brain. Even if there were one would still have to
know exactly where, in which region of the brain, the
“result” was represented, and such precise knowledge of
the anatomy of the brain still has to be found. Thus, the
only way of analysing the results of the model is to
compare them with the conscious perception of depth
we experience when looking at the same pair of images
as are feed into the model. What complicates this further
is that our conscious perception of depth is a result of
many contributing processes, which vary in their degree
of cognitive complexity. Apart from the stereopsis
mechanism, which can be considered as a relatively low
level or early process, there are many higher cognitive
functions involved in the interpretations of the various
monocular cues (e.g. shading, perspective and size
e.t.c.), which also affects the way we perceive depth.
Even such high cognitive functions as expectations,
reasoning and memory or knowledge about objects and
the world affects the way we interpret the depth of a
visual scene. Thus, even if the mechanism of stereopsis
probably is the most important (for most types of
visual scenes), the conscious perception of depth is still

biased by all these other processes. For these reasons, it
is difficult to draw any precise conclusions about the
behaviour of the model and the following discussion
will therefore be held at a quite general level.

Also important to realise, in order to make a fair
judgement of the model, is that there are a number of
cues available to the human stereopsis mechanism, that
for practical reasons have not been possible to
incorporate into the computer implementation of the
model. Of particular interest are the information about
the convergence of the eyes, the accomodation of the
lenses and possibly even the information of colour.

Most likely, vergence movements (i.e. the smooth
changes of the convergence of the eyes) have an
important role in stereopsis. Human subjects rarely just
stare at one point of visual scene, but instead we often
make saccadic eye movements to bring in different parts
of the image to the centre of our visual field. If these
different parts of the image lie at different depths our
eyes also initiate a vergence movement, so that the
particular detail will fall on the centre part in both
retinas. Thus, for the same visual scene several different
representations of the depth can be constructed, which
each and one is initiated from a different point of focus.
Clearly this information could be very useful to the
process of eliminating false matches. Since if these
different representations are inconsistent for some part
of the image an eye movement could be made to bring
that particular part into focus, and thus make it possible
to better establish the depth of that particular
detail/region.

As explained earlier the accomodation of the lens can
be a powerful cue to depth in combination with the
visual input. In order to produce a sharp image on the
retina, the lens has to be shaped differently, depending
on the distance to the feature or surface of attention. The
closer a surface is, the thicker the lens must be. Thus,
by finding the optimal resolution of the image, of the
surface of attention, the distance to the particular surface
can indirectly be approximated from the information of
the accomodation of the lens. It is quite obvious how
this information could be used by the stereopsis
mechanism to further restrict the domain of potential
matches. Since the further a match are lying from the
depth, estimated from the accomodation of the lens, the
greater is the probability that it is a false match.

A final cue, or type of information, which possibly
could be useful to the stereopsis mechanism is colour.
Although the information of colour is not necessary, it
clearly could be used to avoid at least some false
matches, if the primitives to be matched were restricted
to only those that showed similar colour compositions.

The main reason why the computer implementation
has not been designed to take advantage of these cues is
simply that the necessary “hardware” has not been
available. However, provided that the necessary input
could be feed into the model, these cues (particularly the
last two) could quite easily be incorporated into the
model, with only minor changes to the implementation.

Finally, I would like to discuss some of the more
general problems that one has to face when trying to
model something as complicated as the human brain.
Just as a chain is no stronger than its weakest link, the
accuracy of any model is determined by the accuracy of
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how its smallest building blocks are modelled. In the
case of modelling the brain, or part of it, the smallest
building blocks are neurones. Now, the problems one
has to face when trying to simulate the behaviour of
neurones on a computer are mostly of practical nature
but nevertheless quite complicated.

One such problem is how to simulate the continuos
and parallel exchange of information between cells, on a
computer that can only perform one operation at a time.
The only way to model such continuous processes on
computers is to split time into a number of discrete
intervals and then, within each interval, compute an
approximation of the behaviour of the processes over
that particular time. Thus, just as when calculating the
integral of a function, the accuracy of the resulting
approximation will depend on the number of intervals.
Desirably, the process would be divided into an infinite
number of intervals. Unfortunately, this is where the
problem arises since the processing time needed to
compute the approximation for an interval is constant.
Thus, the total time required to approximate the process
grows very rapidly with the number of intervals. In
practice this simply means that in order to receive the
results of the process within a reasonable amount of
time, one can not divide the process into too many
intervals. This, in turn, means that the approximations
of the processes often will be quite rough, which under
poor circumstances can cause the whole model to
behave strangely.

