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Abstract

Extreme price changes are identified in the stock market and related to jumps in the

price process. After such extreme events, a reverting (also called contrarian) trend is

examined. There is evidence that the initial price change is often an overreaction, caused

by the psychology of market participants, and that the subsequent reversal corrects for

the temporary inefficiencies in the market. Confirming the empirical findings by other

studies, it is found that larger extreme price changes are followed by a stronger reversal

effect.

From a statistical analysis of the extreme events, a systematic trading strategy is formed.

After an extreme price change, losing stocks are bought with the hopes of following a

reverting trend. In the long run, probability is assumed to be in favor of the strategy,

generating significant positive returns.

Returns from trading are evaluated for both an estimation and validation period. Trad-

ing performance is excellent during the estimation period, beating the defined benchmark.

During validation, the active trading also generates promising results, outperforming the

benchmark. It is however suspected that the nature of the extreme events change depend-

ing on current market conditions. During strong positive market trends, the reverting

trends are likely to be more significant.
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1 Introduction

1.1 Background

Is buying recent losers profitable in the stock market? Popular belief seems to indicate

that abnormal losses should recoil with a reverting trend where prices return to levels more

in line with fundamental values. By identifying such events of extreme price changes, a

strategy may be formed for systematic trading of losing stocks based on purely technical

indicators.

The Efficient Market Hypothesis, as presented by Fama (1970), postulates that a price

set by the market is fair, i.e. always represents the true value of an asset based on the

available set of information. Studies of financial markets find that fair prices are rarely

observed empirically. Instead, market participants frequently under- or overreact to news

releases, thus making mispriced assets rather a rule than an exception. Chiarella and He

(2002) state that it is likely to believe that not all investors have fully assessed a new piece

of information immediately. Information slowly diffuses across investors and may cause

predictability in time series of asset prices. Momentum investment is an example of such

a strategy where one hypothesizes that the market under-reacts to news, thus making it

profitable to follow the trend by buying recent winners. Jegadeesh and Titman (2001) is

just one of many studies that provide empirical evidence of momentum profitability.

Contrarian investments are the opposite of momentum, following the philosophy that

abnormal price changes are likely to be overreactions with a subsequent reversal effect.

Especially over the short term, it is reasonable to believe that it is trading psychology,

(like fear and herd behavior) which causes the market to overreact. Fehle and Zdorovtsov

(2005) examine stocks in the US market that have experienced great losses and measure an

over-night adjustment effect that suggests the opportunity of forming profitable contrarian

strategies.

Since Fehle and Zdorovtsov (2005) evaluate events at fixed time intervals, only examining

daily returns at the end of the trading day, they run the risk of entering the reverting

trend at a late stage. In a previous study, Svensson (2006) explores similar patterns in the
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foreign exchange market, where a statistical methodology is developed for continuously

identifying extreme events at a high-frequency time scale. Svensson (2006) also relates

events to jumps in the price process, detected by using formal tests developed by Tauchen

and Zhou (2005). The jump detection technique relies on the availability of high-frequency

intraday data and utilizes the volatility measures realized variance and bipower variation,

as defined by Barndorff-Nielsen and Shephard (2003). Following the reasoning by Tauchen

and Zhou (2005), it is reasonable to believe that jumps are rare and large, thus associating

them with extreme price changes.

The theoretical conclusions from the Capital Asset Pricing Model (CAPM), as drawn by

for example Mossin (1966), suggest that the best investment strategy is a passive one,

holding the market portfolio. In practice, such a portfolio would be equivalent of investing

in some index, for example the S&P 500 for US stocks. Numerous studies, e.g. Cumby and

Glen (1990), Malkiel (1995) and Elton et al. (1996), provide evidence for actively managed

funds underperforming their relevant indexes. It would thus be both academically and

practically interesting to examine opportunities for beating the benchmark index.

For forming portfolios of financial assets, the mean-variance framework may be applied,

formulated by Markowitz (1952). This model states the main objectives of asset man-

agement; maximizing return and minimizing risk, defined as the standard deviation of

returns. Black and Litterman (1990) stress some issues that make the mean-variance

theory hard to apply in practice and suggest their own modifications. Black-Litterman

methodology is ideal for studying how active investment management adds value, since it

is based on the benchmark portfolio and only adjusts portfolio weights when an investor

has a unique view about an asset.

1.2 Goal and Purpose

The presence of profitable contrarian trends is examined in the Swedish stock market. By

taking the approach of Svensson (2006), statistical methods are utilized for identifying

extreme events. The time window for the study is stretched from the intraday perspective

in Svensson (2006) to also include trends over multiple days before and after the event.
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Inspired by the philosophies of Grinold and Kahn (2000), the intention is to develop a

quantitative investment strategy that relies on probability for making profits. Such a

quantitative approach is disciplined, generating systematic rules for trading and taking

out any feelings from the decision-making.

The goal is to beat a defined benchmark by adding value from an active strategy that

follows short-term contrarian trends. For implementing the strategy in portfolios, Black-

Litterman methodology is applied, where this paper also examines the necessary practical

considerations. A simpler approach for implementation is also examined, which circum-

vents the many assumptions and estimations that are associated with the Black-Litterman

model.

The study intends to generate valuable insights for traders, as well as adding to empirical

research, collecting further evidence for overreactions and contrarian trends.

1.3 Delimitations of the Study

The available data is limited, relying on an already cleaned data set. Due to time re-

strictions, additional data collection has been left outside the scope of the study. The

methods applied and the programs developed1 are however fully compatible for handling

larger sets of data, but it is left for future studies to do so.

The reader is assumed to be at a Bachelor level of financial economics. The study fur-

ther assumes that the reader is well acquainted with basic statistical methods, not fully

covering the theoretical foundations of such techniques. For full understanding, it is also

preferable with some experience of basic matrix algebra.

1.4 A Study of Quantitative Trading Based on Logics

Technical trading explores patterns in the price process of financial assets and examines

indicators that have proven profitable in the past. By relying on statistics from historical

events, one runs the risk of over-fitting to data, i.e. optimizing a strategy for maximizing

1All statistical analysis is performed in MathWorks Matlab 7.0.4.
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profits on the current data set, while performance is poor for future data2. However, if a

pattern can be motivated by economic theory, it is reasonable to believe that it will also

be present in out-of-sample data.

Over the short-term investment horizons considered in this study, the hypothesis is that

the market is mostly affected by the behavior of the active economic agents and that

prices do not follow theories about efficient markets. The contrarian behavior examined

is strongly related to human psychology, which may be assumed to have similar prop-

erties over time. Any contrarian trends that are statistically significant are thus well

motivated by logics and trading indicators derived from past events are likely to be useful

for developing a quantitative strategy for the future.

1.5 Study Overview

The study is organized as follows. Section 2 describes the related theoretical concepts,

where several mathematical and statistical methods are presented. It should be noted

that full understanding of the technical background is not required for an overall un-

derstanding of the study. Section 3 describes the data set and Section 4 describes how

theory is implemented in practice, certain considerations and adjustments that are made

to the current case and the resulting empirical findings. Section 5 concludes and makes

suggestions for further studies. An Appendix contains some extra details on the study.

