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Abstract

In this paper the performance of a static hedging strategy of European barrier

options are evaluated, �rst introduced by Carr, Ellis and Gupta in 1998. Two dy-

namic hedging strategies are used as benchmarks; the delta hedging and delta-gamma

hedging strategy, respectively. To increase realism to the system only discrete rebal-

ancing of the replicating portfolios are possible. In addition, transaction costs are

assumed and included. The analysis is limited to the down-and-out and up-and-out

call European options. Hedging of European put barrier options could easily be con-

structed from the put-call-parity and European in-barrier options from the fact that

a European option is equal to the sum of the in- and out-barrier option with the

same barrier. The static hedge outperforms the two dynamic hedging strategies in

particular when transaction costs are included. The static hedge is more successful

in reducing the risk and delivers a higher average return.
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1 Introduction

Barrier options constitute a substantial part of the Global Over The Counter

equity derivatives market, which has an estimated value of $ 8364 billion1. The

popularity of barrier options is much due to the fact that they are cheaper than

the corresponding standard options. The sheer size of the market is an incentive for

considering the possibilities of hedging the Barrier options, i.e. the issuers of the

contracts needs to protect their position against excessive risk. Despite the size of

the market for Barrier options, they will strictly be treated as Over The Counter

contracts (OTC) in this thesis. That is we assume that the contracts are tailor made

for the customer and in general not traded on a market.

A Barrier option is a regular option with one (consider this case in the thesis) or

several additional restraints. A barrier options either seizes or starts to exist when

an upper or lower level is reached by the underlying asset (which henceforth will

be labelled as a Stock, to make the notation less cumbersome) during the lifetime

of the option. The Barrier option will always be cheaper than the corresponding

regular option, since it is equal to a regular option conditioned on that some other

event occurs. In this thesis, the authors will assume the position of an issuer of

a Barrier option, i.e. the position of a bank. The bank is assumed to have the

objective to reduce its risk as much as possible, that is, the bank is assumed to make

money primarily on the price the bank charge for the transaction, and not on the

return of the position it takes on the market when dealing with its clients. Thus the

bank wants to hedge the short position in the Barrier contract. To this end, three

di�erent hedging strategies will be considered. Two out of these will be Dynamic

hedging strategies, that is, strategies where the hedging portfolio is frequently re-

balanced during the lifetime of the Barrier contract. The third hedging strategy is

a Static hedge that was �rst introduced by Carr, Ellis and Gupta [4] in 1998. The

static hedge is not re-balanced during the lifetime of the Barrier contract. As for

the Dynamic hedging strategies, one Delta-hedging strategy and one Delta-Gamma

hedging strategy will be considered.

12006, [8]
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When hedging the Barrier option, we assume that the bank has a liquid market

which is free of arbitrage, where the Stock, a risk free asset and the Vanilla options

(with the addition of Binary Call options) are traded, at its disposal. The bank may

thus use any of these assets to hedge the Barrier option.

In the thesis, the authors especially aim to answer the question; Which one out of

the Static-hedging strategy, the Delta-hedging strategy and the Delta-Gamma hedging

strategy is most e�cient in reducing the risk of a Barrier option?

To answer this question we have chosen to simulate the market using Monte Carlo

simulation. A large number of simulations are carried out. For each realization, the

performance of each strategy is calculated, and statistical analysis of the total number

of simulations is used to evaluate the performance of each hedging strategy.

The analysis will be restricted to Down-and-out and Up-and-out Call options,

which are At-the-money at the time when the Barrier contract is issued. All contracts

considered in the thesis are of European style, that is, they can only be exercised at

the day of expiration. No explicit currency is assumed, and thus all of the results

below are quoted without a speci�c unit.

The theoretical framework used in the thesis is presented in section 2. Section 3

describes how the data is produced using Monte Carlo simulation. The method of

how the income for each strategy and for each simulation is calculated, is presented in

section 4, together with the statistical tools that are used to evaluate the performance

of each strategy. The results are given in section 5 and �nally, the conclusions are

given in section 6, together with suggestions of further extensions of the subject.

2 Theoretical framework

In the introduction, a clear distinction was made between those contracts that

are traded on the market, and those contracts that are not. However, in order for

the bank to be able to hedge the Barrier option dynamically, it needs to calculate

the movements of the price of the Barrier option throughout its lifetime. The price

of the Barrier option will be calculated using risk-neutral valuation, which will also

be used to calculate the prices of the options that are traded in the market. Thus

the price of all options will be calculated using risk-neutral valuation. However we
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emphasize the fact that although we calculate the prices using the same method, it

is only the Vanilla options that can be traded on the market at the prices given by

risk-neutral valuation.

Throughout the text one or several of the parameters that the price of a given

asset depends on will be suppressed in the notation. However, the value of the

parameters should be clear from the context.

In subsection 2.1 the Vanilla options are introduced. Subsection 2.2 states how the

assets that are traded in the market are priced. The Barrier contracts are introduced

in subsection 2.3, which also includes the pricing formulas of the Barrier options. The

Greeks are introduce in subsection 2.4. Finally, subsection 2.5 and subsection 2.6

gives an introduction of Dynamic and Static hedging respectively.

2.1 Vanilla options

The Vanilla options are simple contingent claims, That is, the contract function Φ

only depends on the price of the Stock at the day of expiration that is, Φ = Φ (S (T )).

Below the Binary Call option is included amongst the Vanilla options to simplify

matters, which may be considered as being out of convention.

2.1.1 Call option

The holder of a Call option written on the Stock S (t), with the strike price K and

the expiration date T , has an option (but not an obligation) to buy the Stock on

the day of expiration to the �xed price K. The contract function Φ (S (T )) of a Call

option is equal to max [S (T ) − K, 0]. The terminal payo� of a Call option with the

strike price K = 100 can be found in �gure 1 a.

2.1.2 Put option

The holder of a Put option written on the Stock S (t), with the strike price K and

the expiration date T , has an option (but not an obligation) to sell the Stock on

8
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Figure 1: The terminal payo� of an European Call option (a) and a European Put
option (b), both with the strike price K = 100

the day of expiration to the �xed price K. The contract function Φ (S (T )) of a Put

option is equal to max [K − S (T ) , 0]. In �gure 1 b, the terminal payo� of a Put

option (b) with the strike price K = 100, is on display.

2.1.3 The Binary Call option

The holder of a European Binary Call option receives 1 unit of currency if the price

of the Stock S (T ) is above the strike price K at the time of expiration, and receives

0 otherwise.

2.2 The prices of the contracts that are traded in the market

The prices for the assets that are traded in the marked are given in this subsection.

2.2.1 Risk free asset

The price process of the risk free asset B (t) is given by

dB (t) = rB (t) dt (1)
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which is shorthand for:

B (t) =

t∫
0

rB (s) ds (2)

solving this equation gives:

B (t) = B (0) exp (rt) (3)

2.2.2 Stock

The price process of the Stock S (t) is assumed to follow the Geometric Brownian

Motion:

dS (t) = rS (t) dt + σS (t) dW (t) , (4)

where the drift r and the volatility σ are constants, and where W (t) is a Wiener

process, which has the following properties:

• W (0) = 0.

• The process W (t) has independent increments, i.e. if r < s ≤ t < u then

W (u) − W (t) and W (s) − W (r) are independent stochastic variables.

• For s < t the stochastic variable W (t) − W (s) has the Gaussian distribution

N
[
0,
√

t − s
]
.

• W has continuous trajectories.

Without loss of generality, the drift of the Stock has been chosen to be equal to the

risk free interest rate r. Solving the stochastic di�erential eq. 4 using Itô's Lemma2

gives:

S (t) = S (0) exp

{(
r − 1

2
σ2

)
t + σW (t)

}
(5)

2see e.g. pp. 65-66 in [7]
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2.2.3 Pricing the derivatives

The prices of the options are calculated using risk-neutral valuation. That is, the

price of the Derivative expiring at T , Π (t, S (t)), with the contract function Φ (S (T ))

is equal to:

Π (t, s) = exp (−r (T − t)) EQ
t,s [Φ (S (T ))] (6)

where the Q implies that the expectation value has to be taken over the price process

of the Stock that is given in eq. 4. Eq. 6 can be derived using Itô's Lemma, Black-

Scholes di�erential equation and Feynman-Kac stochastic representation formula.3

2.2.4 Call option

The price of the European Call option C (t, s) is calculated using Black-Scholes for-

mula, which can be derived from eq. 64:

C (t, s) = sN [d1 (t, s)] − exp (−r (T − t)) KN [d2 (t, s)] , (7)

where N is the cumulative distribution function for the Gaussian distribution with

zero mean and unit variance, and

d1 (t, s) =
1

σ
√

T − t

{
ln

s

K
+

(
r +

1

2
σ2

)
(T − t)

}
(8)

d2 (t, s) = d1 (t, s) − σ
√

T − t. (9)

In �gure 2, the price of a Call option is plotted as a function of the Stock price and

the time to maturity, with the strike price K = 100 and constant rate and volatility.

