

Department of Informatics
Ole Römers väg 6, 223 63 Lund

Service-Oriented Architecture
(SOA) quality attributes
– A research model

Master thesis, 10 credits, INF101, in Informatics
11th of October 2006

Supervisors: Hans Lundin / Erik Persson
Examiners: Magnus Wärja, Claus Persson
Author: Annika Pettersson

 2

MANY THANKS TO…

IBM Switzerland and IBM Germany

- Gisbert Krüsemann, IBM Germany

- Norbert Furth, IBM Switzerland

- Franziska Feller Kaetterer, IBM Switzerland

- Ralf Schaarschmidt, IBM Germany

University of Lund

- Erik Persson, University of Lund

- Hans Lundin, University of Lund

UBS Switzerland

- Günther von Bülzingslöwen, UBS Switzerland

 3

Department of Informatics
Ole Römers väg 6, 223 63 Lund

Service-Oriented Architecture (SOA) quality attributes
� A research model

© Annika Pettersson

Master thesis presented: October 2006
Span: 98 pages
Supervisors: Hans Lundin / Erik Persson

Abstract

Background: Many of the architectural discussions and proposals, currently being held and

formulated at IBM, focus on service-oriented architecture (SOA). In fact, every
other day, IBM employees receive mails containing SOA information. Having
in mind that IBM is one of the leading consultant and software companies in
the world, as well as considering that this architecture is said to be an
improvement of EAI, the interest arose in conducting a research around a
potential SOA Quality Evaluation Model. With this model it should be possible
to gain an indication of the extent a SOA is contributing or limiting to business
benefits, in comparison to an already existing architecture. For the research
area the Swiss bank UBS was chosen, as they recently implemented a service-
based architecture.

Aim: To create a SOA Quality Evaluation Model that is applicable to SOA
implementations.

Method: Based on secondary data, attributes that describe the quality features of SOAs

were filtered out and to some extent gathered. These quality attributes were
then combined with questions, to collect information about how employees, at
the UBS, experience the difference between the old architecture and the newly
implemented service-oriented architecture. Finally, the gathered results were
weighted, presented and analyzed in the SOA Quality Evaluation Model.

Conclusion: All attributes, except ‘Security’, ‘Efficiency’, ‘Reliability’ and ‘ROI’, indicate

an improvement with the replacement of the old architecture and none of the 12
quality measurements show proof of deterioration. Moreover, nine out of the
12 attributes were regarded as critical for success. Hence, in general it can be
assumed that these attributes have been in accordance with what can be
expected from an architecture evaluation model at a bank like UBS.

Keywords: SOA, quality attributes, quality model, UBS

 4

TABLE OF CONTENTS

MANY THANKS TO… .. 2

TABLE OF CONTENTS.. 4

TABLE OF FIGURES.. 8

OVERVIEW OF ABREVIATIONS ..10

INTRODUCTION..11

BACKGROUND .. 11
PREFACE ... 12
AIM AND RESEARCH QUESTIONS ... 12
DELIMITATION ... 13
DISPOSITION ... 13

METHODOLOGICAL APPROACH..14

SELECTION AND RESTRICTIONS... 14
RESEARCH QUESTIONS .. 15
STRATEGY... 16
CHOICE OF METHOD ... 16
THE APPROACH .. 17
GATHERING SOA QUALITY ATTRIBUTES.. 17
EVALUATING SOA QUALITY ATTRIBUTES .. 19
MODEL STRUCTURE OF THE SOA QUALITY EVALUATION MODEL .. 21
QUESTIONNAIRE FOR THE SOA QUALITY EVALUATION MODEL .. 24
THE “HAND-OUT”.. 25
APPROACH OF THE RESULTS AND ANALYSIS... 25
VALIDITY AND RELIABILITY... 26

THEORETICAL FRAMEWORK ...27

ARCHITECTURE... 27
SERVICE-ORIENTED ARCHITECTURE (SOA) ... 28
Client/Server Architecture, Front-End .. 29
Enterprise Service Bus (ESB) ... 30
Service Repository .. 32
Service... 32
Components... 34
Interface... 35
SOA Resume ... 37
QUALITY .. 37
NON-FUNCTIONAL AND FUNCTIONAL REQUIREMENTS .. 38
QUALITY ATTRIBUTES OF THE SOA QUALITY EVALUATION MODEL .. 39
Technical Perspective.. 40
Quality Attribute (1): Modifiability... 40

 5

Quality Attribute (2): Portability... 40
Quality Attribute (3): Reusability.. 41
Quality Attribute (4): Integrability .. 43
Quality Attribute (5): Security .. 43
Quality Attribute (6): Efficiency ... 44
Quality Attribute (7): Scalability... 45
Quality Attribute (8): Reliability... 46
Business Perspective ... 48
Quality Attribute (9): Usability ... 48
Quality Attribute (10): Business Flexibility .. 49
Quality Attribute (11): Development Costs .. 51
Quality Attribute (12): Return on Investment (ROI)... 53

RESEARCH AREA – UBS...54

ABACUS, THE PREVIOUS IT ARCHITECTURE .. 55
THE NEW ARCHITECTURE ... 56
The Approach.. 56
Abacus vs. The new Architecture.. 58
IS THE NEW ARCHITECTURE OF UBS A SOA? .. 60

RESULTS AND ANALYSIS...62

TECHNICAL PERSPECTIVE .. 63
QUALITY ATTRIBUTE (1): MODIFIABILITY .. 64
QUALITY ATTRIBUTE (2): PORTABILITY.. 65
QUALITY ATTRIBUTE (3): REUSABILITY ... 67
QUALITY ATTRIBUTE (4): INTEGRABILITY.. 68
QUALITY ATTRIBUTE (5): SECURITY... 69
QUALITY ATTRIBUTE (6): EFFICIENCY.. 70
QUALITY ATTRIBUTE (7): SCALABILITY ... 71
QUALITY ATTRIBUTE (8): RELIABILITY .. 72
BUSINESS PERSPECTIVE .. 73
QUALITY ATTRIBUTE (9): USABILITY ... 74
QUALITY ATTRIBUTE (10): BUSINESS FLEXIBILITY ... 75
QUALITY ATTRIBUTE (11): DEVELOPMENT COSTS ... 76
QUALITY ATTRIBUTE (12): RETURN ON INVESTMENT (ROI).. 77
EVALUATION OF THE SOA QUALITY EVALUATION MODEL ... 78

CONCLUSION ...80

THE SOA QUALITY EVALUATION MODEL .. 80
UBS AND ITS NEW ARCHITECTURE ... 81
FUTURE RESEARCH SUGGESTIONS ... 82

ATTACHMENTS..83

ATTACHMENT 1: OVERVIEW MATRIX OF POTENTIAL QUALITY ATTRIBUTES 84
ATTACHMENT 2: BUNDLED OVERVIEW MATRIX OF POTENTIAL QUALITY ATTRIBUTES 85
ATTACHMENT 3: OVERVIEW MATRIX OF SELECTED QUALITY ATTRIBUTES 86
ATTACHMENT 4: INTRODUCTION FOR THE RESPONDENT .. 87
ATTACHMENT 5: QUESTIONNAIRE - SOA QUALITY ATTRIBUTES .. 88
ATTACHMENT 6: UBS ANSWERS .. 89

 6

ATTACHMENT 7: THE SOA QUALITY EVALUATION MODEL... 90

LIST OF REFERENCES ..93

PUBLISHED MATERIAL .. 93
UNPUBLISHED MATERIAL ... 96
VERBAL EXCHANGE.. 98

 7

TABLE OF FIGURES

FIGURE 1: OVERVIEW OF RESPONDENTS... 13
FIGURE 2: THE MOTIVATION OF APPLYING THE ELECTED RESEARCH QUESTIONS. 14
FIGURE 3: AN EXTRACT, FROM THE ATTACHMENT 1: OVERVIEW MATRIX OF POTENTIAL QUALITY

ATTRIBUTES, WITH EXPLANATIONS... 17
FIGURE 4: THE QUALITY ATTRIBUTES BEING BUNDLED. ... 18
FIGURE 5: AN EXTRACT, FROM THE ATTACHMENT 2: BUNDLED OVERVIEW MATRIX OF

POTENTIAL QUALITY ATTRIBUTES, WHERE IT IS DESCRIBED HOW THE BUNDLING IS TO BE
UNDERSTOOD. ... 19

FIGURE 6: POTENTIAL QUALITY ATTRIBUTES THAT WERE REGARDED AS REAL QUALITY
ATTRIBUTES FOR THE SOA QUALITY EVALUATION MODEL, DUE TO THE TOTAL AMOUNT
OF PRESENCE IN THE BIBLIOGRAPHICAL RESEARCH .. 19

FIGURE 7: EXTRACT FROM ATTACHMENT 3: OVERVIEW MATRIX OF SELECTED QUALITY

ATTRIBUTES, SHOWING THAT THE ATTRIBUTES SECURITY AND SCALABILITY ARE ADDED
DUE TO THE PRESENCE IN THE COLUMN UBS AND SOA ARTICLES.. 20

FIGURE 8: THE SELECTED QUALITY ATTRIBUTES... 20
FIGURE 9: SIMM AS AN ALTERNATIVE OF PRESENTING GATHERED RESULTS. 20
FIGURE 10: AN EXAMPLE OF A SPIDER WEB. .. 21
FIGURE 11: AN EXAMPLE OF A SPIDER WEB WITH GATHERED RESULTS ABOUT AN OLD

ARCHITECTURE... 21
FIGURE 12: AN EXAMPLE OF A SPIDER WEB WITH GATHERED RESULTS ABOUT A NEW

ARCHITECTURE... 22
FIGURE 13: AN EXAMPLE OF A SPIDER WEB WITH GATHERED RESULTS OF HOW IMPORTANT A

COMPANY CONSIDERS THE ATTRIBUTES TO BE.. 22
FIGURE 14: AN EXAMPLE OF A SPIDER WEB PRESENTING THE RESULTS FROM AN OLD AND A

NEW ARCHITECTURE AND IMPORTANCE OF THE DIFFERENT QUALITY ATTRIBUTES. 22
FIGURE 15: AN EXTRACT FROM ATTACHMENT 5: QUESTIONNAIRE – SOA QUALITY ATTRIBUTES

PRESENTING THE TWO QUESTION ALTERNATIVES. ... 23
FIGURE 16: AN EXTRACT FROM ATTACHMENT 5: QUESTIONNAIRE – SOA QUALITY ATTRIBUTES

PRESENTING THE FIVE ANSWER ALTERNATIVES.. 23
FIGURE 17: AN EXTRACT FROM ATTACHMENT 5: QUESTIONNAIRE – SOA QUALITY ATTRIBUTES

PRESENTING THE FIVE ANSWER ALTERNATIVES AND THE EXPLANATIONS FOR THE
QUALITY ATTRIBUTE MODIFIABILITY. .. 24

FIGURE 18: ONE OF THE FIGURES PRESENTING UBS RESULTS FOR THE ANALYSIS. 25
FIGURE 19: THE APPROACH USED FOR DIVIDING ALL ATTRIBUTES IN BEING OBVIOUS,

POTENTIAL OR LESS APPROPRIATE SOA QUALITY ATTRIBUTES.. 25
FIGURE 20: THE COMPONENTS OF SOA, ONLY CONSIDERING SERVICE PROVIDING ASPECT.

... 28
FIGURE 21: A THREE-TIER CLIENT/SERVER OR SERVICE REQUESTOR/SERVICE PROVIDER

ARCHITECTURE, DISREGARDING THAT REQUESTORS MIGHT ALSO OCCUR ON THE
BUSINESS LOGIC-TIER... 28

FIGURE 22: ESB WITH ITS SERVICES AS BEING PART OF THE BUSINESS LOGIC-TIER.................... 29
FIGURE 23: ALL PARTS OF AN ESB... 29
FIGURE 24: THE PROCESS BETWEEN SERVICE REQUESTORS AND PROVIDERS THROUGH

SERVICES BROKERS TO A REPOSITORY. .. 31
FIGURE 25: POSSIBLE SERVICE AND COMPONENT RELATIONSHIPS. ... 33
FIGURE 26: INTERFACES CREATING INTERACTION .. 35
FIGURE 27: WS-SECURITY WITH ITS UNITS, COVERING DIFFERENT SECURITY ASPECTS.

... 35
FIGURE 28: OVERVIEW OF SERVICE CONSUMER AND SERVICE PROVIDER INTERACTION.......... 36
FIGURE 29: DRAWBACKS WITH CUSTOM-MADE AND STANDARDIZES SYSTEMS. 41
FIGURE 30: THE DIFFERENCE BETWEEN MAKE-ALL AND BUY-ALL... 41
FIGURE 31: COMPARISON BETWEEN SCALABILITY AND EFFICIENCY... 45
FIGURE 32: STANDARD SERVICE LEVELS FOR SERVER BREAKDOWNS AND/OR DISK CRASHES

... 46
FIGURE 33: FROM HAVING GAINED FROM THE IT-INVESTMENT, THE WRONG TREATMENT OF

USABILITY MAY LEAD TO EXCEEDING COSTS... 47
FIGURE 34: PORTERS FIVE FORCES.. 49

 8

FIGURE 35: LIFE CYCLE OF A SYSTEM. .. 50
FIGURE 36: THE BIGGEST FIX COSTS DURING THE DEVELOPMENT PHASE OF SYSTEMS............. 51
FIGURE 37: THE TRADITIONAL ROI FORMULA. .. 52
FIGURE 38: THE ORGANIZATIONAL STRUCTURE OF UBS.. 53
FIGURE 39: ABACUS, A CALCULATING TOOL. .. 54
FIGURE 40: AN EXAMPLE OF THE ABACUS SILOS MORTGAGES AND FUND ACCOUNTS. 54
FIGURE 41: THE PROCESS OF THE ABACUS REPLACEMENT. .. 55
FIGURE 42: THE OLD SILO SYSTEM AND THE NEW COMPONENT (C) BASED ARCHITECTURE

WITH INTERFACES (I) AND A MIDDLEWARE (M).. 57
FIGURE 43: THE NEW ARCHITECTURE OF THE UBS IN TERMS OF SERVICE-ORIENTED

CONCEPTS... 58
FIGURE 44: THE RELATIONSHIPS BETWEEN PARTNER CONTRACT AND PRODUCT. 58
FIGURE 45: THE SERVICE-ORIENTED ARCHITECTURE OF THE UBS.. 60
FIGURE 46: THE UBS CONSTRUCTIONS OF THE INTEGRATIONS ARCHITECTURE. 60
FIGURE 47: THE OBVIOUS, POTENTIAL AND LESS APPROPRIATE TECHNICAL SOA QUALITY

ATTRIBUTES. ... 62
FIGURE 48: THE ANSWERS FOR THE QUALITY ATTRIBUTE MODIFIABILITY 63
FIGURE 49: THE ANSWERS FOR THE QUALITY ATTRIBUTE PORTABILITY 64
FIGURE 50: THE ANSWERS FOR THE QUALITY ATTRIBUTE REUSABILITY 66
FIGURE 51: THE ANSWERS FOR THE QUALITY ATTRIBUTE INTEGRABILITY................................... 67
FIGURE 52: THE ANSWERS FOR THE QUALITY ATTRIBUTE SECURITY ... 68
FIGURE 53: THE ANSWERS FOR THE QUALITY ATTRIBUTE EFFICIENCY .. 69
FIGURE 54: THE ANSWERS FOR THE QUALITY ATTRIBUTE SCALABILITY 70
FIGURE 55: THE ANSWERS FOR THE QUALITY ATTRIBUTE RELIABILITY... 71
FIGURE 56: THE OBVIOUS, POTENTIAL AND LESS APPROPRIATE TECHNICAL SOA QUALITY

ATTRIBUTES. ... 72
FIGURE 57: THE ANSWERS FOR THE QUALITY ATTRIBUTE USABILITY ... 73
FIGURE 58: THE ANSWERS FOR THE QUALITY ATTRIBUTE BUSINESS FLEXIBILITY 74
FIGURE 59: THE ANSWERS FOR THE QUALITY ATTRIBUTE DEVELOPMENT COSTS....................... 75
FIGURE 60: THE ANSWERS FOR THE QUALITY ATTRIBUTE ROI ... 76

 9

OVERVIEW OF ABREVIATIONS

AS THIS ESSAY WILL CONTAIN SEVERAL ABREVIATIONS, THIS GATHERING WAS CONDUCTED TO

PROVIDE THE READER WITH A GENERAL OVERVIEW. DEFINITIONS, HOWEVER, ARE NOT GIVEN HERE,
BUT IN THE RESPECTIVE CHAPTERS.

Cash Core Account

Customer Information

Customer Information Control System

Customer/Central Information File

Common Object Requestor Broker Architecture

Critical Success Factor

Common Framework Service

Enterprise Application Integration

Enterprise Service Bus

Global Wealth Management & Program Business Banking

Hyper Text Transfer Protocol

International Business Machines Coorporation

Institute of Electrical and Electronic Engineers

Internet Protocol

International Standardization Organization / International Electronical Commission

Information Technology

Java 2 Platform Enterprise Edition

Java Message Service

Multi-Channel Access Platform

Message Queuing Series

Microsoft Message Queuing

Organization for the Advancement of Structured Information Standards

Open Lan Unix

Object-oriented

Open Systems Interconnection

Personal Digital Assistant

Public Key Infrastructure

Return on Investment

Remote Procedure Call

Simple Mail Transport Protocol

Service-oriented Architecture

(former: Simple Object Access Protocol)

Strategic Solution Program

(former: United Bank of Switzerland)

Universal Description, Discovery and Integration

World Wide Web Consortium

WebSphere Application Server

WebSphere Message Queuing

Cash Dispenser

Web Service

Web Service Description Language

eXtensible Markup Language

CIF

CORBA

CSF

CSF

EAI

ESB

Global WM&BB

HTTP

IBM

IEEE

IP

ISO/IEC

IT

J2EE

JMS

MAP

MQ Series

MSMQ

OASIS

OLU

SOA

OO

OSI

PDA

PKI

WS

WSDL

XML

UDDI

W3C

WAS

WebSphere MQ

CICS

CI

ACC

WMA

SOAP

SSP

UBS

ROI

RPC

SMTP

 10

INTRODUCTION

TO GIVE THE READER A GOOD START INTO THE TOPIC, THE INTRODUCTION WILL FOCUS ON THE

CURRENT IT SITUATION AND THE REASON FOR ENTERING A NEW ERA. THE ADDITIONAL

ENLIGHTENING OF THESIS DETAILS, SUCH AS PREFACE, AIM, DELIMITATION AND DISPOSITION, ARE TO

GET A MORE SPECIFIC UNDERSTANDING OF THE THESIS CONTENT AND STRUCTURE.

BACKGROUND

Today, IT architectural discussions no longer evolve around Monolithic Architectures (pre
1950s up until 1960s), Remote Procedure Calls (RPCs) (1970s until the middle of the 1980s),
Remote Object Invocation (the 1980s until the middle of the 1990s) or Message Processing
(mid 1990s until the early 2000s). Neither is the so called Enterprise Application Integration
(EAI) of same interest anymore as in the late 1990s. In fact, it seems as if the IT-world is once
again embracing a new architectural approach, i.e. Service-Oriented Architectures (SOA).
(Bergmann, 2005)

Due to the technical evolution it is to some extent, relatively self-evident that SOAs can be
used to implement EAIs. However, that EAIs with technical features, such as messaging,
message brokers and message busses, can be used to implement SOAs might seem a bit more
surprising. In fact, this challenges the whole reason, for introducing and evolving this new
service-oriented architecture. Hence, what exactly is the main reason for this architectural
evolution, besides competing on the architectural market and gaining or increasing possible
market shares?

EAI did solve the severe problem of coordination between business requirements and
technology, but then again it failed in addressing the complex array of integration issues.
Moreover EAI could not deliver the needed business flexibility and the presence of an
understandable language between business and IT. (Bieberstein et. al., 2006) Considering
these shortcomings, it might not be too surprising that one exclaimed a 70% failure of all EAI
installations during an EAI symposium in 2003. As it seems, EAI projects went over budget,
missed deadlines and failed within service- and quality delivery. Furthermore the EAI
implementations were said to be too complex and difficult. (Weisser, 2004)

The problem of missed deadlines and overrun budgets is a well-known IT problem. If one
considers the results from the Standish Group in the year 1994, only 16% of all software
projects (both developed from scratch and standardized applications and components) in the
U.S. were successful. Another 53% of the projects were completed, but over the time
estimated and budget given. The final 31% of all projects were cancelled at some point. Even
though these figures had improved to some extent up until the third quarter of 2004, still only
29% projects were successfully accomplished, while 53% were still challenged and 18% not
accomplished at all. (The Standish Group International Inc, 2004) Considering that EAIs
were introduced in the mid 1990s one would have expected a significant reduction in the
overall failure of software projects. Instead the reduction only reached an amount of 13%
(84%-71%). Furthermore, having the major drawbacks of unavailable business flexibility and

 11

commonly used language between technical- and business oriented work forces a new
architectural approach simply had to enter the market.

Lamont (2006) claims that SOA “[…] allows for more flexible, rapid and inexpensive incorporation of

new functions […]” through “[…] standardized software interface(s) to which many applications can connect.”

(Lamont, 2006, p. 20). Con-way Transportation Services, as a real life company with an
implemented SOA, appreciates this close interaction between IT and business, which enables
them to execute its business processes on a very coarse grained level and thus improving the
business and product flexibility. Furthermore, Con-war mentions the stable architecture and
maintained business logic, despite newly added business logics due to the changing market,
during the eight years of implementation. (Gruman, 2006) In other words, a SOA is to
provide the businesses with a “meet-in-the-middle” technique for business and IT.

International Business Machines Cooperation (IBM) is an IT company that has made great
contributions to the development of SOA. Besides creating managing, construction and
modeling applications like e.g. Customer Information Control System (CICS) and different
kinds of WebSphere and Tivoli, IBM also has focused on the infrastructure, such as the SOA
Cookbook and/or SOA Compass. (Reinitz, 2003, 2004, 2005)

PREFACE

During the six months of internship at IBM, the opportunity of focusing on a very hot topic
within systems engineering was given. More precisely, the opportunity involved an extended
research within the still relatively undiscovered area of SOA. Out of this perspective, it was
regarded as highly interesting to focus on conducting a quality model that can be used in
describing the difference between an old existing architecture and a newly implemented SOA
out of a quality perspective.

Even though this approach will not specifically explain to what extent SOA is an
improvement in comparison to EAI, as discussed in section Background, it will give an
indication of the extent a SOA is contributing or limiting in comparison to an already existing
architecture. Hence, if the old architecture happens to be an EAI, surely also the comparison
will result in the interesting answer evolving around EAI and SOA. As such a research could
not be conducted, UBS as an IBM customer was chosen. UBS was regarded as being
interesting as they recently implemented a service-based architecture. Hence, at UBS it will
be possible to apply a model asking for the quality differences between an old and a new
architecture.

AIM AND RESEARCH QUESTIONS

Expected success from an implementation is usually put in relation to specific and measurable
attributes, the so called quality attributes. By doing so, one can compare the architectural state
of the old system with the new one. To be able to present this comprehensively and clearly
laid out, a model will give the best preconditions. Hence, the aim of this thesis is:

To create a SOA Quality Evaluation Model that is applicable to SOA implementations.

To support the approach of reaching the formulated aim, the following research questions
have been put forward:

 12

- What impact has the newly implemented service-based architecture had on UBS?

- What quality attributes can be regarded as SOA quality attributes?

- Is the SOA Quality Evaluation Model applicable to SOA implementations?

- Does the interaction between the quality attributes affect the overall outcome of

the model?

DELIMITATION

As partly already mentioned in the Preface this thesis will not cover specific functionalities
and features of SOAs. The term SOA per se will be described on a general basis and literature
will be gone through to gain the needed SOA knowledge, but the primary focus will be on
creating a quality model with SOA attributes.

Moreover, the model will be applied at UBS and the conclusions drawn will be on behalf of
the quality results being generated through the overall model, as well as each separate
attribute. A detailed evaluation of the service-oriented impact on UBS’s business, however,
will not be provided, as this would require a much deeper research within UBS.

DISPOSITION

The disposition being chosen in thesis is based on the classical research approach, i.e. with an
introduction, a theoretical foundation, an approach description, an empirical presentation with
applied analysis and finally the overall conclusion. In addition, as this quality model is very
closely intertwined with research the company, the need of providing background information
about the business, the old architecture and the newly implemented one seemed essential. Due
to these circumstances an additional chapter, called Research area – UBS, was added.

Introduction: This chapter introduces the short historical background, current

status of important architectures, as well as the overall subject.

Methodological approach: This chapter shows how the model is created and then tested by
the selected respondents within UBS.

Theoretical framework: This chapter initiates the constantly returning concepts SOA and
quality attributes.

Research area – UBS: This chapter introduces UBS as a business and its architecture.

Results and analysis: This chapter has its main focus on presenting and evaluating the
results being gained through the model at UBS. Moreover, the
model per se is discussed.

Conclusion: This final chapter presents a short summary of the Results and

Analysis chapter, as well concluding words about the research
being conducted. In addition, also future research propositions
are presented.

 13

METHODOLOGICAL APPROACH

THIS CHAPTER PROVIDES THE READER WITH DETAILS ABOUT THE APPROACHES USED AND TO WHAT

EXTENT THESE APPROACHES REALLY HAVE CONTRIBUTED TO ACHIEVE THE AIM OF CREATING A SOA

QULAITY EVALUATION MODEL.

Having the aim of creating a SOA Quality Evaluation Model demands a suitable research
area, strategy and the actual research method. To achieve this, this section will start with the
description of the selected research area and continue with introducing the research questions,
as well as the overall strategy. Having presented these aspects, the remaining parts of the
chapter will evolve around the method that was chosen, i.e. how quality attributes that
describe the quality features of SOAs were selected and how the questionnaire was created
and applied. Finally, the gathered results were weighted and presented in the SOA Quality
Evaluation Model.

SELECTION AND RESTRICTIONS

As Kvale (1997) states, both the kind and range of research area plays a great part in a
research. The area being used within this research was selected as a consequence of the
following statement:

- Switzerland is a representative country, when it comes to banks (see chapter Research

Area – UBS)

- Currently, UBS is the only bank in Switzerland that has implemented a SOA in the
complete company. (Furth, 2006)

- At the bank Credit Suisse all the mainframe applications are packed with services,
which solemnly are provided outwards. Hence, within the mainframe no services are
provided and therefore limits the correlation to a SOA. (Furth, 2006)

- UBS is a customer of IBM, supporting this research.