Another practical problem (closely related with the
one above) with simulating neurological systems on
computers is how to realistically model, with limited
computer resources, the behaviour of the individual cells
within the system. The problem is that such systems
are often built up by a very large number of cells, and
therefore, in order to save computer resources, the
individual modelling of these cells often has to be quite
crude. This is very unfortunate since neurones are far
from being just on/off-devices. The response of a
neurone is often not just determined by the current
degree of incoming activation from neighbouring cells,
but its response is also determined by its earlier
activation history. Thus, could any particular neurone’s
threshold potential, firing and decay rate, vary from time
to time. My point here is that without modelling the
individual behaviour of the cells, in such systems, in a
considerably more elaborate way than is done in most
models (including the one presented in this paper), it is
difficult to simulate many of the more dynamic
properties of such systems. I also believe that some
phenomena that usually are ascribed to processes or
systems at higher levels, better could be accounted for
by such lower level, “within-neurone” processes. As an
example of such a phenomenon consider hysterisis. In
the context of stereopsis hysterisis refers to the
phenomenon that once the depth of a visual scene has
been perceived (or stabilised), it is hard to break it up
even if the images are slightly distorted or separated
horizontally. Marr (1982) has commented on hysterisis
as follows: “... It therefore seems unlikely that
hysterisis is a consequence of the matching process, and
much more likely that it is due to a cortical memory
that stores the result of the matching process but is
distinct from it”. I believe this is a good example of a

“high level” explanation of hysterisis in the sense that
an entire, and separate, memory structure has to be
introduced, in order to account for the phenomenon. As
I see it such a high level explanation of hysterisis is not
necessary. If one considers the neurones in the brain that
would correspond to the nodes in the combined
disparity-space (of the model presented in this paper), or
possibly the neurones at the next higher level were the
absolute depth is represented. It is possible to imagine
how hysterisis could be accounted for at a “lower”
(cellular) level by considering how these cells could be
adapted to be less recipient to change and/or have a
relatively sustained response profile, in order to bridge
the gap between changing inputs.

I would like to emphasise that this example should
not, at first hand, be seen as an attempt to explain the
phenomenon of hysterisis, but merely to point out the
possibility that some of the phenomena, displayed by
the human stereopsis system, better could be accounted
for by processes at a lower, cellular, level.

Considering the various problems described above, I
believe there is no shortcut to building a “truly
realistic” model of human stereopsis. I am convinced
that many of the properties of human stereopsis only
can be reconstructed if the behaviour of the fundamental
building blocks, i.e. the neurones, are modelled so that
the more dynamic aspects of their behaviour can be
simulated. And to do this efficiently the problem of
simulating continuos processes on computers must be
solved. This might just be a matter of waiting for
computers that are faster and have larger memories, but
it might also mean that an entirely new form of
hardware has to be used. A type of hardware better
adapted to handle continuos and parallel processes.

9 SUMMARY
I have in this paper tried to show how the
correspondence problem could be solved more efficiently
by a direct comparison of contrast values, within
different spatial frequencies, rather than by the
comparison of some set of more symbolic, or
“predefined”, features (e.g. bars, edges, blobs e.t.c.). I
have also suggested how groups of simple and complex
cells, with common receptive fields, possibly could
represent the configuration of contrast within their
receptive fields, and thus pointed to the possibility that
such a strategy might be used by the human stereopsis
mechanism. Unfortunately, the computer
implementation of the suggested model was, for
practical reasons (mainly due to limitations in computer
resources), not designed to support this latter
assumption, but merely designed to show that the
correspondence problem can be satisfactorily solved by
comparing the “raw” contrast information within a
stereogram.

A natural future improvement to the computer
implementation, that better could support the
assumption about the simple and complex cells, would
therefore be to replace the current initial matching
procedure with a procedure where the individual
responses of the simple and complex cells, within the
suggested groups, were more explicitly modelled.
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Considering the later processing levels of the
implementation, I also believe that the combination of
the disparity-information, from the different channels,
could be modelled in a more sophisticated way. A
problem with just multiplying the disparity-values
together is that if there is only contrast within the
higher frequencies, even correctly matched regions,
within the finer channels, could be suppressed by the
lack of activity within the coarser channels. A possible
solution to this problem could be to let the activity in
the coarser channels exclusively amplify the activity in
the finer channels. However, without having specified
exactly what the result of this processing step should
be, it is difficult to come up with a clear and general
idea of what computations should be performed.
Considering the human visual system it is not unlikely
that our attention could shift between these channels or
at least have the effect of making one, or several, of
these more dominant than the rest. Clearly, this would
affect the result of the cross-channels combination and
also make it very hard to establish a general rule for
how this combination should be performed.

Despite these shortcomings, the computer
implementation performs quite satisfactory for both
natural and artificially produced stereograms, and in
several aspects the performance also shows signs of
being consistent with the performance of the human
stereopsis mechanism. For example: 1) the model
seems to be quite robust, i.e. it is not very sensitive to
distortions such as uncorrelated “noise” or slight vertical
shifts in the relative positions of the two images, 2) it
is relatively fast, only a few iterations are required to
stabilise the activity in the disparity-spaces, 3) the
combination of disparity-information from three
different channels makes it possible to rapidly
established the correct match even if several false
matches are present within the finer channels.

However, even though these results are encouraging,
computer implementations such as this one are still
rather primitive, and can only model some of the most
fundamental aspects of the human stereopsis
mechanism. In order to construct a more “complete”
model of this system, that better could account for some
of the more dynamic properties of the human stereopsis
mechanism (such as hysterisis and the establishment of
depth by vergence movements), I believe it is necessary
to more explicitly model the individual behaviour of the
cells within such a system. Without a correct model of
the dynamic behaviour, at the cellular level, it is hard to
see how such a model, realistically, could simulate the
dynamic behaviour at a macro-level. Unfortunately,
such an explicit model would require far more computer
power than is commonly available today, but if the
development of computers continue at the same rate as
in the past, it will hopefully not be too long before
such a model will see the light of day.
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