The smooth property of the surface makes the option straightforward to hedge, if

the assumption of a constant rate and constant volatility is accurate.

3A complete derivation of eq. 6 can be found in e.g. ch. 3, 4 and 6 in [5]
4For a complete derivation of Black-Scholes formula, see e.g. ch. 6 in [5]
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Figure 2: The price of a Call option as a function of the Stock price and the time to
maturity, with the strike price K = 100 and constant interest rate and volatility.
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2.2.5 Put option

The price of the European Put option P (t, s) is calculated using Black-Scholes for-

mula:

P (t, s) = −sN [−d1 (t, s)] + exp (−r (T − t)) KN [−d2 (t, s)] , (10)

where d1 (t, s) and d2 (t, s) is the same as above.

2.2.6 Binary Call option

The price of the European Binary Call option BC (t, s) is calculated as5:

BC (t, s) = exp (−r (T − t)) N [d2 (t, s)] (11)

where d2 (t, s) is the same as above.

2.3 Barrier options

Barrier options are, on the contrary to Vanilla options, path dependent. That is

the terminal payo� does not only depend on the price of the Stock at T , but it also

depends on the price of the Stock for all times between the time of issue, to the

time of expiration. There are two classes of Barrier contracts; out-contracts and

in-contracts. An out-contract becomes worthless if the price of the Stock hits the

barrier before the time of expiration. An in-contract on the other hand will expire

worthless if the barrier has not been hit before the time of expiration.

The barrier can either be a down-barrier or an up-barrier. A down-barrier is hit

if the price of the Stock becomes less or equal to the value of the barrier, and an

up-barrier is hit if the price of the Stock becomes greater than or equal to the value

of the barrier. A Barrier option can have more than one barrier, however in this

thesis we will only consider single Barrier options.

5The formula is taken from p. 88 [3]
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Barrier option Category Description

Down-and-out Call Regular The option dies out-of-the-money
Down-and-in Call Regular The option is born out-of-the-money
Up-and-out Call Reverse The option dies in-the-money
Up-and-in Call Reverse The option is born in-the-money
Down-and-out Put Reverse The option dies in-the-money
Down-and-in Put Reverse The option is born in-the-money
Up-and-out Put Regular The option dies out-of-the-money
Up-and-in Put Regular The option is born out-of-the-money

Table 1: The eight di�erent �avours of Single-Barrier options.

If one considers both Call and Put Barrier options, then there are eight di�erent

�avours of Barrier options all together. These are listed in table 1. The Barrier

options that are categorized as Regular dies/are born (in most cases) out-of-the-

money, while the options that are categorized as Reverse dies/are born in-the-money.

In general, the Reverse options are much more di�cult to hedge.

In this thesis we will focus on Call options. It can easily be realized that a position

that holds one Down-and-out Call and one Down-and-in Call (or one Up-and-out

Call and one Up-and-in Call), with the same barrier H, the same strike price K and

the same time to maturity T − t, is identical to the position holding one standard

Call option with the same strike price K and time to maturity T − t. That is:

OC (K,H) + IC (K,H) = C (K) (12)

where the time to maturity dependence has been suppressed. Since an In-contract

can be replicated by the corresponding Out-contract and a Vanilla Call option, we

have chosen to limit our investigation to Out-Call options.

2.3.1 Down-and-out Call option

For any Down-and-out contract, The spot price S (t0) when the contract is issued

must be greater than the barrier H, otherwise the contract is dead from the begin-

14
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Figure 3: The terminal payo� of two Down-and-out Call option with the strike price
K = 100. In the left panel the barrier H = 90, and in the right panel the barrier
H = 120.

ning.

If the barrier has not been hit before expiration, the terminal payo� of a Down-

and-out Call option will have di�erent features depending on if the barrier H is below

or above the strike price K. This is illustrated in �gure 3, where the strike price

K = 100 in both panels, with the barrier H = 90 in the left panel, and with the

barrier H = 120 in the right panel.

In this thesis, the investigation is limited to the case where the barrier is set to

be below the strike price.

2.3.2 Up-and-out Call option

The spot price at t0 for an Up-and-out contract must be below the barrier H,

otherwise the contract is dead from the beginning. If the barrier H is below the

strike price K, then the contract can never have a non-zero terminal payo�, since

the contract will die before the Stock price moves above K. Therefore we are only

interested in the case where H > K.

The terminal payo� for the Up-and-out Call option, where the barrier has not

15
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Figure 4: The terminal payo� of an Up-and-out Call option with the strike price
K = 100, and the barrier H = 140.

been hit before expiration, is on display in �gure 4.

2.3.3 The Prices of the Down-and-out and the Up-and-out Call options

The expressions for calculating the prices of the Barrier options are taken from Haug6.

Since the expressions are of some length, they have been placed in appendix A.1.

2.4 The Greeks

The Greeks is the common name of the set of the derivatives of the price of the

instrument, with respect to the Stock and the model parameters. The knowledge of

the Greeks provides information about how sensitive the price is to changes in the

Stock and the model parameters.

6pp. 70-71 in [3]
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2.4.1 Delta

Provides information of how sensitive the price of the derivative is to a change in the

Stock price

∆Π =
∂Π

∂S
(13)

2.4.2 Gamma

Provides information of how sensitive the delta is to a change in the Stock price (the

second derivative of the price of the derivative is equal to the �rst derivative of the

delta)

ΓΠ =
∂2Π

∂S2
(14)

2.4.3 Rho, Theta and Vega

Rho provides information of how sensitive the price of the derivative is to a change

in the interest rate.

ρΠ =
∂Π

∂r
(15)

Theta provides information of how sensitive the price of the derivative is to changes

in t.

ΘΠ =
∂Π

∂t
(16)

Vega provides information of how sensitive the price of the derivative is to a change

in the volatility.

vΠ =
∂Π

∂σ
(17)

In the rest of the thesis we will mainly focus our attention to the Delta and the

Gamma.
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2.5 Dynamic Hedging

The general idea of Dynamic hedging is to construct a portfolio consisting of the

instrument that is to be hedged, and the hedge, that is locally neutral with respect

to one or several of the Greeks. E.g., if a portfolio is delta-neutral, then the value

of the portfolio remain constant when the price of the Stock changes. However,

the value of the delta changes over time and as the price of the Stock changes.

Thus the portfolio is only locally delta neutral. To ensure that the portfolio remains

delta neutral over time, it needs to be re-balanced frequently over the lifetime of the

instrument, i.e. hedged dynamically. The more often the portfolio is re-balanced,

the less the value of the portfolio will change over the lifetime of the instrument (in

the limit where the portfolio is continuously re-balanced, the value of the portfolio

remains constant throughout the life-time of the instrument). However, in real life

there are costs associated with re-balancing the portfolio. There is thus a trade-o�

between risk-reduction (re-balancing often) and return (re-balance less often).

2.5.1 Delta hedging

The objective is to reduce the delta to zero, ideally continuously but in practice

discreetly, by adding some instrument to the derivative. In this thesis we will use

the Stock to construct a portfolio that is delta-neutral on a daily basis. The Delta

of the Stock S is trivially equal to 1:

∆S =
∂S

∂S
= 1 (18)

Conciser the portfolio V consisting of one option and the weight ws of the Stock S,

where ws is the number of the units of the Stock (ws is permitted to be smaller than

one, which is not a drastic assumption since in real life a portfolio generally consists

of hundreds or thousands of assets), i.e:

V = Π + wsS (19)

18



Then the delta of the portfolio V is equal to:

∆V =
∂V

∂S
=

∂Π

∂S
+ ws

∂S

∂S
= ∆Π + ws (20)

Thus it can readily be seen that to obtain a delta that is zero for the portfolio V , we

take a short position of ws Stocks, where ws is equal to the delta of the derivative,

i.e.

∆V = 0 ⇒ (21)

ws = −∆Π (22)

By creating a portfolio consisting of one long option and ∆Π short Stocks, we have

locally obtained a portfolio that for which the value of the portfolio does not change

when the price of the Stock changes.

However, as can be seen in �gure 5, where the delta of a Call option is on display

for di�erent Stock prices and di�erent times to maturity, the delta changes over time

and when the price of the Stock changes. Thus the portfolio that was constructed

above is only locally delta-neutral. The portfolio therefore needs to be re-balanced

as delta changes. When the price of the Stock is close to the strike price, the delta

is increasingly more sensitive to changes in the Stock price as the time to maturity

approaches (notice how the slope of the curve increases around K = 100).