2See for example Qi and Wu (2005) for an evaluation of technical trading rules and how they relate

to over-fitting.
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2 Theoretical Concepts and Methods

2.1 Financial Modeling Through Diffusion Processes

Stochastic differential equations (SDEs) are a standard approach in financial mathematics

for describing how prices of financial assets evolve over time. A standard SDE typically

has two major components, a drift term and a diffusion term. The drift represents the

deterministic trend over the time interval considered, while the randomness is introduced

by the so-called diffusion term. A Brownian Motion (BM) is the stochastic process that

is most frequently utilized for introducing the random walk and would assume normally

distributed noise added to the drift.

An SDE with drift and diffusion would be written as

dXt = µ(t, Xt)dt + σ(t, Xt)dWt, (1)

where Xt is the price of a financial asset at time t, with dXt denoting returns. µ(t, Xt) is

the drift term, σ(t, Xt) is the diffustion term and dWt represents the BM.

For a more elaborate discussion on the theoretical foundations of diffusion processes, see

for example Madsen et al. (2004) or Björk (2004).

2.2 Jump Diffusion Processes

The randomness introduced by the BM in (1) would suggest normally distributed returns,

which is contradicted by empirical findings, e.g. in Tauchen and Zhou (2005). An appro-

priate model that fully explains stock returns would also need to include a jump process,

thus leading to a jump diffusion process of the form

dXt = µ(t, Xt)dt + σ(t, Xt)dWt +
N(t)
∑

j=1

κj , (2)

where the process N(t) counts the number of jumps occuring with jump size κ(j).
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2.3 Realized Variance and Bipower Variation for Jump Diffu-

sion Processes

Recent derivation of new volatility measures for high-frequency data has made it possible

to decompose the total variation of the observable price process into its continuous and

jump part. The first measure utilized is the quadratic variation of returns, or realized

variance, defined as follows for day t

RVt ≡
m

∑

j=1

r2
t,j (3)

where the trading day t is divided into ∆ = 1/m sampling intervals and rt,j is the return

for each interval during the day. m denotes the total number of samples taken for the

time period, i.e. during one day. Barndorff-Nielsen and Shephard (2003) show that as

sampling becomes highly frequent (m = 1/∆ → ∞), the realized variance converges to

the total variation of the price process,

RVt →
∫ t

t−1
σ2(s)ds +

N(t)
∑

j=N(t−1)+1

κ2(sj). (4)

The second measure utilized is the bipower variation, defined as

BVt ≡
π

2

m

m − 1

m
∑

j=2

|rt,j||rt,j−1| (5)

If log returns for prices follow the jump diffusion process (2), Barndorff-Nielsen and Shep-

hard (2004) show that with some additional restrictions and the assumption that σ(s) is

independent of the Brownian Motion Wt, BVt converges to the variation of the continuous

part as m = 1/∆ → ∞

BVt →
∫ t

t−1
σ2(s)ds (6)
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2.4 A Technique for Jump Detection

BVt and RVt may be utilized for detecting jumps in the price process, since the measures

should be identical when there are no jumps, but differ when the jump process is active.

However, since there are practical limitations of sampling frequency, measurement errors

cause the difference between the volatility measures to almost always be different from

zero. A statistical test is needed where jumps are filtered out at some level of significance

and such a techniques are discussed in Tauchen and Zhou (2005). After deriving the

normalized jump variable ZJt, described in the Appendix B, one can filter out the return

associated with the jumps realized during the trading day t as

Jt = sign(rt)
√

(RVt − BVt)It,(ZJt≥Φ−1

α ), (7)

where Φ is the cumulative distribution function of the standard normal, α is the signifi-

cance level of the test and It,(ZJt≥Φ−1
α ) is a binary variable that takes the value one when

there is a jump during the day. RVt − BVt may be negative due to the presence of mea-

surement errors, but this is never a problem in (7) as the test is one-sided, only filtering

out jump events using the right tail.

2.5 Sampling Issues for Relating Jumps to Extreme Events

From economic intuition it is reasonable to believe that a jump is rare and large; dom-

inating total return during the time period it occurs (Tauchen and Zhou (2005)). Such

events are highly likely to be related to extreme price changes. However, with the fil-

tering technique in (7), one is only able to identify that a jump has occurred at some

unknown point during a daily time interval. For accurately isolating the reversal effect,

it is considered crucial to find the precise event time of the extreme price change.

One could imagine that very frequent sampling of data could allow jump detection on an

hourly basis instead of daily. However, as sampling becomes more frequent, the BVt and

RVt estimates are spoiled by microstructure biases in tick data, such as price discreteness

and price reporting errors. Fleming and Paye (2005) examine different sampling frequen-
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cies and find that five minute intervals are optimal, thus making it inappropriate to set

the time interval, t, too short. BVt and RVt rely on asymptotic convergence and there is a

significant difference between setting t to one hour, including twelve five minute intervals,

and setting t to one day, including 288 five minute intervals.

2.6 Identifying Extreme Events Using Empirical Distributions

of Returns

For identifying event times accurately, it is necessary to use other methods in addition

to formal jump detection. Svensson (2006) explores techniques for comparing the current

return to its empirical distribution and labeling it as extreme if the return exceeds some

cut-off level, i.e. a high or low quantile of the distribution. Zawadowski et al. (2004) stress

the importance of adjusting for the U-shaped curvature of volatility during a trading day,

thus making it necessary to introduce different distributions and cut-off levels depending

on the hour of the day. For finding extreme events on intraday data, it is then suggested

to filter on both relative and absolute terms, where the relative comparison is made with

the “normal” level for the given hour in addition to comparing with a fixed, absolute level

that is constant over the current day.

Svensson (2006) finds that an adaptive approach is favorable for estimating the empirical

distribution of returns, thus automatically dealing with any properties of non-stationarity

(time variations in mean and variance of the distribution). Adaptation is achieved by

utilizing a moving estimation window. Setting the window length to T means that all

T days leading up to the current day t are used for deriving the empirical distribution

applicable for day t. For day t + 1, the return for day t is included in the data set for

estimation and the last observation is excluded on a first-in-first-out basis. In comparison,

other studies of extreme price changes like Fehle and Zdorovtsov (2005) use constant

extreme cut-off levels for the entire time period considered.

The cut-off levels for the empirical distribution will vary over time, but are determined

at a fixed level of significance, i.e. a constant threshold for the level of extremity. In

Figure 1, an example is presented for data simulated from a standard normal distribution

to demonstrate the concept of finding cut-off levels for a data set.
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Figure 1: Cut-off levels marked with triangles at the significance level 1%.

When estimating the empirical distribution, there is clearly a trade-off that has to be

considered before settling for a length of the estimation period. On one hand, it is better

to only include returns that are relevant for the current regime of the price process (making

a small time frame preferable), while on the other hand, one needs enough observations

for making reasonable estimations (making a long time frame preferable). Gustafsson

and Hegerin (2005) examine trading opportunities on high-frequency data and use a one

month estimation period for distribution parameters in the foreign exchange market.