The sampling range of a research might either be too wide or narrow and therefore affects the
ability of generalizing the results being gathered. Considering that quantitative studies usually
aim at statistical significance, the classical sampling ranges within quantitative studies usually
exceed the amount used in qualitative studies. (Kvale, 1997; Miles & Huberman, 1997)
Despite this, the research area will be based on one bank only, namely UBS. Furthermore, the
respondents being chosen, due to the role within UBS, were kept relatively restricted. As it
was regarded that a large number of respondents at UBS would not reveal more than a small
number, it was regarded adequate to receive answers from five employees at UBS. The aim
was to get in contact with respondents, having both technical and business related
occupations. At the UBS, these turned out to be so-called Business Architects, Application
Architects or ICT Consultants

Respondent Company Occupation

1-5 UBS Business Architect/ Application Architect/ ICT Consultant

Figure 1: Overview of respondents.

 14

The only restriction with the UBS choice turned out to be the currently not yet implemented
Front-End. Hence, the Front-End quality attribute usability will not be able to be specified as
the other quality attributes.

RESEARCH QUESTIONS

To be able to achieve the aim set up for this thesis Miles & Huberman (1994) suggest the
setting up of supporting research questions, that generally speaking are said to “[…] represent the

facets of an empirical domain […]” (Miles & Huberman, 1994, p. 23). Moreover, these questions are to
support the overall research in terms of providing guidelines.

The connection between the overall aim and research questions, as well as the incentives for
the chosen questions is presented in the following figure:

Aim Research questions Incentives

What quality attributes can be

regarded as SOA quality
attributes?

Being able to define quality
attributes for the research

model, already existing
attributes, as well as SOA

related features, have to be
considered and evaluated.

Does the interaction between
the quality attributes affect the
overall outcome of the model?

Choosing specific attributes and

putting these into a model,
generates a certain correlation

of the attributes. This
correlation is regarded as an
essential part of the overall

model.

What impact has the newly
implemented service-based
architecture had on UBS?

As the model provides the user
with results showing differences
between two architectures, an

interesting point to be
addressed is the drawbacks

and/or advantages of the new
architecture.

To create a SOA Quality
Evaluation Model that is

applicable to SOA
implementations.

Is the SOA Quality Evaluation

Model applicable to SOA
implementations?

Aiming at creating a model
being applicable to SOA

implementations requires the
some kind of confirmation.

Figure 2: The motivation of applying the elected research questions.

 15

STRATEGY

As can be deduced from the research questions, the research on a general basis can be
described as a so called survey research. In other words, the intentions are not to fulfill an
experimental research, but rather a standardized information gathering, i.e. the respondents
will receive the same structured questions under similar conditions. (Lundahl & Skärvad,

1982, 1999)

As survey researches are a specific part of quantitative studies, the approach used differs
somewhat from qualitative studies. The main difference lies in the time spent on the different
development phases and the formulation of the chosen method. For quantitative studies this
means that the greatest amount of time spent during the survey research will be within the
preparation and formulation phase. Furthermore, also the formulation of quantitative
questions differs from qualitative questions. This mainly in terms of less focus on the
perception and emotional experience of the respondents and instead more emphasis on
standardized structures that generate a specific result. The distance between the researcher and
the respondent is considered to be close (insider) in qualitative studies and distant (outsider)
in quantitative studies. A final and important difference occurs in the relationship between
theory and research. Quantitative researches are to acknowledge or confirm, while qualitative
studies rather generate a result that evolves during the research. (Bryman, 1997; Kvale, 1997;

Miles & Huberman, 1994)

CHOICE OF METHOD

A case study approach is mainly descriptive, i.e. the aim is to gather data that reveals the
situation of the phenomenon, or more precisely, of the architecture. Hence, the approach has
to generate answers about the current and old situations for the researched area, as well as
pointing out to what extent a specific quality attribute is of importance for the company. As
the aim in this research was to find a method supporting the ability of describing, explaining,
discovering and being experimental in the range of SOA quality attributes, the questionnaire

approach within case studies was regarded as the most appropriate one. Other case study
approach such as personal interviews, written material and/or observations demand direct
communication, presence or limited interaction with a research area. (Kvale, 1997; Miles &

Huberman, 1994)

As some kind of interaction with the research area had to be conducted, only focusing on
written material was out of the scope. Moreover, observations would be too subjective and not
using the knowledge that respondents within a specific area usually posses. Finally, the
personal interviews were excluded, as these do not provide the opportunity of asking complex
and long questions with similar answers. Surely also interview questions can be formulated to
generate specific standard answers, but the fact still remains that questionnaires have more of
a closed and structured touch. Also, the interview atmosphere has a tendency to affect the
overall answers of the respondents. The drawback with questionnaires, on the other hand, is
the fact that it is not possible to verify that the respondent has not been cooperating with other
respondents during the questionnaire completion. (Miles & Huberman, 1994)

Assuming that the questions are structured in the questionnaire, the answers being generated
automatically follow a certain pattern and hence, anybody could hand out the questionnaire
and also analyze the results being gathered. Hence, a questionnaire does not demand the

 16

presence of a data collector and is therefore also suitable for being handed out to several
respondents. (Kvale, 1997)

In summary, the method chosen ended up in providing a questionnaire and a standardized

model.

THE APPROACH

Having defined the strategy to be followed and the method to be applied, the overall
preparations for the research, to be conducted, had to be made. In other words, attributes had
to be selected, model structures had to be evaluated and a questionnaire had to be created.

GATHERING SOA QUALITY ATTRIBUTES

As the most essential contributor to the SOA Quality Evaluation Model, a great amount of
time was invested in the research of quality attributes within the areas of:

1. General and already partly standardized software quality attributes

- from McCall (1977), Boehm (1978), Grady & Caswell (1987), ISO/IEC 9126
(1994), Bass et.al. (1998), Bencher (1994) and Kan (2003)

2. Attributes, representing SOA

- from Roik & Balzer (2004), Bieberstein et.al. (2005; 2006), Reinitz (2003,
2004, 2005), IBM Software University (2006), Blakely (2002), Arsanjani
(SOA Centre of Excellence) (2006), Keen et.al. (2004), Lager (2006), Gruman
(2006), Schulte (2002) and Natis, Y & Schulte, Roy, 2003

3. Concepts, being especially of interest for the UBS before and during the

introduction of the new system

- Ebner (2003), UBS Business & Application Architecture (translated by Furth,
Norbert) (2004), Escher (2005), Architecture & SSP (May 2005; July 2005)
and Business & Application Architecture (2004)

4. Attributes being mentioned in business articles

- Tuner, K. (2003), Grey et.al. (2003), Schmelzer (2005), Langel (2004), Wolfe
(2003-2005) Young & Biz/ed (1996-2006) and Blakely (2002)

During the complete research a matrix was used, representing all the attributes being found
and regarded as essential. Even though several attributes were divided up into sub-attributes
by the authors, companies or centers, this was unaccounted for in the matrix. This approach
was chosen to minimize the focusing on hierarchal structures when choosing the final quality
attributes. The only grouping that was used was in terms of technical and business
perspectives.

The reason for choosing the technical and business oriented perspectives in the model, has its
foundation in the way a SOA is said to act, i.e. the discussion about being an architecture
combining both IT and business (see section Service-oriented architecture (SOA)).

To be able to select the most suitable attributes in the end, each attribute was marked with a
value of one. Besides that, a segmentation, where the just mentioned area 1. was separated

 17

from the areas 2, 3 and 4, was conducted. This separation was done to provide a better
overview what is considered important by UBS, business and SOA articles. In the end each
segment was summarized, ending up in an overall total for each attribute.

Figure 3: An extract, from the Attachment 1: Overview Matrix of Potential Quality Attributes, with

explanations.

Having marked all possible attributes and pointed out how frequent these attributes turned up
during the bibliographical research, the next step was to evaluate which of theses attributes
that were to be entered into the SOA Quality Evaluation Model. This evaluation was based on
the frequency of appearance in the read texts, as well as personal judgment.

Surely, this approach can be challenged, as the secondary data was limited and not specified
by any scientific resource. On the other hand, the used references, such as IEEE, IBM and
UBS, are well known experts within their respective area and should therefore posses the
acknowledgement needed in this context. The fact that not the same amount of secondary
data, such as papers and/or books, could be used for each expert reference simply has to be
referred back to the fact that the experts do not have the same preconditions when it comes to
published material. Despite these preconditions, the chosen secondary data was selected with
the aim of minimizing any potential expert emphasis.

The fact that ‘Area 1’ mentions all its references and ‘Area 2 & Area 3 & Area 4’ are
combined should not be a matter to challenge in terms of weighting, as the latter mentioned
areas regard the presence of the quality attribute by presenting a greater value in the
concerned cells.

To what extent it is justifiable to use a personal judgment can always be challenged, but
considering that not all attributes were predefined, a subjective, but well informed, declaration
was regarded as satisfactory approach in this evaluation and selection step.

Potential Quality Attributes ISO/IEC 9126 (1994) Bass et. al. (1998) Sum UBS articles Business articles SOA articles Sum Total
Technical perspective
Modifiability 1 2 1 1 3

One of the potential quality
attributes, having technical
influence

The total amount of presence
of the attribute.

Area 1 Area 2 & Area 3 & Area 4

The marking that the
attribute occurred in Bass
et. al. (1998).

The sum of each segment.

 18

EVALUATING SOA QUALITY ATTRIBUTES

Having gathered all potential attributes in the matrix the next step was to choose the ones,
being suitable for the SOA Quality Evaluation Model

The selection was based on the following:

1. Personal interpretation
2. The total amount of presence in both segments.
3. The presence in the areas 2, 3 and 4

The personal interpretation was used to, in combination with bundling suitable quality
attributes. In the bundling process, spread attributes described similarly, were gathered.
Examples are, the following:

Bundled Potential Quality Attribute Potential Quality Attributes

Modifiability modifiability, maintainability, changeability

Functionality functionality, capability

Security security, integrity

Integrability integrability, installability, interoperability

Efficiency efficiency, business efficiency, performance,
time to market

Reliability reliability, availability, recoverability

Portability portability, replaceability

Reusability reusability, asset reuse

Return on Investment (ROI) return on investment (ROI), time to market, revenue

Flexibility adaptability, competition, business agility

Development costs development cots, development time, project costs,
project time, integration expenses

Usability usability, learnability, understandability

Figure 4: The quality attributes being bundled.

After this bundling the names of the bundled potential quality attributes were considered. All
attribute, but flexibility, seemed reasonable and hence maintained the same name. For
flexibility, on the other hand, the name ‘Business flexibility’ was considered as more correct.
The bundled potential quality attributes, with updated names, are all present in Attachment 2:

Bundled overview matrix of potential quality attributes. As can be noticed the marking has
still been maintained, i.e. also where the bundling has been taking place the marking has
simply been summarized within the concerned cell.

 19

Figure 5: An extract, from the Attachment 2: Bundled overview matrix of potential quality attributes, where it

is described how the bundling is to be understood.

Having done the bundling the next step was to focus on the total amount of presence of each
and every potential quality attribute. This approach was easily done, due to the already
marked attributes. In summary, all attributes having the total sum of more than 5, were
directly added into the SOA Quality Evaluation Model.

Quality Attributes Total
Modifiability 11

Integrability 7

Efficiency 9

Reliability 10

Portability 6

Reusability 7

Return on Investment (ROI) 9

Business flexibility 6

Development costs 9

Usability 9

Figure 6: Potential quality attributes that were regarded as real quality attributes for the SOA Quality Evaluation
Model, due to the total amount of presence in the bibliographical research.

(see Attachment 3: Overview matrix of selected quality attributes)

Other potential attributes being regarded as essential for the SOA Quality Evaluation Model,
were defined through the presence in the columns presenting SOA, UBS and business articles.
Having more than one mark was considered as being essential for the overall model. After all,
one mark does not only indicate that only one UBS, business or SOA article mentioned the
attribute. As presented in chapter Gathering SOA quality attributes, all three areas are made
up of several literature sources, which also shows that the attribute might have occurred more
than once during the bibliographical research. The reason why these three areas were not
treated as the first segment of the matrix, was simply due to the fact that the desired overview
would have gone lost by presenting each and every one of the articles. This, in turn, also
explains why these three columns weigh a bit more in this final selection stage.

Additional attributes being added to the SOA Quality Evaluation Model are thus security and
scalability:

Potential Quality Attributes ISO/IEC 9126 (1994) Bass et. al. (1998) McCall (1977) Sum SOA articles Sum Total

Technical perspective

Modifiability 2 (Maintainability; Changeability) 3 (Maintainability; Changeability) 1 10 1 (Maintainability) 1 11

One of the potential
quality attributes,
having technical
influence

Here it is simply
stated that McCall
(1977) mentions
modifiability.

The attributes
maintainability and
changeability are
included in
modifiability

This kind of marking
shows that
modifiability is
mentioned by Bass
et. al. (1998) AND that
the attribute bundles
maintainability and
changeability.

Evidence of
maintainability,
found in SOA
articles, being
bundled by
modifiability.

 20

Figure 7: Extract from Attachment 3: Overview matrix of selected quality attributes, showing that the attributes

security and scalability are added due to the presence in the column UBS and SOA articles.

In summary the following 12 attributes were selected to be entered into the SOA Quality
Evaluation Model:

Quality Attributes
Modifiability

Security

Integrability

Efficiency

Reliability

Portability

Reusability

Scalability

Return in Investment (ROI)

Business flexibility

Development cost

Usability
Figure 8: The selected quality attributes.

MODEL STRUCTURE OF THE SOA QUALITY EVALUATION MODEL

Presenting the gathered results can be visualized in different kinds of ways. One can, for
example, use matrices, diagrams, figures and/or models. The literature on the subject
covered, for example, product quality models such as McCall (McCall et. al., 1977), Boehm

(Boehm et al., 1978), FURPS (Grady & Caswell, 1987) and ISO/IEC 9126 (ISO/IEC, 1994).
A somewhat different approach to the just mentioned, is the one by Arsanjani and the SOA
Centre of Excellence (2006). The so called Service Integration Model, by Arsanjani and the
SOA Centre of Excellence (2006), uses a kind of Component Business Modeling (CBM)-
map to provide the user with an overview of the “[…] current state in service integration and flexibility
(including services orientation) and their desired or future state, for a line of business or enterprise.” (Arsanjani,

2006, p. 4) For this stars and arrows in between the stars are sued to show where the starting
point and the point to be achieved is situated:

Figure 9: SIMM as an alternative of presenting gathered results. (Arsanjani, 2006, p. 7)

Silo

Level 1

Services

Level 4

Composite
Services

Level 5

Virt ualized
Services

Level 6 Level 7

Dynamically

Re-Configurable
ServicesComponent ized

Level 3

Integrated

Level 2

M odules Servic es

Pr ocess

Integration via
Servic es

Dynamic

Appli cation
Assembly

ComponentsObjects
Appl icatio

ns

Str uctur ed
Anal ysis &

Design

Service

Oriented
Modeling

Servic e

Or iented
Modeling

Grammar

Or iented
Model ing

Component

Based
Development

Object

Or iented
Modeling

Methods

Function
Oriented

Service
Oriented

Servic e
Oriented

Servic e
Or iented

Function
Or iented

Function
Oriented

Business
View

Servic e
Oriented

Servic e

Oriented
Model ing

Process

Integration via
Ser vic es

Platfor m

Specific

Platfor m

Specific

Technology

Neutral

Dynamic

Sens e &
Respond

Platfor m

Speci fi c

Platfor m

Speci fi cInfr astruct ur
e

Monoli thi c
Archi tectur e

Emerg ing
SOA

Grid Enabled
SOA

Dynamic ally Re-
Configurable

Archi tect ure

Component
Archi tect ure

Layer ed
Ar chitectureAr chitectur

e

SOA

Platfor m

Independent

Platfor m S pecific
Skil ls

Platfor m
Specific

Technology
Neutral

Human S er vice
Bus

Platfor m
Speci fi c

Platfor m
Specific Ski ll sOrganizatio

n

Platfor m
Independent

Silo

Level 1

Services

Level 4

Composite
Services

Level 5

Virt ualized
Services

Level 6 Level 7

Dynamically

Re-Configurable
ServicesComponent ized

Level 3

Integrated

Level 2

M odules Servic es

Pr ocess

Integration via
Servic es

Dynamic

Appli cation
Assembly

ComponentsObjects
Appl icatio

ns

Appl icatio

ns

Str uctur ed
Anal ysis &

Design

Service

Oriented
Modeling

Servic e

Or iented
Modeling

Grammar

Or iented
Model ing

Component

Based
Development

Object

Or iented
Modeling

MethodsMethods

Function
Oriented

Service
Oriented

Servic e
Oriented

Servic e
Or iented

Function
Or iented

Function
Oriented

Business
View

Business
View

Servic e
Oriented

Servic e

Oriented
Model ing

Process

Integration via
Ser vic es

Platfor m

Specific

Platfor m

Specific

Technology

Neutral

Dynamic

Sens e &
Respond

Platfor m

Speci fi c

Platfor m

Speci fi cInfr astruct ur
e

Infr astruct ur
e

Monoli thi c
Archi tectur e

Emerg ing
SOA

Grid Enabled
SOA

Dynamic ally Re-
Configurable

Archi tect ure

Component
Archi tect ure

Layer ed
Ar chitectureAr chitectur

e
Ar chitectur

e

SOA

Platfor m

Independent

Platfor m S pecific
Skil ls

Platfor m
Specific

Technology
Neutral

Human S er vice
Bus

Platfor m
Speci fi c

Platfor m
Specific Ski ll sOrganizatio

n
Organizatio

n

Platfor m
Independent

Quality Attributes UBS articles Business articles SOA articles Sum Total
Security 1 1 2 4
Scalability 1 1 2 4

 21

Surely this could have been one way of presenting the material, but since the SOA Quality
Evaluation Model is combined with questions that generate a value between zero and four
(see section Questionnaire for the SOA Quality Evaluation Model), the model has to be more
applicable to the circumstances. A technique considering this is the so called Spider web
technique (Inspired by: Krüsemann, 2006).

In this model each spanning line represent an
attribute at each end, while the interconnecting
lines represent the answer being giving by the
respondents. Furthermore, the model shows a
scale of zero to four, where two is neutral, i.e.
all answers being less than two indicate a
deficit in the architecture and all answers
exceeding two are a positive feedback.

Figure 10: An example of a Spider web.

The intention with this approach is to be able to add answers gained for both the old
architecture and new one. Even though the model will be able to present all gathered results at
once, the choice was made to go through the following steps, before reaching the overall
Spider web, alias SOA Quality Evaluation Model:

1. Create a model with the gathered results of the old architecture, i.e. having gathered

and added all answers from the respondents. These results were represented with a red
line.

Figure 11: An example of a Spider web with gathered results about an old architecture.

2. Create a model with the gathered results of the new architecture, i.e. having
gathered and added all answers from the respondents. These results were represented
with a green line.

3
2
1
0

Modifiability
Portability

Reusability

Integrability

Security

Efficiency
Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

‘ As - it - was” results

3
2
1
0

Modifiability
Portability

Reusability

Integrability

Security

Efficiency
Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

‘ As - it - was” results

Business Flexibility

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Development costs

Return on Investment (ROI) 4

Business Flexibility

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Development costs

Return on Investment (ROI) 4

 22

Figure 12: An example of a Spider web with gathered results about a new architecture.

3. Create a model with the gathered results of the importance of the attributes. These

results were represented blue dots along the lines.

Figure 13: An example of a Spider web with gathered results of how important a company considers the

attributes to be.

4. Create a model including all aspects from the points above.

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

Gathered results

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

Gathered results

Figure 14: An example of a Spider web presenting the results from an old and a new architecture and
importance of the different quality attributes.

3
2
1
0

Modifiability
Portability

Reusability

Integrability

Security

Efficiency
Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

‘ As - it - is” results

3
2
1
0

Modifiability
Portability

Reusability

Integrability

Security

Efficiency
Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

‘ As - it - is” results

4
3
2

Modifiability
Portability

Reusability

Integrability

Security

Efficiency
Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI)

Weighting results

1

4
3
2

Modifiability
Portability

Reusability

Integrability

Security

Efficiency
Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI)

1

 23

In summary, this Spider web approach shows the difference of quality between the two
architectures, as well as to what extent a specific attribute is of importance for the success of
the company.

QUESTIONNAIRE FOR THE SOA QUALITY EVALUATION MODEL

As the aim was to create a descriptive questionnaire, where it would be possible to gather a
wide range of information about the old and new architecture, as well as the critical success
factors (CSFs) (see chapter Theoretical framework) of the company, the questionnaire was
created structurally. In other words, both questions and answers were structured and
formulated in advance, so that the questionnaire did not allow any specific interpretations and
freely formulated answers. Furthermore, the quantifying of answers was specified before the
questionnaire was handed out. (Bryman, 1997)

Every attribute was considered covered through two questions, where the first one focused on
the importance of the attribute and the second one on the old and new architecture. Surely,
one could have formulated two questions to discuss the old and new architecture, but the fact
remains that these two questions would have been as good as identical in formulation. Hence,
the risk that the respondents would tend to ignore specific details and get bored was relatively
high. The first questions were defined as Weighting Questions and the other once as ‘As-it-
was’ and ‘As-it-is’ Questions:

Figure 15: An extract from Attachment 5: Questionnaire – SOA Quality Attributes presenting the two question

alternatives.

For the answers, an approach was chosen were not only five different answer alternatives
were given, but each answer was additionally defined. In other words, the respondent should
be fully aware of the choice he/she is making. All answers were divided into a scale, typically
used in questionnaire, i.e. the Likert scale (Kvale, 1997). Thus, both question alternatives
could be answered with either:

- ‘Yes, I strongly agree’
- ‘Yes, I agree’
- ‘I neither agree nor disagree’
- ‘No, I disagree’
- ‘No, I strongly disagree’

Yes, I strongly agree (4) Yes, I agree (3)
I neither agree nor

disagree (2)
No, I disagree (1) No, I strongly disagree (0)

Likert scale, Answer alternatives

Figure 16: An extract from Attachment 5: Questionnaire – SOA Quality Attributes presenting the five answer

alternatives.

By having a five step scale, the respondent has the opportunity to choose between affirming
and two denying alternatives. Even though the questionnaire was structured and therefore to
some extent compellent, it was still considered important that the respondent could chose a

Questions
a) Weighting Question
b+c) ‘As-it-was’ and ‘As-it-is’ Question

 24

neutral answer and thus showing that he/she does not have knowledge about the question
being asked or that the question is not really relevant for the company. If one would have
taken away this answer alternative the respondent would have been forced to answer
something that might not be fully correct.

The explanations for each Likert scale answer are divided into two kinds, i.e. both weighting
and architecture related, just like the questions. By doing so the same scale can be used for
both questions, even though they in fact should have required a separate scaling:

Yes, I strongly agree (4) Yes, I agree (3)
I neither agree nor

disagree (2)
No, I disagree (1) No, I strongly disagree (0)

Modifiability is vital for the business.

(Modifiability is a critical success factor

(CSF).

 Modifiability is important, but not vital. The company does not make

any statement about this

attribute.

The company does not consider modifiability

as being important, i.e. modifications are to

lead to new architectural structures.

Modifiability is of no interest whatsoever for

the company.

The architecture supports business agility

and has a open structure.

The architecture is relatively flexible and

allows most modifications.

The question cannot be

answered.

The architecture does not support changes,

without affecting the architectural structure.

The architecture has a closed and/or

extremely complex architectural structure

and thus cannot support any modifications.

Figure 17: An extract from Attachment 5: Questionnaire – SOA Quality Attributes presenting the five answer

alternatives and the explanations for the quality attribute modifiability.

The order of the questions is usually of great importance as well. Lundahl & Skärvad (1982,
1999), for example, suggest that one is to begin with easy and pleasant questions, before the
more difficult and perhaps even unpleasant questions are asked. As the quality attributes are
not regarded as being able to make the respondent feel uncomfortable, the order does not have
any specific meaning. The only real order present is in terms of technical and business related
questions, i.e. all technical questions are sub sequentially asked and then the same principles
applied on the business questions.

THE “HAND-OUT”

After having received and considered feedback, concerning the SOA Quality Evaluation
Model, from both IBM employees and supervisors at the University of Lund, the final step
was to hand out the questionnaire to the respondents.

The hand-out was planned to be conducted via mail, after having received the names of the
respondents. Due to changed circumstances, however, the hand-out was not performed
directly to the respondents. Instead a contact at UBS received the instructions (see Attachment

4: Introduction for the respondent) and questionnaire and distributed these to the respondents
selected during a session. During this session each respondent considered answers of their
own. These answers were then gathered and returned in a consolidated form, due to UBS
request.

APPROACH OF THE RESULTS AND ANALYSIS

Being able to present and analyze the research results being gained, Miles & Huberman
(1997) suggest a specific data management approach, with the outcome of being able to
present the gathered results in an easy, structured, reliable and flexible manner. Having this in
mind and moreover being aware of the fact that quantitative data results already have a
relatively easy and comprehensive structure, the data was gathered and placed in the overall
Spider web being presented in section Model structure and Attachment 7: the SOA quality

 25

evaluation model. In addition, figures with the explicit results, i.e. the Likert scale results,
were provided for each attribute:

a) Weighting Question b) ‘As-it-was’ Question c) ‘As-it-is’ Question

4 2 4

Figure 18: One of the figures presenting UBS results for the analysis.

For the analysis the foundation chosen was on the one hand based upon the Spider web and
the Likert scale results, but on the other hand also on the research questions, being discussed
in section Aim and research questions. The research questions can be regarded as both a kind
of code of practice throughout the whole analysis, as well as separate discussion part of the
analysis. The latter mentioned aspect is especially applicable to three of the questions, where
also separate sections were formed.

In the sections covering the extent of the attributes being SOA quality attributes (see
Technical perspective and Business perspective), a further figure principle is used to ease the
understanding of what attributes are obvious, potential or less appropriate in the context. This
figure is based on the Likert scale approach, for weighting and ‘As-it-is’ questions, being
mentioned in section Questionnaire for the SOA Quality Evaluation Model and is simply
combined with the three descriptions of applicability:

Likert scale value: 4 3 =< 2
Quality and SOA applicability: Obvious Potential Less appropriate

Figure 19: The approach used for dividing all attributes in being obvious, potential or less appropriate SOA
quality attributes.