2.5.2 Delta Gamma hedging

In the previous section the fact that the delta depends on the price of the Stock

was mentioned. In particular, if the Delta is very sensitive to changes in the price

of the Stock, then the Delta-neutral Strategy will not be very e�ective. An idea is

then to create a portfolio that is both Delta and Gamma neutral. That is, if the

Gamma of the portfolio is zero, then the Delta will not change when the price of

the underlying change, and this portfolio will be less sensitive to price changes. In

this thesis we will use the following strategy to create a Delta and Gamma neutral

portfolio V :

In addition to the derivative Π that we wish to hedge, we will add wF units of

19



Figure 5: The delta of a Call option as a function of the Stock price and the time to
maturity, with the strike price K = 100 and constant interest rate and volatility.
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some asset that has both a non-zero Delta and Gamma; ΠF , and wS units of the

Stock (note that this wS is not the same as in the Delta hedge above). Since the

Delta of the Stock is 1, the Gamma of the Stock is 0. If wF is chosen such that the

Gamma of the portfolio is equal to zero, i.e.

ΓΠ + wF ΓF = 0 (23)

and wS is chosen such that the Delta of the portfolio is zero, i.e.

∆Π + wF ∆F + wS∆S = 0 (24)

Then the portfolio;

V = Π + wF ΠF + wSS (25)

will be both Delta and Gamma neutral (notice that since the Gamma of the Stock

is zero, the Gamma of V will still be zero when we add the ws units of the Stock).

Since we have a system of two equations and two unknowns (wf and ws), the system

can be easily solved. Doing so yields:

wF = −ΓΠ

ΓF

(26)

wS =
ΓΠ∆F

ΓF

− ∆Π (27)

In �gure 6, the Gamma of a Call option is on display as a function of the Stock

price and the time to maturity. As expected when considering the Delta in �gure

5, the Gamma, when the price of the Stock is close to the strike price K = 100,

is increasingly more sensitive to changes in the price of the Stock as the time to

maturity approaches.

2.6 Static Hedging

A Static hedge is a position that is taken when the contract is purchased, and

which is maintained throughout the lifetime of the contract (buy and hold). In
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Figure 6: The Gamma of a Call option as a function of the Stock price and the time
to maturity, with the strike price K = 100 and constant interest rate and volatility.
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general, the Static hedge does not provide a satisfying reduction of the risk of the

contract. It has previously been mentioned that the Delta and the Gamma changes

considerably over time and over di�erent values of the Stock price. Therefore, if

a position is taken to hedge the risk of a contract at the time of purchasing, by

creating a portfolio that is Delta and Gamma neutral as above, this position will

not be Delta and Gamma neutral throughout the life-time of the contract. However,

when considering Barrier options, the Delta and the Gamma does not display the

smooth behaviour that was the case for the Call option. This is apparent in �gure 7

and in �gure 8, where the Delta and the Gamma are on display for a Down-and-out

Call option with the strike price K = 100 and the barrier H = 90. It is apparent

that both the Delta and the Gamma are very sensitive to changes in the price of the

Stock when the spot price is in the vicinity of the barrier. This makes the Dynamic-

hedging strategy described above complicated, and it may be of interest to consider

Static hedging.

The general idea of the Static-hedging strategy considered in this thesis (Carr,

Ellis, Gupta [4]) is to construct a Static hedge that both match the price of the

contract along the barrier and the terminal payo� of the contract. If we can do

so successfully, then the two possible outcome of the (European) Out-contract are

covered, namely either the barrier is hit before expiration, or it delivers the payo� at

the time of expiration. The task is then to �nd a combination of the contracts that

are traded in the market that full-�ll the desired properties.

2.6.1 Down-and-out Call option, H < K

From section 2.3.1, we recall that if the barrier is hit before expiration, the down-

and-out Call option is worthless. If the barrier has not been hit, the terminal payo�

is equal to the terminal payo� of a Vanilla Call option with the same strike price.

Therefore we start by matching the terminal payo� by purchasing a Call option with

the strike price K. The Call option has non-zero value along the barrier for t < T .

This is illustrated for the case when the barrier H = 95 in �gure 9, where the price

of a Call option is plotted as a function of the Stock price and the time to maturity.

In the inset of �gure 9, the Call price is plotted as a function of time, when the Stock
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Figure 7: The Delta of a Down-and-out Call option as a function of the Stock price
and the time to maturity, with the strike price K = 100, the barrier H = 90 and
constant interest rate and volatility.
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Figure 8: The Gamma of a Down-and-out Call option as a function of the Stock
price and the time to maturity, with the strike price K = 100, the barrier H = 90
and constant interest rate and volatility.

25



Figure 9: The price of a Call option as a function of the Stock price and time to
maturity, with K = 100. In the inset, the Call price is plotted as a function of time
when the Stock price S (t) = 95 ∀t.
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price S (t) = 95 ∀t. The task is now to add a contract to the Call option that creates a

portfolio that has zero value along the barrier, without a�ecting the terminal payo�.

To do so, The Put-Call symmetry relation7 is used. Put-Call symmetry states that

if the drift of the price process in eq. 4 is zero (which it is not, however the drift is

assumed to be zero for the time being), then the following relation holds:

C (KC) K
− 1

2
C = P (KP ) K

− 1
2

P (28)

where the geometric mean of the Call strike KC and the Put strike KP is the forward

price F , i.e.

(KCKP )
1
2 = F (29)

If the forward price is equal to the barrier, i.e. let F = H, then:

KP =
F 2

KC

=
H2

KC

(30)

Substituting eq. 30 into eq. 28 and rearranging the terms yields:

C (KC) =
KC

H
P

(
H2

KC

)
(31)

Next the relation in eq. 31, with KC = K is considered in the present case of the

Down-and-out Call option where the barrier H is below the strike price K. We

construct a replicating portfolio, ΠCEG, consisting of a long position in the Call

option with the strike K and a short position in K
H
units of the Put option with the

strike H2

K
:

ΠCEG = C (K) − K

H
P

(
H2

K

)
(32)

Both the Call and the Put option have the same time to maturity as the Down-

and-out Call option. Since H < K, H
K

< 1 and H2

K
< H. If the barrier has not

been hit before expiration, S(T ) > H. This means that the Put option will expire

7pp. 1166-1169 [4]
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Figure 10: The price of a Call option with the strike price K = 100 (top left), the
price of K

H
units of the Put option with the strike price K = H2

K
(top right) and the

price of a portfolio consisting of long the Call option and short K
H

units of the Put
options (bottom left). All prices are plotted as function of the Stock price and the
time to maturity T − t.

worthless (see �gure 1 b), and the payo� of the Call option will match the payo�

of the Down-and-out Call option. It then remains to make certain that the price

of the replicating portfolio is zero along the barrier throughout the lifetime of the

contracts.

That this is indeed found to be the case, can readily be observed in �gure 10 and

in �gure 11. Thus to hedge the Down-and-out Call option, the portfolio consisting

of short the Down-and-out Call option, long the Call option and short the K
H

units

of the Put option will be used in the sequel.

If a non-zero drift is introduced, it will cause the price of the Call option to rise,

and the price of the Put option to fall, which will introduce an error in the hedging

portfolio. The size of the error will be commented in the results below.
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Figure 11: The price of a Call option with the strike price K = 100 and the Stock
price s = 95 (solid line, top �gure), the price of K

H
units of the Put option with the

strike price K = H2

K
and the Stock price s = 95 (stars, top �gure) and the price of a

portfolio consisting of long the Call option and short the K
H
units of the Put option,

with the same Stock price. Plotted as functions of time in units of years, and where
the initial time to maturity is equal to 1 year.

29



Figure 12: The price of an Up-and-out Call option as a function of the Stock price
and time to maturity, with the strike price K = 100 and the barrier H = 120.

2.6.2 Up-and-out Call option

The price of an Up-and-out Call option with the strike price K = 100 and the

barrier H = 120, is plotted as a function of the Stock price and time to maturity in

�gure 12.

In section 2.3.2, the terminal payo� below the barrier, if the barrier has not been

hit before the time of expiration, of an Up-and-out Call was shown to be equal to

the terminal payo� of a Call option with the same strike, or zero otherwise. Thus

we again start constructing the hedge with the Call option. Along the barrier, the

Call option is trivially non-zero (see �gure 2), so the hedge must be complemented.