2.7 Mean-Variance Theory for Forming Portfolios

In the mean-variance theory by Markowitz (1952), the investors choose their optimal

portfolio weights based on their individual risk aversion, A, the covariance of the risky

assets, Σ, and the risk premiums of the risky assets, ν. In addition to the risky assets,

the portfolio constructed by mean-variance theory includes weight of a risk free asset, w0,

which is used to sum the portfolio weights to one.
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2.7.1 The Risk Aversion Coefficient

By definition, the risk aversion coefficient, A, is the rate at which an investor will forego

expected return for less variance. That is, the higher the risk aversion of the investor, the

more readily expected return is forsaken in exchange for less risk (Idzorek (2004)). Due

to its subjective nature, it is hard to empirically quantify the risk aversion coefficient and

it is usually set to a reasonable value depending on the context.

2.7.2 The Covariance of the Risky Assets

The covariance matrix, Σ, is a symmetrical K ∗K matrix, where K is the number of risky

assets available to the investor. The individual variances of the assets can be found along

the diagonal of the matrix, while the other positions in the matrix are the covariances of

the assets.

Σ =















var1 cov1,2 cov1,3

cov2,1 var2 cov2,3

cov3,1 cov3,2 var3















When estimating the covariance matrix, it is important to consider the length of the

estimation period. Covariance is a noisy measure and the longer the estimation period,

the less impact of noise on the estimates. Grinold and Kahn (2000), p. 54, discuss

historical estimation of covariances and stress the drawback of a long estimation period,

where the changing nature of assets due to mergers, spinoffs and other restructuring may

be lost. Grinold and Kahn (2000) also note that mathematics demand the number of

time periods, T , used for estimation to be greater than the number of assets, i.e. T > K.

2.7.3 The Risk Premiums of the Assets

The risk premiums, ν, are defined as the expected returns of the assets in excess of the

risk free rate of return, i.e. the reward of holding risk bearing assets to holding a risk free

asset. In the mean-variance framework, the investor has to provide expected returns for
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all assets available. It is convenient to put all values of expected returns into a column

vector of length K.

2.7.4 Finding Optimal Portfolio Weights

When the inputs from Sections 2.7.1-2.7.3 are attained, a simple matrix operation will

give the optimal portfolio weights, w, as a column vector of length K.

w =
1

A
Σ−1ν (8)

The resulting weights are a combination of long and short positions which, in combination

with the risk free portfolio weight, must sum to one. The optimal weight of the risk free

asset, w0, is thus defined as

w0 = 1 − w1 − w2 − ... − wK . (9)

The risk free weight is strictly dependent on the risky assets’ portfolio weights and can

be either negative or positive.

2.7.5 Implementation Issues

Academically, the mean-variance framework works nicely, but when implementing the

theory in reality, some major problems occur, as noted by Black and Litterman (1990).

First, the model requires the investor to have a complete set of expected returns of all

available assets. The selection of assets is usually wide, especially when constructing a

portfolio of individual stocks. Normally, the investor has a relevant view of the expected

returns of only a small number of assets, and has to estimate the expected returns of all

other available assets. This is often approximated from historical returns which usually

provide inaccurate guidance for future returns The model is very sensitive to the input

of expected returns, and even though the expected returns seem reasonable, the portfolio

weight outputs are often wild.
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Second, there are some major problems resulting from the often unreasonable portfolio

weights. The unconstrained model often returns large short positions, but when intro-

ducing the constraint of no shorting, the model returns corner solutions in the form of

zero-weights for many assets. No shorting is a common constraint and the resulting

zero-weights lead a weakly diversified portfolio.

Third, there is no way of influencing the results by the confidence the investor has in each

individual view. In the mean-variance framework a view with low certainty, or even an

assumption of the expected return of an asset on which the investor has no view, has the

same impact on the portfolio weights as one with high certainty. The effect of this lack

of distinction is that even a view with very high certainty, which should generate a good

return will be expressed along with many very uncertain expected returns.

In order to resolve these practical issues, Black and Litterman (1990) developed their own

quantitative asset allocation model.

2.8 The Black-Litterman Model

The Black-Litterman (BL) model combines the mean-variance theory with the concepts

of the capital asset pricing model, CAPM. The CAPM explains the excess return of asset

A, rA, defined as the total return less the risk free rate of return, by dividing it into two

parts, defined for any given time interval as

rA = βArM + θA, (10)

where the first term is perfectly correlated with the excess market return, rM , and θA is

the component of rA that has no correlation with the market3. βA is proportional to the

asset’s covariance with the market as

βA =
Cov(rM , rA)

V ar(rM)
. (11)

3θA is also referred to as the idiosyncratic return.
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According to CAPM, the expected value of the uncorrelated component is zero, E[θA] = 0.

This means that the expected return of the asset can be derived solely from the excess

market return and βA.

For the market portfolio, the assumption of E[θA] = 0 must hold since summing (10) for

all stocks will always sum to the total market capitalization. The CAPM, however, takes

the concept one step further as it assumes that the assumption holds for all individual

assets and portfolios, thus implying that the β reflects all risk associated with an asset

or a portfolio. A portfolio’s β-risk can be eliminated by diversification, thereby leaving

systematic or market risk as the only source of risk exposure. CAPM further implies

that no rational investor should take on diversifiable risk, since only non-diversifiable

risk, i.e. market risk, is rewarded at market equilibrium. When all diversifiable risk

is eliminated, the portfolio β will be one. In a market at equilibrium, given that the

underlying assumptions of the CAPM hold, this optimal portfolio is one with weights

proportional to the assets’ market capitalizations. In other words, the CAPM states that

the best investment strategy is a passive one where the average investor holds the market

portfolio (Grinold and Kahn (2000)).

The BL model uses the market portfolio as calculated by CAPM as a starting point for

active investments. The model enables an investor to tilt the assumed original position in

the market portfolio towards his or her own beliefs by the input of views. An investor’s

view is a piece of information about an asset that is not reflected in the asset price. A

view can be either relative, e.g. asset A will outperform asset B by 3 %, or absolute, e.g.

asset A will outperform the market expectation by 3 %. If an investor has no expectation

of the performance of an asset, he is said to have a neutral view.

2.8.1 Advantages of the Black-Litterman Model

The virtues of the BL model are numerous. The investor no longer needs to make assump-

tions of expected returns for assets on which the investor has no view. When the investor

has a relative view, the portfolio weights will only change for the assets in question. When

the view is absolute, however, the portfolio weights of all assets will be decreased in order

to favour the weight of the asset with a view. Additionally, the model takes into consid-
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eration the degree of confidence the investor has in each view; depending on the excess

expected return that can be derived from the investor’s view, and the level of confidence

the investor has in the excess expected return (i.e. the volatility of the excess expected

return), the portfolio is rebalanced in a way that takes the uncertainty of information

into account. If, for example, an investor has a view on an asset which will give a high

expected return with high confidence, the portfolio will be weighed heavily in that asset

to reap as high a reward as possible while still guarding the risk exposure. If the risk is

higher, the increase in portfolio weight of the asset will be lowered accordingly.

2.8.2 Model Inputs

To attain the Black-Litterman portfolio weights, a number of inputs are required; the

neutral view risk premiums and the views -consisting of the view portfolio, the view

premiums and the view confidence. These two rather complex inputs will generate the

Black-Litterman risk premiums which are transformed into the Black-Litterman portfolio

weights by using regular mean-variance theory.

2.8.3 The Neutral View Risk Premiums

The neutral view risk premiums, ν, are the expected risk premiums by the average in-

vestor, implied by the market portfolio weights (therefore also known as the implied excess

equilibrium return vector) (Idzorek (2004)). A neutral view means that the investor has

no opinion about the returns of an asset, and therefore follows the crowd. The portfolio

of an investor with neutral views on all assets on the market, assumed to be the average

investor, will hence have the same weights as the market portfolio.