VALIDITY AND RELIABILITY

As the SOA Quality Evaluation Model, representing both the selected SOA quality attributes
and the questions leading to the quality measurement of two architectures, was reviewed and
adjusted by both IBM employees and supervisors from the University of Lund, the model is
regarded to maintain a high level of inner validity. After all, the model measures what it is
intended to, i.e. the level of quality in both SOAs and non-SOAs. (Patel & Davidson, 1994;

Miles & Huberman, 1997)

To what extent the answers from the respondents can be regarded as truthfully is hard to
determine, but since UBS is interested in finding out to what level of quality the new
maintains, it can be assumed that the answers have been given accordingly. This can be
supported by he results being received, i.e. as the answers are plausible it can be assumed that
also the external validity is good. (Patel & Davidson, 1994; Miles & Huberman, 1997)

What might influence the level of outer validity negatively is the fact that the five respondents
gathered their answers by themselves on one questionnaire sheet, without specifying the exact
approach. In other words, to what extent the gathering was fulfilled correctly, i.e. all answers
being equally considered, is uncertain. Not even the fact that this gathering was completed
during discussion with all concerned present makes this approach more correct. Thus, the
level of reliability in the research model might in fact be low, even though the respondents
were not influenced by the evaluator. (Patel & Davidson, 1994; Miles & Huberman, 1997)

 26

THEORETICAL FRAMEWORK

AT FIRST, THE CONSTANTLY RETURNING TERMS ARCHITECTURE, SOA, QUALITY, AS WELL AS

CLOSELY RELATED TERMS, WILL BE HIGHLIGHTED. HAVING STATED THAT, THE CHAPTER CLOSE-UP

WILL EVOLVE AROUND THE FACTORS MAKING UP THE RESAERCH MODEL.

One of the basic economic problems is scarcity, which means that the desire of getting
exactly what one wants is limited by the amount of resources available. Human needs are said
to be virtually unlimited, which means that their wants and needs to consume will never
vanish, irrespective of the existing limiting factors and resources. (Gillspie, 1999) This
constantly evolving and never vanishing desire is, according to Young & Biz/ed (1996-2006),
due to the fact that goods wear out and need to be replaced, new products become available
and create interest and finally that people get tired with what they have.

Furthermore, this economical problem does not apply for individuals only, but also for larger
groups such as businesses. A business will, for example, most certainly consider new or
restructured system structures if their technical support breaks down, turns out to be
inefficient or if the commercials for new technical advancements succeed in generating the
need for the presented products.

Due to the fact that wants are unlimited and the resources of a business (or individual) are
limited at some point, choices have to be made. Thus, if a business is being interested in
implementing and/or rearranging a system – “A collection of components organized to accomplish a

specific function or set of functions.” (IEEE, 1990, p. 73) – the return on investment (ROI) and
available resources, such as finance, people skills, time etc., have to be carefully considered.
Moreover, this considering and planning has to be aligned with the overall business strategy
or more precisely the factors that are vital for the successfulness of the strategy. Rockart
(1979) describes these factors as being critical for the success of the company, i.e. if these so-
called critical success factors (CSFs) are not managed properly the business is likely to
experience fatal consequences. (Huotari & Wilson, 2001) In other words, a business investing
in a new system has to go through many different aspects that all influence the outcome of the
choice being made.

ARCHITECTURE

Besides having knowledge about what should be invested to improve the technical
infrastructure within the business, customers usually also have a good idea about what
features the future system is to contain. These features are part of what software engineers call
requirements specifications:

 “A document that specifies the requirements for a system or component.”
(IEEE, 1990, p. 63)

The requirements are usually specified by the business itself or with the assistance of
consultants, represent the customer’s demands and provide the foundation of the system being
implemented:

 27

“A condition or capability that must be met or possessed by a system or system
component to satisfy a contract, standard, specification, or other formally imposed
documents. […]” (IEEE, 1990, p. 62)

“A requirement describes a condition or capability to which a system must conform;
either derived directly from user needs, or stated in a contract, standard, specification,
or other formally imposed document.” (Kozaczynski, 2002, p. 1)

On behalf of the requirements, engineers use a systematic approach to structure possible
relations and information into the so called architecture:

“The organizational structure of a system or component.” (IEEE, 1990, p. 10).

For smaller systems the structuring of an architectural design might not be necessary, but for
larger ones it is essential to, amongst others, understand the range and complexity of the
system structure, to embed IT into already existing systems, to locate geographically
distributed hardware components and to estimate the effect of modifications. (Glinz, 2001,

2003)

SERVICE-ORIENTED ARCHITECTURE (SOA)

Bieberstein et al. (2006) address the fact that the companies of today “[…] no longer require a high

degree of optimal performance for repetitive processes.”(Bieberstein et.al., 2006, p. 16). The focus of today
instead lies on their ability to reduce the time to market, as well as supporting their customers
“[…] with flexible, well-suited solutions appropriate to their need.” (Bieberstein et.al., 2006, p. 16) This
demand of better integrated solutions, together with increased services shows the evolution
from product-orientation to service-orientation. SOA, service-oriented architecture, is an
architecture taking this evolution into consideration by having both a technical and a business
oriented perspective, as well as basing the complete fundament on services.

Out of a business perspective, SOA is said to improve business agility and to maintain
services being directly applicable to the existing business logic of the business:

“A service-oriented architecture provides the flexibility to treat elements of business
processes and the underlying IT infrastructure as secure, standardized components
(services) that can be reused and combined to address changing business priorities.”
(Bieberstein et. al., 2006, p. 4)

The technical perspective, on the other hand, emphasizes the importance of the actual
structure of the architecture, i.e. of what SOA is made of and how it works:

“An enterprise-wide IT architecture that promotes loose coupling, reuse, and
interoperability between systems.” (Bieberstein et. al., 2006, p. 4)

 “An application architecture in which all functions or services are defined using a
description language and have callable interfaces that are called to perform business
processes. Each interaction is independent of each and every other interaction and the
interconnect protocols of the communicating devices. Because interfaces are platform
independent, a client can use the service from any device using any operating system
in any language.” (Bieberstein et. al., 2006, p. 4-5)

Summing up this in a general overview, being useful through the following sections of SOA,
factors such as front-end, Enterprise Service Bus (ESB), service, service repository, interface,
business logic and data have to be regarded. All these can be presented in the following

 28

hierarchal figure, which due to its simple structure is not regarding that services can be both
requestors and providers (see section Service):

ESB Service

Front-End

Service repository

Interface Component

Business logic

Data

ESB Service

Front-End

Service repository

Interface Component

Business logic

Data

Figure 20: The components of SOA, only considering service providing aspect.

(Inspired by: Wikipedia, 2006, http://en.wikipedia.org/wiki/Image:SOA_Elements.png)

CLIENT/SERVER ARCHITECTURE, FRONT-END

On a general basis, SOA is best descried as a client/server architecture. In fact, Schulte (2002)
affirms this statement by claiming that SOAs are usually built upon two or more tiers. The tier
maintaining the graphical user interface (GUI) and representing the so called Front-End is
called Presentation-tier, while the one presenting the components with the business logic is
called Business logic-tier. The latter one provides services to the clients in the Presentation
tier or Business logic-tier, all depending on where the requestor is situated.

Finally, in a three-tier architecture there is also the Data-tier or Back-End, where data is stored
in and retrieved from, for example, databases. (Hammerschall, 2005) In other words, SOA is
the fundament for systems with “[…] software services and software consumers (also known as clients or
services requestors).”(Natis & Schulte, 2003, p. 1)

Figure 21: A three-tier client/server or service requestor/service provider architecture, disregarding that
requestors might also occur on the Business logic-tier. (Inspired by: Hammerschall, 2005)

Presentation-tier / Front-End

Data-tier / Back-End

Business logic-tier

Client / Service requestor

Server / Service provider

e.g. DB

 29

ENTERPRISE SERVICE BUS (ESB)

However, one might also challenge the statement of SOA being client/server architecture.
After all, not only one server acts as provider, but normally several, where each and every one
of them might be a service that is available to all possible clients or requestors. (Dahan, 2004)

To go deeper into that statement, one has to take a closer look at the Business logic-tier. In
this tier, SOA has a special architectural structure originating from the available services and
the ESB:

Figure 22: ESB with its services as being part of the Business logic-tier.

Up until recently integration services were implemented with point-to-point messaging
systems, such as IBM’s WebSphere Message Queuing (MQ) (formerly MQ Series) and
Microsoft Message Queuing (MSMQ). ESB, as a middleware, has extended this integrability
by combining the messaging systems and thus creating an exchange between a service
provider and service consumer in terms of classical messaging, as in EAIs, or through objects,
as in, for example, in Common Object Requester Broker Architectures (CORBAs) or Web
Services. (Wong-Bushby et.al., 2006)

As Chappell (2004) states, the ESB allows data from one application to be sent to any other
application without any advance knowledge. More precisely, spread services of SOA can be
accessed by other services by simply calling the available service-interface (Hasselbring,

2006), which in turn provides transparency and thus eases the interaction.

As ESB is not regarded as a major contributor to the overall aim of this thesis, other ESB
features ensuring that disparate technologies of all kinds to work well together, as e.g.
infrastructure services such as transport, quality-of-service-based routing and gateway
services (Bieberstein et.al., 2006), are not mentioned any further.

Enterprise Service Bus (ESB)

Service Interaction Security Quality of Service Message Processing Modeling

CommunicationIntelligenceService LevelManagement & AutonomicIntegration

Business Performance

Management Enterprise Service Bus (ESB)

Service Interaction Security Quality of Service Message Processing Modeling

CommunicationIntelligenceService LevelManagement & AutonomicIntegration

Business Performance

Management

Figure 23: All parts of an ESB (Keen et.al., 2004, p. 45)

Enterprise Service Bus (ESB)

Service

Service Service

Service

Enterprise Service Bus (ESB)

Service

Service Service

Service

 30

Assuming that the ESB manages its interaction with Web Services, the industry standards
being used are:

� eXtensible Markup Language (XML); is a descriptive language that is mainly used for
the description and exchange between complex data structures. XML is administrated
by the W3C. (Hammerschall, 2005)

“A general-purpose markup language developed by the W3C for the definition,
transmission, validation, and interpretation of data/information between applications
and between organisations. The extensibility allows the creation of specialized markup
languages and domain definitions with their own customized tags by using a formal
grammar and vocabulary (called an XSD).” (Bieberstein et.al., 2006, p. 207)

� SOAP; is a middleware protocol that is based on a transport protocol, such as for

example Hyper Text Transfer Protocol (HTTP) or Simple Mail Transport Protocol
(SMTP), and uses this structure to transmit packages in XML format. SOAP was
initially the acronym for Simple Object Access Protocol, but since the protocol turned
out to be neither simple nor object oriented, the protocol is today simply called SOAP
and is administrated by the World Wide Web Consortium (W3C). (Hammerschall,

2005)

“A XML-based messaging protocol maintained by W3C that is used to encode the
information in Web Service request and response messages before sending them over a
network. SOAP messages are independent of any operating system or protocol and can
be transported using a variety of protocols, using HTTP and Java Message Service
(JMS).” (Bieberstein et. al., 2006, p. 215)

� Web Service Description Language (WSDL); Besides a protocol like SOAP, a

middleware also needs an interface language. For Web Services, WSDL is this
interface language that defines the interface using XML. WSDL is also administrated
by the W3C. (Hammerschall, 2005)

“A standard language for defining a Web Service description. It uses XML and XSD to
describe the port type and its operations, the message formats, ad the protocol binding.”
(Bieberstein et.al., 2006, p. 217)

� Universal Description, Discovery and Integration (UDDI): A Web Service does not

only need access protocols and interface descriptions, but also a registry for
publications. The UDDI describes the registry interface for Web Services. By doing so
the information, such as for example the name, of all distributed services is registered
at one place.

“An Organization for the Advancement of Structured Information Standards (OASIS)
standard for a platform-independent, XML-based registry to publish and discover
network-based software components and services.” (Bieberstein et.al., 2006, p. 216)

 31

SERVICE REPOSITORY

Together with the middleware action, such as service interaction, the Business logic-tier also
maintains service repositories or directories (see UDDI in section Enterprise Service Bus

(ESB)) that store meta data, i.e. the meta data of published services.

“[…] repository is similar to a place where construction goods are stored and can be
instantly retrieved for use when needed.” (Heineman & Councill, 2001, p.25)

In other words, instead of service requestors going directly to potential services, the service
repository is contacted and retrieved. To manage all the requests arriving at the repository,
SOAs use service brokers, which put all requests into queues. (Hammerschall, 2005):

Figure 24: The process between service requestors and providers through services brokers to a repository.
(Ebner, 2003, p. 41)

SERVICE

When discussing what a service actually is about, generally the economic definition is
mentioned at first. In other words, a service is said to be equivalent to a non-material good, as
for instance the guarantee of being able to call a service centre 24h a day when purchasing a
specific product. Services, however, might also be used in a technical sense. It has, for
example, already been mentioned that services are exchanged between requestors and
providers over the ESB through interfaces. Furthermore, it as been realized that services have
to be the most essential units of the complete service-oriented architecture, due the name of
the architecture. Having stated this and considering the definitions of Bieberstein et.al. (2006;
2005), Natis & Schulte (2003), Lager (2006) and Keen et. al. (2004), IT related services are
shortly and on a general basis to be defined in terms of:

Service
Broker

Service
Broker

Service
Provider

Service
Provider

Service
Requester

Service
Requester

RepositoryRepositorypublish

find

bind

 32

- Encapsulated business components that are exchanged between service requestors
(usually on the Presentation-tier) and providers (Presentation-tier or Business-logic
tier) through defined implementation independent interfaces:

“An application component deployed on network-accessible platforms hosted by the
service provider. Its interface is described by a service description to be invoked by or
to interact with a requester.” (Bieberstein et. al., 2006, p. 214)

“At design time, a service is an encapsulated business software component that is
rendered as a pair of separately defined elements — service interface and service
implementation.” (Natis & Schulte, 2003,p. 1)

“Miko Matsumura, vice president of technology standards at Infravio, offers this
definition: A service is a network-accessible function, abstracted behind an interface.”
(Lager, 2006, p. 21)

- A collection of end points, i.e. being composition of several components (see Figure

25, section Components):

“A service is a collection of related endpoints.” (Bieberstein et. al., 2005, p. 150)

- Reusability, i.e. dynamic services are at any time intended to be reused, or at least

accessed:

“[…] Services encapsulate reusable business function.” (Keen et. al., 2004, p. 37)

- The lacking dependencies between consumers and providers (loosely coupling). More

precisely the consumers should not be dependant on any information about where the
service provider is located, on what platform the services is implemented and with
what language the service is programmed:

“[…] Services are loosely bound and invoked through communication protocols that
stress location transparency and interoperability. […] .” (Keen et. al., 2004, p. 37)

- Communication feasibility to other services through the implemented granularity, i.e.

the level at which the service is created. Some claim that services should be coarse
grained while others respond by emphasizing the essence of fine grained services.
According to Bieberstein et al. (2006), choice depends on the analysis and design for
SOA solutions. Coarse grained solutions might for example be better than fine grained
solutions in SOA network capacity planning where the services have to present less
detailed parts of the business.

A final discussion that simply has to be included, even though it is only limited, when
mentioning services is the one about Web Services. More precisely, it is about to what extent
services really are to be used synonymously with today’s so frequently used concept Web

Services:

“A family of technologies that consist of specifications, protocols, and industry-
based standards that are used by heterogeneous applications to communicate,
collaborate, and exchange information among themselves in a secure, reliable, and
interoperable manner. (Bieberstein et.al., 2006, p. 217)

Considering that Web Services are services that are exchanged over the Internet with specific
protocols (see section Enterprise Service Bus (ESB)), in contrast to services, it quickly

 33

becomes clear that it is in fact even incorrect to use these concepts synonymously. However,
since Web Services are a good way of showing the uniqueness of SOA, this thesis will use the
concepts of services and Web Services equivalently.

COMPONENTS

Components, might just like services occur both in the Presentation-tier and in the Business
logic-tier. Where the components are situated depends on if they are requestors or providers.
Providing components, for example, will most likely be situated at the Business logic-tier.
Requestors, on the other hand, can be both on the Presentation-tier and the Business logic-tier.
Since components not only provide encapsulated business logic, but also, for example, access
to old applications, also the Data-tier has to be mentioned in combination with components.

In summary, components encapsulate business logic, provide data access and expose one or
more services with interfaces to service requestors over the ESB:

“ - […] is a unit of independent deployment;
- is a unit of third-party composition;
- has no (externally) observable state.” (Szyperski, 1999, 2002, p.36)

“A software component is a software element that conforms to a component model
and can be independently deployed and composed without modification according to
a composition standard.” (Heineman & Councill, 2001, p. 7)

The following figure pictures three possible relationships between components and services,
i.e. a component with on service only, a component that exposes three services and a service
being composed of two components:

Services
(Interface description)

Components

Services
(Interface description)

Components

Figure 25: Possible service and component relationships.

Szyperski (1999, 2000) mentions the interchangeable use between components and object,
due to similar features such as making services available through interfaces and creating
interaction to other components/objects through patterns and frameworks. However, taking a
closer look at the real definition of objects the difference becomes clear:

 34

“ - […] is a unit of instantiation, it has a unique identity;

- may have state and this can be extremely observable;
- encapsulates its state and behavior.” (Szyperski, 1999, 2000, p. 37)

Thus, components, in contrast to objects, have no actual need of only containing classes or
even at all. Instead components might contain “[…] traditional procedures and even have global (static)
variables, or it may be realized in its entirety using a functional programming approach, or using assembly
language, or any other approach.”(Szyperski, 1999, 2000, p. 38)

INTERFACE

The interfaces are the “contracts” creating transparency, maintaining all the information
needed (information hiding) to symbolize one specific service, as well as gathering all
component end-points for system independency:

“(1) A shared boundary across which information is passed.
(2) A hardware or software component that connects two or more other components for
the purpose of passing information from one to the other.
(3) To connect two or more components for the purpose of passing information from
one to the other.” (IEEE, 1990, p. 41)

“Interfaces are provided to wrap service endpoints to provide a system-independent
architecture to promote cross-industry communication.” (Keen et.al., 2004, p. 25)

In other words, services are invoked by service requesters that are unaware of the details
about the service implementation. This lack of dependencies between consumer and provider
is called loose coupling and involves hiding of details within the areas of location, platform,
and language and in some cases even information about the service provider. In other words,
services being distributed on different platforms (for instance .NET or Java 2 Platform
Enterprise Edition (J2EE)) with different languages (for example Java, Cobol or C++)
communicate with each other through the earlier mentioned ESB with the help of different
standards. (Bieberstein et.al, 2006)

 35

Figure 26: Interfaces creating interaction. (Keen et.al., 2004, p.56)

Decoupling, or more precisely the ability of offering service consumers distributed services,
creates greater security challenges than architectures focusing on centralized and non-Web
based data sources. For SOA this means an additional security – “Zustand des Nichtvorhanden-

oder Geschuetztseins vor Bedrohung und Risiken” (Opplinger, 2005) - aspect, which is managed with
Web Service security (WS-Security). WS-Security is made up of several units, handling
different aspects in accordance to demand, and enables the user to apply “[…] XML security
techniques to authenticate and secure message exchanges between a Web Service requestor and a Web Service
provider. It uses signatures and encryption placed on a message and security tokens bound to the messages.”

(Bieberstein et.al., 2006, p. 148)

WS - Secure

Conversation
WS - Federation WS - Authorization

WS - Security

Policy
WS - Trust W - Privacy

Kerberos profile X.509 profile

OASIS 1.0 WS – Security framework

Mobile profile Username profile SAML profile

WS - Secure

Conversation
WS - Federation WS - Authorization

WS - Security

Policy
WS - Trust W - Privacy

Kerberos profile X.509 profile

OASIS 1.0 WS – Security framework

Mobile profile Username profile SAML profile

Figure 27: WS-Security with its units, covering different security aspects.
(IBM Software University, 2006, p. 14)

 36

SOA RESUME

After having presented some introducing general definitions of SOA, as well as some detailed
information about different attributes of the architecture, it might seem difficult to put forward
a general definition. In attempt of avoiding a too general phrasing, one would lean on the
definitions of Keen et. al. (2004) and Bieberstein et. al. (2006):

“SOAs consist of services that are defined by explicit, implementation independent
interfaces. They are loosely bound and invoked through communication protocols
that stress location transparency and interoperability. Services encapsulate reusable
business function.” (Keen et. al., 2004, p. 103)

“A service-oriented architecture is a framework for integrating business processes and
supporting IT infrastructure as secure, standardized components – services – that can be
reused and combined to address changing business priorities.”
(Bieberstein et. al., 2006, p.5)

Putting these definitions into an overall picture, as well as gathering the attributes being
discussed in earlier chapters about SOA, this figure covers them all:

Presentation

Business Processes

Services

Components

Existing Applications

Portals

In
te

g
ra

tio
n
 A

rc
h
ite

c
tu

re
 (E

S
B

)

Q
o
S

, S
e
c
u
rity

, M
a
n
a
g
e
m

e
n
t &

 M
o
n
ito

rin
g

S
e
rv

ic
e
 c

o
n
s
u
m

e
r

S
e
rv

ic
e
 p

ro
v
id

e
r

Proprietary Application

Proprietary Application

Package

Package

Presentation

Business Processes

Services

Components

Existing Applications

Portals

In
te

g
ra

tio
n
 A

rc
h
ite

c
tu

re
 (E

S
B

)

Q
o
S

, S
e
c
u
rity

, M
a
n
a
g
e
m

e
n
t &

 M
o
n
ito

rin
g

S
e
rv

ic
e
 c

o
n
s
u
m

e
r

S
e
rv

ic
e
 p

ro
v
id

e
r

Proprietary Application

Proprietary Application

Package

Package

Figure 28: Overview of service consumer and service provider interaction. (Peisl, p. 9)

QUALITY

As mentioned in the introducing words of the Theoretical framework, an inappropriate
managing of success factors, such as product development, distribution, advertisement within
respective industry and customer satisfaction (Huotari & Wilson, 2001), is likely to hinder a
business from being or becoming successful. In attempt of avoiding this potential risk of
failure, companies seek to identify and eliminate possible defects or mistakes within the
business. One approach being frequently used in the industry today is the industry standard
Six Sigma, being introduced by Motorola Inc in the late 1980s. (Snee, 2004; Kan, 2003)

This methodology of managing defect business processes is defined as a “[…] stringent level of

quality.” (Kan, 2004, p. 66). Having this in mind, it becomes more and more clear, what
companies actually strive for. After all, a higher level of internal quality provides the
opportunity of also achieving a higher level of external, i.e. towards customers, members,
stakeholders etc., quality. This in turn, generates a competitive advantage over competitors

 37

and can be regarded as a great business asset. Ortega et. al. (2003) extend this quality
discussion by adding the perspective of customer needs:

“Quality is currently considered one of the main assets with which a firm can
enhance its competitive global position. This is one reason why quality has become
essential for ensuring that a company’s products and processes meet customers’
needs.” (Ortega et. al., 2003, p. 219)

Even though UBS per se provides services towards customers, UBS also can be seen as a
service consumer and is therefore in need of getting the so-called customer needs satisfied.
The chapter Research area – UBS addresses this fact by giving a summary of the architectural
change that has been taking place, i.e. the implementation of the service-oriented architecture.
To sum up this reasoning, with a new IT architecture UBS is expecting a certain outcome, due
to the specified requirements and formulated needs. To what extent this outcome symbolizes
the earlier discussion of higher level of quality assumes the usage metrics.

To specify the needed quality metrics in combination with SOAs it first has to be absolutely
clear what in fact quality is, in combination with SOAs. Even though the concept is said to be
difficult to define, describe and understand (Bratthall & Wohlin, 2000; Kan, 2003), the
definitions of ISO (1986), IEEE (1990), Glinz (2001, 2003) and Kan (2003) are regarded to
cover the aspects being considered in this thesis. By using these definitions, it is not
neglected that all three definitions are to describe software quality, but as SOA can be seen as
the foundation for software, see Figure 28 in section SOA Resume, this is not regarded as a
limiting factor.

Kan (2003), ISO (1986), Glinz (2001, 2003) and IEEE (1990) address the aspects of to what
extent specified requirements, as well as customer needs or expectations, are met and how this
is measured:

“(1) The degree to which a system, component, or process meets specified
requirements. (2) The degree to which a system, component, or process meets customer
or user needs or expectations.” (IEEE, 1990, p. 60)

“[…] quality can, and should, be operationally defined, measured, monitored,
managed, and improved.” (Kan, 2003, p.2)

NON-FUNCTIONAL AND FUNCTIONAL REQUIREMENTS

As quality has a strong correlation to requirements it is important to address the requirements
being frequently discussed in the context of IT. According to Glinz (2001, 2003) specified
requirements for a product are normally divided into functional and non-functional
requirements. Even though these two kinds of requirements are difficult to separate, the
functional requirements, focusing on to what extent the product actually does what it is
expected to do, are the requirements that usually receive the greatest attention and are thus
normally also fulfilled. After all, if the system does not provide the system user with the
requested functionality the IT consumer very quickly address this issue.

“A requirement that specifies a function that a system or system component must be able to
perform.” (IEEE, 1990, p. 35)

 38

Non-functional requirements, on the other hand, are said to be the constraints of the
system’s functions or tasks and are thus less obvious and harder to identify by the IT
consumer.

“Nicht-funktionale Anforderungen – Anforderungen an die Umstände, unter denen
die geforderte Funktionalität zu erbringen ist.” (Glinz, 2001, 2003, p. 12-1)

Hence, these non-functional requirements or so called “-ilities” receive less attention and thus
become more critical. Despite this, or more likely, because of this, several of the non-
functional attributes describing the technical aspects of a system have been defined by
multiple different organisations and companies, such as The International Standards
Organization (ISO) and International Electrotechnical Commission (IEC) (1994) with the
report ISO/IEC 9126 (1994), IBM with CUPRIMDSO (Bencher, 1994) and Hewlett-
Packard with FURPS (Grady & Caswell, 1987).

The business perspective in the non-functional requirements, however, has up until now been
both neglected and omitted when mentioning technical quality attributes. None of the just
mentioned standards and models alludes, as Bass et al. (1998) for example calls it, “Not

observable via execution” (Bass et. al., 1998, p. 76), where one instead shows interest for the
integration of the system, the cost of development and time to market.

QUALITY ATTRIBUTES OF THE SOA QUALITY EVALUATION MODEL

As stated by Ortega et.al. (2003), not only defining attributes (see previous chapter) have
gained in interest, but also creating models to alleviate an overview and correlations of
quality. The models of Boehm (1978) and McGall (1997) are two of the most frequently
mentioned. The available models, however, do not consider SOA quality attributes, but rather
software quality or other SOA aspects (see section Model structure Of the SOA quality

evaluation model).

In correlation with the chapter Methodological approach, showing the approach for the
attribute selection, this chapter will present the theoretical background of attributes leading to
the determination of a SOA quality level. The system standards discussed in the previous
section of Non-functional and functional requirements, are used as a foundation for the
attributes in this so-called SOA Quality Evaluation Model, but to gain the most applicable
attributes, describing SOA features, these standards are both refined and replaced by other
attributes.

