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Abstract

This paper use a discrete time microstructure model which considers excess demand

and market liquidity as two unobservable state variables as determinants whether the

market is overvalued or undervalued. The model expresses the variation of conditional

variance of price, were the amplitude of the price changes is dependent on the liquidity of

the market: It is shown that the �ltered process of hidden excess demand and its liquidity

is meaningful to apply in an asset allocation strategy and is e¢ cient in terms of producing

a residual money gain compared to a passive strategy.

vi



Optimal dynamic asset allocation using a non-linear discrete time liquidity driven

microstructure market model and extended Kalman �ltering

I. Introduction

A basic assumption within economics is that demand and supply of a good a¤ect its

price. Excess demand drives the price up and excess supply makes it fall. Goods may also

be �nancial products.

The current most acceptable theorem of price movements in �nancial markets is that

they are random walks with predictive errors close to white noise and this is due to the

Markov properties of �nancial time series. Hence, much of �nancial theory is based on this

assumption.

However, an electroni�cation of market places combined with increased collaboration

between the �nancial industry and the academic world, have changed the �nancial model

framework in the last twenty years or so. The theories have been extended to look closer

on the departure from a random walk and many researchers and practitioners, by mod-

elling the prices underlying behavior through market microstructure analysis (c.f. (19)),

have found evidence supporting a seemingly natural and frequent non-random behavior in

di¤erent �nancial markets (c.f. (15)).

The quest for answers and the desire to technically explore those "ine¢ ciencies" have

introduced more sophisticated methods into the �nancial markets and scholars from other

disciplines, mainly mathematicians and physicists, have therefore shown an increasing

interest in research on �nancial dynamics. Lacking traditional economic schooling, they

have contributed with fresh input on how to model �nancial time series that is not limited

by the previous contributions in this �eld.

In several articles and conference proceedings, (8), (20), (21), (22), (23), and (24) the

physicists Mitsunori Iino, Tohru Ozaki, and Hui Peng worked with deriving an alternative

way to look at a price process. Their work was inspired by Jean-Philippe Bouchaud and
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Rama Cont�s model of excess demand (2), which in turn used some insights made by Albert

Kyle (13). They assumes there exists a di¤usion of information between informed markets

participants and less informed participants which causes trends in �nancial markets that

may exists at di¤erent degrees.

If there exists an underlying demand and supply, it should be possible to model its

dynamics in relation to the whole price movement. One could use techniques developed

for the control theory community to determine its current "clean" state in every sample.

If the assumption is not valid, the extracted process�s predictive power should resemble a

random walk process, with residuals close to white noise.

As the results presented by Peng et. al. are con�icting with a traditional viewpoint

of an e¢ cient market it is interesting to apply their model on di¤erent data, in order to

achieve similar results. Hence, the purpose of this paper is to replicate studies made by

Peng and Ozaki (21), (22). That is, to �nd a hidden process of excess demand in �nancial

price data that is meaningful to use in a dynamic asset allocation control strategy.

This paper will mainly follow Peng et. al.�s article in The European Physical Journal

B (22), in which a discrete time version of their stochastic volatility model is presented.

The main purpose, is to a greater extent explaining how the model is derived preceded

by explaining the underlying theory and cause of action. Another purpose, is to present

alternatives to some parts of the analyzed model, as well as, to test and analyze the model

with a di¤erent data set.
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II. Theoretical framework

2.1 Dynamic systems

A system is de�ned as a process in which an input signal is converted into an out-

put signal. Many existing physical processes, such as the movement of a vehicle, can be

approximately modelled by a linear control system for which an external in�uence, i.e. an

input signal variable u, controls the output signal variable y of the system.1

A linear control system is a system were two exogenous inputs simultaneously a¤ect

the system but do not interact within the system. That is, input u1 produces output y1

and input u2 produces output y2: Such system is therefore characterized by the principle

of supposition which is that input u1 + u2 produces the output y1 + y2: Systems that not

have these feature are called nonlinear.

The interaction of inputs with the internal components of a system is constituted

by the state variable x. The state of a system can be described as an aggregation of the

most relevant information that, both necessarily and su¢ ciently, describing the dynamics

of it; i.e. vector x contains all the information about the present state of the system. Its

complexity is determined by the dimension of the state vector. Therefore, from a state

variable it is possible to determine the future dynamics of a system, given that all future

inputs are known. The dynamics are either represented as a di¤erence equation (in discrete

time) or as a di¤erential equation (in continuos time).

In a model, the dynamics are either explicitly known or not. A known dynamic is

often referred to as a "white box model" which contains an explicit description of the inner

workings of the system. An unknown, is referred to as a "black box model" and is one in

which we can observe input and output but not the internal structure of the system.

Often we cannot measure x directly. Instead, we observe yk at discrete time steps,

tk, which is a function of the unobservable xk (subscript k is a shorthand for notation

tk). The purpose of the state analysis is therefore to infer the relevant properties of the

1Engineers and economists tend to use the term signal di¤erently. Engineers look at it as a transmitter,
while economists looks at it as a receiver, which observes a signal and then uses it to estimate some other
variable. (4)
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state xk from a knowledge of the observations y1 : : : yn: This analysis is mainly done by

computational algorithms which are based on recursion; in which a function calls itself.