By the inverse of the operation that gave the portfolio weights in mean-variance theory,

a vector with the implied neutral view risk premiums can be obtained as

νn = AΣwn, (12)

where νn is a column vector with neutral view risk premiums, A is the risk aversion
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coefficient, Σ is the covariance matrix of the assets and wn is a column vector of market

portfolio weights.

2.8.4 Formulating Views

For each view, the investor should construct a view portfolio, P , which is a vector with

a coefficient of plus one for the asset favoured by the view and coefficients summing to

minus one for the assets disfavoured by the view. The coefficients of disfavoured assets

should be relative to the assets’ weights in the market portfolio. For assets not affected

by the view, the coefficients are zero. In other words, the view portfolio is a long position

in the asset favoured by the view and short positions in assets disfavoured by the view,

while taking no position at all in the assets that are unaffected by the view. For multiple

views, P is a matrix with rows equal to the number of views and column equal to the

number of assets, K.

For example, there may be four available assets for an investor, denoted A, B, C and D.

The investor has two views, one absolute view that asset B will outperform the market

(the other three assets) and a relative view that asset C will outperform asset D. The

resulting view portfolio would be

P =







−1
3

1 −1
3

−1
3

0 0 1 −1







where column one represents the weight in asset A, column two represents the weight in

asset B and so on.

The second component of a view is the view premium, Q, which is the expected excess

return resulting from the view portfolio compared with the neutral view portfolio. This

is also known as the view portfolio alpha.

Continuing the example above, the investor may believe that asset B will outperform the

market by 10% in the absolute view and that asset C will outperform asset D by 5% in

the relative view. The resulting vector of view premiums would be
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Q =







0.10

0.05







The third component is the view confidence, Ω, which is the degree of certainty the

investor feels about the view. Ω is equal to the variance or volatility squared of the view

premium. This means that Ω is zero if the investor is fully confident in the view and

infinite if the investor has no confidence in the view.

Completing the example, the investor may believe that asset B will outperform the market

by 10% with an expected volatility of the return of 20%, rendering a view confidence of

0.202. For the relative view the volatility is expected to be 10%, resulting in the following

view confidence matrix

Ω =







0.202 0

0 0.102







2.8.5 Finding the BL Portfolio Weights

To obtain the Black-Litterman risk premiums, νbl, some matrix algebra is necessary.

The result is a weighted average between the neutral view risk premiums and the view

premiums. The weights are inversely proportional to the uncertainty of the views, as

represented by the view confidence and the covariance matrix.

νBL = (Σ−1 + P ′Ω−1P )−1(Σ−1νn + P ′Ω−1Q) (13)

With the same operation as in the mean-variance theory, the optimal portfolio weights

with respect to the views can be obtained as

wBL =
1

A
Σ−1νBL (14)

Since the view portfolio coefficients for assets unaffected by the view is zero, the Black-

Litterman portfolio weights will not deviate from the neutral view portfolio weights for

these assets.

21



2.9 Defining a Benchmark

The market portfolio has previously been mentioned as a benchmark for measuring the

performance of an active strategy. In theory, such a portfolio would contain all available

assets over the world, which in practice becomes unwieldy and difficult to handle.

A predefined benchmark portfolio is often used instead, where the assets included make

up a relevant reference of performance for the individual strategy. The benchmark can

just as well be a simple standard strategy, such as a buy and hold, or an old strategy

previously developed if the scope of the study is to further develop that strategy (Grinold

and Kahn (2000)).

2.10 Obtaining Exceptional Returns

α is a measure of the excess return from the active strategy over a passive strategy. Once

a benchmark portfolio has been defined, one can derive exceptional returns of an asset

from the expected returns, its correlation with the benchmark, the expected benchmark

return, the exceptional benchmark return and the risk free rate of return as presented by

Grinold and Kahn (2000), p. 91,

αA = E(RA) − Rf − βAµB − βAfB, (15)

where µB is the expected benchmark return and is estimated in various ways depending

on the scope of the study; often as a long-term historical average with time frames ranging

up to several decades. fB is the exceptional benchmark return and represents a short-term

trend that is assumed to hold over the future time period considered. Rf is the risk free

rate over the time period. Note that βA is the asset’s correlation with the benchmark B

and not the same as presented in the discussion of CAPM

βA =
Cov(rA, µB)

V arµB
. (16)

22



2.11 Evaluating Risk-Adjusted Returns

In Sharpe (1966), a ratio of return compared to risk (defined as volatility of realized

returns, σ) is introduced. This so-called Sharpe ratio is a commonly used measure for

assessing the compensation for the risk taken and defined as

SR =
Rt − Rf

σ
, (17)

where Rf is the risk free rate deducted from the average realized return Rt. When

calculating the measure on an annual basis, it is reasonable to calculate the average

monthly/weekly/daily returns over the full period examined. Returns are then multiplied

by the number of time periods for the full period (i.e. 12 for months) and the σ of these

returns is multiplied by the square root of the number of time periods (i.e.
√

12 for

months). The resulting Sharpe ratio may easily be compared with other investments as

the annualized version is the one used by convention.
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3 Data

The study is based on stock prices of thirteen major stocks traded at the Stockholm

Stock Exchange. The stocks included are major in terms of both market capitalization

(i.e. the total amount of equity outstanding, defined as stock price times the number

of stocks issued) and turnover. Stocks have been selected based on data availability,

but may be considered ideal for the purpose of this study since high liquidity may be

necessary for reverting trends, as shown by Fehle and Zdorovtsov (2005). The stocks

are (stock name tickers in parentheses) ABB (ABB), Ericsson B (ERICB), Stora Enso

(STER), Svenska Handelsbanken A (SHBA), Swedish Match (SWMA), Astra Zeneca

(AZN), Tele2 B (TEL2B), Electrolux (ELUXB), TeliaSonera (TLSN), Volvo B (VOLVB),

Nordea (NDASEK), Autoliv (ALIV) and Hennes & Mauritz B (HMB).

Tick data is sampled at one-minute intervals from January 3 2003 through November 25

2004 during trading hours 09.00 to 17.30. The total number of trading days over the

time period is 477, where the first half of the data (238 days) is used for estimating the

model and tuning the parameters (called in-sample or estimation period), while the second

half (239 days) is used for validation of the model (called out-of-sample or validation

period). When returns for the individual stocks were calculated, data was resampled

at five-minute intervals for dealing with the market microstructure issues mentioned in

Section (2.5). Using five-minute sampling frequency is a standard approach for balancing

between capturing the distribution and mitigating measurement errors, see for example

Andersen et al. (2001), Bollerslev et al. (2005) and Fleming and Paye (2005).

The returns were calculated as

rt = log(
pt

pt−5
), (18)

where rt is the return at time t (with time being measured on a one-minute basis) and pt

is the price at time t.