According to Carr, Ellis, Gupta8, the following hedge, denoted ΠCEG, can be used

to hedge the Up-and-out Call option:

ΠCEG = C (K) + ΠCEG(2nd) (33)

where

ΠCEG(2nd) = −
(

K

H

)
C

(
H2

K

)
− (H − K)

(
2BC (H) +

1

H
C (H)

)
(34)

The terminal payo� of ΠCEG(2nd), if the barrier has not been hit before expiration

(S (T ) < H), is zero. This is trivial for the Binary Call option, BC (H) and the

8p. 1172 [4]
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Figure 13: The price of a Call option with the strike price K = 100 (top left), the
price of the second part of the static hedge ΠCEG(2nd) in eq. 34 (top right), the price
of the hedge ΠCEG in eq 33 (bottom left) and the price of the hedge ΠCEG along
the barrier H = 120 (bottom right). All prices in the three dimensional �gures are
plotted as function of the Stock price and the time to maturity, and the price of the
two dimensional �gure is plotted as a function of time.

Call option, C (H). Since H > K,
(

H
K

> 1
)
and

(
H2

K

)
> H, and it is thus clear

that the terminal payo� of C
(

H2

K

)
must also be zero when S (T ) < H. It then

remains to make certain that the hedge ΠCEG in eq 33 is zero-valued along the

barrier throughout the life-time of the contracts. That this is indeed found to be the

case can be observed in �gure 13.

We end this section by commenting on the use of the Binary Call. The Binary

Call can be well approximated using a vertical spread of Vanilla Call options9. Thus

the assumption that the Binary Call is traded on the market may be relaxed.

9p. 1173 [4]
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3 Data

As stated previously, no real market will be used to produce the results. In stead the

market data will be simulated using Monte Carlo simulation. Or more precisely, the

price process of the Stock is simulated. With the knowledge of the Stock price, the

Vanilla, the Binary and the Barrier options can be calculated using the expressions

in the previous section. With the knowledge of the complete price process of the

Stock, the terminal payo� of the Barrier options can also be calculated. Finally,

from the knowledge of the price process of each asset, the Delta and the Gamma for

each of the assets for all t may also be calculated. The complete price process of the

Stock will be simulated 1000 times.

An account for how the market data for each asset and the corresponding Greeks

are calculated, is presented below.

3.1 Simulating the Stock price

From eq. 4, the price process of the Stock is given as:

dS = rSdt + σSdW (35)

where r and σ are known constant. The price process of the Stock is calculated

discreetly. The discrete version of eq. 35 is given by:

∆S (t) = rS (t) ∆t + σS (t) ∆W (36)

Given the properties of the Wiener process, eq. 36 can be rewritten as:

∆S (t) = rS (t) ∆t + σS (t)
√

∆tZ, (37)

where Z is drawn form a Gaussian distribution with zero mean and unit variance.

Let t0 denote the time at t = 0. The price of the Stock at t0 is chosen as S (t0).

The price of the Stock at the next time-step t1 is then calculated as:
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S (t1) = S (t0) + rS (t0) (t1 − t0) + σS (t0)
√

(t1 − t0)Z1 (38)

In the same way, the price of the Stock at ti is calculated as:

S (ti) = S (ti−1) + rS (ti−1) (ti − ti−1) + σS (ti−1)
√

(ti − ti−1)Zi, (39)

where each Zi is drawn independently. The elapsed time between ti and ti−1 is set

to be equal to ∆t ∀i , and eq. 39 is rewritten as:

S (ti) = S (ti−1) + rS (ti−1) ∆t + σS (ti−1)
√

∆tZi (40)

Since the price of the Stock is known at t0, the price at all later times tn, n =

1, 2, ..., T
∆t
, can be calculated using the iterative process de�ned by eq. 40. In the

thesis ∆t is chosen to be equal to one day.

3.2 Calculating the price of the options

With the knowledge of S (ti), the price of any Call option C (ti, S (ti))at ti, any

Put option P (ti, S (ti)) at ti and any Binary Call option BC (ti, S (ti)) at ti may

be calculated as in sub-subsection 2.2.4 - 2.2.6, since all the model parameters are

known.

Similarly, the price of any Barrier option may be calculated as in sub-subsection

2.3.3.

3.3 Calculating the Greeks discreetly

In this thesis, the Greeks will be calculated discreetly, as described below.

3.3.1 Delta

From eq. 13 we have:
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∆Π (S) =
∂Π (S)

∂S
= lim

dS→0

Π (S + dS) − Π (S)

dS
(41)

The delta for the option is thus calculated using in�nitesimal changes in the Stock

price. However, the market does not move in in�nitesimal intervals, and it is therefore

more practical to consider a discrete delta:

∆Π (S) =
Π (S + ∆S) − Π (S)

∆S
(42)

where ∆S will be calculated as 0.01 ·S (t0). Note that the discrete move in the Stock

price ∆S, should not be confused with the delta of the Stock price; ∆S. Eq. 42 only

considers the upward move in the Stock price, which might di�er considerably from

the downward move, and we will therefore calculate the delta in the following way

in the sequel10:

∆Π (S) =
1

2

Π (S + ∆S) − Π (S)

∆S
+

1

2

Π (S) − Π (S − ∆S)

∆S
(43)

∆Π (S) =
Π (S + ∆S) − Π (S − ∆S)

2∆S
(44)

3.3.2 Gamma

The Gamma will be calculated discreetly in the same manor as the Delta is calculated

above. From section 2.4.2, we remember that the Gamma is equal to the Delta of

the Delta. From eq. 44, we have:

ΓΠ (S) =
∆Π (S + ∆S) − ∆Π (S − ∆S)

2∆S
(45)

where

∆Π (S + ∆S) =
Π (S + 2∆S) − Π (S)

2∆S
(46)

and

10As suggested in p. 118 of [2]
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∆Π (S − ∆S) =
Π (S) − Π (S − 2∆S)

2∆S
(47)

Inserting eq. 46 and eq. 47 in eq. 45 yields:

ΓΠ (S) =
Π (S + 2∆S) − Π (S)

4 (∆S)2 − Π (S) − Π (S − 2∆S)

4 (∆S)2 (48)

ΓΠ (S) =
Π (S + 2∆S) − 2Π (S) + Π (S − 2∆S)

4 (∆S)2 (49)

4 Method

For each of the 1000 simulations of the Stock price (with accompanying option prices),

the income is calculated for the No-hedging strategy and for each of the three hedging

strategies. Subsection 4.1 describes how the income for each strategy is calculated.

Subsection 4.2 describes how the performance of each strategy is evaluated using

statistical analysis of the 1000 realizations of income for each of the four strategies.

As a measure of the performance of each strategy, the mean value, the standard

deviation, the Value at Risk and the Conditional Value at Risk will be calculated.

4.1 Calculating the income for each realization

The income for a given strategy is de�ned as the total value of all transactions

together with the total amount of interest during the life-time of the portfolio, after

all assets have been sold o� at the time of expiration.

4.1.1 Transaction costs

The transaction cost for taking the short position in the Barrier contract is set to

equal to zero. This is natural since we, as the bank issue the contract. All other

transactions, i.e. the hedging position the bank take to reduce the risk, will be

accompanied with a cost for buying or selling the contracts in the market. These
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transaction costs are set to equal 0.5% of the absolute value of the amount of each

transaction.

4.1.2 Notation

Below the following notation will be used:

• th = Time when the barrier is hit (if the barrier is hit)

• I = The total income for a given strategy

• Tc (tj)= The total value of the transaction costs derived from trading in the

jth day.

• Πsh (tj, S (tj))= The price of the Static hedge at tj

• Πdh (tj, S (tj))= The price of the Dynamic hedge at tj

• Πreb (tj, S (tj)) = The cost of re-balancing the Dynamic hedge in the jth day,

excluding transaction costs.

• Φb (S (T )) = The terminal payo� of the Barrier option.

• Φdh (S (T )) = The terminal value of the Dynamic hedge at the time of expira-

tion.

• Φsh (S (T )) = The terminal value of the Static hedge at the time of expiration.

4.1.3 No hedge

For the No-hedging strategy, the income I for a given realization is equal to the price

of the Barrier option at t0, the interest gained from investing the money obtained

from selling the Barrier option in the risk-free asset subtracted by the terminal payo�

of the Barrier option, i.e.:

I = Πb (t0, S (t0)) exp (rT ) − Φb (S (T )) (50)
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4.1.4 Static hedge

The Static-hedging strategy is executed as described below.