The overall structure of the SOA Quality Evaluation Model is based on both business and
technical oriented aspects, as this is considered to be one of the main strengths of SOA, i.e. to
combine IT and business. Hence, in accordance with the discussions held in the sections
Service-oriented architecture (SOA) and The approach

Having defined the strategy to be followed and the method to be applied, the overall
preparations for the research, to be conducted, had to be made. In other words, attributes had
to be selected, model structures had to be evaluated and a questionnaire had to be created.

Gathering SOA Quality attributes, the quality attributes have been subordinated to either
the section Technical Perspective or Business perspective.

 39

TECHNICAL PERSPECTIVE

QUALITY ATTRIBUTE (1): MODIFIABILITY

Very often, the concepts of modifiability and maintainability are used synonymously. In
contrast to this, Bass et. al. (1998) states that some authors insist on keeping these two
concepts apart and using them differently along with the type of change that is being made. In
other words, modifiability is to be used when the change involves a modification of attributes
within an architecture:

“Eine Menge von Merkmalen, die sich beziehen auf den Aufwand, der zur
Durchführung vorgegebener Änderungen notwendig ist.“ (ISO/IES, 1994, p. 4)

Maintainability is more applicable in the context of simply maintaining these attributes. Due
to the aim of using a concept that points out changeability, modifiability is defined to be the
first technical quality attribute in the SOA Quality Evaluation Model.

According to Bass et. al. (1998) modifiability can be regarded as the attribute with the closest
connection to architecture. This, mainly because the attribute focuses on to what extent certain
attributes within the architecture can be modified. In other words, modifiability is not about
the change of the overall architecture, but rather the change of processes, products,
technologies, behavior (rules) etc.:

- Extending or changing capabilities, i.e. new features are added and/or old ones are
being repaired or simply enhanced.

- Deleting unwanted capabilities involves reducing the range of the system by deleting
functions that are not needed.

- Adapting to new operating environments mostly concerns the introduction of new
hardware, but also different business conditions.

- Restructuring concerns, for example, how to change the architecture from object-
oriented (OO) to component-oriented.
(Bass et. al., 1998)

In accordance with section Interface, SOA achieves this through the modularization,
encapsulation, loose coupling of components and configurable applications. Hence, the code
of the system should not have to be changed, but only a reconfiguration of architectural
objects should be necessary. In other words, by configuring or managing through for example
an IBM Tivoli Monitoring Tool, it should be possible to simply choose the affected
components and services and rearrange, add or delete these without actually affecting the
overall architectural structure. (Bieberstein et.al., 2006)

QUALITY ATTRIBUTE (2): PORTABILITY

The attribute modifiability evaluates to what extent it is possible to modify attributes of the
architecture without affecting the overall architectural structure. Portability on the other hand,
evaluates if the overall architecture can be moved to another environment, if it is adaptable
and replaceable:

“[…] the ability of the system to run under different computing environments. These
environments can be hardware, software, or a combination of the two.”
(Bass et.al., 1998, p. 83)

 40

The environment mentioned could for instance either concern the ability of changing
platforms or the ability to move the system to completely new areas, for example other
countries and cultures. A world wide company in Switzerland, for example, has recently
implemented a new architecture and now wants to apply this architecture with the same
conditions the U.S., where a separate division of the company is situated. To succeed, the
architecture has to be portable. (Krüsemann, 2006)

Another aspect of portability is cultural internationalization. Using the above example again,
this would mean that the architecture has to consider the cultural differences between U.S.
and Switzerland. North-Americans for example, have other rules, regulations and legislatives
that have to be taken into consideration and/or specific preferences for system usage and of
the products being involved. More precisely this would mean that North-Americans, for
example, still prefer the traditional pay slips, while the Europeans frequently use E-banking
and/or that stores are preferred, instead of for example the internet. Moreover, of course,
languages are another aspect. A system that is only available in German is of no use for
Americans. In other words, if all these cultural aspects are not considered users will be
reluctant to use the system, no matter how good the system might be in other countries.
(Krüsemann, 2006)

As stated in the section Interface, one of the strengths of SOA evolves around platform
independency. In other words, in the case of SOA, platform specific information is being
encapsulated and hidden behind an abstract interface, offering portability in terms of
transparency to the system being based upon SOA:

“The encapsulation of platform-specific considerations in an architecture typically
takes the form of portability layer, a set of software services that gives application
software an abstract interface to its environment.” (Bass et. al., 1998, p. 83)

Thus the system will be adaptable to different kinds of environments without influencing the
core of the already existing system:

“[…] the opportunity for its adaptation to different specified environments without
applying other actions or means than those provided for this purpose for the software
considered.” (Centre of Software Engineering (Essi-Scope), 2003,

http://www.cse.dcu.ie/essiscope/sm2/9126ref.html)

The explanation of portability in terms of replaceability would simply mean that existing parts
of the system, as e.g. the hardware, might be replaced without affecting the system on the
whole:

“[..] bear on opportunity and effort using it in the place of specified other software in
the environment of that software.” (Centre of Software Engineering (Essi-Scope),

2003, http://www.cse.dcu.ie/essiscope/sm2/9126ref.html)

QUALITY ATTRIBUTE (3): REUSABILITY

According to Bass et.al. (1998) reusability is an attribute which questions to what extent
different system components can be reused, either within the same or in another system.
Reused in the sense that the components do not have to go through any changes, but can
simply be used the way they are and have been defined:

“Reusability is usually taken to mean designing a system so that the system’s
structure or some of its components can be reused again in future applications.” (Bass

et. al., 1998, p. 84)

 41

Having the definition from Bass et.al. (1998) in mind, it becomes quite obvious that there is
an indirect relationship between modifiability and reusability. More precisely, modifiability
benefits from reusability. Changes or modifications, for example, might turn out to be either
efficiently or simply inefficiently conducted, all depending on whether or not the components
are loosely or strongly coupled.

Heineman & Council (2001) state that developers during several years have been discussing
reusability, but without really having been able to achieve a significant degree. With the
introduction of reusable component and service technologies discussions instead moved
towards topics such as custom-made vs. standardized solutions, where both parties have
benefits and limitations:

Figure 29: Drawbacks with custom-made and standardizes systems. (Szyperski, 1999, 2002)

Within this discussion Szyperski’s (1999, 2002) presents a theory, where the concept of
components is to combine the architectural and financial drawbacks of both standardized and
custom-made solutions, as components per se are standardized products with the opportunity
of customization. More precisely, Szyperski (1999, 2002) states that components are
architectural parts that have the ability of inheriting advantages such as the lower
development and maintenance costs, stability (e.g. reduced error rate) and quality from the
standardized solutions and the custom made shape, efficiency, and adjustability of the
custom-made solutions. In Figure 30 this theory is presented visually, by showing where
components would be situated (the dotted square) in proportion to a custom-made (to the left)
and a standardized (to the right) solution:

Figure 30: The difference between make-all and buy-all. (Szyperski, 1999, 2002, p.6)

Custom-made solutions:

- are built from scratch
- are expensive and difficult to build
- are not available for the customer until

it is built
- are expensive to maintain and develop
- the return on the investment arrives

relatively late

Standardized solutions:

- are badly aligned to the business
- do not give competitive advantages
- are difficult to maintain and develop, if

the cost advantages are to be kept

Cost efficiency

Flexibility, nimbleness, competitive edge

0 100
% bought

 42

Applying Szyperskis’s (1999, 2002) theory on SOAs assumes the close interaction between
components and services described in the section Components. Moreover, the fact that
services per se are said to be reusable (see section Service), supports the reason for regarding
the theory as being applicable to SOAs even more. Hence, both services and components can
be allocated in the centre of the graph in Figure 30.

Finally, one could challenge the statement of SOA components and services being less
expensive to develop. After all, at this point in time still a lot of services have to be created
and defined before they eventually can be reused. Hence, developers currently have to invest
more effort, money and time into the development of components than what can be expected
once the overall register with components is created:

“[…] to standardize the connections among all those components so that they work
the same way everywhere without requiring additional, customized programming,
which is costly and can prevent reuse.” (Bieberstein et. al., 2006, p. 19)

QUALITY ATTRIBUTE (4): INTEGRABILITY

Integrability is the quality attribute covering everything concerning integration between two
or more components and services of a system:

“Integrability is the ability to make the separately developed components of the
system work correctly together.” (Bass et.al., 1998, p. 84)

Together with this concept usually also interoperability is mentioned, to highlight the
possibility that not only separate components need to be integrated but also, for example,
groups of parts with other old or new systems:

“Interoperability measures the ability of a group of parts (constituting a system) to
work with another system.” (Bass et.al., 1998, p. 85)

To be able to cover the essence of both single and grouped components in an appropriate way
derived from the service and component description in section Components, the concepts
integrability and interoperability are both gathered in this quality attribute, called integrability.

According to Bass et.al. (1998) the ability of integrating loosely-coupled components or
services depends on the external complexity of the components/services, the interaction
mechanisms, the protocols used, as well as all other issues being typical for each architectural
level as in for instance the Open Systems Interconnection (OSI) Reference Model.

Furthermore, integrability considers the interface of the component/service, i.e. how well and
completely defined the interfaces of the belonging components/services are. In other words,
this attribute includes everything that was described as being a part of the Business logic-tier
(see section Client/Server Architecture, Front-End), including the interaction mechanism
ESB, the protocol SOAP, the interface language WSDL, the directory UDDI, interfaces and
components/services.

QUALITY ATTRIBUTE (5): SECURITY

As mentioned in section Interface, the security aspect in combination with SOAs become
especially important due to the introduction of Web Services. Surely, a SOA does not have to

 43

use Web Services, but still this is a very SOA specific feature (see discussion in section
Service) and is therefore regarded as an essential part of a SOA Quality Evaluation Model.

Disregarding some of the security specific term, this quality attribute is mainly about
providing architectures with prevention of unauthorized access, both accidental and
deliberate:

“Security is a measure of the system's ability to resist unauthorized attempts at usage
and denial of service while still providing its services to legitimate users.”
(Bass et.al., 1998, p. 80)

Changing the perspective and going into somewhat more specific security concepts, the
aspects being pointed out in the section Interfaces indicate what WS-Security can do to
support Web Services:

� Authentication, i.e. the verification of a given identity by:
- “Having something” like a key, ticket, membership card etc.
- “Knowing something” like a personal PIN, password etc.
- “Being someone” like facial features, DNA-tests, finger prints etc.
- “Being somewhere” like telephone number recognizer, verification systems for

Internet Protocol (IP)-addresses
(Opplinger, 2005)

� Authorization and Access control, i.e. the process of deciding what actions the

concerned entity will be allowed to perform. (Bieberstein et.al., 2006)

� Firewalls, which are walls between at least two networks, allow or deny access

depending on given or denied authorization. (Opplinger, 2005)

� Encryption placed on a message, is “[…] the process of converting information from one

format to another using a mathematic transformation […]” (Bieberstein et.al., 2006, p. 142) and thus
making it unreadable without special knowledge. More precisely encryption involves
the message and a key and the output generated with these inputs. Before the receiver
can read the secured message he/she has to use another key and decrypt the encrypted
message. Another approach involving encryption is the so called Public Key
Infrastructure (PKI), where both the provider and requestor have a key of their own
and “[…] exchange the corresponding public key certificates with those partners with whom they wish

to establish trust.” (Bieberstein et.al., 2006, p. 142). On example of PKIs is the digital signing
of messages.

Finally, one should not forget that all these security aspects are just as important without Web
Services. A simple example would be the accessing of a database. Since most likely not
everyone, not even within the same company, should have access to a specific database,
restrictions in terms of authentication, access control and authorization have to be set up.

QUALITY ATTRIBUTE (6): EFFICIENCY

The quality attribute efficiency refers to the standard definition of ISO/IEC (1994), where the
level of performance of the system, being based on a specific architecture, and the amount of
resources being used under stated conditions:

 44

“Eine Menge von Merkmalen, die sich beziehen auf das Verhältnis zwischen dem
Leistungsniveau der Software und dem Umfang der eingesetzten Betriebsmittel unter
festgelegten Bedingungen.“ (ISO/IEC 9126, 1994, p. 4)

A somewhat definition is derived from Bass et.al. (1998), who explain performance in terms
of time behavior. By doing so, it gets obvious that performance involves metrics providing
results about how responsive the architecture is built, as for instance through transactions per
unit time, transaction throughput, recovery time, start-up time, shut-down time and/or
response time.

“The responsiveness of the system - the time required for respond to stimuli (events) or
the number of events processed in some interval of time.” (Bass et.al, 1998, p. 78)

To go back to the first definition, it might be unclear what is actually meant with “a specific
architecture”. To look at this out of a SOA perspective, both a technical and a business
oriented aspect are involved. The technical perspective simply involves the kinds of IT
resources that are being used, i.e. only with a powerful hardware a reasonable time for
efficiency can be achieved. Discussing this statement in terms of the amount of resources
being used, it would for example mean deciding whether 15 or 30 servers are needed. It might
seem more self-evident to achieve a higher efficiency through 30 servers, due to parallel
processing, but on the other hand, 30 distributed servers will demand a higher level of
management and thus not necessarily increase efficiency. Hence, the architectural structure
plays a great role in terms of kind of IT present, the interaction between different architectural
parts, process synchronization, queue size of requests and latency. (Bass et.al., 1998)

The other architectural aspect, affecting the efficiency, is the way the business is structured,
i.e. how efficiently the business processes are. As long as these processes are not optimized,
the system will be seen as inefficient. More about business processes is discussed in section
Quality Attribute (10): Business Flexibility.

Finally, taking a silo based and service-oriented architecture as an example, evidence of
inefficiency and efficiency becomes more obvious, i.e. the silos and their vertical executing
and subsequent functions in contrast to the service and component oriented architecture.

QUALITY ATTRIBUTE (7): SCALABILITY

Scalability, according to Harishankar (2001), is “[…] the capability of a system/component to adapt
readily to a greater or lesser intensity of use, volume, or demand while still meeting business objectives […].“

(Harishankar, 2001, p. 14). Bieberstein et al. (2006) and Heineman & Councill (2001) confirm this
definition by stating that scalability is about considering the correlation between the total
degree of throughout or performance in a system and the resources added.

As can be noticed, scalability is closely related to the quality attribute efficiency. The greatest
difference between these two attributes can best be described in terms of the three aspects
change of load, performance and resources. Out of this perspective, scalability involves each
an every aspects individually. Efficiency on the other hand looks at all three of them at once.
(Inspired by Krüsemann, 2006)

 45

Figure 31: Comparison between scalability and efficiency.

In other words, when the system has reached the desired or at least approved efficiency, this
should be possible to maintain even if the company intends to expand within different areas or
within the complete company. Thus, an architecture or system that improves its performance
proportionally to the adding of faster hard drives or a greater number of publicly exposed
services, is said to be scalable. This is relatively difficult, since scalability not necessarily has
to lead to efficiency, as already mentioned in combination with the adding of servers in
section Quality Attribute (6): Efficiency in the.

Scalability can be divided into three different types:

� Load scalability – Involves the increasing or decreasing of distributed system loads,
i.e. if more systems are added, the load gets heavier and the opposite if nodes are for
example extracted, leading to an optimization of the architecture.
(Wikipedia, 2006, http://en.wikipedia.org/wiki/Scalability)

� Geographic scalability – This kind of scalability is able to provide usefulness and
usability no matter where the distributed parts of the system are situated.
(Wikipedia, 2006, http://en.wikipedia.org/wiki/Scalability)

� Administrative scalability – A distributed system that is shared by several
organizations and is still easy to use and manage is considered to maintain
administrative scalability. (Wikipedia, 2006, http://en.wikipedia.org/wiki/Scalability)

According to Heineman & Councill (2001), scalability is best achieved through a middleware
where “[…] caching and recycling strategies can ensure that many clients share these resources optimally

between them.” (Heinemann & Councill, 2001, p. 623) For this, SOA uses the ESB, mentioned in
section Enterprise Service Bus (ESB), and thus should be able to provide both load,
geographic and administrative scalability for service requesters and service providers.

QUALITY ATTRIBUTE (8): RELIABILITY

At most companies today, every IT system goes through a risk analysis, showing what impact
a breakdown has on the overall business. In combination with estimating the maximal level of
downtime indirectly also the requested level of service is stated. At UBS, for example,
systems that experience breakdowns, generated through non-functional servers and/or disk
crashes, have the following Standard Service Levels and maximal downtime:

Scalability

Resources

Change of load Performance

Efficiency

 46

Standard Service Level Maximal Downtime per Event:

Standard: 98% availability per year 24 h

Standard +: 98.5% availability per year 12 h

Premium: 99.1% availability per year 4 h

Premium +: 99.5% availability per year 2h

Figure 32: Standard Service Levels for server breakdowns and/or disk crashes. (von Bülzingslöwen, 2006)

Experiencing disaster events such as for instance combustions, earthquakes and/or airplane
crashes, on the other hand, are divided into somewhat different categories at UBS and have a
maximal downtime per disaster event instead:

� Systemic – is the most critical category, where the systems have national,
international and external impacts. Thus the downtime cannot be more than three
hours at most.

o Subcategories of systemic are the so called “transparent to market” and

“<1h downtime”, where the system can only afford to break down for less
than an hour.

� Mission critical – simply affect the UBS itself and is thus somewhat less critical than
systemic. For theses categories of systems, the disaster recovery has to be executed
within 24 hours.

� Subsidiary – is the last category and least critical with its upper limit of up to 72
hours, i.e. a breakdown is managed as long as it is below 72 hours.

(von Bülzingslöwen, 2006)

The recovery of disasters (so called disaster recovery - “Attributes of software that bear on the
capability to re-establish its level of performance and recover the data directly affected in case of a failure and on
the time and effort needed for it.” (Centre of Software Engineering (Essi-Scope), 2003,

http://www.cse.dcu.ie/essiscope/sm2/9126ref.html)) and general breakdowns can also be combined by
for example stating that a Mission critical service has the Standard Service Level of “Premium
+”, which simply means that a mission critical service has to be handled within 24 hours, when
the disaster has occurred, and that the service has to have an availability of 99.5% per year.

This example makes it obvious that some systems simply cannot be out of service and that
risk analyses contribute to the overall categorizing and guidance of the expected level of
performance. Thus systems have to be reliable, i.e. during a specific time period being
capable of maintaining certain level of performance under given circumstances to support the
business properly:

 “Eine Menge von Merkmalen, die sich auf der Fähigkeit der Software beziehen, ihr
Leistungsniveau unter festgelegten Bedingungen über einen festgelegten Zeitraum zu
bewahren.“ (ISO/IEC 9126, 1994, p. 4)

Systems are usually considered to be reliable, when a steady level, i.e. the level above the
maximal downtime, of availability or the time that the system is up and running, can be
assigned to the system. Measuring availability therefore includes the factors of time to failure
and mean time to repair. Reliability on the other hand is only measured in terms of mean time
to failure. (Bass et.al., 1998)

SOAs can guarantee a high level of reliability through the architecture per se, i.e. through e.g.
its ESB or more precisely its ability of managing distributed components and systems through

 47

the ESB. The distribution, reusability and componentization leads to a good chance of quickly
regaining the original structure if disasters should occur. (Elmasri & Navathe, 2004)
Furthermore, the ESB provides reliability through its good capability of assuring that the
requests from requestors are transferred to providers, i.e. assuring the transportation of
messaging. (Bieberstein et. al., 2006) In summary, reliability is achieved though a high and
constant level of availability of architectural components and the communication between
them.

BUSINESS PERSPECTIVE

QUALITY ATTRIBUTE (9): USABILITY

Having implemented a new architecture or simply rearranging an old architecture usually
results in some sort of change for the users, due to changes in interfaces. As Löwgren (1993)
states, most companies only see the profit that can be made with this new system, but to what
extent the system will be fully used, is often not included in the calculation. When a company
has chosen to implement a new or adjust the old architecture, it is simply assumed that users
will know how to use every part of the new system and thus optimizes everything around the
new investment.

Unfortunately, it is not always that easy. Surely it is likely that the invested fix costs will be
covered within a short time due to the increased efficiency and thus save money, but the
question is how this behavior evolves with time. If the employees do not manage to cope with
the new interface, costs will soon start to exceed the savings. The first graph in Figure 33
shows how the fixed costs (perfectly elastic) are covered (above the equilibrium) after a given
amount of time. On behalf of the given example, it is assumed that the costs in the second
graph are flexible and do not arise until after a certain time, i.e. when the business realizes
that the users cannot use the interface. Furthermore, that the costs are presented with an
inelastic curve is due to the assumption that as more time passes, costs are likely to increase
faster. (Gillespie, 1998)

Figure 33: From having gained from the IT-Investment, the wrong treatment of usability may lead to exceeding

costs. (Inspired by Löwgren, 1993)

To avoid risks of that kind, Bass et.al. (2003), ISO/IEC 9126 (1994) and Löwgren (1993)
suggest the usage of the quality attribute usability, considering human factors as aesthetics
and consistency in the user interface:

� Relevance – which points out that a system is only relevant as long as it serves the
users’ needs. (Löwgren, 1993)

Time
(weeks)

Time
(weeks)

Money ($)

Savings

Costs

Money ($)

Savings

Costs

 48

� Efficiency – states how efficient a user does his/her work by using the system. Thus it

is not the quality attribute efficiency, mentioned in section Quality Attribute (6):

Efficiency. (Löwgren, 1993)

� Attitude – presents the users’ emotional feeling towards the system, i.e. if he/she

accepts the system. (Löwgren, 1993)

� Learnability – considers how easy it is for a user to learn to work with the system:

“Attributes of software that bear on the users’ effort for learning its application.”
(Centre of Software Engineering (Essi-Scope), 2003,

http://www.cse.dcu.ie/essiscope/sm2/9126ref.html)

� Memorability – represents the ability of users being able to remember the operations
of the system over time:

“To what extent the user can remember how to do the system operations between
uses of the system.” (Centre of Software Engineering (Essi-Scope), 2003,

http://www.cse.dcu.ie/essiscope/sm2/9126ref.html)

� Understandability – involves the understanding of the user, i.e. to what extent he/she
really understands what he/she is doing:

“Attributes of software that bear on the users’ effort for recognizing the logical
concept and its applicability.” (Centre of Software Engineering (Essi-Scope), 2003,

http://www.cse.dcu.ie/essiscope/sm2/9126ref.html)

QUALITY ATTRIBUTE (10): BUSINESS FLEXIBILITY

Irrespective of market niche, most companies experience the pressure of other companies
competing within their niche. This respect for substitutes, new entrants and the bargaining
power of suppliers and customers drives companies to look for opportunities to gain more,
regain or simply remain at a certain level of market share:

 49

Figure 34: Porters five forces. (Porter, 1998, p. 22)

The greatest opportunity, suggested by Reinitz (2003, 2004, 2005), is to be able to provide
flexibility, both towards customers and within the company. Flexibility in terms of meeting
“[…] new market demands and to seize opportunities before they are lost or before the competition gets there

first.” (Bieberstein et.al., 2006, p. 12) Surely, for this the technical perspective, which amongst
others is discussed in the quality attributes portability, maintainability, reusability and so on,
is of great importance. After all, having an IT infrastructure that provides the users with the
possibility of freely choosing the amount and kind of for processors and storage capacity that
is used, leads to an incredible flexibility:

“Kosten für die Hardwarenutzung fallen in Abhängigkeit von der tatsächlichen
Nutzung der zugrunde liegenden Infrastruktur an, bspw. von Prozessor und
Speicher.” (Krcmar, 2000, 2003, 2005, p. 144)

However, one should not forget the more business oriented perspective, which involves
looking at the “[…] business operations as a collection of interconnected functions […]” (Bieberstein et.al.,

2006, p. 12). To achieve flexibility within the business and indirectly gaining greater
competitive advantages through reduced time-to-market, companies have to consider the
outsourcing or streamlining of less important processes, as well as utilizing the advantage of
service-oriented processes so that parts of the overall business process flow are delegated to
different parts of the organization:

“Through Service-Oriented Process, companies can delegate parts of their overall
business process flows to different parts of the organization, each of which have
direct and immediate control of the actual operation of the business.” (Schmelzer,

2005, http://www.zapthink.com/report.html?id=ZAPFLASH-20050127)

Another business oriented perspective evolves around product flexibility, i.e. the “[…] degree

of responsiveness (or adaptability) for any future change in a product design.” (Palani Rajan et. al., 2003, p. 1).
As customers change their patterns of consumptions, the providers have to be able to adjust

Bargaining
power of
suppliers

Threat of
new
entrants

Bargaining
power of
customers

Threat of
substitute
products
or
services

The industry jockeying
for position among
current competitors

 50

their production in accordance. Having an IT architecture contributing to a flexible product
design or redesign will on one hand reduce the costs of the products and on the other hand
create the possibility of reducing the overall response time to consumers, “[…] by allowing
quicker updates in the products and achieving higher levels of performance in a short span of time.” (Palani

Rajan et. al., 2003, p. 1)

In other words, the company per se in terms of more efficient work streams, reduced costs,
reduced development time and greater opportunities of quickly adopting to market

changes, and the customer, suppliers or other involved agents, through the increased chance
of higher quality of products and services would all benefit from flexibility.