Stock data was originally extracted from the STORQ database and SixTrust. Descriptive

statistics for stock data is summarized in Table 1.
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Stock Price, Change over Change over Change over

ticker day 1 in-sample (%) out-of-sample (%) full sample (%)

ABB 21.91 50.2 15.1 65.3

ERICB 6.75 56.7 64.6 121.3

STER 96.00 3.6 6.8 10.4

SHBA 122.50 15.1 14.7 29.8

SWMA 69.50 2.8 10.3 13.1

AZN 304.50 10.9 -24.4 -13.5

TEL2B 230.00 52.8 -41.3 11.5

ELUXB 143.00 9.3 -7.6 1.7

TLSN 33.30 8.4 12.9 21.3

VOLVB 152.00 37.2 21.7 58.9

NDASEK 40.50 21.2 26.2 47.3

ALIV 187.50 37.9 15.2 53.1

HMB 174.50 -1.1 20.9 19.7

Table 1: Descriptive statistics for stocks in the studied time periods, where prices are denoted in SEK.

The one week STIBOR, Stockholm InterBank Offer Rate, is used as the risk free rate of

return and daily data was obtained from Reuters for the period of the study. The rate

was at a mean level of 2.81%, going from 3.90% on January 3 2003 to 2.12% on November

25 2004.

3.1 Data Criticism

Data is based on one-minute sampling of tick-data which inevitably involves microstruc-

ture biases, as for example mentioned by Fleming and Paye (2005). Problems may arise

when there are multiple quotes reported on the same stock during the same one-minute

interval. Also, the system might lag, providing imprecise quotes. The data set was pro-

vided by Hossein Asgharian in a cleaned and filtered condition, which means that tedious

data preparations were spared. The negative aspect is that insight was limited regarding

the preparation process.
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An obvious weakness of the data set is that it is very limited, both regarding the number

of assets and the length of the time series. If more data had been available, statistical

significance would increase. Also, the influence of the overall market trend would diminish

as one would be able to study different regimes over the business cycle.
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4 Methodology and Empirical Results

4.1 Identifying Extreme Events

The methodology described in Section 2.6 is used for identifying extreme events at a

significance level of 5%4. A 30-day moving time frame is adopted for estimating the em-

pirical distribution, similar to the length in Gustafsson and Hegerin (2005). Longer time

frames are restricted by limited data availability and shorter time frames are considered

insufficient for finding reasonable estimates.

The empirical distributions are highly dependent on the time frame considered, with daily

returns being very different from those on an hourly basis. Due to intraday seasonalities, a

distribution is estimated for each trading hour, i.e. one for 09.00-09.59, one for 10.00-10.59

and so on. The day is concluded by the distribution for 17.00-17.30, summing the number

of hourly distributions to a total of nine. Each stock is also treated as an individual asset,

which means that 13 estimations are concurrently conducted for each distribution.

Svensson (2006) finds evidence that large price changes in the same direction are often

clustered within the same day, making it necessary to at least consider longer-term trends

than an hour. Stretching the time horizon mitigates the risk of taking a contrarian

position that is ruined by another large price change. When considering changes over as

long horizons as a day, precision becomes coarse for finding events and one is also likely

to detect returns that are part of a strong trend, not necessarily driven by an extreme,

sudden change. Thus, a filter evaluates both daily and hourly returns, demanding returns

at a specific time to be considered extreme on both scales. As a final step, the ability

to detect jumps is utilized, filtering on events that are jump related within the last day.

In this way, there are a total of 353 extreme events identified for the stocks during the

estimation period5.

4This is a standard level of significance for statistical tests.
5464 events are identified when only filtering on the daily distribution and 369 trades are identified

when filtering on both daily and hourly distributions. Thus, the jump detector only filters out 16 events

after this.
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4.2 Measuring the Reversal Effect

The behavior of the price process is studied for events identified by the approach in

Section 4.1 during the estimation period. Just like Fehle and Zdorovtsov (2005), only

great price declines are examined. When considering practical implementation issues, it

makes sense to limit trading orders to long positions, since the process of shorting stocks

is more complicated. Thus, a buy signal is generated after extreme losses and the return

from holding the position is evaluated on different time horizons.

Evidence is presented by Fehle and Zdorovtsov (2005) that larger price declines should

suggest stronger reversal effects, logically motivated by the market correcting more for a

greater initial “mistake”. All events are treated as independent and since properties of

trading psychology are assumed to be constant over time and between different stocks,

the following cross-sectional regression is conducted

Ri,T = a0 + a1Pi,T + ǫ, (19)

where realized return of trade number i, Ri,T , is related to the size of an initial price

trend, Pi,T . In line with momentum studies like Jegadeesh and Titman (2001), the holding

period, T days, is evaluated symmetrically with the formation period, i.e. T is the same

for Ri,T and Pi,T .

The results for different values of T are presented in Table 7 in Appendix. All regressions

provide highly significant evidence that negative trends including extreme price declines

are followed by a positive reversal effect. It is also indicated that more negative initial

returns lead to stronger reversals (the a1 coefficient is negative and significant), confirming

the findings in Fehle and Zdorovtsov (2005).

For finding the most profitable holding period, mean returns for different periods are

examined, presented in Figure 2. The ideal graph would present a relationship where

the optimal holding period is located on a “bump”. However, the analysis does not

seem to favor any specific holding or formation period, with return being a nearly linear

function of holding time. Since there is a strong overall positive trend for the market

benchmark, it may be hard to separate the reversal effect from the market trend. Instead,
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the results from the regressions in Table 7, Appendix B, are examined for guidance, with

the coefficient a1 plotted in Figure 3.
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Figure 2: The mean return for holding periods 1–40 days during the estimation period.

0 5 10 15 20 25 30
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

R
ev

er
si

on
 c

oe
ffi

ci
en

t, 
ab

so
lu

te
 v

al
ue

T, days

Figure 3: Absolute values of the reversion coefficient, a1, for different values of holding and formation

periods, T .

It is decided to rely on T = 5 since the regression coefficients suggest the strongest
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relationship6 and longer time periods being logically less related to the extreme event

(other factors are likely to affect the stock price). The coefficients from this regression

are presented in Table 2 and are also used for forecasting returns for out-of-sample data.

Coefficient Estimate 95%-confidence

interval

a0 0.007 0.001 – 0.012

a1 -0.355 -0.452 – -0.257

Table 2: Results from regressing initial price trend on realized return.

The 353 5-day-returns are plotted in a histogram, presented in Figure 4. The distribution

of returns is obviously skewed in favor of positive returns.
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Figure 4: Histogram of returns from holding period T = 5 for estimation data.

When examining all 353 extreme events, the mean return over the 5 day holding period is

1.35%. A t-test is applied, testing the one-sided null hypothesis whether mean return is

zero with the alternative hypothesis of mean return being positive. The t-test rejects the

null hypothesis at the 1%-level, indicating that the events form a reliable trading signal.

6A high a1 coefficient suggests a stronger reversal effect. Also, the constant a0 is low, which could

indicate that the overall upward trend has been filtered out to a larger extent than for other values of T .
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4.3 Examples of Extreme Events

Figure 5 gives an example of a successful trade. Clearly, a buy signal is triggered in a

declining price environment characterized by large negative jumps. The return for the

position over a 5 day holding period is over 13% in this case.
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Figure 5: Extreme event for AZN, where the diamond indicates where a trading signal is issued.

Figure 6 gives an example of a failed trade. The trade is entered after a jump, but with

jumps often being clustered over time, timing turns out to be wrong. This type of failed

trades will occur occasionally, but are hard to avoid. One may consider strategies for

exiting such failed trades before the loss grows too large.
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Figure 6: Extreme event for ALIV, where the diamond indicates where a trading signal is issued.