At t0, a short position in the barrier contract Πb (t0, S (t0)) is taken, and a long

position in the static hedge Πsh (t0, S (t0)). If the barrier H is hit before expiration

at time th, the barrier contract becomes worthless. To reduce the risk between the

hitting time th and the time for expiration T , the static hedge is sold of at th, and

the obtained money is then invested in the risk free asset. The total income I at the

time of expiration will then be equal to:

I = [Πb (t0, S (t0)) − Πsh (t0, S (t0)) − Tc (t0)] exp (rT ) +

+ [Πsh (th, S (th)) − Tc (th)] exp (r (T − th)) (51)

If on the other hand the barrier is not hit before expiration, the position taken at

t = 0 will remain unchanged until the time of expiration, when all the contracts in

the portfolio are exercised. In this case, the total income at the time of expiration

will then be equal to:

I = [Πb (t0, S (t0)) − Πsh (t0, S (t0)) − Tc (t0)] exp (rT )−

−Φb (S (T )) + Φsh (S (T )) − Tc (T ) (52)

4.1.5 Dynamic hedge

When calculating the income of the two di�erent Dynamic-hedging strategies, the

following procedure is carried out:

At t0, a short position in the Barrier contract is taken, and a long position in the

hedge. As long as the barrier has not been hit, the portfolio is rebalanced once every

day. If the barrier is hit, the Barrier contract is worthless, and to reduce the risk,

the hedge is sold o�. Thus, if the barrier is hit before expiration, the income I will

be equal to:
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I = [Πb (t0, S (t0)) − Πdh (t0, S (t0)) − Tc (t0)] exp (rT ) +

+

th−1∑
j=1

[−Πreb (tj, S (tj)) − Tc (tj)] exp (r (T − tj))

+ [Πdh (th, S (th)) − Tc (th)] exp (r (T − th)) (53)

If the barrier has not been hit before the time of expiration, the payo� of the Barrier

contract at the time of expiration is paid out to the holder of the contract, and the

hedge is sold o� at its terminal value. Thus the income I will be equal to:

I = [Πb (t0, S (t0)) − Πdh (t0, S (t0)) − Tc (t0)] exp (rT ) +

+
T−1∑
j=1

[−Πreb (tj, S (tj)) − Tc (tj)] exp (r (T − tj))

−Φb (S (T )) + Φdh (S (T )) − Tc (T ) (54)

4.2 Measuring the performance of the hedging strategies

When evaluating the performance for the N = 1000 realizations of income for each

strategy, the properties as de�ned below will be used.

4.2.1 Mean value 〈I〉

〈I〉nominal =
1

N

N∑
k=1

Ik (55)

4.2.2 Standard deviation σ [I]

σnominal [I] = (var [I])
1
2 (56)

where
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var [I] =
1

N − 1

N∑
k=1

(Ik − 〈I〉)2 (57)

4.2.3 Value at Risk (VaR)

Value at Risk11 will be calculated as the loss corresponding to the 5th percentile of the

distribution of the 1000 realizations of income, i.e. Value at Risk is obtained as the

50th (= 0.05 ·1000) lowest value out of the 1000 realizations of income. We introduce{
IS
k , k = 1, 2, ..., 1000

}
as the set of the sorted incomes. That is IS

i+1 > IS
i > IS

i−1.

Then Value at Risk is de�ned as:

V aRnominal = IS
50 (58)

4.2.4 Conditional Value at Risk (C-VaR)

The Conditional Value at Risk12 will be calculated as:

C − V aRnominal =
1

50

50∑
i=1

IS
i , (59)

where IS
k is the same as de�ned above.

4.2.5 Adjustment of the properties

In order to be able to compare the results between Barrier options where the prices

of the options are of totally di�erent sizes, all the properties introduce above are

divided by the initial price of the Barrier option Π (t0, S (t0)), i.e.

〈I〉 =
〈I〉nominal

Π (t0, S (t0))
(60)

11p. 347 [1]
12p. 347 [1]
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σ [I] =
σnominal [I]

Π (t0, S (t0))
(61)

V aR =
V aRnominal

Π (t0, S (t0))
(62)

C − V aR =
C − V aRnominal

Π (t0, S (t0))
(63)

5 Results

To understand and isolate the impact of interest rates and transaction costs the

performance of the di�erent hedging strategies for the Down-and-out call option are

�rst measured with zero interest rate and no transaction costs to be able to compare

this with later results. This initial analysis is done in the subsections 5.1 and 5.2.

The main results for the down-and-out call option will be presented in subsection 5.3

and subsection 5.4, and the results of the up-and-out call option will be presented in

subsection 5.5 and subsection 5.6. When producing the results, the following values

of variables and parameters are used:

• Number of realizations N = 1000.

• Lifetime of the Barrier option T = 100 days. The initial Spot price S (t0) = 100.

• The Strike price K = 100.

• Constant interest rate r (t) = 4% ∀t (continuously compounded).

• Transaction Cost TC = 0.5% of the absolute value of each transaction.

• Constant Volatility σ (t) = 0.2 ∀t (annual).

When presenting the results in the �gures below, the results for the No-hedging

strategy will be marked with dashed lines, the results from the Delta-hedging strategy
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Figure 14: The mean value of of the 1000 realizations of income, for the di�erent
strategies, plotted as functions of the di�erent values of the barrier H. Both the
interest rate r and the transaction cost are set to equal 0. The dashed line is the
no-hedging strategy, the dashed-dotted line is the Delta-hedging strategy, the solid
line is the Delta-Gamma hedging strategy and the dotted line is the Static-hedging
strategy. An ampli�cation of the �gure, for the lower values of the barrier H is
plotted in the inset.

will be marked with dashed-dotted lines, the results from the Delta-Gamma strategy

will be market with solid lines and the results from the Static-hedging strategy will

be market with dotted lines. If the reader has been fortunate enough to get hold of

a copy that is printed in colour, then all the results from the No-hedging strategy

are shown in magenta, all the results from the Delta-hedging strategy are shown in

green, all the results from the Delta-Gamma hedging strategy are shown in blue, and

all the results of the Static-hedging strategy are shown in red .

5.1 Down-and-out Call option, zero interest rate and no trans-

action costs

To be able to identify the impact of interest rates and transaction costs we �rst

look at the performance of the hedging strategies when no interest rate and transac-
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Figure 15: The mean value of the payo�s in eq. 15 (solid line), calculated for a
standard Call option, as a function of the number of realizations N , where N ≤
1000000. The dashed line the expected value of the terminal payo�, calculated using
Black and Scholes formula (eq. 7). The �gure in the inset displays the mean values
for N ≤ 5000.

tion costs are present. In the calculations in this section the barrier H ranges from

80 to 99. For H < 80, the behaviour of the Barrier option will be very similar to a

Vanilla Call option. In �gure 14, the mean 〈I〉 is plotted for the di�erent hedging

strategies. We observe that the no-hedging strategy is negatively biased. Since only

1000 paths are simulated this is no surprise since the Monte Carlo method has a
√

N

convergence rate. This rate of convergence is illustrated in �gure 15.

As seen in �gure 14 the mean value of income is almost constant for H < 86.

The reason for this is that the value of the barrier option converges to the vanilla

call option when H → 0.

When comparing the mean values provided by the di�erent strategies it is clear

that the mean values are lower for the no-hedging strategy, than for the other strate-

gies. The standard deviations of the 1000 realizations of income, for the di�erent

strategies and for di�erent values of H are on display in �gure 16. First notice that

the standard deviation increases with increasing value of H, for all strategies. This
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Figure 16: The standard deviation of the 1000 realizations of income, for the di�erent
strategies, plotted as functions of the di�erent values of the barrier H. Both the
interest rate r and the transaction cost are set to equal 0. The dashed line is the
no-hedging strategy, the dashed-dotted line is the Delta-hedging strategy, the solid
line is the Delta-Gamma hedging strategy and the dotted line is the Static-hedging
strategy. The di�erences in the standard deviations between the hedging strategies
are enhanced in the inset.

is no surprise since a low barrier implies a small probability that the barrier will be

hit during the lifetime of the option. Hence the behaviour in this case will look very

similar to a vanilla call option. Obviously the standard deviation for the no-hedging

strategy is considerably higher than for the three hedging strategies. The standard

deviation of the Delta-hedging strategy is higher than the two other hedging strate-

gies. For H > 96 it is hard to separate the three hedging strategies. Finally, we

observe that the standard deviation of the Delta-Gamma strategy and the Static-

hedging strategy is approximately the same, for all H.

5.1.1 Case Study: 1 trajectory where H = 99

In �gure 17, the value of the long position in the Barrier option and long positions

in the three di�erent hedging strategies are on display. The three hedging strategies

manage to replicate the long position in the Barrier option well, up until t = 33.
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Figure 17: The expected value of a long position in the Barrier option (dashed line),
a long Delta hedge (dashed-dotted line), a long Delta-Gamma hedge (solid line) and
a long Static hedge (dotted line), for one realization plotted as functions of t, with
the barrier H = 99. Both the transaction cost and the interest rate are set to equal
zero. In the inset the same plot is on display but for a magni�ed part of the �gure.
The dashed line that represent the long Barrier option and the dashed dotted line
that represent the Delta hedge are hidden under the Delta-Gamma- and the Static
hedge, for t < 37.
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Figure 18: The price of the Stock as a function of t, for one realization. The horizontal
line represents the barrier H = 99. The price process around the barrier is magni�ed
in the inset, where the dots represents the re-balancing points (once a day).