As an example, the flexibility difference between a silo-based architecture and SOA primarily
lies between the vertical process executions and the more dynamically intertwined executions.
Even though the silo-based architecture might be efficient, the ability to act flexible in
accordance to business needs is lower than within the dynamic architecture. However, this
only if the company has rearranged their business processes so that they are aligned to the
new IT-architecture. (Bieberstein et.al., 2006; Plummer, 2002; Maryoloy et.al., 2003)

QUALITY ATTRIBUTE (11): DEVELOPMENT COSTS

As mentioned in the previous chapter, flexibility can be achieved by, for example, preferring a
more service-oriented than silo-oriented architecture, as well as streamlining, adjusting or
outsourcing processes in line with business demands and actions. All these aspects are
covered in the development phase of a system and influence the costs of a system. As Krcmar
(2002) shows with his life cycle model, the development phase is the most critical phase when
it comes to costs and thus also quickly raises reasons for discussions:

Figure 35: Life cycle of a system. (Krcmar, 2000, 2003, 2005 , p. 146)

To classify possible costs that occur during the development phase, Stoyan’s (2004) model of
fix costs for conception, content, implementation (design and IT), test and improvements
(usability and IT) and project management provides a good basis:

Entwicklung Einführung Wachstum Sättigung /
Reife

Rückgang Abschaffung

Systemkosten

 51

Conception

Content

Implementation (Design and IT)

Test and Improvements (Usability and IT)

Project management

Figure 36: The biggest fix costs during the development phase of systems. (Stoyan, 2004, p. 43)

As can be noticed in Figure 36, the development not only involves technical aspects, but also
the business processes from the previous chapter. In fact, these processes influence all five
cost factors, with the emphasis on conception, content gathering and project management.
Projects that work tightly with a business during the development phase, usually create matrix
structures. If the company is structured and efficient in its processes, the project will have
much better premises in succeeding, due to good cooperation between developers and
customers. Thus project time, which is one cost factor, as well as direct project costs, can be
kept low. (Stoyan, 2004)

For the implementation costs, reusability is one important SOA feature that leads to cost
reductions (see section Quality Attribute (3): Reusability. More precisely, the costs of creating
the components and/or services in the first step is higher than it was in traditional object-
oriented programming for example, but having done this once and having access to an overall
directory, leads to great future cost reductions. “ [...] Business services can be encapsulated and abstracted in a way that makes

them easy to utilize and assemble into component applications with minimal
programming. Companies can utilize more skilled programmers for creating the
underlying functionality and service definitions, which can then be reused by less
technical programmers and visual application assembly tools.” (Gold-Bernstein,

2004, http://www.ebizq.net/hot_topics/esb/features/4894.html?page=2)

Also, the feature of integrating loosely-coupled components and services reduces costs. More
precisely, services that are loosely coupled can reduce the complexity of the architecture and
hence reduce the costs of both integration and managing. The fact that SOA replaces “[…]
multiple function calls at a fine level of granularity with coarser-grained, loosely coupled Services that can
handle a wider range of interactions in a more flexible manner than API-based integration.” (Schmelzer, 2005,

http://www.zapthink.com/report.html?id=ZAPFLASH-20050127) reduces the overall cost of
implementation.

Furthermore, already created components and services are only considered to be completely
reusable, if they are created as “black-boxes” and thus already tested and freed from

potential bugs.

“Each service is like a black box that performs a specific function and has a published
interface that accepts and defines inputs and produces defined outputs. Each service
can be tested individually, then reused over and over. Interface testing is fairly
straight forward, and can be automated using testing tools.” (Gold-Bernstein, 2004,

http://www.ebizq.net/hot_topics/esb/features/4894.html?page=2)

 52

QUALITY ATTRIBUTE (12): RETURN ON INVESTMENT (ROI)

The introduction , has already shortly mentioned the fact that companies invest and expect
some kind of value to the business in return. In fact, the amount invested - “[…] the purchase of

new capital, such as equipment and factories […]” (Gillespie, 1999, p. 52) - within a company, is
according to Gillespie (1998), directly depending on the expected return:

“The level of investment depends on
a) availability of finance
b) interest rate
c) the expected rates of return from the investment” (Gillespie, 1999, p. 52)

The expected return depends on factors, such as “[…] the initial cost of capital goods, expected costs,

expected revenue and expected productivity” (Gillespie, 1998, p. 52), which are all included in the
traditional ROI formula on what kind of profit can be expected on a certain level of
investment during a certain amount of time:

Figure 37: The traditional ROI formula. (Green Hills Software Inc, 2006,

http://www.ghs.com/MaximizeROI.html)

Gunjan Samtani, the divisional vice president for IT at UBS PaineWebber, claims that such
formulas are simply not usable for SOAs. (Blakely, 2002) Why is that? Due to the fact that
SOAs have a more challenging architecture with the possibility of reusing assets, no specific
features with readily identified returns are offered. Hence, one ROI or at least, a traditional
one is not enough. (Schmelzer, 2005)

For the different formulated SOA ROIs, Samatani claims that one has to look beyond what
the technology could possibly provide, i.e. “[…] the benefits must be weighed against risk factors that

will impact the bottom line” (Blakely, 2002, http://www.zdnet.com.au/insight/0,39023731,20270041,00.htm),
and work iteratively during the composition. Hence, every time a new service is added to the
SOA, corresponding ROI objectives should be defined for that particular service and
weighted against the Web Service risk factors, such as “[…] quickly evolving technology, immature
standards, insufficient support, quality of external Web Services, and security.” (Blakely, 2002,

http://www.zdnet.com.au/insight/0,39023731,20270041,00.htm).

[(Sales Price - Production Cost - Sales Cost) ×
(Market Share × Available Market × Product Life - Development Cost)]

(Development Cost × Time to Market)
Rate of ROI =

 53

RESEARCH AREA – UBS

THIS CHAPTER IS NOT BASED ON THEORETICAL STATEMEMENTS, NEITHER IS IT AN EXPLANATION

HAVING TO BE INCLUDED IN THE METHOD. MOREOVER, IT DOES NOT CONSIDER ANY EMPIRICAL

RESULTS CONTRIBUTING TO THE OVERALL RESEARCH MODEL. HOWEVER, TO BE ABLE TO

UNDERSTAND IN WHAT KIND OF BUSINESS THE RESEARCH MODEL WAS INTRODUCED AND WHAT THE

ARCHIETCUTRAL CHANGE HAS IN FACT BEEN MEANING FOR UBS, THIS CHAPTER WAS ADDED.

UBS, as the leading bank of Switzerland and the worlds largest wealth manager with an
invested assets of CHF 2652 billion (UBS, 1998-2006e) has after the merge in 1988 between
the Schweizerische Bankgesellschaft (SBG; Union Bank of Switzerland, founded 1862) and
the Schweizerischen Bankverein (SBV; Swiss Bank Corporation, founded 1872) its
headquarters in Zürich and Basel. (Known Library, 2004) Its main functional areas are within
wealth management business and business banking, investment banking, asset management
and corporate and individual client banking (UBS, 1998-2006a), with a network of 1800
branches.

Corporate Center

Clive Standish, Head &

Chief Financial Officer UBS

Global Wealth Management &

Business Banking

Marcel Rohner, Chairman & CEO

Investment Bank

Huw Jenkins, Chairm an & CEO

Board of Directors

Marcel Ospel, Chairman

Group Executive Board

Peter A. W uffli, Group Chief Executive Officer

Marcel Rohner, Deputy CEO

Global Asset Management

John A. Fraser, Chairman & CEO

Figure 38: The organizational structure of UBS. (UBS, 1998-2006b,

http://www.ubs.com/1/e/about/ubs_group/group.html)

At the current stage UBS is present in 50 countries all over the world, with more than 69,500
employees, of which 39% are situated in America, 37% in Switzerland, 16% in Europe and
8% in the Asia Pacific time zone. In Switzerland, UBS serves around 2.6 million individual
clients and approximately 136,500 corporate clients, including “[…] institutional investors, public

entities and foundations based in Switzerland” (UBS, 1998-2006d

http://www.ubs.com/1/e/about/our_businesses.html).

The UBS report from 2005 shows a world wide profit of CHF 14,029 million, which is an
improvement of 75% compared to 2004. Never has a Swiss corporation shown such a great
return within one year. (Tagesanzeiger, 2006)

 54

ABACUS, THE PREVIOUS IT ARCHITECTURE

Figure 39: Abacus, a calculating tool. (Unknown, 2003, http://www.ee.ryerson.ca/~elf/abacus/intro.html)

The so called Abacus core banking system was planned and realized in the end of the 1970s
and has been used up until now, i.e. for more than two decades. The IT system’s general way
of functioning can be symbolized in terms of an analogy of the old fashioned Abacus
framework, i.e. with rods and beads that can be moved vertically up and down for the use of
calculations (Unknown, 2003, http://www.ee.ryerson.ca/~elf/abacus/intro.html). In reality,
there were no beads that were moved up and down on rods in the architecture, but the
processes within the independently working silos, for each banking area, all relied on the
same vertical Abacus principle1.

To represent this a bit more clearly, let us consider the two different banking areas Mortgages
and Fund accounts. In the Abacus architecture these two areas were represented in two
different silos. Each silo, in turn, contained a function involving the entering of a new client,
accepting his/her order, checking if the client is to mortgage or opening a fund account,
calculating possible charges, charging interest and printing the confirmation for the client.
Thus no reuse of equal or similar functions was applied. Furthermore, each function was
vertically and sub-sequentially executed within the silo.

Some of the functions within the silos were also linked to data stores. These data stores in
turn, were in almost all cases linked to one silo only, i.e. similar functions, in different silos,
did not share a data store. The function “Accept order” within the Mortgage silo for instance,
is linked to one specific data store. Likewise the “Accept order” within the silo Fund accounts
is joined with a data store, but a different one than the one used from the Mortgage silo. Only
the customer data was centralized in one data store, the so called Customer/Central
Information File (CIF).

Figure 40: An example of the Abacus silos Mortgages and Fund accounts.

1 The UBS did not consider the features of the calculating tool Abacus, when naming the architectural
framework.

Enter new client Enter new client

Accept order Accept order

Test if OK Test if OK

Calculate charges Calculate charges

Charge interest Charge interest

Output/Print Output/Print

Fund Account Mortgage

 55

THE NEW ARCHITECTURE

During the end of the 20th century, UBS realized how difficult it was to update their current
Abacus system according to business needs. Channels used separate data sources and
applications to provide similar information, every silo worked on its own, no components
were reused, a far too great amount of interfaces were present and developed solutions were
only country based. (Roik & Balzer, 2004) Additionally, the demand from clients, employees
and the bank increased rapidly. Thus, the main drivers for the initial system change were:

- “to increase flexibility and responsiveness to market conditions and customer
requirements,

- to speed up time-to-market in developing new systems,
- to provide seamless support across multiple channels,
- to provide access on services and new combinations of services,
- to build applications based on modular, reusable components,
- to support enhanced communications and integration, and virtualization,
- to make better use of existing applications,
- to make inter-application communication and integration much faster, easier and less

expensive,
- to use open standards,
- to reduce operating costs and asset intensity and complexity.
- to configure application from existing components rather than to develop applications

from scratch” (Roik & Balzer, 2004, p. 4)

Considering this, thoughts around a new architecture arose quickly and the UBS – Global
Wealth Management & Program Business Banking (Global WM&BB) initiated the so called
Strategic Solution Program (SSP) (UBS, 2005), with the aim to implement a new IT.

The first step towards the architecture, being partly implemented at the current stage, evolved
around an OO-application. However, since the intentions were to move to a completely new
architecture, the next and evolutionary step was taken shortly after the first one:

“We spent some time developing a new application based on object orientation, but
our real objective was to do the ‘big thing’ and move onto a new architecture - an
architecture that would provide a clear view of the business services that we were
running.”
(Unknown, 2003, http://www.bankerme.com/bme/2003/jun/it_in_banking_2.asp)

THE APPROACH

F

Figure 41: The process of the Abacus replacement. (UBS Business & Application Architecture, 2004, p. 16)

 1999 2000 2001 2002 2003 2004 2005 2006 2007

Basis

Banking

Foundation

Banking

System

Value Applications

1999 20002000 2001 20022002 2003 20042004 2005 20062006 2007

Basis

Banking

Foundation

Banking

System

Value Applications

 56

The main idea was to replace Abacus step-by-step, in close cooperation with the business,
deliberately avoiding an overall and one-time replacement, due to the range and complexity of
the system, as well as the enormous risk of possible unexpected errors and other incidents.
The replacement is best presented in the following four phases:

- The “basis” phase:

Between 1999 and 2001, the SSP focused on developing the overall project vision and
objectives, as well as modeling and creating the new architecture and implementing
data warehouse and logistic applications. This phase also included tests in real
environments for usability and maturity of Web Services. (Roik & Balzer, 2004; UBS

Business & Application Architecture, 2004)

- The “banking foundation” phase:

The following phase lasted between 2001 and 2003 and involved the introduction of
master data management, security and cash accounting, as well as financial and
management accounting. More precisely, the defined methodologies from the
preceding phase and the needed middleware “[…] were implemented to build the first
heterogeneous and interoperable Web Services (December 2001 to June 2002).” (Roik & Balzer, 2004,

p. 18). This middleware, also called BUS, leverages the possibility to offer multiple
transparent services, with the same interface. (Roik & Balzer, 2004; UBS Business &

Application Architecture, 2004)

- The “banking system” phase:
Between 2003 and 2005, the “banking system” phase involved porting Abacus
applications from Unisys to IBMs z/OS. (UBS Business & Application Architecture,

2004)

- The “value applications” phase:

The currently ongoing phase with start in 2004 and expected end in 2007, is closely
intertwined with the “banking foundation” phase and focuses on enhancing already
defined functions to support possible business changes. (UBS Business & Application

Architecture, 2004)

At the current stage, the Front-End part of the system is still under construction, while the
Back-End is fully implemented.

 57

ABACUS VS. THE NEW ARCHITECTURE

One of the obvious changes with the new architecture involves the platform change from
Unisys to z/OS (Back-End services) and DB2 (Business data). The other one is the fact that
the silos have been exchanged to independently working, stateless and reusable business
components or more precisely business services with interfaces. These interfaces are XML-
based and are thus able to provide interaction between different kinds of business services,
written in Cobol or Java, for example.

Figure 42: The old silo system and the new component (c) based architecture with interfaces (i) and a
middleware (m). (UBS, 2005, p. 8)

Furthermore, the new architecture, as can be seen in Figure 43, provides a middleware, being
a Multi-Channel Access Platform based on SUN Solaris servers (MAP-OLU

2), and the
Common Services Framework (CSF). The latter one is implemented with IBM’s Message
Queue (MQ series

3) and CICS, the first one with WebSphere Application Server (WAS) and
MQ. Through this middleware and with the help of the UBS specific middleware protocol
UBS XML, which is based on the transport principle of MQ, business services can interact.
The business services are found in the name service directories i-SAC and Dyna/Rep. (Ebner,

2003)

2 OLU stands for Open Lan Unix, which is a UBS developed deployment package for Solaris servers, including
also other standard packages used within the bank. (Furth, 2006)
3 Today IBM MQ Series is called IBM WebSphere MQ, 14.07.2006

(c)

(m)

(i)

 58

B ack e n d
S ystem s

D is trib u tio n
C h a n n e l

M A P
S erv ice

P la tfo rm

C o n n e c to r L a ye r

C lie n t In te rfa ce

T
R

X

T
R

X

T
R

X

T
R

X

S
A

P

M
o
d
u
le

O S /220 0
A B A C U S

z/O S
C IC S

S APIB R E D O th er

B
u

s
in

e
s
s

C
o

m
p

.

B
u

s
in

e
s

s

C
o

m
p

.

B
u

s
in

e
s

s

C
o

m
p

.

S
A

P

M
o

d
u

le

X M L

...

M A P -O L U

S erv ice D irec to ry

S Q L Q ue ries

IT

A p p lic a tio n s

IS IW A S

B ack e n d
S ystem s

D is trib u tio n
C h a n n e l

M A P
S erv ice

P la tfo rm

C o n n e c to r L a ye r

C lie n t In te rfa ce

T
R

X

T
R

X

T
R

X

T
R

X

S
A

P

M
o
d
u
le

O S /220 0
A B A C U S

z/O S
C IC S

S APIB R E D O th er

B
u

s
in

e
s
s

C
o

m
p

.

B
u

s
in

e
s

s

C
o

m
p

.

B
u

s
in

e
s

s

C
o

m
p

.

S
A

P

M
o

d
u

le

X M L

..... .

M A P -O L U

S erv ice D irec to ry

S Q L Q ue ries

IT

A p p lic a tio n s

IS IIS IW A SW A S

Figure 43: The new architecture of the UBS in terms of service-oriented concepts. (Ebner, 2003, p. 51)

Applying this new technology on the earlier mentioned banking area, i.e. ‘Mortgages’, the
result will no longer include identical functions in different silos, but components that can be
used in other banking areas, such as ‘Fund accounts’, as well.

To fully understand the new principle of the architecture, it is important to start with
explaining the principle of the following three components:

- Partner
- Contract
- Product

All clients, partners, trustees or other people being involved in bank activities are in the new
architecture defined as partners. Important is that a partner does not only symbolize one client
etc., but could in fact present several. Banking services, such as bank account, maestro card
etc., can be defined in terms of products. To be able to gain from one of these banking
services, as partner, a contract has to be defined and signed. One product can appear in several
contracts, but a contract can only present one product. (Furth, 2006)

Figure 44: The relationships between partner contract and product. (Inspired by: Furth, 2006)

Now taking the mortgage and fund example again, this would simply mean that each partner
is stored only once in the Customer Information (CI) database, no matter what he/she
performs in combinations with the UBS. Having defined the partner and assuming that he/she
wants to make an application of a mortgage, the next step is to add the mortgage contract to
the concerned partner. In other words, the partner has to sign a specific contract to get his/her
product. (Furth, 2006)

With the contract-process UBS will have an overview of all mortgages that are applied by a
partner and also what mortgages can be related to a specific partner. In other words, in the

Partner Product Contract
11 1M

 59

new architecture all individual partners no longer get flagged when applying and having a
mortgage, for example, and no separate data store has to perform queries where the data in the
CIF has to be combined with the flagging. Thus, the new architecture has already improved in
terms of splitting up the silo structure, easing up the business process and combining data
sources. (Furth, 2006)

Taking the example of calculating charges and interest for mortgages, also here a significant
architectural change has occurred. As already pointed out, in the old architecture the interest
and charges were calculated in a separate data store, having no relation to the actual
mortgages. Due to the rearranging, the calculations are now done in one component or
application, which has pointers at both the contract database and the Cash Core Account
(ACC) database, where all mortgages are stored. (Furth, 2006)

In summary, one will realize that the former functions, ‘Enter new client’, ‘Accept order’,
Test if OK’, ‘Calculate charges’, ‘Charge interest’ and ‘Output/Print’, are no longer separated
in different silos, but are combined in distributed and reusable components. Furthermore, all
data stores, but CIF, are centralized and thus the overall amount, as well as redundancy, has
been reduced.

IS THE NEW ARCHITECTURE OF UBS A SOA?

One might consider it strange never to find the term SOA explicitly mentioned in combination
with the new architecture of the UBS. In fact, considering that the UBS started SSP already
in 1999 and SOA, as a defined concept, did not enter the market until 2003, it would to some
extent be incorrect to use the term in this context:

“The state of the art in software will evolve markedly in 2003. Innovation and
technical progress march on, even though the revenue growth of most software
vendors was slowed by poor sales results in 2001 and 2002. Regardless of whether
the rate of new IS development projects returns to the high activity levels of the late
1990s and 2000, new software technology will be brought to market, products will be
repackaged and repositioned, and new standards — particularly Web Services — will
begin to mature.” (Schulte, 2002, p. 1)

Furthermore, the UBS does not use the classical SOA standards WSDL and SOAP, which of
course also contributes to the difficulty in calling the architecture a SOA. However, as WSDL
did not exist at all in 1999 and SOAP had just newly been introduced on the market, the UBS
created standards of their own to achieve the features that today’s SOA standards fulfill (see
section Enterprise Service Bus (ESB)). Considering this and all the aspects mentioned in
section Abacus vs. the new Architecture should definitely underline that this new architecture
can be regarded as a SOA.

Figure 28 in section SOA resume, presented a visual view of SOA. A similar model is
presented Figure 45. This version, however, is adapted to the concepts and architectural view
of the UBS. Hence, comparing these two figures will indicate the architectural differences
between the UBS architecture and a classical SOA.

 60

Presentation

Business Processes

Integration Architecture

Components and Services

Existing Applications

Portlets PDA WMA

Agent Dispatcher Connector

Service

Presentation

Business Processes

Integration Architecture

Components and Services

Existing Applications

Portlets PDA WMAPortlets PDA WMA

Agent Dispatcher Connector

Service

Figure 45: The service-oriented architecture of the UBS. (Peisl; Ebner 2003)

The greatest differences evolve around the following aspects:

- Additional mentioned channels, as for example the Personal Digital Assistant
(PDA) and cash dispenser (WMA).

- Presenting the “Integration Architecture”, with agent, dispatcher and connector
horizontally instead of vertically and thus showing the close linkage between
the “Business Process”-layer the “Components and Services”- layer:

Agent Dispatcher Connector

Protocol Handling

Transport Handling

Unit of Work

Logging

Pre-/Post-Processing

Authorization

Defaults

validation

Local Addressing

Comm. Styles

Comm. Methods

Context Handling

Agent Dispatcher Connector

Protocol Handling

Transport Handling

Unit of Work

Logging

Pre-/Post-Processing

Authorization

Defaults

validation

Local Addressing

Comm. Styles

Comm. Methods

Context Handling

Figure 46: The UBS constructions of the integrations architecture. (Ebner, 2003, p. 106)

- A combined “Components and Services”- layer.
- Specific UBS Back-End Applications.

In summary, there are no great differences, it is more a question of how certain architectural
features are presented.

 61

 RESULTS AND ANALYSIS

PRESENTING RESULTS AND ANALYSIS SEPARATE WAS CONSIDERED AS LESS APPROPRIATE. DUE TO

THIS FACT, THIS CHAPTER WILL PROVIDE THE REDAER WITH BOTH RESULTS AND EVALUATIONS IN A

CONSOLIDATED FORM. SHOULD THE READER BE INTERESTED IN RESULTS ONLY, THE ATTACHMENTS

PROVIDE SUFFICIENT INFORMATION.

The method applied and theoretical foundation have up until now been discussed and
presented in the chapters Theoretical framework and Methodological approach. The actual
results from the overall research, however, are still to be presented.

To ease the understanding of this chapter, the results are presented both in terms of figures
and written text. Furthermore, each result for the separate quality attributes is listed and
discussed separately, to provide the reader with the same structure used in the Theoretical

framework.

The analysis being conducted, due to the gathered results, is solemnly based on the following
research question:

- What impact has the newly implemented service-based architecture had on UBS?

The research question focusing on to what extent the quality attributes can be regarded as
SOA quality attributes, will be discussed below the sections of Technical perspective and
Business perspective, as these two perspectives combine all mentioned attributes:

- What quality attributes can be regarded as SOA quality attributes?

The remaining two research questions are discussed at the end of this chapter, as these are
best answered on behalf of the discussions being held in combination with each attribute:

- Is the SOA Quality Evaluation Model applicable to SOA implementations?

- Does the interaction between the quality attributes affect the overall outcome of

the model?

 62

TECHNICAL PERSPECTIVE

That the eight technical attributes can be regarded as quality attributes can be derived from the
quality definitions being given in chapter Quality. After all, six (modifiability, reusability,
integrability, security, scalability and reliability) of these eight attributes are measurable (see
the theoretical definitions of the attributes) and were defined by UBS as vital for success
(Likert scale value = 4). As measurable success factors were regarded as being contributors to
increased quality (see chapter Quality) the conclusion to be drawn simply has to evolve
around the fact that these six attributes are essential when achieving a certain level of quality.
Also the remaining two attributes portability and efficiency are potential quality attributes, as
they also are measurable and being considered important by UBS (Likert scale value = 3).

The fact that UBS received questions asking to what extent a certain attribute is vital or
critical for their success, indicates that the quality being discussed is in fact business based.
However, if the questions would have asked whether or not an attribute is vital or critical for
the IT architecture, the overall picture of the benefits or limitations of the new architecture
would have vanished. Besides that an IT architecture is implemented to support its business
and therefore the criticality out of the business perspective is of greatest interest.

The question now remaining is whether or not these quality attributes can be considered as
SOA quality attributes. Once again this conclusion is highly UBS related, due to the research
being conducted, but as stated in the chapter Methodological approach, at this point in time
no other bank in Switzerland has implemented a SOA. Hence, currently the UBS answers
have to be considered as general statements for Switzerland. Due to this, the five attributes
modifiability, reusability, integrability, security and scalability all can be regarded as SOA
quality attributes (Likert scale value = 4), as all five were said to be strongly present in the
implemented SOA. Portability and reliability are also closely related to SOAs (Likert scale
value = 3). Efficiency is according to UBS the least appropriate (Likert scale value = < 2).

In summary:
Description Likert scale value Attributes
Obvious quality attributes: 4 (weighting value) modifiability, reusability,

integrability, security, scalability
and reliability

Potential quality attributes: 3 (weighting value) portability, efficiency

Obvious SOA quality attributes: 4 (‘As-it-is’ value) modifiability, reusability,
integrability, security and
scalability

Potential SOA quality attributes: 3 (‘As-it-is’ value) portability, reliability

Less appropriate SOA quality
attribute:

=< 2 (‘As-it-is’ value) efficiency

Figure 47: The obvious, potential and less appropriate technical SOA quality attributes.
(Attachment 6: UBS answers)

 63

QUALITY ATTRIBUTE (1): MODIFIABILITY

 a) Weighting Question b) ‘As-it-was’ Question c) ‘As-it-is’ Question

4 2 4

Figure 48: The answers for the quality attribute modifiability (Attachment 6: UBS answers)

According to the received results, modifiability has been stated as one of the 10 most
important quality attributes at UBS, with the ‘Yes, I strongly agree’ answer on the question:
‘Is one of the companies target goals to be able to modify attributes within the company,
without increasing the complexity and rearranging the structure of the architecture?’ (see
Attachment 5: Questionnaire - SOA quality attributes). With the chosen answer UBS points
out the essence of being able to change, for example, processes, technologies, components,
services, rules and other attributes being architecture related, without having to rearranging
the implemented architecture. (Quality Attribute (1): Modifiability). Moreover, the chosen
answer states (see Attachment 5: Questionnaire - SOA quality attributes) that having this kind
of architecture contributes to the overall success of the company, i.e. in accordance with the
discussion held in the Theoretical framework, having an architecture not supporting
modifiability can be considered as critical for business success.

Having stated this, it becomes obvious why UBS started SSP and implemented the new
service-oriented architecture. After all, SOAs make modifiability profitable through its
modularization, encapsulation, loose coupling of components and configurable applications.
Thus, as mentioned in the section Quality Attribute (1): Modifiability, UBS will now be able
to respond quickly to actions such as deleting unwanted capabilities, restructuring, adapting to
new operating environments and extending or adding attributes by simply configuring and
managing the new architecture. This, in turn, has been stated by the answer ‘The architecture
supports business agility and has an open structure.’, i.e. a ‘Yes, I strongly agree’ on the ‘As-
it-is’ question.

The interesting aspect of the three received answers is the ‘The question cannot be answered.’
response on the question, alluded on the old architecture, ‘Is the architecture open for attribute
modifications, as business situations change?’. This means that the respondent either does not
have the knowledge about the question asked or simply that Abacus was never discussed in
terms of modifiability. No matter what, both alternatives provide a neutral answer, showing
nothing of how modifiable the old architecture was.

In summary, the quality attribute modifiability is highly essential for the UBS as a business
and therefore has been strongly considered when choosing the new architecture. The new
architecture, with its open structure, is most likely by far more modifiable, considering that
Abacus was a silo-based. This, however, was not confirmed by UBS-respondents.