4.4 Implementing a Portfolio Strategy

When forming a portfolio strategy, the Black-Litterman model is applied with views

attained from the signals triggered by extreme price changes. The use of the Black-

Litterman model assures that the money inserted in the strategy is fully invested at all

times with a reasonable level of diversification.

4.4.1 The Benchmark and the Simple Form of the View Portfolio

For defining the benchmark, the first approach was to use a continuously updated value

weighted index where the portfolio weights of the 13 stocks were in relation to the relative

shares of the assets in the total market capitalization. Examining the index portfolio,

it was observed that the weight of Ericsson B, the asset with the highest capitalization

during the period of study, was extremely high, at times accounting for more than 25

% of the total portfolio. The large impact of Ericsson B could also be seen in its β for

the benchmark, calculated over the entire period, reaching 2.5, whereas the β of all other

stocks were less than one. In addition, market capitalization data was not available for

the entire time span studied, which would reduce the already small data set by 77 days.
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This led to the decision to use an equally weighted index as the benchmark. The bench-

mark will now be a strategy which invests equal amounts in each stock at the start of the

period of study and stays that way through continuous readjustments. This also simplifies

the process of updating the Black-Litterman model since the negative weights in the view

portfolio, i.e. the weights of all assets except the one which is favored by the signal, will

always be (-)1/12. If a value weighted index would be used, the negative view portfolio

weights would have to be balanced in accordance with their relative weights in the market

portfolio. Another simplifying effect is that the neutral view portfolio will be homogenous

with weights of 1/13 for all assets.

Evaluating the equally weighted index, the cumulative return is plotted in Figure 7. The

graph clearly shows a positive overall trend for the considered time period.
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Figure 7: The cumulative return for the equally weighted index of the 13 stocks over the time period

January 3, 2003, through November 25, 2004.

4.4.2 Estimating the Input Parameters

All input parameters can be estimated from historical values with a suitable timeframe.

The choice of timeframe depends on the investment horizon or, in the case of a quantitative

trading strategy, the holding period of the strategy. Since the strategy of this study is a

short term strategy with a holding period of just 5 days, a rolling timeframe of 30 trading
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days is used to estimate the parameters of the model. The rationale behind using such a

short estimation period is that this will better reflect temporary trends and will not rely

heavily on more consistent historical trends.

Even though the individual parameters are more or less well suited for short estimation

periods, all parameters are estimated on the same time frame for consistency. Also, the 30

day time window is consistent with the estimation period used for deriving the empirical

distributions in Section 4.1. The drawbacks of using such a short estimation period

are that the parameters become very sensitive to noise and that long term structural

relationships between certain stocks, e.g. stocks in the same business, might get lost in

short term trends and noise. The parameters estimated over the 30 day time period are the

covariance matrix, the β ’s with respect to the benchmark and the expected benchmark

returns.

4.4.3 Calculating View Premium from the Expected Returns

When estimating the model, it is crucial to filter the data in a way that only leaves trades

that give a positive expected exceptional return, α. The extreme event related trading

signal provides an expected return7 consisting of several components. α is then filtered

out by subtracting the risk free rate and the stock’s β times the expected benchmark

return, as

αA = E(RA) − Rf − βA ∗ µB (20)

β and the expected benchmark return are both continuously estimated over the previous

30 days. The risk free rate of return is always known with certainty as the one week

STIBOR. After filtering out events with negative values of α, the remaining α’s will serve

as the view premiums for assets on which there is a signal. For the estimation period,

there are 239 trades entered for the 353 extreme events identified.

Note that (20) is different from the formula originally presented in (15), which differs by

also containing a term with the exceptional benchmark return, −βfB, on the right hand

7Forecasting is made using the regression model from Section 4.2.
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side. Such a modification for short term exceptional trends is especially needed when

the expected return of the benchmark is estimated as a very long term average, with an

estimation period of several years. This study estimates expected benchmark return over

such a short period of time that short term trends are assumed to already be captured by

the µB measure, thus making it unnecessary to introduce a separate estimation procedure

for fB.

4.4.4 Estimating the View Confidence

It is necessary to assess view confidence before entering a position in order to update

portfolio weights correctly. The view confidence is equal to the volatility of the view

premium during the holding period. In the general examples of the Black-Litterman

model seen in the literature, this is set by the individual investor based on the degree of

certainty the investor feels about the view, which is as subjective as the view itself. When

using the model with a quantitative strategy, it is desirable to find some way to determine

view confidence as a function of the signal.

Since higher risk generally is compensated by higher return, it is reasonable to believe

that one can relate the size of the volatility, i.e. the view confidence, to the size of the

expected excess return. A simple linear regression is made of the 5 day volatility on the

expected excess return from each trade8 during the first half of data as

Ωi = b0 + b1αi + ǫi, (21)

for event i.

The results from the regression can be seen in Table 3 and indicate that there is indeed a

positive relationship between volatility and expected return that is statistically significant

at the 5 % level. The same regression coefficients are further used when forecasting the

view confidence during the validation period.

8Only the extreme events where expected excess return is positive, i.e. α > 0, are considered trades.
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Coefficient Estimate 95%-confidence

interval

b0 0.016 0.015 – 0.018

b1 0.211 0.146 – 0.276

Table 3: Results from regressing expected excess return (α) on view confidence (volatility).

4.4.5 Setting the Risk Aversion Coefficient

The risk aversion coefficient is used to tune the portfolio weights in accordance with the

individual investor’s willingness to take on risk. In practice, this is a quite complex input

which is often arbitrarily set. In this study, the risk aversion coefficient is varied at three

different levels, low (15), medium (25) and high (35). The coefficient is set at levels that

do not generate wild portfolio weights that involve shorting or using leverage for financing

the portfolio.

The Black-Litterman model was originally developed for assets such as global indexes

of equities, bonds and currencies, all of which have higher covariances than individual

stocks. The stocks included in the study all have low covariance compared to the empirical

covariances of indexed assets. This calls for the use of higher risk aversion coefficients

than what is seen in e.g. Litterman and He (1999), who use the value of 2.5 as the

approximated world average risk aversion.

4.5 Results from Portfolio Strategies

Table 4 presents the returns for the portfolios formed using Black-Litterman methodol-

ogy with view inputs formed from trading signals triggered by the extreme events. The

active strategy clearly outperforms the index over the estimation period (11.9% higher

with medium risk aversion), as well as in out-of-sample (5.1% higher with medium risk

aversion). One may draw the same conclusion from risk-adjusted returns, represented

by Sharpe ratios. The returns vary by the three levels of risk aversion examined, where

higher risk aversion takes less active positions and thus shrinks the active return towards

the benchmark. No strategy has taken trading costs into account, which should reduce the
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return of both active and indexed returns (since the equally weighted index is rebalanced

over time).

A rA/SR rI/SR rA/SR rI/SR

in sample in sample out of sample out of sample

15 50.8% /2.86 30.3% /1.77 19.1% /1.57 10.4% /0.74

25 42.2% /2.61 30.3% /1.77 15.5% /1.30 10.4% /0.74

35 38.5% /2.45 30.3% /1.77 13.9% /1.17 10.4% /0.74

Table 4: The total returns of the active trading strategy (rA) for different risk aversion coefficients (A)

compared to the index total returns (rI). Sharpe ratios, SR, are presented for each return.