After that there is a sudden drop in the value of the Barrier option, which none of

the hedging strategies manages to replicate. The reason for the sudden drop in the

value of the long position in the Barrier option is that the barrier has been hit, which

is observable in �gure 18. The barrier is hit between t = 33 and t = 34. The question

now is why our di�erent hedging strategies fail to replicate the value of the Barrier

option, when the Stock hits the barrier?

To begin with, our portfolios are rebalanced discretely (once a day). This means

in particular that our portfolios are not rebalanced (sold o�) exactly when the barrier

is hit, which is sometime between t = 33 and t = 34. Instead our portfolios are sold

o� at t = 34. In the inset of �gure 18, the behaviour of the Stock price around the

barrier is magni�ed, and where the dots mark the daily re-balancing points. It can

be observed that our portfolios are not sold of to the Stock price S (th) = 99, as

they should. Instead they are sold of at S (34) ≈ 98. This uncertainty contributes to

the higher standard deviation across all the di�erent strategies, for H = 99, which

was observed previously in �gure 16. One could argue that in real life, the trader

(us) would not be so lazy as to hold on to the portfolio so far after the barrier has
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been hit. However, in real life, the market is not in�nitely liquid. Especially, it can

be di�cult to sell of our hedging portfolio to the preferred price, exactly when we

wish to do so. Our model is therefore, in this aspect, realistic. Furthermore, our

Dynamic hedging strategies are constructed on the assumption that the price process

of the Barrier option is continuous, which does not mean that it is also well suited

for hedging purposes when there is a discontinuity (as in the case of a Barrier option

when the barrier is hit), in fact we shall later discover that it is not well suited at

all.

To summarize our results for a Down-out call option with zero interest rate and

no transaction costs, the risk, measured as the standard deviation of the 1000 real-

izations of income, is considerably less for all the hedging strategies compared to the

no-hedging strategy, for all values of the barrier. Furthermore, when the barrier H is

set to be considerably less than the spot price and the strike price, the Barrier option

behaves as a regular option, and the standard-deviation for the Delta-Gamma- and

the Static hedge are considerably less than for the Delta-hedge. When the barrier on

the other hand is close to the spot price H > 96, the Barrier option is very di�cult

to hedge, and none of the hedging strategies are signi�cantly less riskier than any

other strategy.

5.2 Down-and-out Call option, zero interest rate, non-zero

transaction cost

5.2.1 Mean value of income

The mean values of income for the di�erent strategies are on display in �gure 19.

The Static hedge is not signi�cantly a�ected by the introduction of transaction costs

(compare to �gure 14), this is due to the low frequency in trading occasions. Whether

the barrier is hit or not, contracts are bought and sold on only two occasions in the

case of the Static hedge. The Dynamic-hedging strategies are both considerably

a�ected by the introduction of transaction costs. This is due to the high frequency

in trading occasions, since the portfolios are re-balanced every day. The poor result of
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the Delta-Gamma strategy as the barrier grows larger is particularly striking whereas

the negative result of the Delta strategy is more moderate. The result implies that

in order to obtain a portfolio that is Delta-Gamma neutral for each time-step, the

hedger is inclined to take large positions in the Stock and in the Call option used in

the hedge (since the transaction cost is calculated as a proportion of the size of each

trade). The large positions taken can be understood by considering the expressions

for the weight in the Stock ws and the weight in the Call wC derived in subsection

2.5.2:

wC = −ΓΠ

ΓC

(64)

wS =
ΓΠ∆C

ΓC

− ∆Π (65)

If the Gamma of the Call ΓC is very small at the same time as either the Gamma of

the Down-and-out Call ΓΠ or both the Gamma ΓΠ and the Delta of the Call ∆C are

not, then the weights can grow very big.

When the barrier is far from the spot price, The Barrier option behaves, as

previously mentioned, similar to a Vanilla Call option. Then ΓC ≈ ΓΠ, and the

problem with large weights in the Stock and in the Call vanish. In fact we see that

wC approaches −1 and wS approaches 0 as the Barrier behaves increasingly more

as a Vanilla Call option, i.e, as for the Static hedge we end up with approximately

one short and one long Call option. This explains why the Delta-Gamma hedge has

a strong performance when H < 88. As the barrier grows larger, the di�culties

associated with hedging the Barrier gradually worsen the performance of the Delta-

Gamma Hedge.

The considerably weaker performance of the Delta hedge for H < 86, is a result

of the limited success of the Delta hedge when hedging a standard Call option.

Since the Delta-hedge is inexact, there is a larger cost associated with re-balancing

the portfolio each day. On the other hand, the Delta-hedging strategy is not as

badly a�ected by the introduction of transaction cost as the Delta-Gamma strategy.

Therefore we can assume that the weight taken in the Stock (i.e. the Delta) is not
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Figure 19: The mean value of the 1000 realizations of income, for the di�erent
strategies, plotted as functions of the di�erent values of the barrier H. The interest
rate r is set to equal 0 and the transaction cost is set to 0.5%. The dashed line is the
No-hedging strategy, the dashed-dotted line is the Delta-hedging strategy, the solid
line is the Delta-Gamma hedging strategy and the dotted line is the Static-hedging
strategy.
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as large as the weights of the Delta-Gamma hedge. The reason for this is that we

calculate the Delta discreetly. Doing so, the numerator of the Delta is always equal

to the step size (1). If we were to calculate the Delta continuously however, we

would take in�nitesimal time steps, the denominator of the Delta at the barrier may

however be considerable in size due to the discontinuity at the barrier. This would

altogether result in a Delta that would grow very large and with it huge transaction

costs and risk.

5.2.2 Standard deviation of income

The standard deviation of income is on display in �gure 20. As expected (using

the same argument as above), the performance of the Static hedging strategy is not

signi�cantly e�ected by the introduction of transaction costs. For the Dynamic-

hedging strategies it is a di�erent story. Especially the standard deviation of the

Delta-Gamma hedge grows rapidly with increasing H, for H > 90. We notice that

for H > 98, the standard deviation of the Delta-Gamma hedge is larger than the

standard deviation of the No-hedging strategy! The background of the large standard

deviation, as the size of the barrier increasingly a�ects the income, is the same as

above. That is, the signi�cant transaction costs associated with the large position

we are inclined to take in the hedging instrument, and re-balancing these positions

every day. Since the amount of these transaction costs highly depends on when the

barrier is hit, if it is hit, the size of the transaction di�ers for di�erent realizations,

giving rise to the high standard deviation. The same argument can again be used

to also explain the increase in the standard deviation of the Delta-hedging strategy,

although it is a�ected to a lesser extent.

5.3 Down-and-out Call option, non-zero interest rate, non-

zero transaction costs

We are now ready to present the main results of this section, that is, the performance

of the di�erent hedging strategies when we have non-zero interest rate and transaction

costs. Comparing the result for the mean value of income in �gure 21 with the
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Figure 20: The standard deviation of the 1000 realizations of income for the di�erent
strategies, plotted as functions of the di�erent values of the barrier H. The interest
rate r is set to equal 0 and the transaction cost is set to 0.5%. The dashed line is the
no-hedging strategy, the dashed-dotted line is the Delta-hedging strategy, the solid
line is the Delta-Gamma hedging strategy and the dotted line is the Static-hedging
strategy. The di�erences in the standard deviations between the hedging strategies
are enhanced in the inset.
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previous result for the mean value of income in �gure 19, where we had non-zero

transaction costs and zero interest rate, we can observe that the introduction of the

interest rate does not signi�cantly e�ect the results, however one can notice that the

results of the Dynamic-hedging strategies are slightly worsened by the introduction

of the interest rate. This is due to the cost of borrowing money to �nance the

transaction costs. It should here be commented that the lifetime of the Barrier

option (and all other contracts considered) is 100 days. Thus the e�ective interest

rate of our continuously compounded interest rate of 4% over this period is equal to:

exp

(
0.04

100

365

)
≈ 1.1%,

and thus the interest rate will have a limited e�ect on the results. In �gure 22,

the standard deviations of income for the di�erent hedging strategies are on display.

Comparing these results with the result for the standard deviation of income in �gure

20, where we had transaction costs and zero interest rate, the di�erence is again

moderate, with a slight increase in the standard deviation of the Dynamic-hedging

strategies.