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

 64

QUALITY ATTRIBUTE (2): PORTABILITY

a) Weighting Question b) ‘As-it-was’ Question c) ‘As-it-is’ Question

3 2 3

Figure 49: The answers for the quality attribute portability (Attachment 6: UBS answers)

Having a portable architecture, i.e. the opportunity of adapting to different environments (e.g.
platforms, countries) and considering cultural internationalization (e.g. language and
legislative adjustments and/or specific system preferences) without having to make major
architectural changes, is regarded as important, but not vital at UBS. In other words, by giving
a ‘Yes, I agree’ on the question ‘Does the company see portabilities, such as being able to
update the IT-architecture with the latest hardware and/or to transfer the architecture to other
areas, as vital?’, the quality attribute is regarded as one of the important quality attributes, but
on the other hand not as one of the essential ones out of a business perspective. The added
remark ‘Cultural Internationalization is very important; platform independence is less
important’ from respondents clarifies why the quality attribute was not marked with a ‘Yes, I
strongly agree’.

That portability was of particular importance before the new architecture was implemented
can partly be derived form the answer being given on the question ‘Is the architecture suitable
for adapting to new environments?’. After all, the ‘I neither agree nor disagree’ may point out
that UBS had not been regarding this aspect when implementing Abacus in the first place.
Furthermore, after having implemented the old architecture, there was no real opportunity to
achieve portability. On the other hand, this answer might simply state that the respondents did
not possess any knowledge about to what extent Abacus was portable or not. A third reason
why this answer was chosen might be due to the fact that all other answer alternatives were
not regarded as applicable. On the other hand, are the other answer alternatives quite broadly
formulated, covering both portability and non-portability, hence the given alternatives should
provide the respondents the needed choices.

Assuming a lack of portability consideration in the old architecture, it seems as if at least in
the new service-oriented architecture this quality level has gained more interest. With the
answer ‘Yes, I agree’ on the question ‘Is the architecture suitable for adapting to new
environments?’, the alternative ‘The architecture is relatively portable and supports limited
platform independency. Cultural internationalization, however, is not supported.’ UBS shows
that the aim of achieving and most of all considering portability during SSP has been fulfilled.

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

 65

What might seem somewhat strange is the circumstance that the portability is only regarded
as limited and that cultural internationalization is not supported at all. After all, SOAs per se
are to provide a high level of portability with its information hiding principle, as mentioned in
section Quality Attribute (2): Portability. Furthermore, UBS has the intention of
implementing the architecture in other countries around the globe and by stating that the
architecture does not support cultural internationalization simply is not in accordance with the
aim set up for the architecture (see remark mentioned earlier in this chapter).

What might have forced the respondents to this answer could be the fact that the answer
alternative regards two aspects, i.e. platform independency and cultural internationalization,
and both of them are not equally important for UBS. However, the second question is not
discussing the importance of the attribute in any of the quality attributes, but the presence of
the attribute within the architecture. Thus, as SOAs are said to have a high level of portability,
i.e. both platform independent and suitable for cultural internationalization, the answer
alternative ‘Yes, I strongly agree’ would have been the applicable.

However, it must be admitted that the answer alternative for ‘Yes, I agree’ should instead
have been formulated as follows: ‘The architecture is relatively portable and supports limited
platform independency and cultural internationalization.’

In summary, the ability of making platform changes and to even move the architecture abroad
is important for UBS, but still this is according to the given answer not completely achieved
with the new service-oriented implementation. However, it seems as if the new architecture at
least is more focused on portability than the old one, where this quality level obviously was
not considered. Furthermore, the answer given might not have been fully the intended one.

 66

QUALITY ATTRIBUTE (3): REUSABILITY

a) Weighting Question b) ‘As-it-was’ Question c) ‘As-it-is’ Question

4 1 4

Figure 50: The answers for the quality attribute reusability (Attachment 6: UBS answers)

As stated by the respondents, UBS sees reusability of already available resources as a vital
process and critical for success. Thus, architectural components, for example, should
constantly be reused when using similar functions/features in other parts of the system or
other systems. In other words, reusability is another of the 10 most important quality
attributes. This is not too surprising considering that modifications in strongly coupled
architectures, as mentioned in the section Quality Attribute (3): Reusability, will turn out to be
far too inefficient. Loosely coupled components, on the other hand, can improve efficiency,
since they are possible to reuse and thus lower, amongst others, development and maintenance
costs.

Reflecting over the answer of how important reusability is for UBS, the ‘Yes, I strongly
agree’ on the ‘As-it-is’ question ‘Does the architecture support the reusing of already existing
structures and components?” seems natural. After all, UBS would not go from an architecture,
not providing reusability (‘As-it-was’ question) – ‘Similar components and structures tend to
occur in the architecture, due to lack of reusability.’ – to another one having this deficit. This
especially if reusability is considered to be a CSF.

Being aware of the fact that SOAs are based upon reusable components, it possible to quickly
deduce that the new architecture at UBS is more in the direction of a SOA than, for example,
a silo-oriented architecture. Surely, this has already been stated in section The new

architecture, but the positive aspect is that the answers (‘As-it-is” question) – ‘In the
architecture a function that is the same in one or more business areas is only implemented
once in the whole company.’ – for this quality attribute confirms this definitely.

In summary, UBS has managed to achieve the desired level of reusability within its
architecture by implementing the new architecture.

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

 67

QUALITY ATTRIBUTE (4): INTEGRABILITY

a) Weighting Question b) ‘As-it-was’ Question c) ‘As-it-is’ Question

4 2 4

Figure 51: The answers for the quality attribute integrability (Attachment 6: UBS answers)

Considering that answers for other attributes have shown proof of, for example, UBS having
the ability of easier making modifications due to loosely coupling and applying reusability
due to a more component or service oriented architecture, it is not too surprising that also
integrability is regarded as being strongly presentable in the new architecture. Having stated
that ‘The new architecture integrates its components/services through interfaces over a
middleware with protocols.’ once again confirms that the new architecture has the features of
a SOA.

The importance of maintaining such an architecture, out of a business perspective, is also in
this attribute stated through the chosen answer - ‘Without a properly working integration
between architectural components, the business will not even be able to perform the easiest
business processes’ on the weighting question ‘Is it vital for the ongoing business that parts of
the architecture can interact with other parts via well defined interfaces?’. Thus, UBS is not
able to perform the easiest business process without having a properly working integrability.

The neutral answer ‘I neither agree not disagree’ on the ‘As-it-was’ question ‘Does the
architecture provide interaction between architectural parts through an interface language, a
middleware (e.g. ESB), a directory, protocols and/or interfaces?’, might once again be an
example of the respondent’s non-familiarity with the quality attribute or because the
respondent did not read the other disagreeing alternatives carefully enough. After all,
considering that the old Abacus architecture was silo-based, at least on of the following two
answers should have bee applicable:

- “The architecture does not support integrability between components and services.”
- “The architecture does not need integration capabilities.”

As a worst case scenario, this answer alternative was chosen since all other alternatives
simply were not applicable to the old architecture, i.e. the architecture does not have the
classical silo features.

In summary, integrability is seen as a CSF and is therefore also highly present in the new
architecture. To what extent the old architecture used integrability is not identifiable on behalf
of the received answers.

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

 68

QUALITY ATTRIBUTE (5): SECURITY

a) Weighting Question b) ‘As-it-was’ Question c) ‘As-it-is’ Question

4 4 4

Figure 52: The answers for the quality attribute security (Attachment 6: UBS answers)

Section Quality Attribute (5): Security mentioned that security aspects become especially
important due to the introduction of Web Services, but at the same time it is mentioned that
authentication, authorization and access control, as well as encryption are just as important
without Web Services. This statement is confirmed by the given answers, i.e. a ‘Yes, I
strongly agree’ for all questions. In other words, no matter what kind of architecture is used,
UBS prioritizes security and classifies the quality attribute as a CSF – ‘Functional security is
vital for the business. (Security is a CSF.)’

What might seem somewhat strange are the answers on the ‘As-is-was” and ‘As-it-is’
question ‘Does the architecture include authentication checks, authorization, access controls
and/or provide firewalls between networks and use digital signatures for the exchange of
messages?’. In fact, it was assumed that the respondents would chose the alternative stating
that the architecture had a good security, but without Web Service and thus network
protection, i.e. ‘The architecture provides security, but not on a web basis, i.e. authentication
checks, authorization and access controls take place, but not network protections.’ Instead the
respondents gave the following answer for both architectures: ‘The architecture provides the
involved parties with very good security, including network protection.”

As it seems, either the structure of the old architecture included aspects not having been
published and discovered during the research or simply the formulation of the answer
alternative ‘Yes, I strongly agree” was to little focused on network protection for Web
Services.

In summary, security is the only quality attribute with ROI that shows the highest possible
level of achieved quality both in the old and new architecture. This is also supported by the
business, which sees this attribute as vital.

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

 69

QUALITY ATTRIBUTE (6): EFFICIENCY

a) Weighting Question b) ‘As-it-was’ Question c) ‘As-it-is’ Question

3 2 2

Figure 53: The answers for the quality attribute efficiency (Attachment 6: UBS answers)

The ability of achieving a suitable performance in terms of IT architecture used, as discussed
in section Quality Attribute (6): Efficiency, and amount of resources, is seen as important at
UBS, but not vital, for business agility. In other words, the IT efficiency is a factor that
influences the overall business operability and hence architecture and resources being used
have to maintain a relatively high standard to achieve satisfaction.

This satisfaction, however, was obviously not achievable or measurable in neither Abacus nor
in the new architecture if one considers the answers being given on the question ‘Does the
architecture act efficiently with the available amount of hardware, business processes and
generated performance?’. After all, the respondents settled on the answer ‘I neither agree nor
disagree’, i.e. ‘The question cannot be answered.’. The exact reason for the chosen answer is
unfortunately not possible to evaluate, but most likely the respondents did not have the needed
efficiency numbers to give a specific answer.

That a different answer was expected is mainly due to the theoretical aspects being discussed
in section Quality Attribute (6): Efficiency. There it was said that efficiency is greatly
influenced by the architectural structure being applied, i.e. the IT being present, the
interaction between different architectural parts, the process synchronization, the queue size
of requests, the amount of latency, as well as the structure of business processes. These
factors, are in general said to improve with a SOA. Hence, changing from a silo/-based
architecture to a SOA should generate some kind of or even significant change in efficiency.

In summary, efficiency is regarded as important at UBS, but to what extent the old or new
architecture is actually efficient is not identifiable.

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

 70

QUALITY ATTRIBUTE (7): SCALABILITY

a) Weighting Question b) ‘As-it-was’ Question c) ‘As-it-is’ Question

4 3 4

Figure 54: The answers for the quality attribute scalability (Attachment 6: UBS answers)

Once again the respondents defined a quality attribute as being vital for the success of the
company. More precisely, UBS stated that the ability to increase throughput under an
increased load of resources is even critical for the success of the company – ‘Scalability is
critical for the success of the company. (Scalability is a CSF.)’ and should therefore be
presented in the available architecture.

That scalability was considered essential in the old architecture already, is confirmed by the
answer ‘Yes, I agree’ on ‘As-it-was’ question – ‘The architectures provides an increase, but
not proportional, in performance, when adding more load. Thus the architecture maintains
scalability features.’. As it seems, Abacus was able to support UBS with the ability of
maintaining an efficient level of throughput under an expansion, even though the increase was
not proportional.

With the new architecture UBS has managed to improve the minor scalability shortage of
Abacus and support their actions towards business success, i.e. the new architecture provides
a proportional increase in performance - ‘The architectures provides a proportional increase in
performance, with adding of more load. Thus the architecture maintains excellent scalability
features.’. With this improvement UBS has good preconditions for business agility, i.e. being
agile to new areas and partly also unexpected situations.

A reason why scalability has improved through the architectural improvement might, amongst
others, be due to the middleware being used in the new SOA. Heineman & Councill (2001),
for example, stated that scalability is best achieved through a middleware. As a middleware is
implemented at UBS with the new architecture (see section The new architecture), this might
be the decisive point or at least contributing one why this amount of scalability has increased
to this extent.

In summary, scalability, a vital success factor for UBS, improved as the new service-oriented
architecture was implemented. With the silo-based architecture, UBS could perform quite
good business and architectural expansions.

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

 71

QUALITY ATTRIBUTE (8): RELIABILITY

a) Weighting Question b) ‘As-it-was’ Question c) ‘As-it-is’ Question

4 3 3

Figure 55: The answers for the quality attribute reliability (Attachment 6: UBS answers)

As already stated in section Quality Attribute (8): Reliability, UBS maintains a principle
where different kinds of systems that experience breakdowns are specified with Standard
Service Levels and maximal downtimes. By doing so, UBS classifies its systems, which ones
cause greater risk for the company than others. A system, having the ‘Premium +’ Standard
Service Level, can, for example, only be out of service during two hours per event. A similar
principle is used for potential disasters as combustions, earthquakes and/or airplane crashes.
This well developed risk management is typical for companies having a high focus on
reliability. In other words, the answer ‘Reliability is vital for the survival of the business.
(Reliability is a CSF.)’, is not really surprising.

The answer ‘The architecture is relatively reliable, since safe messaging/packaging
(interaction between components) is assured.’ on the question ‘Does the architecture support
systems with high reliability?’, however, might be somewhat more surprising. Not surprising
in the sense, that the both architectures are not completely available and reliable, i.e. ‘The
systems in the architecture all keep a high level of reliability, due to high availability of
architectural components and good interaction between these components.’, but rather that
this answer was valid for both the old and new architecture. On the other hand, this does only
show that good reliability can be achieved no matter what structure is being used. This, even
though SOAs are said to be more reliable through its distributed service orientation, and
through the ESB (see section Quality Attribute (8): Reliability), i.e. the chance of quickly
regaining the original structure if disasters should occur by using SOA typical distribution,
reusability and componentization.

That not all systems maintain a high level of reliability, for example, might be due to a
lacking overall IT-strategy, where it is usually defined how newly implemented systems
should be treated and registered. In other words, even though the architecture at UBS is open
and suitable for the adding of new systems, this has to be correctly treated, to achieve a good
reliability. Strangely enough this problem should, in fact, have been more severe in the old
architecture, since added systems were possible to be implemented without interaction to
other systems. In other words, systems, without proper registration, being implemented in
different business areas in a silo-architecture should be more difficult to detect than in a SOA,
where interfaces show what services or components are bundled at the end-points.

In summary, UBS has a high focus on reliability, which also has been implemented in the
architecture, old as new.

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

 72

BUSINESS PERSPECTIVE

Applying the same assumptions being presented in the discussion about the technical
attributes, i.e. quality, measurability and essentiality for success (see Technical perspective),
three (usability, business flexibility, return on investment (ROI)) out of four possible business
attributes are to be regarded as quality attributes. The development costs are not vital for
UBS, but can still be regarded as important. Hence, this attribute is still within the range, i.e.
above two on the Likert scale, of being a potential quality attribute.

The SOA applicability of these business attributes, are just as in the Technical perspective

based on the UBS ‘As-it-is’ answers. Considering this, the attributes that were seen as
obvious quality attributes also represent obvious SOA quality attributes. When it comes to the
development costs, these remain at their potential position also in combination with SOA
applicability.

As can be concluded, in comparison to the technical attributes in the section Technical

perspective, none of the business attributes were by UBS stated as less appropriate, neither as
simple quality attributes nor as SOA quality attributes.

In summary:
Description Likert scale value Attributes
Obvious quality attributes: 4 (weighting value) usability, business flexibility, return

on investment (ROI)

Potential quality attributes: 3 (weighting value) development costs

Obvious SOA quality attributes: 4 (‘As-it-is’ value) usability, business flexibility, return
on investment (ROI)

Potential SOA quality attributes: 3 (‘As-it-is’ value) development costs

Figure 56: The obvious, potential and less appropriate technical SOA quality attributes.
(Attachment 6: UBS answers)

 73

QUALITY ATTRIBUTE (9): USABILITY

a) Weighting Question b) ‘As-it-was’ Question c) ‘As-it-is’ Question

4 3 4

Figure 57: The answers for the quality attribute usability (Attachment 6: UBS answers)

At current stage UBS has not implemented the Front-End of the overall architecture, which of
course makes it somewhat difficult to specify what kind of quality level is currently
obtainable with the new architecture. Thus, the answer ‘Yes, I strongly agree’ on the question
‘Are users of the systems generally speaking satisfied with the ease of use of the user
interface?’, out of a ‘As-it-is’ perspective, is in fact confusing. What can be assumed is that
the respondent has chosen this answer, since the Front-End of the new architecture is aimed at
supporting the user in its actions and to provide learnability, understandability, as well as
memorizeability – ‘The architecture supports the development of systems that are easy to
learn, understand and memorize. Furthermore the system serves the users needs.’.

However, assuming this before the user has even hade the chance of being involved in the
Front-End must be regarded as a critical issue. After all, if it assumed that the user will have
optimal opportunities of interacting with a system, no more effort will be invested to really
achieve this high level of quality. As a reaction, UBS might have to experience exceeding
costs, since the users will not be able to generate the expected amount of output of the system.
On the other hand, is this perhaps not the most critical issue for UBS, since the whole SSP has
been based on a very generous budget, where the focus has been less on profit than on the
overall expected outcome.

The answer being given to describe the system interfaces of Abacus indicates great
satisfaction – ‘The architecture supports systems that serve the users needs or are easy to
learn, understand or memorize’. Considering that the far too great amount of interfaces was a
reason for wanting to replace the architectures in the first place (see section The new

architecture), makes this answer somewhat hard to understand. After all, a great amount of
different interfaces tends to make the user more reluctant to understand and memorize the
actions required. Disregarding this perspective, both the old and new architecture supports on
of the success strategy of UBS, i.e. to maintain satisfied and challenged systems users –
‘Satisfied and challenged system users is vital for the company culture.
(Usability is a CSF.)’.

In summary, UBS sees usability as a vital attribute and assumes to achieve an even higher
level in the new architecture, in comparison to the old.

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

 74

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

QUALITY ATTRIBUTE (10): BUSINESS
FLEXIBILITY

a) Weighting Question b) ‘As-it-was’ Question c) ‘As-it-is’ Question

4 1 4

Figure 58: The answers for the quality attribute business flexibility (Attachment 6: UBS answers)

As competition usually is regarded as a critical factor for companies, (mentioned in section
Quality Attribute (10): Business Flexibility), both technical and business-oriented flexibility
gain more and more in importance. The importance of the technical flexibility was confirmed
within the quality attributes in the recent sections, the business flexibility, however, has not
specifically been confirmed yet. However, with the answer ‘Yes, I strongly agree’, i.e.
‘Flexibility of business processes, products and IT is critical for the success of the company.
(Flexibility is a CSF.)’, also the assurance of the essence of business flexibility is given.

According to the received results the possibility of quickly adjusting to new market demands,
due to optimized business processes and products, seems to have changed remarkably with
the implementations of the new architecture. The question ‘Are the business processes and
products in the architecture flexible enough to adjust quickly to new market demands?’ was,
for example, answered with a ‘No, I disagree’ for the old architecture and a ‘Yes, I strongly
agree’ for the new architecture. In other words, the new architecture provides extraordinary
opportunities for gaining competitive advantages, while Abacus did not.

Applying this to the fact that the new service-based architecture is dynamically structured, the
ability of rearranging and optimizing business processes surely also has increased the ability
of producing products more efficiently. With this new architecture, the UBS no longer has to
apply the vertical and sub sequential executing processes and thus decreases time and money
for producing a product. On the contrary, it is likely that UBS has outsourced or even
streamlined some of its processes.

In summary, UBS once again defines a quality attribute as vital for business success and has
managed to achieve a high level of quality with the new architecture, which Abacus had not
provided.

 75

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

QUALITY ATTRIBUTE (11): DEVELOPMENT
COSTS

a) Weighting Question b) ‘As-it-was’ Question c) ‘As-it-is’ Question

3 1 3

Figure 59: The answers for the quality attribute development costs (Attachment 6: UBS answers)

Keeping the costs, being generated through the development of a new system, low, is
important according to the respondents, but not vital and neither part of the overall IT-strategy
of UBS. Instead it is said that ‘Having an architecture with reusable components and
optimized business processes is important for the business.’. A statement like this indicates
that UBS is not particularly interested in optimizing the system costs to its limit, but rather
keep them realistically low. It therefore also of interest to maintain an architecture where the
combination of standardization and self-development features is optimized.

The response ‘Yes, I agree’, i.e. ‘The architecture provides the business with the possibility to
implement new systems to relatively low costs.’, on the question ‘Can costs be kept low due
to optimized business processes and reusable IT components, when new systems are
developed within architecture?’ simply underlines the answer being given in combination
with the quality attribute reusability. In other words, by using a service-oriented architecture,
UBS has the possibility to introduce new systems at a lower cost than with the old silo-based
architecture. Thus, the reusability of services to create a new system generates the less costs
than if the system was made form scratch.

Even though the implementation per se is of great importance for UBS when reducing costs,
also the interest of optimized business processes was mentioned. As discussed in section
Quality Attribute (10): Business Flexibility, together with a service-oriented architecture also
the business processes are adjusted, i.e. either they are outsourced or streamlined. This close
correlation between business process and the architecture did in contrast to the new
architecture not exist in the old architecture – ’The architecture does not provide cost
efficiency, i.e. low costs might have been kept, but not due to reusability and efficient
processes.’.

In summary, UBS regards low development costs of systems as important, but not vital for the
success of the business. This statement has most likely been some sort of aspect when
choosing the new architecture, even though it was not the deciding point. At least, the new
architecture provides the possibility of reducing development costs, in contrast to the old one.

 76

QUALITY ATTRIBUTE (12): RETURN ON
INVESTMENT (ROI)

a) Weighting Question b) ‘As-it-was’ Question c) ‘As-it-is’ Question

4 4 4

Figure 60: The answers for the quality attribute ROI (Attachment 6: UBS answers)

The approach of calculating an expected time range and financial benefits from a certain
amount of invested resources, all depends on the formula of the return on investment (ROI).
Having a formula that is adjusted to the architecture that it is being applied on is as it seems of
great interest for UBS. With the answer ‘The company is aware of the risks of not adjusting
the ROI according to IT-architecture and is therefore very precise with ROI calculations.’ on
the question ‘Does the company adjust ROI calculations along with changing IT-
architecture(s)?’, UBS states the essence.

However, having received a ‘Yes, I strongly agree’ for both the old and new architecture
indicates that the question ‘Are the resources invested in the new architecture calculated in
terms of educed integration costs, improved asset reuse, and/or greater business agility?’ has
been misinterpreted. After all, a ROI for a silo architecture should not have been calculated in
behalf of integration costs, asset reuse and business agility, as this cannot be provided by such
a kind of architecture. On the other hand, UBS might at that point in time have considered the
silo-based architecture as being able to provide integration, reusability and business agility.
Assuming this, the answer is correctly given, but maybe not correctly formulated. In other
words, the answer ‘The architecture is a SOA and was implemented on behalf of an
appropriate ROI.’, should not mention the word SOA, but more precisely focus on the fact
that this answer alternative should be chosen when the architecture was implemented on
behalf of a suitable ROI.

One way to avoid the problem of knowing to what extent UBS has been using the most
applicable ROI would have been to let UBS specify the formula being used. Furthermore, it
would have been of interest to know what approach UBS used when discussing whether or
not the company should invest in an architecture like the service-oriented one.

In summary, the ROI seems to be of great essence for the business when discussing potential
architecture. Furthermore, the ROI-formula of UBS is said to be adjustable in accordance with
the architecture being considered.

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

 77

EVALUATION OF THE SOA QUALITY EVALUATION MODEL

As explained earlier in the chapters Theoretical framework and Methodological approach for
example all the 12 quality attributes are divided into being either technical or business
oriented attributes. Looking at the SOA Quality Evaluation Model, this is not visualized.
Hence, this differentiation has only been applied to clarify the approach and foundation of the
attribute gathering. Furthermore, as the model is a Spider web combining all its parts closely
with each other, it was even regarded as inappropriate to make a distinction between technical
and business as these in fact are to be combined in SOAs. Still wanting to separate the two
perspectives, one could of course apply some kind of shading in the model.

Focusing on the attributes being chosen, it has already been discussed whether or not they are
suitable quality attributes and most of all SOA quality attributes. Extending this discussion a
bit further, the questions about to what extent the used attributes were in accordance with
what one would be expecting of such a model and whether or not the model considered all
necessary attributes arises. Due to the circumstances and the chosen approach of the research,
these questions are unfortunately not possible to answer. The model per se did simply not go
through an evaluation, but rather the results being gained. Having this in mind one
improvement for future research would be to:

- focus less on the actual model results and pay greater attention to the model, i.e.
guarantee for instance that all possible attributes are present

Another aspect that has not been mentioned is the interaction between attributes. Considering
that all attributes are chosen separately from each other and only in terms of SOA and the two
perspectives, there cannot be any specific interaction. In fact the attributes were deliberately
chosen to be as little as possible related to each other. The overall outcome was simply
thought to involve the extent of a service-oriented architecture being positive or negative for
UBS. This in turn, was considered to be fulfilled by looking at the interception of the ‘As-it-
is’ and ‘As-it-was’ lines at each separate attribute. After all, considering each attribute
separately also contributes to an overall picture. Still, a possible improvement would be to:

- place the attributes accordingly to each other, i.e. take advantage of possible
relationships, to get a descriptive overview

Speaking about connectivity and dimensions or perspectives one could also consider
including the weighting in the in the ‘As-it-as’ and As-it-is” lines. This would take away the,
at the moment, unmated weighting circles and integrate the aspect more into the overall
model.

The fact that four answers received were marked with ‘I neither agree nor disagree’, caused
some confusion in trying to explain the reason for the chosen answer, see the discussions for
attribute modifiability, portability, integrability and especially efficiency. To avoid this
confusion, the following improvements should be considered:

- the formulation of the questions and answers. ‘I neither agree nor disagree’, as an
answer is not providing any specific feedback. On the other hand, the answer might
not be the problem, but rather that the questions are incorrectly interpreted.

 78

- Adding some qualitative questions and thus making it possible to receive information
about why certain quantitative answers were provided. The answer for the ‘Usability’
attribute in the ‘As-it-was’ state e.g. did not match the expectations.

A final aspect to be discussed is to what extent the model is applicable to SOA
implementations. This question leads once again back to the discussions being held in the
chapters Technical perspective and Business perspective, i.e. due to the given assumptions
eight of the twelve chosen attributes are considered to be obvious SOA attributes and three
potential ones. Hence, as only one attribute is declared as less appropriate, the model per se
clearly represents SOA features. Due to theses circumstances it should also be appropriate to
assume that the model is applicable to SOA implementations. With the aim of being able to
generalize this conclusion on behalf of research results, the model would have to be:

- applied on either other business areas or banking areas, in e.g. other countries.
Furthermore, it would be of interest to add a question addressing whether or not the
respondent considers the model as being applicable to SOA implementations.