The positions for all stocks are plotted over time in the same graph, where the case with

medium risk aversion, A = 25, is presented in Figure 8 for in-sample and Figure 9 for

out-of-sample. For other risk aversion coefficients, graphs are presented in Appendix.

Clearly, the portfolios are frequently rebalanced with certain periods of especially high

activity. Also, the resulting positions are at some points weighing heavily in single assets,

for example up to 35% in one stock during the estimation period (see Figure 8).
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Figure 8: Positions for all stocks using A = 25 for estimation data.
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Figure 9: Positions for all stocks using A = 25 for out-of-sample data.

4.6 Implementing Trading with Fixed Bets

According to Grinold and Kahn (2000), p. 377, a careful implementation procedure is

necessary for not spoiling investment research. Therefore, an alternative implementation

approach is evaluated, where fixed trading bets are made on each signal triggered by the

extreme events. The strategy is simpler than the Black-Litterman methodology, while

also being less sensitive to assumptions about input parameters.

A trading account with 1 SEK is set up and 0.05 SEK9 is invested in each trade. At times,

the account may be more than fully invested, i.e. a minor degree of leverage may be used,

but most of the time, the account is held in cash (assumed to generate no return). Trades

are entered only if the expected excess return (α) is positive, where forecasts of expected

returns are formed using the results from Section 4.1 and extracted as in 4.4.3. For testing

whether higher expected return improves accuracy, trades are also filtered on 1% and 2%

respectively.

Table 5 present the results from the estimation period and indicate that hit ratio is high

for finding profitable trades; around 70% of trades generate positive return. Sharpe ratios

9This level is arbitrarily set, where 5% of the capital per bet provides decent diversification and risk

control.
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α No of Hit Mean Sharpe

trades ratio (%) return (%) ratio

> 0% 239 69.5 0.12 3.88

> 1% 141 69.5 0.14 3.23

> 2% 76 73.7 0.23 3.24

Table 5: Trading with fixed bets at different expected excess returns, α, for the estimation period.

on an annual basis are also high, taking values over three. This can be compared to other

investment strategies like buying and holding the S&P 500 stock index, which generated

a Sharpe ratio of 0.47 over the time period 1995–2005 and 0.16 during 2000–2005. The

equally weighted benchmark should be the most relevant benchmark, where active trading

clearly beats the index Sharpe ratio of 1.77.

Table 5 seems to support the hypothesis that higher forecasted returns generate more ac-

curate trading - the hit ratio increases slightly while the return per trade clearly improves.

Mean returns of trades are highly significant, with t-tests rejecting zero mean returns at

the 1%-level in all cases.

Figure 10 presents an overview of the trading for trades filtered at α > 2%. Panel 1

and 2 compares trading returns over time, while Panel 3 presents how the total degree

of investment varies over time. From Panel 2, trading is consistently generating profits,

with no time periods of highly negative returns. Panel 3 indicates that the strategy

is never fully invested, implying opportunities for increasing total return by applying a

complementary investment strategy.

Out-of-sample trading is also examined, producing almost as impressive returns as for

the estimation period. Table 6 presents the results, where stronger proof is provided that

higher forecasted returns may improve trading accuracy. Both hit ratios and mean returns

become significantly higher when filtering. All Sharpe ratios are higher than the equally

weighted benchmark (taking the value of 0.74 over the time period).

Figure 11 presents an overview of out-of-sample trading for trades filtered at α > 2%.

From Panel 2, trading returns experience boosts in volatility when active trading intensi-
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Figure 10: Panel 1 presents return for the equally weighted index over the estimation period. Panel 2

presents return for the active strategy, filtering trades on α > 2%. Panel 3 presents the total degree of

investment.

fies. Just as for estimation data, Panel 3 indicates that the strategy is never fully invested.

It should be noted that the scale for the “Index return”-axis in Panel 1,11, is different

from Panel 1, 10.
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α No of Hit Mean Sharpe

trades ratio (%) return (%) ratio

> 0% 250 60.0 0.024 0.75

> 1% 183 63.9 0.040 1.33

> 2% 99 67.7 0.061 1.38

Table 6: Trading with fixed bets at different expected excess returns, α, for the validation period.
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Figure 11: Panel 1 presents return for the equally weighted index for out-of-sample. Panel 2 presents

return for the active strategy, filtering trades on α > 2%. Panel 3 presents the total degree of investment.

The distribution of returns is examined for out-of-sample data and presented in Figure 12.

The histogram suggests that there is a fairly large amount of negative returns, which may

41



cause the strategy to perform worse than during the estimation period. One could refine

trading by introducing some filter for maximum loss tolerated, a so-called “stop-loss” (see

for example Gustafsson and Hegerin (2005) for an implementation of such trading rules).
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Figure 12: Histogram of returns from holding period T = 5 for validation data, filtered on α > 0%.

4.7 Details on Trades for Individual Stocks

The trades triggered, i.e. extreme events with α > 0%, are examined for each individual

stock. Table 8 and 9 in Appendix provide summary statistics for the estimation and

validation period, respectively. It is interesting to note that trading is not heavily focused

on just a few stocks, but rather evenly distributed over the full sample of available assets.

Also, the overall tendency of mean returns, being positive in almost all cases, further

strenghtens faith in the accuracy of the trading signal.

Maximum returns for some stocks are occasionaly extreme (e.g. 40% for ERICB), but

mean returns for the full sample are in the same vicinity, (around 0.5%–5% for in-sample

and around 1% for out-of-sample). The active strategy manages to generate positive

return for some stocks with a long-term losing trend. TEL2B and ELUXB for instance,

both experience a negative trend over the validation period (see Table 1 for details), while

it is still possible to make profits from trading on extreme events. Also, there seems to
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be additional evidence that the strategy performs systematically poorer for the validation

period, i.e. the reverting effect becomes weaker. It does not seem to be the case that

there are some extreme failed trades that ruin the total return (there are no trades losing

more than 10%).
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5 Conclusion

For the data set studied, there is a significant reversal effect after extreme price changes.

The reverting trend is stronger for larger initial price declines, supporting logical intuition

and confirming the empirical findings by other studies. This study also relates the effect

to longer term trends, stretching the time period to days instead of hours.

Trading is implemented on both a portfolio and fixed bet basis. The portfolio approach

looks nice in theory, but contains a number of abstract input parameters that are hard

to estimate in practice. Fixed bets is a more straightforward approach for assessing the

overall opportunities for making profit using the trading signal. However, both evaluation

methods indicate similar results.

Trading during the estimation period suggests highly significant returns from taking active

positions. Out-of-sample also generates very promising results, but slightly less extraor-

dinary than during in-sample. A plausible explanation is that there is a strong upward

market trend for the period used for estimation, making a significant impact on some

of the estimated parameters. Reversals may be stronger during such positive market

regimes. However, during both time periods, adding active bets results in a strategy that

beats the benchmark in terms of risk-adjusted returns.

One promising finding is the fact that the regression model for forecasting excess expected

return (α) for each trade performs well in both in- and out-of-sample. Filtering on higher

levels of α turns trading more accurate in terms of both hit ratio for finding profitable

trades and mean returns.