The performance of the static hedge is not severely worsened by the introduction

of the interest rate even though the construction of the static-hedge was carried out

on the result from Put-Call symmetry with the assumption that the interest rate was

equal to zero (see sub subsection 2.6.1). To recapitulate, our static hedge consists of

one long Call option with the strike price K and K
H
short Put options with the strike

price H2

K
, with H < K. If the barrier has not been hit before expiration, the terminal

payo� o� the Call option is equal to the terminal payo� of the Barrier option, and

the terminal payo� of the Put option is equal to zero, thus so far everything is as

it should be. Next we consider the behaviour along the Barrier. In �gure 23, the

price of the Call option and the K
H

Put options are plotted as functions of t, for

the case where the spot price S (t) is equal to the barrier H = 95, for all t, and

where the interest rate is zero. As have already previously been found, the price of

the Call option is equal to the price of the K
H

Put options, for all t. This means

that our hedging position, which is long in the Call option, and short in the Put

51



75 80 85 90 95 100
−10

−8

−6

−4

−2

0

H

〈I〉(H)

Figure 21: The mean value of the 1000 realizations of income, for the di�erent strate-
gies, plotted as functions of the di�erent values of the barrier H. The continuously
compounded interest rate r is set to 4% and the transaction cost is set to 0.5%. The
dashed line is the no-hedging strategy, the dashed-dotted line is the Delta-hedging
strategy, the solid line is the Delta-Gamma hedging strategy and the dotted line is
the Static-hedging strategy.
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Figure 22: The standard deviation of the 1000 realizations of income for the dif-
ferent strategies, plotted as functions of the di�erent values of the barrier H. The
continuously compounded interest rate r is set to 4% and the transaction cost is set
to 0.5%. The dashed line is the no-hedging strategy, the dashed-dotted line is the
Delta-hedging strategy, the solid line is the Delta-Gamma hedging strategy and the
dotted line is the Static-hedging strategy. The di�erences in the standard deviations
between the hedging strategies are enhanced in the inset.
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Figure 23: The price of a Call option with the strike KC = 100 (o) and the price of
K
H

Put options with the strike KP = H2

K
= 90.25 (solid line), plotted as functions of

t, along the barrier H = 95 (S (t) = 95∀t). The interest rate is set to equal zero.

options is zero−valued along the barrier, which of course is equal to the price of the

Barrier option along the barrier. Thus we can dispose of our hedging portfolio at zero

value (except the transaction costs) when the barrier is hit. However, as previously

mentioned, if the barrier is hit, we will not be able to terminate our hedging position

to the Stock price S (th) = 95, since we only trade once every day, but rather at

the price S (th) < 95. When considering our 1000 realizations, for the case when the

barrier H = 95 and the interest rate is set to equal zero, it was found that the barrier

was hit 593 times, and the mean value of S (th) ≈ 94.5, for these 593 outcomes.

If we then consider the price of the components of our hedge where the spot price

is equal to this average value, instead of 95, we will �nd that the price of our Call

option will move south, and the price of our Put options will move north. This can

be observed in �gure 24. Since there is a spread between the value of the Call option

and the Put options, our portfolio cannot be liquidated at zero value (so far we are

not considering the transaction costs), which will contribute to additional risk, in

the zero-interest rate case.

When we introduce a non-zero interest rate, the barrier will be hit fewer times
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Figure 24: The price of a Call option with the strike KC = 100 (o) and the price of
K
H

Put options with the strike KP = H2

K
= 90.25 (solid line), plotted as functions of

t, where the spot price S (t) = 94.5∀t. The interest rate is set to equal zero.

of our realizations, because of the positive drift and the price of the Call option will

move north and the price of the Put options will move south.

For our 1000 realizations, the barrier was found to have been hit 560 times, which

as predicted, is less than for the zero-interest rate case. This in it self will a�ect

our hedge in a positive way (reduce the risk). For the 560 times the barrier was hit,

the average value of S (th) ≈ 94.5. In �gure 25, the price of the Call option and the

Put options are again plotted as functions of t, where the spot price S (t) = 94.5∀t.

Comparing to the case where we had zero-interest rate (�gure 24), it can be observed

that the spread between the price of the Call option and the Put options is not

considerably greater than for the zero-interest case, on the contrary if anything the

di�erence is smaller. Further, the price of the Call option is greater than the price of

the Put options, in the �rst part of the lifetime of the contracts. This will a�ect our

mean value of income positively, since the hedge is long Call and short Put, which

is the opposite to the situation for the zero-interest rate case.

Although our argumentation has been strictly heuristic, it provides us with a

good understanding of why the standard deviation of income for the static hedge
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Figure 25: The price of a Call option with the strike KC = 100 (o) and the price of
K
H

Put options with the strike KP = H2

K
= 90.25 (solid line), plotted as functions of

t, where the spot price S (t) = 94.5∀t. The interest rate is set to 4%.

does not signi�cantly increase with the introduction of a non-zero interest rate.

5.3.1 VaR and C-VaR

Figure 26 displays the standard deviation (top panel), the Value at Risk (Central

panel) and the Conditional Value at Risk (bottom panel) for the di�erent strategies,

as a function of di�erent values of the barrier H. The VaR and the C-VaR calculations

con�rm the result from calculating the standard deviation, i.e. there is no evidence

that any of the strategies are more or less heavy tailed or skewed than the others.

5.4 Summary, Down-and-out Call option

When studying the results of the standard deviation for the di�erent strategies, for

non-zero interest rate and transaction costs in �gure 22, it can readily be seen that

the Static hedge has a lower standard deviation than the Dynamic hedges for H > 88.

In this region, the mean value of income (see �gure 21) of the Static hedge is also

higher than for the Dynamic hedges. Thus we have found that for H > 88, the
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Figure 26: The standard deviation (top panel), the Value at Risk (Central panel)
and the Conditional Value at Risk (bottom panel) of the 1000 realizations of income
for di�erent strategies, as functions of the di�erent values of the barrier H. The
continuously compounded interest rate r is set to 4% and the transaction cost is set
to 0.5%. The dashed line is the no-hedging strategy, the dashed-dotted line is the
Delta-hedging strategy, the solid line is the Delta-Gamma hedging strategy and the
dotted line is the Static-hedging strategy. The di�erences in the di�erent properties
between the hedging strategies are enhanced in the inset of each panel.
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Static hedge out performance the Dynamic hedges, since it has a lower standard

deviation and higher mean value of income. As H gets smaller, the Delta-Gamma

hedge performs almost as good, or as good as the Static-hedge. However, in this

region the Barrier option behaves more or less as a Vanilla Call option, which is

not the subject of investigation in this thesis. The mean value of income for the

No-hedging strategy is as high as for the Static hedge. However, the high standard

deviation of the No-hedging strategy makes it far less attractive compared to the

Static hedge.

5.5 Up-and-out Call option

In this subsection we will use a lot of the knowledge gained in the previous sub-

sections, and keep the discussion brief. Especially, we proceed directly to our main

results, when we have a non-zero interest rate and non-zero transaction costs. In

this subsection, we have calculated the results for the size of the barrier taking all

the integer values from H = 101 to H = 161. For H > 161, the Barrier option will

more or less behave as a Vanilla Call option.

5.5.1 Mean value of income

The mean value of income for the di�erent strategies is on display in �gure 27. We

immediately notice the catastrophic behaviour of the Delta-Gamma strategy (notice

the scale). The background of this extremely poor performance is that in order for

the Delta-Gamma strategy to be able to replicate the Up-and-out Call option, it is

forced to take enormous positions in the Stock and in the Call option (see analogous

case in the results of the Down-and-out Call option, sub subsection 5.2.1). It is the

transaction costs from taking these enormous positions that results in the Failure of

the Delta-Gamma strategy.

Next the behaviour of the remaining three strategies is considered. To do so,

the mean value of income is plotted in di�erent scales in �gure 28. If we neglect

the behaviour at H = 101, we notice that the mean value for the static hedge is
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Figure 27: The mean value of the 1000 realizations of income for the Up-and-out
Call option, plotted for the di�erent strategies as functions of the di�erent values
of the barrier H. The continuously compounded interest rate r is set to 4% and
the transaction cost is set to 0.5%. The dashed line is the no-hedging strategy, the
dashed-dotted line is the Delta-hedging strategy, the solid line is the Delta-Gamma
hedging strategy and the dotted line is the Static-hedging strategy. The range of the
y-axis is shorter in the inset.
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Figure 28: The mean value of the 1000 realizations of income for the Up-and-out
Call option, plotted for the di�erent strategies as functions of the di�erent values
of the barrier H. The continuously compounded interest rate r is set to 4% and
the transaction cost is set to 0.5%. The dashed line is the no-hedging strategy, the
dashed-dotted line is the Delta-hedging strategy, the solid line is the Delta-Gamma
hedging strategy and the dotted line is the Static-hedging strategy. The range of the
y-axis is shorter in the inset.

considerably higher than the mean value for the Delta hedge, for H > 102, and

higher for H = 102. The superior performance of the static hedge over the Delta

hedge is mainly explained by the transaction costs for re-balancing the portfolio every

day in the Delta hedge. The mean value for the Static hedge is slightly higher than

the mean value for the No-hedging strategy for H > 115, and lower for H < 115.