 79

CONCLUSION

UP UNTIL NOW THE READER HAS BEEN PROVIDED WITH A THEORETICAL SECTION,
CONTAINING THE ESSENTIAL ASPECTS OF SOA, UBS AND QUALITY ATTRIBUTES, THE
APPROACH BEING CONDUCTED TO GAIN THE NEEDED FEEDBACK AT UBS, AS WELL
AS THE RESULTS BEING GATHERED. IN A FINAL ATTEMPT TO PICTURE THE OUTCOME
OF THIS RESEARCH, THIS SUMMARIZING AND CONCLUDING CHAPTER WAS
ESTABLISHED.

Many of the architectural discussions and proposals, currently being held and formulated at
IBM, focus on SOA. In fact, every other day, IBM employees receive mails containing SOA
information. Having in mind that IBM is one of the leading consultant and software
companies in the world, it simply has to be realized that the architecture being implemented at
UBS is a vital part in the technical evolution.

As the aim of this thesis has been to create a SOA Quality Evaluation Model that is applicable
to SOA implementations, as well as applying this model on UBS to evaluate the impact of the
newly implemented service-based architecture, the conclusion of this thesis will evolve
around these two aspects.

THE SOA QUALITY EVALUATION MODEL

As can be deduced from the results being gathered and the analysis being conducted, the SOA
Quality Evaluation Model was successfully created and applied at UBS. Moreover, the twelve
selected attributes, based on mainly secondary data, were proven to be a combination of
obvious and potential, with one minor deviance that turned out to be less appropriate, SOA
quality attributes. Due to this, the answers being received for the old architecture and despite
some discrepancies it can be concluded that the model is applicable to SOA implementations,
as well as old non-service-oriented architectures.

Some of the discrepancies that occurred are unfortunately to be traced back to starting point of
this research, i.e. to the date where the first discussions about the aim and interaction between
university and business took place. Having fulfilled the research, the aspect of not having
been able to fully provide answers on the research questions, is somewhat unsatisfactory.
Hence, the focus on presenting the differences between the old and the new architecture at
UBS gained more in interest than the actual creation of the model. This is definitely an aspect,
showing the difficulty in conducting a research in combination with a university and a
business. The interest of both parties simply differs greatly and has to be very carefully
managed.

 80

UBS AND ITS NEW ARCHITECTURE

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

As being mentioned in the section Evaluation of the SOA Quality Evaluation Model, the
overall picture of the model clearly presents where a SOA has reached a beneficial or limited
level of quality for the business, i.e. UBS. What is does not is to describe what interaction
there is between the attributes and to what extent this interaction generates a specific overall
output. Hence, the interesting aspect of this conclusion is based on how each separate quality
attribute contributes or limits the success of UBS.

In summary, all attributes, except ‘Security’, ‘Efficiency’, ‘Reliability’ and ‘ROI’, indicated
an improvement with the replacement of Abacus and none of the 12 quality measurements
showed proof of deterioration. Moreover, nine out of the 12 attributes were regarded as
critical for success. Hence, in general it can be assumed that these attributes have been in
accordance with what can be expected from an architecture evaluation model at a bank like
UBS.

Some of the interesting results being gained evolve around the fact that the new architecture
in eight out of nine times achieved the maximum level of quality, being stated as vital for
business agility by UBS. The greatest differences between the old and new architecture turned
out to be within ‘Reusability’, ‘Business flexibility’ and to some extent ‘Development cots’,
which all underline typical features for component-oriented architectures and therefore should
show great differences when the comparison is conducted between a silo-based and a service-
oriented architecture.

Finally, as this research has been shown, this architecture replacement should be nothing but
of great use for UBS, both on the technical and business oriented side. Surely, the Front-End
is still not yet implemented and also some other minor implementations are still to be
conducted, but these details should not be affecting the overall positive result.

 81

FUTURE RESEARCH SUGGESTIONS

As a sum-up of the discussion being held in section Evaluation of the SOA Quality Evaluation

Model the following aspects would be of great use to consider when wanting to extend or
improve this model.

- Extend the scientific foundation of SOA quality attributes, by conducting a research
where several companies are asked to state what they would include in a SOA Quality
Evaluation Model.

- Create connectivity of the quality attributes, i.e. state how the different attributes can

be put in relationship to each other and integrate the weighting aspect in the lines
showing the differences between the old and new architecture.

- Re-formulate questions and answers, where a ‘I neither agree nor disagree’ and/or

confusing answers were provided, or apply a more open research method, where the
researcher is allowed to support the respondent or where qualitative questions lead to
an avoidance of possible misunderstanding.

- Apply the model on other research areas than banks. Doing this might also lead to a

need of changing the questions, even though they are intended to be applicable to
other research areas as well.

 82

ATTACHMENTS

 83

ATTACHMENT 1: OVERVIEW MATRIX OF POTENTIAL QUALITY ATTRIBUTES

Potential Quality Attributes ISO/IEC 9126 (1994) Bass et. al. (1998) CUPRIMDSO (Bencher, 1994) FURPS (Grady & Caswell, 19 87) Kan (2003) McCall (1977) Boehm (1978) Sum UBS articles Business articles SOA articles Sum Total

Technical perspective

Modifiability 1 1 2 1 1 3

Maintainability 1 1 1 1 1 5 1 1 6

Stability 1 1 0 1

Analysability 1 1 0 1

Changeability 1 1 2 0 2

Testability 1 1 2 1 1 3

Supportability 1 1 0 1

Adaptability 1 1 0 1

Compatibility 1 1 0 1

Configurability 0 0 0

Localizability 0 0 0

Capability 1 1 0 1

Functionality 1 1 1 3 0 3

Security 1 1 2 1 1 2 4

Integrity 1 1 0 1

Suitability 1 1 0 1

Accuracy 1 1 0 1

Interoperability 1 1 2 0 2

Integrability 1 1 1 1 2 3

Installability 1 1 2 0 2

Efficiency 1 1 1 3 1 1 4

Performance 1 1 1 3 0 3

Reliability 1 1 1 1 1 5 1 1 6

Maturity 1 1 0 1

Fault tolerance 1 1 0 1

Recoverability 1 1 1 1 2

Availability 1 1 1 1 2

Portability 1 1 1 1 4 0 4

Adaptability 1 1 1 1 2

Replaceability 1 1 1 1 2

Reusability 1 1 2 1 1 1 3 5

Scalability 1 1 2 1 1 2 4

Business perspective

Documentation 1 1 0 1

Business efficiency 0 1 1 1

Serviceability 1 1 0 1

Business qualities 0 0 0

Time to market 1 1 1 1 1 3 4

System lifetime 1 1 0 1

Targeted market 1 1 0 1

Revenue 0 1 1 2 2

Return on Investment (ROI) 0 1 1 1 3 3

Integration expense 0 1 1 2 2

Asset reuse 0 1 1 2 2

Business agility 0 1 1 1

Business risk 0 1 1 1

Flexibility 0 1 1 1 3 3

Development time 0 1 1 2 2

Development cost 0 1 1 1 3 3

Obsolescence 0 1 1 1

Competition 0 1 1 1

Usability 1 1 1 1 1 5 1 1 2 7

Understandability 1 1 0 1

Learnability 1 1 0 1

Operateability 1 1 0 1

Customer satisfaction 1 1 2 1 1 3

Project time 1 1 1 1 2

Project costs 0 1 1 1

 84

ATTACHMENT 2: BUNDLED OVERVIEW MATRIX OF POTENTIAL QUALITY ATTRIBUTES

Potential Quality Attributes ISO/IEC 9126 (1994) Bass et. al. (1998) CUPRIMDSO (Bencher, 1994) FURPS (Grady & Caswell, 1987) Kan (2003) McCall (1977) Boehm (1978) Sum UBS articles Business articles SOA articles Sum Total

Technical perspective

Modifiability 2 (Maintainability; Changeability) 3 (Maintainability; Changeability) 1 (Maintainability) 2 (Maintainability) 1 1 (Maintainability) 10 1 (Maintainability) 1 11

Stability 1 1 0 1

Analysability 1 1 0 1

Testability 1 1 2 1 1 3

Supportability 1 1 0 1

Adaptability 1 1 0 1

Compatibility 1 1 0 1

Configurability 0 0 0

Localizability 0 0 0

Functionality 1 1 1 (Capability) 1 4 0 4

Security 1 1 1 (Integrity) 2 1 1 2 4

Suitability 1 1 0 1

Accuracy 1 1 0 1

Integrability 1 (Interoperability) 1 1 (Installability) 1 (Installability) 1 (Interoperability) 5 1 1 2 7

Efficiency 1 1 (Performance) 1 (Performance) 1 (Performance) 1 2 (Performance) 7 1 (Business efficiency) 1 2 9

Reliability 2 (Recoverability; Availability) 1 (Availability) 1 1 1 1 7 3 (Availability; Recoverability) 3 10

Maturity 1 1 0 1

Fault tolerance 1 1 0 1

Portability 2 (Replaceability) 1 1 1 5 1 (Replaceability) 1 6

Reusability 1 1 2 1 2 (Asset reuse) 2 (Asset reuse) 5 7

Scalability 1 1 2 1 1 2 4

Business perspective

Documentation 1 1 0 1

Serviceability 1 1 0 1

Business qualities 0 0 0

System lifetime 1 1 0 1

Targeted market 1 1 0 1

Return on Investment (ROI) 1 (Time to market) 1 3 (Time to market; Revenue) 2 (Time to market) 3 (Time to market; Revenue) 8 9

Business risk 0 1 1 1

Business flexibility 1 (Adaptability) 1 1 2 (Business agility; Flexibility) 2 (Adaptability) 5 6

Development cost 1 (Project time) 1 2 (Integration expenses) 2 (Development time) 4 (Project costs; Project time; Development time) 8 9

Obsolescence 0 1 1 1

Usability 3 (Learnability; Understandability) 1 1 1 1 7 1 1 2 9

Operateability 1 1 0 1

Customer satisfaction 1 1 2 1 1 3

 85

ATTACHMENT 3: OVERVIEW MATRIX OF SELECTED QUALITY ATTRIBUTES

Quality Attributes UBS articles Business articles SOA articles Sum Total

Techical perspective

Modifiability 1 (Maintainability) 1 11

Stability 0 1

Analysability 0 1

Testability 1 1 3

Supportability 0 1

Adaptability 0 1

Compatibility 0 1

Configurability 0 0

Localizability 0 0

Functionality 0 4

Security 1 1 2 4

Suitability 0 1

Accuracy 0 1

Integrability 1 1 2 7

Efficiency 1 (Business efficiency) 1 2 9

Reliability 3 (Availability; Recoverability) 3 10

Maturity 0 1

Fault tolerance 0 1

Portability 1 (Replaceability) 1 6

Reusability 1 2 (Asset reuse) 2 (Asset reuse) 5 7

Scalability 1 1 2 4

Business perspective

Documentation 0 1

Serviceability 0 1

Business qualities 0 0

System lifetime 0 1

Targeted market 0 1

Return on Investment (ROI) 3 (Time to market; Revenue) 2 (Time to market) 3 (Time to market; Revenue) 8 9

Business risk 1 1 1

Business flexibility 1 2 (Business agility; Flexibility) 2 (Adaptability) 5 6

Development cost 2 (Integration expenses) 2 (Development time) 4 (Project costs; Project time; Development time) 8 9

Obsolescence 1 1 1

Usability 1 1 2 9

Operateability 0 1

Customer satisfaction 1 1 3

 86

ATTACHMENT 4: INTRODUCTION FOR THE RESPONDENT

Dear respondent.

By filling out this questionnaire, you are helping me with my Diploma thesis, written at the Swedish University
of Lund – (Lunds Universitet, Schools of Economics, Department: Informatics) – in cooperation with IBM
Switzerland.

Since the aim of the thesis is to create a service-oriented architecture (SOA) quality evaluation model that is
applicable for SOA implementations, I need input from companies that already have managed to gather
experience within this area. For these reasons, you and your company have been selected.

As I am now approaching the final part of my thesis I would be most grateful, if you could fill out the
questionnaire by 14

th
 of July 2006, the latest, and send it back to me to one of the following addresses:

xxx@hermes.ics.lu.se or xxx@ch.ibm.com

If you should have any questions while you are filling out the questionnaire, please do not hesitate to contact me
on the email addresses mentioned above or on my mobile phone: xxx xxx xx xx

Instructions

1. Before you open the Excel-sheet, please answer the following:

Company name: ____________________________________

Working position: ____________________________________

Years of employment at the company: ____________________________________

Knowledge about: � The old architecture � The new architecture

Do you want your answers to be treated confidentially: � Yes � No

2. Having opened the Excel-sheet, please do the following:

• Answer all questions marked with “a)” by putting a value from 0 to 4 in the
columns “J” and “K”, where the “a)” is placed.

• Answer all questions marked with “b+c)” by putting a value from 0 to 4 in the
columns “J” and “K”, where “b)” and “c)” are placed respectively. “b)” is to
present the “as-it-was”-state, before the new architecture was implemented. “c)”
on the other hand, asks the respondent for the experience with the new
architecture.

• To be able to find out what specific value the answer that is the most applicable one has, row
three presents the alternatives in brackets.

Thank you for your participation!

Kind regards, Annika Pettersson

 87

ATTACHMENT 5: QUESTIONNAIRE - SOA QUALITY ATTRIBUTES

Questions

Attribute Description
a) Weighting Question

b+c) "As-it-was" and "As-it-is" Question
Yes, I strongly agree (4) Yes, I agree (3)

I neither agree nor

disagree (2)
No, I disagree (1) No, I strongly disagree (0)

Technical perspective
1a) Is one of the companies target goals to be able to modify

attributes within the company, without increasing the complexity

and rearranging the structure of the architecture?

Modifiability is vital for the business.

(Modifiability is a critical success factor

(CSF).

 Modifiability is important, but not vital. The company does not make

any statement about this

attribute.

The company does not consider modifiability

as being important, i.e. modifications are to

lead to new architectural structures.

Modifiability is of no interest whatsoever for

the company.

1b+c) Is the architecture open for attribute modifications, as

business situations change?

The architecture supports business agility

and has an open structure.

The architecture is relatively flexible and

allows most modifications.

The question cannot be

answered.

The architecture does not support changes,

without affecting the architectural structure.

The architecture has a closed and/or

extremely complex architectural structure

and thus cannot support any modifications.
b) c) #WERT! #WERT!

2a) Does the company see portabilities such as being able to

update the IT-architecture with the latest hardware and/or to

transfer the architecture to other areas, as vital?

Portability is vital for the business

(Portability is a CSF.)

Portability is important, but not vital. The company does not make

any statement about this

attribute.

To have a portable architecture is of no

greater interest for the company.

Portability is of no interest whatsoever for

the company.

2b+c) Is the architecture suitable for adapting to new

environments?

The architecture is highly portable in terms

of platform independency and cultural

internationalization.

The architecture is relatively portable and

supports limited platform independency.

Cultural internationalization, however, is not

supported.

The question cannot be

answered.

As platforms changes or movements to

other countries take place, the architecture

has to go through severe changes.

The architecture does not provide any

portability whatsoever, i.e. not even with

some architectural changes the system will

be usable in terms of portability.
b) c) #WERT! #WERT!

3a) Is one of the target goals to implement an architecture, where

a specific function only is implemented once and reused all other

times?

To reuse already available resources is a

vital process within the company, i.e.

components should constantly be reused

when possible.

(Reusability is a CSF.)

Reusability is important, but not vital.

Components should be reused, but

directions of this kind are not formally given

by the stab.

The company does not make

any statement about this

attribute.

Reusing already existing architectural

components is of no greater interest for the

company, i.e. in some cases similar

components occur in the architecture.

The company uses a silo-based perspective

and is thus not interested in reusing

components.

3b+c) Does the architecture support the reusing of already

existing structures and components?

In the architecture a function that is the

same in one or more business areas is only

implemented once in the whole company.

In the architecture components are reused,

but are slightly adjusted to the new

circumstances.

The question cannot be

answered.

Similar components and structures tend to

occur in the architecture, due to lack of

reusability.

In the architecture all functions are

implemented separately for each business,

unrelated to other business areas and

already existing material.

b) c) #WERT! #WERT!

4a) Is it vital for the ongoing business that parts of the

architecture can interact with other parts via well defined

interfaces?

Without a properly working integration

between architectural components, the

business will not even be able to perform the

easiest business processes.

(Integrability is a CSF.)

Having a properly functioning architecture is

important, but not all components have to be

integrated optimally to continue with the high

level of business activities.

The company does not make

any statement about this

attribute.

If some problems regarding the integration

occur now and then, this does not bother the

company.

Constantly occurring complications, due to

integration, are of no interest whatsoever for

the company.

4b+c) Does the architecture provide interaction between

architectural parts through an interface language, a middleware

(e.g. ESB), a directory, protocols and/or interfaces?

The new architecture integrates its

components/services through interfaces

over a middleware with protocols.

The new architecture integrates some

components/services through interfaces

over a middleware with protocols, others

not.

The question cannot be

answered.

The architecture does not support

integrability between components and

services.

The architecture does not need integration

capabilities.
b) c) #WERT! #WERT!

5a) Are security actions critical for the overall business

operations?

Functional security is vital for the business.

(Security is a CSF.)

 Security is important, but not vital. The company does not make

any statement about this

attribute.

Security is of minor importance, since the

company manages fine without putting effort

into this aspect.

Security aspects are of no importance

whatsoever for the company, i.e. the

architecture does not consider security.

5b+c) Does the architecture include authentication checks,

authorization, access controls and/or provide firewalls between

networks and use digital signatures for the exchange of

messages?

The architecture provides the involved

parties with very good security, including

network protection.

The architecture provides security, but not

on a web basis, i.e. authentication checks,

authorization and access controls take

place, but not network protections.

The question cannot be

answered.

The architecture does not provide enough

security, i.e. basic aspects such as

authentication checks, authorization or

access controls are not present.

The architecture provides no security at all.

b) c) #WERT! #WERT!

6a) Is IT efficiency important for the company's business agility? Efficiency is vital for achieving business

agility.

(Efficiency is a CSF.)

 Efficiency is important, but not vital for the

business.

The company does not make

any statement about this

attribute.

 Efficiency does not affect the company's

business agility.

Efficiency is completely unimportant for the

company.

6b+c) Does the architecture act efficiently with the available

amount of hardware, business processes and generated

performance?

The architecture has, amongst others, an

optimal level of throughput, response time

and recovery time and thus shows proof of

great efficiency.

The architecture has, amongst others, a

usable level of throughput, response time

and recovery time and thus shows proof of

good efficiency.

The question cannot be

answered.

The architecture does not provide the

company with enough efficiency.

The architecture is completely inefficient.

b) c) #WERT! #WERT!

7a) Is scalability a critical success factor (CSF) for the company? Scalability is critical for the success of the

company.

(Scalability is a CSF.)

Scalability is important, but not vital for the

success of the company.

The company does not make

any statement about this

attribute.

Additional change of load in the system is

not expected to lead to better performance,

i.e. scalability is

 Scalability is of no interest whatsoever for

the company.

7b+ c) Does the architecture support the adding of more loads by

increasing the performance proportionally to the input?

The architectures provides a proportional

increase in performance, with adding of

more load. Thus the architecture maintains

excellent scalability features.

The architectures provides an increase, but

not proportional, in performance, when

adding more load. Thus the architecture

maintains scalability features.

The question cannot be

answered.

The performance will decrease when the

architecture is extended. Thus scalability is

not present.

The architecture cannot be extended and

thus performance will be unaffected no

matter what and scalability cannot be

measured.
b) c) #WERT! #WERT!

8a) Are the systems' reliability essential for the survival of the

company?

Reliability is vital for the survival of the

business.

(Reliability is a CSF.)

Reliability is important, but not vital, for the

business.

The company does not make

any statement about this

attribute.

Risk analyses are not conducted at the

company.

Reliability is of no importance for the

business.

8b+c) Does the architecture support systems with high reliability? The systems in the architecture all keep a

high level of reliability, due to high

availability of architectural components and

good interaction between these

components.

The architecture is relatively reliable, since

safe messaging/packaging (interaction

between components) is assured.

The question cannot be

answered.

The architecture is unreliable, since

messages/packages are not properly

transferred. Hence, interaction is restricted.

The architecture completely unreliable,

since availability, disaster recovery, back-up

abilities and interaction between

components is extremely low.
b) c) #WERT! #WERT!

Business perspective
9a) Is interaction between users and systems essential for the

overall culture of the company?

Satisfied and challenged system users is

vital for the company culture.

(Usability is a CSF.)

Satisfied and challenged system users is

important, but not vital.

The company does not make

any statement about this

attribute.

System usability does not affect the overall

business culture.

The company takes no interest whatsoever

in creating a symbiosis between the

system(s) and the user(s).

9b+c) Are users of the systems generally speaking satisfied with

the ease of use of the user interface?

The architecture supports the development

of systems that are easy to learn,

understand and memorize. Furthermore the

system serves the users needs.

The architecture supports systems that

serve the users needs or are easy to learn,

understand or memorize.

The question cannot be

answered.

The system is not easy to learn, understand

and memorize, and it does not serve the

users needs.

The architecture does not consider human

computer interaction (HCI) at all.

b) c) #WERT! #WERT!

10a) Is business flexibility one of the CSFs of the company? Flexibility of business processes and

products is critical for the success of the

company.

(Flexibility is a CSF.)

Flexibility of business processes and

products is important for the success of the

company.

The company does not make

any statement about this

attribute.

Flexibility of business processes and

products is not important for the success of

the company.

Flexibility of business processes and

products does not interest the company.

10b+c) Are the business processes and products in the

architecture flexible enough to adjust quickly to new market

demands?

The architecture provides extraordinary

opportunities for gaining competitive

advantages.

The new architecture provides relatively

good opportunities for gaining competitive

advantages.

The question cannot be

answered.

 The architecture provides poor

opportunities for gaining competitive

advantages.

The architecture is not appropriate for

competition. b) c) #WERT! #WERT!

11a) Is keeping low costs, when extending the overall business

architecture, a part of the business' IT-strategy?

Having an architecture with reusable

components and optimized business

processes is a part of the overall IT-strategy.

(Low Development costs are CSFs.)

Having an architecture with reusable

components and optimized business

processes is important for the business.

The company does not make

any statement about this

attribute.

Reduced development costs are not a part

of the IT-strategy.

Reduced development costs are of no

importance.

11b+c) Can costs be kept low due to optimized business

processes and reusable IT components, when new systems are

developed within architecture?

The architecture provides the business with

the possibility to implement new systems to

low costs.

The architecture provides the business with

the possibility to implement new systems to

relatively low costs.

The question cannot be

answered.

The architecture does not provide cost

efficiency, i.e. low costs might have been

kept, but not due to reusability and efficient

processes.

The architecture cannot be used for the

implementation of new systems, due to

completely unrealistic high development

costs.

b) c) #WERT! #WERT!

12a) Does the company adjust ROI calculations along with

changing IT-architecture(s)?

The company is aware of the risks of not

adjusting the ROI according to IT-

architecture and is therefore very precise

with ROI calculations.

The company adjust the ROIs according to

the architectures being considered, but does

not go further into what is specific for each

architecture. Thus, the ROI will only be

relatively applicable.

The company does not make

any statement about this

attribute.

Having the correct ROI calculation is of no

greater importance for the company.

 The company does not use ROI

calculations as a supportive tool.

12b+c) Are the resources invested in the architecture calculated

in terms of educed integration costs, improved asset reuse,

and/or greater business agility?

The architecture is a SOA and was

implemented on behalf of an

appropriate ROI.

The architecture has some SOA features

and thus the ROI is only partially adjusted.

The question cannot be

answered.

The ROI calculation maintained other

factors, than suitable for the concerned

architecture.

The new architecture is no SOA, according

to the classical ROI used. b) c) #WERT! #WERT!

a)

a)

a)

a)

Weigthening
Answer

(Number)

a)

a)

a)

a)

a)

a)

The approach of calculating an expected time range and

financial benefits from investing a certain amount of

resources.

The costs created through the development phase of a

system.

To be able to adjust quickly to new market demands, due to

optimized business processes and products.

The way users experience the systems interface, i.e. how

easy it is to use, learn, memorize, understand and appreciate.

9) Usability

10) Business

Flexibility

11) Development

costs

12) Return on

Investment (ROI)

The extent to which an architecture or system is able improve

its performance proportionally to the adding of more load, i.e.

more users, more data, more transactions and/or other

hardware.

7) Scalability

8) Reliability The ability of a system to keep a certain performance, with

high availability and recoverability of architectural

components, under stated conditions.

The ability to resist unauthorized attempts of usage and denial

of service while still providing services to legitimate users.

5) Security

6) Efficiency The relationship between the level of performance of the

system and the amount of resources used.

2) Portability

The ability to reuse some of the system's structure or

components in other systems or the same system.

To integrate single components with other ones or groups of

components with other groups or systems.
4) Integrability

3) Reusability

a)

Answers & Calculations

1) Modifiability Modifiability touches the ability of changing a set of attributes

(e.g. processes, technologies, components, services, rules

etc.) within an architecture without actually influencing the

overall architectural structure. Modifications considered are:

- Deleting unwanted capabilities.

- Restructuring

- Adapting to new operating environments.

- Extending or adding attributes

a)

SOA Quality Attributes Likert scale, Answer alternatives

The opportunity of adapting to different environments (e.g.

platforms, countries) and considering cultural

internationalization (e.g. language and legislative adjustments

and/or specific system preferences) without having to make

major architectural changes.

 88

ATTACHMENT 6: UBS ANSWERS

Questions

Attribute Description
a) Weightening Question

b+c) "As-it-was" and "As-it-is" Question
Yes, I strongly agree (4) Yes, I agree (3)

I neither agree nor

disagree (2)
No, I disagree (1) No, I strongly disagree (0)

Technical perspective
1a) Is one of the companies target goals to be able to modify

attributes within the company, without increasing the complexity

and rearranging the structure of the architecture?

Modifiability is vital for the business.

(Modifiability is a critical success factor

(CSF).)

 Modifiability is important, but not vital. The company does not make

any statement about this

attribute.

The company does not consider modifiability

as being important, i.e. modifications are to

lead to new architectural structures.

Modifiability is of no interest whatsoever for

the company.

1b+c) Is the architecture open for attribute modifications, as

business situations change?

The architecture supports business agility

and has a open structure.

The architecture is relatively flexible and

allows most modifications.

The question cannot be

answered.

The architecture does not support changes,

without affecting the architectural structure.

The architecture has a closed and/or

extremely complex architectural structure

and thus cannot support any modifications. 2 4

2a) Does the company see portabilities such as being able to

update the IT-architecture with the latest hardware and/or to

transfer the architecture to other areas, as vital?