5.1 Suggestions for Future Studies

The study may be further developed by introducing more advanced tools for forecasting

and estimation. For example, volatility measures are forecasted using a simple linear

regression, with constant coefficients for all events. It may be reasonable to introduce some

kind of autoregressive model for improving accuracy of forecasts (see for example Madsen

et al. (2004), Chapter 5, for ARCH, GARCH and other ways of modeling volatility).
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Also, when making regressions, one may assume that the properties of the trading signal

actually varies over time. Considering the results from the study, it is likely to believe that

opportunities for profitable trading on reverting trends changes with market condiditions.

This could be incorporated in the model by continuously evaluating a regression from a

recent window of time. For more sophisticated methods, one may turn to programming

neural networks, using artificial intelligence to adapt to new states of the market (see for

example Campbell et al. (1997), Chapter 12, for more on the subject).

Since failed positions may significantly affect the overall performance, trading may be

implemented by introducing trading rules for exiting such trades. For example, a maxi-

mum level of loss per trade may be set, introducing a “stop-loss” restriction. Also, one

may determine a positive level for closing positions after high profits, hypothesizing that

the reverting trend is over. The result would be a more dynamic trading strategy in

terms of holding period, while also adding additional parameters that one runs the risk

of over-optimizing.

For estimating covariance of assets, β’s and other parameters, a short term estimation

period is used. Just as for the volatility forecasts, more advanced methods may be applied.

For example, one may include the effect of longer term averages that reflect structural

relationships such as stocks operating in the same industry (a rather rigorous approach

favored by practitioners such as Grinold and Kahn (2000)).

The constraint of no shorting may be relaxed to some extent when implementing portfo-

lios. Since the default portfolio holds all assets, one may utilize negative views by selling

from the initial positions. This means that one could examine extreme positive price

changes with the hypothesis that there will be a negative reversion, in analogy with the

approach of this study. It is however important to note that implementation may lead to

zero weights, generating the problematic corner solutions as discussed in Section 2.7.5.

For more realistic implementation, trading costs should be taken into account. The strate-

gies trade very frequently and it may be necessary to define some thresholds for deter-

mining whether it is worth updating the portfolio or not. This would introduce inertia in

the trading system, where the degree of inertia is set by the trade-off between expected

return for a trade and the related trading cost.
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A Empirical Results Appendix

A.1 Regressions of Expected Return

Coefficient/T Estimate 95% -confidence

interval

a0/T = 1 -0.002 -0.008 – 0.004

a1/T = 1 -0.209 -0.365 – -0.053

a0/T = 2 0.005 0.000 – 0.010

a1/T = 2 -0.128 -0.243 – -0.013

a0/T = 3 0.006 0.001 – 0.010

a1/T = 3 -0.196 -0.300 – -0.092

a0/T = 4 0.007 0.002 – 0.012

a1/T = 4 -0.244 -0.347 – -0.141

a0/T = 5 0.007 0.001 – 0.012

a1/T = 5 -0.355 -0.452 – -0.257

a0/T = 6 0.008 0.003 – 0.014

a1/T = 6 -0.301 -0.398 – -0.204

a0/T = 7 0.013 0.007 – 0.019

a1/T = 7 -0.224 -0.316 – -0.131

a0/T = 10 0.020 0.014 – 0.026

a1/T = 10 -0.125 -0.216 – -0.035

a0/T = 15 0.030 0.023 – 0.038

a1/T = 15 -0.179 -0.271 – -0.086

a0/T = 20 0.044 0.035 – 0.052

a1/T = 20 -0.131 -0.226 – -0.035

a0/T = 25 0.053 0.043 – 0.063

a1/T = 25 -0.112 -0.210 – -0.013

a0/T = 30 0.061 0.051 – 0.072

a1/T = 30 -0.148 -0.250 – -0.046

Table 7: Results from regressing initial price trend on expected return for different formation and

holding periods, T .
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A.2 Evaluating Trades for Individual Stock

Stock No of Mean Volatility Min Max

ticker trades return (%) of returns (%) return (%) return (%)

ABB 16 5.3 7.3 -3.4 20.7

ERICB 14 5.5 11.6 -5.0 40.7

STER 19 1.5 4.9 -6.1 14.9

SHBA 21 2.8 2.1 -1.2 8.0

SWMA 29 0.68 2.9 -4.1 6.0

AZN 15 2.8 5.9 -6.1 14.2

TEL2B 15 4.0 2.3 0.0 8.4

ELUXB 15 1.4 5.1 -6.0 12.4

TLSN 14 0.6 3.0 -3.2 6.7

VOLVB 20 3.5 4.6 -5.3 13.4

NDASEK 16 2.5 3.8 -5.2 12.9

ALIV 21 1.3 3.4 -7.0 7.5

HMB 24 0.26 2.7 -5.8 4.4

Table 8: Evaluating trading returns for individual stocks during the estimation period, filtering trades

on α > 0%
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Stock No of Mean Volatility Min Max

ticker trades return (%) of returns (%) return (%) return (%)

ABB 18 -0.1 4.5 -9.2 6.2

ERICB 24 1.2 4.9 -8.0 11.3

STER 12 1.1 1.9 -2.1 4.3

SHBA 11 0.5 1.6 -2.5 2.8

SWMA 19 0.6 2.8 -5.6 5.8

AZN 22 -1.0 3.1 -8.8 4.5

TEL2B 26 0.2 3.0 -5.8 5.6

ELUXB 22 0.4 2.4 -6.2 3.8

TLSN 25 0.3 3.1 -7.6 5.2

VOLVB 18 1.1 3.5 -5.1 8.7

NDASEK 17 1.7 2.2 -1.9 6.6

ALIV 17 1.0 2.7 -3.7 5.8

HMB 19 -0.1 2.1 -4.1 3.9

Table 9: Evaluating trading returns for individual stocks during the validation period, filtering trades

on α > 0%
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A.3 Positions from Portfolio Implementation
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Figure 13: Positions for all stocks using A = 15 for estimation data.
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Figure 14: Positions for all stocks using A = 35 for estimation data.
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Figure 15: Positions for all stocks using A = 15 for out-of-sample data.
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Figure 16: Positions for all stocks using A = 35 for out-of-sample data.
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B Technical Appendix

The methodology of Tauchen and Zhou (2005) for detecting jumps is summarized by

Svensson (2006). First, a ratio statistic is defined as

RJt ≡
RVt − BVt

RVt
. (22)

100 ∗ RJt may be intuitively interpreted as the percentage of total price variation that is

related to jumps. Huang and Tauchen (2005) conduct extensive Monte Carlo simulation

studies and find nice properties of RJt scaled by its asymptotic variance

ZJt ≡
RJt

√

[(π
2
)2 + π − 5] 1

m
max(1, TPt

BV 2

t

)
, (23)

where ZJt is asymptotically distributed as the standard normal. Barndorff-Nielsen and

Shephard (2004) introduce TPt, the tri-power quarticity robust to jumps, and show that

this converges as

TPt ≡ mµ−3
4/3

m

m − 2

m
∑

j=3

|rt,j−2|4/3|rt,j−1|4/3|rt|4/3 →
∫ t

t−1
σ4(s)ds, (24)

where µ4/3 ≡ 22/3Γ(7/6)Γ(1/2)−1.
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