It can be noticed that for H > 140, the mean value for the di�erent strategies are

more or less constant. This is because when the barrier is set this high, provided the

speci�c values of the parameters (including the time to maturity), it is unlikely that

the barrier will be hit before expiration. Therefore the Barrier option will behave as

a regular option, and is thus more or less independent on the size of the barrier.
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Figure 29: The standard deviation of the 1000 realizations of income for the Up-and-
out Call option, plotted for the di�erent strategies as functions of the di�erent values
of the barrier H. The continuously compounded interest rate r is set to 4% and the
transaction cost is set to 0.5%. The dashed line is the no-hedging strategy, the
dashed-dotted line is the Delta-hedging strategy, the solid line is the Delta-Gamma
hedging strategy and the dotted line is the Static-hedging strategy. In the inset, the
y-axis is in logarithmic scale.

5.5.2 Standard deviation of income

In �gure 29, the standard deviations of income for the di�erent hedging strategies are

on display. To be able to capture the behaviour over the entire range of results, the

y-axis is plotted in logarithmic scale in the inset. Again the catastrophic behaviour of

the Delta-Gamma strategy is observed. And again the Failure of the Delta-Gamma

hedge is due to the enormous transaction costs that arise when taking huge positions

in the Stock and in the Call option.

In the �gure, it can be observed that the performance of the Delta-Gamma hedge

is stronger than that of the Delta hedge for H > 135, and in parity with that of the

Delta hedge for H < 135. Next the performance of the remaining hedging strategies

is evaluated. The results can be found in �gure 30. For H > 101, the standard

deviation for the Static hedge is considerably less than the standard deviation of the
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Figure 30: The standard deviation of the 1000 realizations of income for the Up-and-
out Call option, plotted for the di�erent strategies as functions of the di�erent values
of the barrier H. The continuously compounded interest rate r is set to 4% and the
transaction cost is set to 0.5%. The dashed line is the no-hedging strategy, the
dashed-dotted line is the Delta-hedging strategy, the solid line is the Delta-Gamma
hedging strategy and the dotted line is the Static-hedging strategy. The di�erences
in the standard deviations between the hedging strategies are enhanced in the inset.

other two strategies.

Next we turn to the surprising behaviour of both the mean values in �gure 28 and

the standard deviations in �gure 30, when H = 101. For the no-hedging strategy,

we have zero standard deviation and the mean value equal to one. This implies

that we have an arbitrage opportunity, since we can make a non-zero income, with

zero risk. The result is however misleading. The mean value is calculated using the

adjusted income, that is, after we take the mean value and standard deviation, we

divide the results with the price of the option when the contract is issued at t = 0

(which is deterministic and identical for all realizations). Thus our result implies

that the realized income (before being adjusted) is equal to the price of the Barrier

option at t = 0, for all realization. This is simply because either the barrier has been

hit or the contract has �nished out of the money, for all realizations. This however

does not mean that the Barrier option is risk-free, on the contrary, it is a contract
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that is very di�cult to hedge. However, the probability that the terminal payo� will

be non-zero is very low (the Stock must �nish above 100 and below 101, without the

Stock price being higher our equal to 101 during the lifetime of the contract). Thus

we have a situation where we are trying to �nd out the probability that a highly

unlikely event occurs. The 1000 realizations, simply does not capture this feature

and therefore the results when H = 101 will be dismissed, and put a question mark

on the reliability of the results for where the barrier is close to the spot price, say

when H < 103.

5.5.3 Value at Risk, Conditional value at Risk

Figure 31 displays the standard deviation (top panel), the VaR (Central panel) and

the C-VaR for the di�erent strategies, as functions of the di�erent values of the

barrier H. The value at Risk and the Conditional Value at risk con�rms the results

obtained from the analysis of the standard deviation of the hedging errors and no

strange tail behavior is observed.

5.6 Summary, Up-and-out Call option

We start by comparing the level of the standard deviations between the Up-and-out

Call option (�gure 29 and �gure 30) and the Down-and-out Call option (�gure 22),

it can generally be observed that the risk level of the Up-and-out Call options is

considerably higher than that of the Down-and-out Call options. The explanation

for this is that the Up-and-out Call options are knocked out in the money, whereas

the Down-and-out Call options dies out of the money, which makes the Up-and-out

Call options much more di�cult to hedge.

For the Up-and-out Call option, we have already observed that the Delta-Gamma

hedge is extremely inappropriate to use as a hedge due to the non-linearity in the

payo� and the large positions in the underlying that this implies for this strategy.
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Figure 31: The standard deviation (top panel), the Value at Risk (Central panel)
and the Conditional Value at Risk (bottom panel) of the 1000 realizations of income
for the di�erent strategies, plotted as functions of the di�erent values of the barrier
H. The continuously compounded interest rate r is set to 4% and the transaction
cost is set to 0.5%. The dashed line is the no-hedging strategy, the dashed-dotted
line is the Delta-hedging strategy, the solid line is the Delta-Gamma hedging strategy
and the dotted line is the Static-hedging strategy. The di�erences in the di�erent
properties between the hedging strategies are enhanced in the inset of each panel.
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6 Conclusions

When analysing the result, we found that the Up-and-out Call options in general are

more risky and harder to hedge than the Down-and-out Call option.

For both the Down-and-out Call option and the Up-and-out Call option, the

options were found to behave as Vanilla options, when the barrier is set far from the

spot price. This is natural, since the probabilities of hitting the barriers during the

lifetime of the options are low.

For the Down-and-out Call options, we found that the Static-hedge carried less

risk (smaller standard deviation and larger Value at Risk and Conditional Value at

Risk) and larger mean value than the Dynamic-hedging strategies, for all signi�cant

values of the barrier. That is, the Static hedge was found to be the superior hedge.

Both the Static hedge and the Delta-hedge was found to reduce the risk substantially,

compared to the No-hedging strategy.

For the Up-and-out Call option, we found that when the barrier is close to the

spot price, 1000 realizations is not enough to obtain credible results. Outside this

region, the Delta-Gamma hedge was found to have a catastrophic behaviour.

The Static hedge was again found to out-perform the Delta-hedge (and of course

the Delta-Gamma hedge), both in the sense of lower risk, and higher mean value.

The Static hedge was also found to considerably reduce the risk compared to the

No-hedging strategy whilst keeping the mean value of income on the same level as

the No-hedging strategy.

Altogether we have found that the Static hedge, under our assumptions, is very

well suited to tackle the di�culties associated with hedging Barrier contracts. On

the contrary, the Dynamic-strategies were found to be ill-suited for hedging Barrier

options.

Further extension of this subject may include;

• Stochastic interest rate and volatility.

• Considering the behaviour for Barrier options that are initially in-the-money.

• Larger number of realizations of the Monte Carlo simulation.
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• Calculate the performance on actual option prices (instead of Monte-Carlo

simulation).

• Active Dynamic hedging, using di�erent Vanilla options during the life-time of

the Barrier option.

• Dynamic hedge re-balanced with a higher or lower frequency.

A Appendix

A.1 The Prices of the Down-and-out- and the Up-and-out

Call options

The price of a Down-and-out Call option DOC (t, s) when H < K and t < T , is

given by:

DOC (t, s) = sN [x1] − exp (−r (T − t)) KN
[
x1 − σ

√
(T − t)

]
−

−s

(
H

s

)2(µ+1)

N [y1] + exp (−r (T − t)) K

(
H

s

)2µ

N
[
y1 − σ

√
(T − t)

]
(66)

where

µ =
r − 1

2
σ2

σ2
(67)

x1 =
1

σ
√

(T − t)

(
ln

( s

K

)
+

(
r +

1

2
σ2

)
(T − t)

)
(68)

x2 =
1

σ
√

(T − t)

(
ln

( s

H

)
+

(
r +

1

2
σ2

)
(T − t)

)
(69)

y1 =
1

σ
√

(T − t)

(
ln

(
H2

sK

)
+

(
r +

1

2
σ2

)
(T − t)

)
(70)
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y2 =
1

σ
√

(T − t)

(
ln

(
H

s

)
+

(
r +

1

2
σ2

)
(T − t)

)
(71)

The price of an Up-and-out Call option when t < T , is given by:

UOC (t, s) = sN [x1] − exp (−r (T − t)) KN
[
x1 − σ

√
(T − t)

]
−

−sN [x2] + exp (−r (T − t)) KN
[
x2 − σ

√
(T − t)

]
+

+s

(
H

s

)2(µ+1)

N [−y1] − exp (−r (T − t)) K

(
H

s

)2µ

N
[
−y1 + σ

√
(T − t)

]
−

−s

(
H

s

)2(µ+1)

N [−y2] + exp (−r (T − t)) K

(
H

s

)2µ

N
[
−y2 + σ

√
(T − t)

]
(72)
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