Portability is vital for the business

(Portability is a CSF.)

Portability is important, but not vital. The company does not make

any statement about this

attribute.

To have a portable architecture is of no

greater interest for the company.

Portability is of no interest whatsoever for

the company.

2b+c) Is the architecture suitable for adapting to new

environments?

The architecture is highly portable in terms

of platform independency and cultural

internationalization.

The architecture is relatively portable and

supports limited platform independency.

Cultural internationalization, however, is not

supported.

The question cannot be

answered.

As platforms changes or movements to

other countries take place, the architecture

has to go through severe changes.

The architecture does not provide any

portability whatsoever, i.e. not even with

some architectural changes the system will

be usable in terms of portability.
2 3

3a) Is one of the target goals to implement an architecture, where

a specific function only is implemented once and reused all other

times?

To reuse already available resources is a

vital process within the company, i.e.

components should constantly be reused

when possible.

(Reusability is a CSF.)

Reusability is important, but not vital.

Components should be reused, but

directions of this kind are not formally given

by the stab.

The company does not make

any statement about this

attribute.

Reusing already existing architectural

components is of no greater interest for the

company, i.e. in some cases similar

components occur in the architecture.

The company uses a silo-based perspective

and is thus not interested in reusing

components.

3b+c) Does the architecture support the reusing of already

existing structures and components?

In the architecture a function that is the

same in one or more business areas is only

implemented once in the whole company.

In the architecture components are reused,

but are slightly adjusted to the new

circumstances.

The question cannot be

answered.

Similar components and structures tend to

occur in the architecture, due to lack of

reusability.

In the architecture all functions are

implemented separately for each business,

unrelated to other business areas and

already existing material.

1 4

4a) Is it vital for the ongoing business that parts of the

architecture can interact with other parts via well defined

interfaces?

Without a properly working integration

between architectural components, the

business will not even be able to perform the

easiest business processes.

(Integrability is a CSF.)

Having a properly functioning architecture is

important, but not all components have to be

integrated optimally to continue with the high

level of business activities.

The company does not make

any statement about this

attribute.

If some problems regarding the integration

occur now and then, this does not bother the

company.

Constantly occurring complications, due to

integration, are of no interest whatsoever for

the company.

4b+c) Does the architecture provide interaction between

architectural parts through an interface language, a middleware

(e.g. ESB), a directory, protocols and/or interfaces?

The new architecture integrates its

components/services through interfaces

over a middleware with protocols.

The new architecture integrates some

components/services through interfaces

over a middleware with protocols, others

not.

The question cannot be

answered.

The architecture does not support

integrability between components and

services.

The architecture does not need integration

capabilities.
2 4

5a) Are security actions critical for the overall business

operations?

Functional security is vital for the business.

(Security is a CSF.)

 Security is important, but not vital. The company does not make

any statement about this

attribute.

Security is of minor importance, since the

company manages fine without putting effort

into this aspect.

Security aspects are of no importance

whatsoever for the company, i.e. the

architecture does not consider security.

5b+c) Does the architecture include authentication checks,

authorization, access controls and/or provide firewalls between

networks and use digital signatures for the exchange of

messages?

The architecture provides the involved

parties with very good security, including

network protection.

The architecture provides security, but not

on a web basis, i.e. authentication checks,

authorization and access controls take

place, but not network protections.

The question cannot be

answered.

The architecture does not provide enough

security, i.e. basic aspects such as

authentication checks, authorization or

access controls are not present.

The architecture provides no security at all.

4 4

6a) Is IT efficiency important for the company's business agility? Efficiency is vital for achieving business

agility.

(Efficiency is a CSF.)

 Efficiency is important, but not vital for the

business.

The company does not make

any statement about this

attribute.

 Efficiency does not affect the company's

business agility.

Efficiency is completely unimportant for the

company.

6b+c) Does the architecture act efficiently with the available

amount of hardware, business processes and generated

performance?

The architecture has, amongst others, an

optimal level of throughput, response time

and recovery time and thus shows proof of

great efficiency.

The architecture has, amongst others, a

usable level of throughput, response time

and recovery time and thus shows proof of

good efficiency.

The question cannot be

answered.

The architecture does not provide the

company with enough efficiency.

The architecture is completely inefficient.

2 2

7a) Is scalability a critical success factor (CSF) for the company? Scalability is critical for the success of the

company.

(Scalability is a CSF.)

Scalability is important, but not vital for the

success of the company.

The company does not make

any statement about this

attribute.

Additional change of load in the system is

not expected to lead to better performance,

i.e. scalability is

 Scalability is of no interest whatsoever for

the company.

7b+ c) Does the architecture support the adding of more load by

increasing the performance proportionally to the input?

The architectures provides an proportional

increase in performance, when adding of

more load. Thus the architecture maintains

excellent scalability features.

The architectures provides an increase, but

not proportional, in performance, when

adding more load. Thus the architecture

maintains scalability features.

The question cannot be

answered.

The performance will decrease when the

architecture is extended. Thus scalability is

not present.

The architecture cannot be extended and

thus performance will be unaffected no

matter what and scalability cannot be

measured.
3 4

8a) Are the systems' reliability essential for the survival of the

company?

Reliability is vital for the survival of the

business.

(Reliability is a CSF.)

Reliability is important, but not vital, for the

business.

The company does not make

any statement about this

attribute.

Risk analyses are not conducted at the

company.

Reliability is of no importance for the

business.

8b+c) Does the architecture support systems with high reliability? The systems in the architecture all keep a

high level of reliability, due to high

availability of architectural components and

good interaction between these

components.

The architecture is relatively reliable, since

safe messaging/packaging (interaction

between components) is assured.

The question cannot be

answered.

The architecture is unreliable, since

messages/packages are not properly

transferred. Hence, interaction is restricted.

The architecture completely unreliable,

since availability, disaster recovery, back-up

abilities and interaction between

components is extremely low.
3 3

Business perspective
9a) Is interaction between users and systems essential for the

overall culture of the company?

Satisfied and challenged system users is

vital for the company culture.

(Usability is a CSF.)

Satisfied and challenged system users is

important, but not vital.

The company does not make

any statement about this

attribute.

System usability does not affect the overall

business culture.

The company takes no interest whatsoever

in creating a symbiosis between the

system(s) and the user(s).

9b+c) Are users of the systems generally speaking satisfied with

the ease of use of the user interface?

The architecture supports the development

of systems that are easy to learn,

understand and memorize. Furthermore the

system serves the users needs.

The architecture supports systems that

serve the users needs or are easy to learn,

understand or memorize.

The question cannot be

answered.

The system is not easy to learn, understand

and memorize, and it does not serve the

users needs.

The architecture does not consider human

computer interaction (HCI) at all.

3 4

10a) Is business flexibility one of the CSFs of the company? Flexibility of business processes, products

and IT is critical for the success of the

company.

(Flexibility is a CSF.)

Flexibility of business processes, products

and IT is important for the success of the

company.

The company does not make

any statement about this

attribute.

Flexibility of business processes, products

ad IT is not important for the success of the

company.

Flexibility of business processes, products

and IT does not interest the company.

10b+c) Are the business processes, products and IT in the

architecture flexible enough to adjust quickly to new market

demands?

The architecture provides extraordinary

opportunities for gaining competitiveness

advantages.

The new architecture provides relatively

good opportunities for gaining competitive

advantages.

The question cannot be

answered.

 The architecture provides poor

opportunities for gaining competitive

advantages.

The architecture is not appropriate for

competition. 1 4

11a) Is keeping low costs, when extending the overall business

architecture, a part of the business' IT-strategy?

Having an architecture with reusable

components and optimized business

processes is a part of the overall IT-strategy.

(Low Development costs are CSFs.)

Having an architecture with reusable

components and optimized business

processes is important for the business.

The company does not make

any statement about this

attribute.

Reduced development costs are not a part

of the IT-strategy.

Reduced development costs are of no

importance.

11b+c) Can costs be kept low due to optimized business

processes and reusable IT components, when new systems are

developed within architecture?

The architecture provides the business with

the possibility to implement new systems to

low costs.

The architecture provides the business with

the possibility to implement new systems to

relatively low costs.

The question cannot be

answered.

The architecture does not provide cost

efficiency, i.e. low costs might have been

kept, but not due to reusability and efficient

processes.

The architecture cannot be used for the

implementation of new systems, due to

completely unrealistic high development

costs.

1 3

12a) Does the company adjust ROI calculations along with

changing IT-architecture(s)?

The company is aware of the risks of not

adjusting the ROI according to IT-

architecture and is therefore very precise

with ROI calculations.

The company adjust the ROIs according to

the architectures being considered, but does

not go further into what is specific for each

architecture. Thus, the ROI will only be

relatively applicable.

The company does not make

any statement about this

attribute.

Having the correct ROI calculation is of no

greater importance for the company.

 The company does not use ROI

calculations as a supportive tool.

12b+c) Are the resources invested in the architecture calculated

in terms of educed integration costs, improved asset reuse,

and/or greater business agility?

The architecture is a SOA and was

implemented on behalf of an

appropriate ROI.

The architecture has some SOA features

and thus the ROI is only partially adjusted.

The question cannot be

answered.

The ROI calculation maintained other

factors, than suitable for the concerned

architecture.

The new architecture is no SOA, according

to the classical ROI used. 4 4

4

4

4

3

Answer (Number)

3

4

3

4

4

4

The approach of calculating an expected time range and

financial benefits from investing a certain amount of

resources.

The costs created through the development phase of a

system.

To be able to adjust quickly to new market demands, due to

optimized business processes, products and/or suitable IT.

The way users experience the systems interface, i.e. how

easy it is to use, learn, memorize, understand and appreciate.
9) Usability

10) Business

Flexibility

11) Development

costs

12) Return on

Investment (ROI)

The extent to which an architecture or system is able improve

its performance proportionally to the adding of more load, i.e.

more users, more data, more transactions and/or other

hardware.

7) Scalability

8) Reliability The ability of a system to keep a certain performance, with

high availability and recoverability of architectural

components, under stated conditions.

The ability to resist unauthorized attempts of usage and denial

of service while still providing services to legitimate users.

5) Security

6) Efficiency The relationship between the level of performance of the

system and the amount of resources used.

2) Portability

The ability to reuse some of the system's structure or

components in other systems or the same system.

To integrate single components with other ones or groups of

components with other groups or systems.
4) Integrability

3) Reusability

4

Answers & Calculations

1) Modifiability Modifiability touches the ability of changing a set of attributes

(e.g. processes, technologies, components, services, rules

etc.) within an architecture without actually influencing the

overall architectural structure. Modifications considered are:

- Deleting unwanted capabilities.

- Restructuring

- Adapting to new operating environments.

- Extending or adding attributes

4

SOA Quality Attributes Likert scale, Answer alternatives

The opportunity of adapting to different environments (e.g.

platforms, countries) and considering cultural

internationalization (e.g. language and legislative adjustments

and/or specific system preferences) without having to make

major architectural changes.

 89

ATTACHMENT 7: THE SOA QUALITY EVALUATION MODEL

Business Flexibility

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Development costs

Return on Investment (ROI) 4

Business Flexibility

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Development costs

Return on Investment (ROI) 4

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

‘As-it-was’ results

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

‘As-it-was’ results

 90

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

‘As-it-is’ results

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

‘As-it-is’ results

4

3

2

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI)

Weightening results

1

4

3

2

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI)

Weightening results

1

 91

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

Gathered results

3

2

1

0

Modifiability

Portability

Reusability

Integrability

Security

Efficiency

Scalability

Reliability

Usability

Business Flexibility

Development costs

Return on Investment (ROI) 4

Gathered results

 92

LIST OF REFERENCES

HAVING USED BOTH PRUBLISHED MATERIAL, CONFIDENTIAL INFORMATION OF UBS AND IBM, AS WELL

AS VERBAL STATEMENTS, THIS CHAPTER HAS BEEN DIVIDED ACCORDINGLY.

PUBLISHED MATERIAL

Architecture & SSP. (May 2005). Inside SSP. UBS Corporation (slides): 1-70

Architecture & SSP. (July 2005). Our new Information systems – Structure and benefits. UBS
Corporation (slides): 1-22

Bass, Len & Clements, Paul & Kazman, Rick. (1998). Software architecture in practice.
Reading-Massachusetts: Addison-Wesley Longman

Bencher, D. L.. (1994). Technical Forum – Programming quality improvement in IBM. IBM
Systems Journal 33(1): 215-219
URL http://www.research.ibm.com/journal/sj/331/bencher.pdf, 30.05.2006

Bergmann, Chuck. (2005). Power your Service Oriented Architecture with an Enterprise

Service Bus. IBM Corporation (slides): 1-53

Bieberstein, Norbert & Bose, Sanjay & Fiammante, Marc & Jones, Keith & Shah, R.. (2006).
Service-oriented Architecture Compass – Business Value, Planning, and Enterprise Roadmap,
Upper Saddle River: Pearson as IBM Press

Boehm, B.W. & Brown, J.R. & Kaspar, H. & Lipow M. & McCleod, G.J., & Merritt, M.J..
(1978). Characteristics of Software Quality. Amsterdam: North-Holland

Bratthall, L. & Wohlin, C.. (2000). Understanding some Software Quality Aspects from

Architecture and Design Models. presented at the 8th IEEE International Workshop on
Program Comprehension (IWPC 2000)

Bryman, Alan. (1997). Kvantitet och kvalitet i samhällsvetensaplig forskning. Lund:
Studentlitteratur

Business & Application Architecture. (2004). Application Architecture Framework UBS-

WMBB – “applikatorische Ziellandschaft”. UBS Corporation (slides): 1-37

Centre of Software Engineering (Essi-Scope). (2003). ISO/IEC 9126:1991: The Standard of

reference [www document]. URL http://www.cse.dcu.ie/essiscope/sm2/9126ref.html,
18.05.2006

Chappell, David A.. (2004). Enterprise Service Bus: Theory in Practice. USA: O'Reilly
Media

 93

Clark, Mike & Fletcher, Peter & Hanson, J. Jeffrey & Irani, Romin & Waterhouse, Mark &
Thelin, Joergen. (2002). Web Services Business Strategies and Architectures. UK: Wrox Press

Elmasri, Ramez & Navathe, Shamkant B.. (2004). Fundamentals of Database Systems (4

th

Edition). Boston: Pearson Education

Escher, Thomas K.. (2005). IT-Plattformwechsel in einer Grossbank, UBS Corporation
(slides): 1-11

Gillspie, Andrew. (1999). Advanced Economics through Diagrams. Oxford: Oxford
University Press

Gold-Bernstein, Beth. (2004). Integration Best Practices: Beyond The SOA, Composite Apps

And Web Services Hype [www document]. URL
http://www.ebizq.net/hot_topics/esb/features/4894.html?page=2, 10.05.2006

Grady, R. & Caswell, D.. (1987). Software Metrics: Establishing a Company-Wide Program.
Englewood Cliffs: Prentice-Hall

Green Hills Software Inc. (2006). Maximize your rate of return on investment [www
document]. URL http://www.ghs.com/MaximizeROI.html, 18.06.2006

Grey, William & Katircioglu, Kaan & Bagchi, Sugato & Shi, Dailun, & Gallego Guillermo &
Seybold, Dave & Stefanis, Stavros. (2003). An Analytic Approach for Quantifying the Value

of e-Business Initiatives. IBM Systems Journal 42(3): 484-497. URL
http://researchweb.watson.ibm.com/journal/sj/423/grey.pdf, 01.06.2006

Gruman, Galen. (2006). SOA Pioneers Goes the Distance. Info World 28(2): 25-28

Hammerschall, Ulrike. (2005). Verteilte Systeme und Anwendungen – Architekturkonzepte,

Standrads und Middleware-Technologien. Munich: Pearson Studium

Hasselbring, Wilhelm. (2006). Software-Architektur., Oldenburg: Springer-Verlag.
URL http://www.gi-ev.de/service/informatiklexikon/informatiklexikon-
detailansicht/meldung/128/, 25.05.2006

Heineman, George T. & Councill, William T.. (2001). Component-Based Software

Engineering – Putting the pieces together. Upper Saddle River: Addison-Wesley

Huotari, Maija-Leena & Wilson, T.D.. (2001). Determining organizational information

needs: the Critical Success Factors approach [www document]. Information Research 6(3).
URL http://informationr.net/ir/6-3/paper108.html, 22.09.2006

IEEE with Radatz, Jane as chairperson. (1990). IEEE Standard Glossary of Software

Engineering Terminology. IEEE Std 610.12-90: 1-84. URL
http://80-ieeexplore.ieee.org.ludwig.lub.lu.se/iel1/2238/4148/00159342.pdf, 17.03.2006

ISO. (1986). ISO 8402 Quality Vocabulary. Geneva: International Organization for
Standardization

 94

ISO/IEC. (1994). Informationstechnik - Bewerten von Softwareprodukten -

Qualitätsmerkmale und Leitfaden zu ihrer Verwendung (Identisch mit ISO/IEC 9126:1991).
DIN 66272(1994-10): 1-10

Kan, Stephen H.. (2003). Metrics and models in Software Quality Engineering (Second

Edition). Upper Saddle River: Pearson Education

Keen, Martin & Acharya, Amit & Bishop, Susan & Hopkins, Alan & Milinski, Sven & Nott,
Chris & Robinson, Rick & Adams, Jonathan & Verschueren, Paul. (2004). Patterns:

Implementing an SOA using an Enterprise Service Bus. USA: IBM Redbooks
URL http://www.redbooks.ibm.com/redbooks/pdfs/sg246346.pdf, 04.05.2006

Kozaczynski, Wojtek. (2002). Requirements, Architectures and Risks, Proceedings of the

IEEE Joint International Conference on Requirements Engineering (RE’02) [www document].
URL http://csdl2.computer.org/comp/proceedings/re/2002/1465/00/14650006.pdf, 03.04.2006

Krcmar, H.. (2000, 2002, 2005). Informationsmanagement. 4. Aufl.. Berlin Heidelberg:
Springer

Kvale, Steinar. (1997). Den kvalitativa forskningsintervjun. Lund: Studentlitteratur

Lager, Marshall. (2006). SOA simple. Customer Relationship Management 10(2): 20-24

Lamont, Judith. (2006). Service-oriented architecture: a way of life. KM World 15(2): 20-21

Lundahl, Ulf & Skärvad, Per-Hugo. (1982, 1999). Utredningsmetodik för samhällsvetare och

ekonomer. Lund: Studentlitteratur

Löwgren, Jonas. (1993). Human-computer interaction – What every system developer should

know. Lund: Studentlitteratur

McCall, J.A. & Richards, P.K. &Walters, G.F.. (1977). Factors in Software Quality.
Springfield: NTIS

Miles, Matthew B. & Huberman, Michael A.. (1994). An Expanded Sourcebook – Qualitative

Data Analysis. USA: SAGE Publications

Natis, Y & Schulte, Roy. (2003). Introduction to Service-Oriented Architecture. Gartner
Research – Research Note SPA-19-5971(April): 1-6

Ortega, Maryoloy & Pérez, María & Rojas, Tersita. (2003). Construction of a Systemic

Quality Model for Evaluating a Software Product. Software Quality Journal 11(3): 219–242

Palani Rajan, P.K. & Van Wie, M. & Campbell, M. & Otto, K. & Wood, K.. (2003). Design

for flexibility – Measures and Guidelines. International Conference on Engineering Design
ICED 03 in Stockholm

Patel, R. & Davidson, B. (1991). Forskningsmetodikens grunder. Att planera, genomföra och

rapportera en undersökning. Lund: Studentlitteratur

 95

Peisl, Roland. (2006). ProcessArt – Geschäftsprozessmanagement trifft Service Orientierte

Architekturen BPM und SOA von IBM, IBM Corporation (slides): 1-23.
URL http://www.it-business.net/konferenz/download/ibm/27032006/ibm_27032006.pdf,
30.05.2006

Plummer, D.. (2002). SODA helps developers do application integration. Gartner Research
SPA-18-6402(November): 1-5

Porter, Michael E.. (1998). On competition. USA: Harvard Business Review Book

Rockart, J.F.. (1979). Chief executives define their own data needs. Harvard Business Review,
57 (2): 238-241

Schulte, Roy. (2002). Predicts 2003: SOA Is Changing Software. Gartner Research - Article
Top View AV-18-9758(December): 1-4

Snee, R.D.. (2004). Six Sigma: the evolution of 100 years of business improvement

methodology. International Journal of Six Sigma and Competitive Advantage 1(1): 4-20

Szyperski, Clemens. (2002). Components Software. Beyond Object-Oriented Programming

(Second Edition). Harlow: Addison-Wesley

Stoyan, Robert. (2004). Management von Webprojekten – Führung, Projektplan, Vertrag. Mit

Beiträgen zu IT, Branding, Webdesign und Recht. Berlin Heidelberg: Springer

The Standish Group International Inc. (2001). Extreme chaos. CHAOS Report:1-12.
URL http://www.standishgroup.com/sample_research/PDFpages/extreme_chaos.pdf,
15.03.2006

The Standish Group International Inc. (2004) 2004 third quarter research report, CHAOS
Report: 1.
URL http://www.standishgroup.com/sample_research/PDFpages/q3-spotlight.pdf, 21.06.2006

Unknown. (2003). Realigning IT for service delivery. Middle East Banker 36(June): 1. URL
http://www.bankerme.com/bme/2003/jun/it_in_banking_2.asp, 01.06.2006

Unknown. (2003). A brief introduction to the Abacus [www document]. URL
http://www.ee.ryerson.ca/~elf/abacus/intro.html, 19.04.2006

Wong-Bushby, I. & Egan, R. & Isaacson, C.. (2006). A case study in SOA and Re-

Architecture at Company ABC. Proceedings of the 39th Annual Hawaii International
Conference on System Science

UNPUBLISHED MATERIAL

Arsanjani, Ali (SOA Centre of Excellence). (2006). Service Integration Maturity Model

(SIMM): Concepts. IBM Corporation (slides): 1-30. (IBM confidential)

 96

Beauchemin, Dr. S. S.. (2003). CS377 Software Quality Assurance [www document]. URL
http://www.csd.uwo.ca/~beau/CS377/CS377-SQA.html, 09.05.2006

Bieberstein, Norbert & Bose, Sanjay & Fiammante, Marc & Zimmernann, Olaf. (2005). SOA

Roadmap – The EIS SOA Cook Book. IBM Corporation (pdf) p. 1-196 (IBM confidential)

Blakely, Beth. (2002). ROI for Web Services: Risk factors, [www documents]. URL
http://www.zdnet.com.au/insight/0,39023731,20270041,00.htm, 16.06.2006

Dahan, Udi. (2004). Client, server, SOA? [www document]. URL
http://udidahan.weblogs.us/archives/014716.html, 17.05.2006

Ebner, John. (2003). Strategic Solution Program - The “Big Picture“. UBS Corporation
(slides): 1-242. (UBS confidential)

Glinz, Prof. Dr. Martin. (2001, 2003). Spezifikation und Entwurf von Software. Universität
Zürich (lecture slides):chapter 1-26

Harishankar, Ray. (2001). A Global Technology Company’s Registration Application

Scalability, Performance & Availability Assessment. IBM Global Services / BIS Architecture
Centre of Excellence (document):1-25. (IBM confidential)

IBM Software University. (2006). Session 3613b – Secure SOA. IBM Corporation (slides): 1-
51 (IBM Confidential)

Known Library. (2004). UBS Artikel [www document]. URL http://ubs.know-library.net/,
19.04.2006

Langel, Randy. (2004). Service Oriented Architecture Business Value Proposition. IBM
Corporation (slides): 1-43. (IBM confidential)

Opplinger, PD Dr. Rolf. (2005). Sicherheit in der Informationstechnik. Universität Zürich
(lecture slides): chapter 1-5

Reinitz, Rachel. (2003, 2004, 2005). Web Services Architecture Best Practices

for SOA and ESB. IBM Corporation (slides): 1-138. (IBM confidential)

Roik, Nicole & Balzer, Yvonne. (2004). Cost Benefit Research for the Implementation of SOA

for a financial institute. IBM Corporation (slides): 1-19. (IBM confidential)

Schmelzer, Ronald. (2005). The ROI of SOA ZapFlash [www document]. URL
http://www.zapthink.com/report.html?id=ZAPFLASH-20050127, 18.06.2006

Tagesanzeiger. (2006). Ospel verteidigt Lohnpolitik der UBS [www document]. URL
http://www.tagesanzeiger.ch/dyn/news/wirtschaft/615046.html, 19.04.2006

Turner, K.. (2003). An Introduction to Value Driver Analysis. IBM Corporation (slides): 1-
118

UBS Business & Application Architecture (translated by Furth, Norbert). (2004). Renewal of

the IT-Landscape Switzerland – Approach and Phases. UBS Corporation (slides): 1-46

 97

UBS. (1998-2006a). UBS in a few words [www document]. URL
http://www.ubs.com/1/e/about/ourprofile.html, 11.04.2006

UBS. (1998-2006b). Organizational Structure – How we are organized [www document].
URL http://www.ubs.com/1/e/about/ubs_group/group.html, 11.04.2006

UBS. (1998-2006c). In a few figures [www document]. URL
http://www.ubs.com/1/e/about/keyfigures.html, 11.04.2006

UBS. (1998-2006d). Our Business [www document]. URL
http://www.ubs.com/1/e/about/our_businesses.html, 10.04.2006

UBS. (1998-2006e). About us [www document]. URL http://www.ubs.com/1/e/about.html,
14.07.2006

UBS. (2005). Our new information systems - Structure and benefits. UBS Corporation
(slides): 1-24. (UBS Confidential)

Weisser, Jason. (2004). The challenge to integration: Java to .NET and beyond, [www
document]. URL http://www.developers.net/solutions/181, 14.03.2006

Wikipedia. (2006). Service-oriented architecture [www document]. URL
http://en.wikipedia.org/wiki/Image:SOA_Elements.png, 20.04.2006

Wikipedia. (2006). Scalability [www document]. URL
http://en.wikipedia.org/wiki/Scalability, 01.06.2006

Wolfe, Martin. (2003-2004). Enterprise Technology Readiness Model - Current Version:

v1.1-b9-. IBM Corporation (slides): 1-44. (IBM confidential)

Young, Richard & Biz/ed. (1996-2006). Basic Economic Problems – Notes [www document].
URL http://www.bized.ac.uk/learn/economics/micro/problem/notes.htm, 03.04.2006

VERBAL EXCHANGE

Furth, Norbert, 2006, IT-Architect, IBM Switzerland

Krüsemann, Gisbert, 2006, IT-Architect, IBM Switzerland

von Bülzingslöwen, Günter, 2006, IT-Architect, UBS Switzerland

 98