In practise, a common way of conducting such analysis is to describe the input-output

relation in a so called state space form. In the linear dynamic case, were the signals are

assumed related by a linear system, the state space model in discrete time of the control

system is constituted by two linear di¤erence equations,

xk+1 = Axk +Buk =: State Transition Equation,

yk = Cxk +Duk =: Observation Equation. (1)

A, B, C, and D are all matrices and determines the relationship between the state,

input, and output variables, i.e. the internal structure or dynamics of the system. The �rst

equation is called the State Transition Equation, System Equation, or State Equation and

describes the behavior of the state variable, x; in time. Using an Itô interpretation, this

is a (�rst order) Markov process. The second equation is called the Observation Equation

and describes how the state variable is mapped into the observed variables y: The two

equations constitutes a state space model.

De�nition 1 fykg has a state-space representation if there exists a state-space model for

fykg given by the State Transition Equation and the Observation Equation.

Amajor advantage of representing a dynamic system in state space form is its Markov

properties. The rationale for this is the following; a system is said to be completely state

observable or full-state observable if every state xk can be determined or reconstructed from

the observation of yk over a �nite time interval. Through the standard Markov assumption

(i.e. the probability of the next state is conditioned on only the current state, and action

is independent of the past) the last observation (state) summarizes the information of all

previous states and thus reveal the true state of the world. This property is also rational

in the sense of model reduction. Therefore, a state is analogous to principal component in

multivariate statistics.(17)
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Another major advantages with the state space form is that it allows for unobserved

variables to be incorporated and estimated along with an observable model. Estimation

within a state space representation has therefore two aspects:

� measuring the underlying unobserved state which summarizes a process,

� estimation of unknown parameters (maximum likelihood).

2.1.1 Noise is introduced. To be able to control a system, we need the true current

state of the system, i.e. the clean variable x. Without any type of noise in a system, control

is fairly easy. However, a common problem is when we measure y, the observation is often

corrupted by several disturbances. Therefore, it is more realistic to introduce noise terms

in our state space equation which describes the nature of this disturbances and this leads

us to a stochastic state-space model. The linear stochastic state space model in discrete

time is given by the equations:

xk+1 = Axk +Buk + wk;

yk = Cxk +Duk + nk; (2)

where wk is called the system or process noise which drives the system and nk represents

the observation or measure noise. In order to identify the unobservable state vector x;

given the knowledge that there is noise, we need a method of obtaining an estimator that

gives an accurate estimate for the true state out of the noisy observation data.

In control theory, a so called �lter is usually used to remove noise from a signal which

is corrupted by the measuring process itself. Given our model (2), �ltering is de�ned as:

De�nition 2 Filtering applies to the problem of estimating the state of a discrete time

controlled process that is represented by a linear stochastic di¤erence equation, xk+1 =

Axk + Buk + wk with measurement yk that is yk = Cxk + Duk + nk. In a state space

representation, �ltering is the same as estimating a clean state vector.

Intuitively, we need an estimator that is e¢ cient; that has an expected value equal

to the state and which has the smallest possible error variance.
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2.1.1.1 Kalman �lter for linear Gaussian problems. Rudolph E. Kalman

introduced his version of such e¢ cient �lter for the control theory community in 1960 (11).

He proposed a recursive algorithm which makes optimal use of observable variables with

Gaussian errors, y; to continuously update the best current state estimate of unobservable,

but correlated variable, x. This was possible as its complete distribution is characterized

by its mean and variance.

Hence, the Kalman algorithm assumes that, at any time k; the noise terms - process

and observation - are independent zero-mean (i.e. does not change the average intensity

level) white Gaussian noise processes with certain covariance properties. If w = 
; and

n = �; in model (2), these properties could be described as

0@

�

1A =

0@Cov1 Cov12

CovT12 Cov2

1A ;
1 = 
; 2 = �; which are uncorrelated with xk and uk. Noise covariance matrices of Q and

R are de�ned by:

� Process noise covariance, Q � E
�


T

�
and

� measurement noise covariance R � E
�
��T

�
:

Therefore, we can write our model (2) as;

xk+1 = Axk +Buk +
;

yk = Cxk +Duk + �; (3)

with (
) � N (0; Q) as the process noise and (�) � N (0; R) as the measurement noise,

where yk 2 Rm models the noise in the measurement.


 is assumed to have a zero mean and does therefore not in�uence the estimate

of the mean equation xk+1: Neither, we assume observation function to have a control,

hence D drops out of the model. Again, yk is the process measurement vector and C is a

measurement matrix which relates state vector xk to measurement yk.

De�ning x̂�k 2 Rn as our á priori state estimate and x̂k 2 Rn as our á posteriori state

estimate, then estimate errors are expressed as e�k � xk� x̂
�
k ; and ek � xk� x̂k. Associated
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covariance matrices are de�ned as:

S�k = E
��
xk � x̂�k

� �
xk � x̂�k

�T� = E�e�k e�Tk

�
(4)

for the á priori estimate error covariance, and

Sk = E
�
(xk � x̂k) (xk � x̂k)T

�
= E

�
ek eTk

�
(5)

for the á posteriori estimate error covariance.

By creating a linear combination of an á priori estimate with a weighted di¤erence

between the actual measurement yk and a measurement prediction, Cx̂k; we can obtain

the posteriori state estimate.

x̂k = x̂
�
k +K

�
yk � Cx̂�k

�
(6)

We call the di¤erence
�
yk � Cx̂�k

�
the measurement innovation or the measurement

residual, �̂k; and it is our estimate for measurement noise �; with covariance

V̂k = E
�
�̂k �̂Tk

�
; (7)

and is a residual of zero mean. (7) can also be formulated in our state space model as

V̂k = CS
�
k C

T +R: (8)

The matrix K in (6) is called the Kalman gain. It is a blending or gain factor for the

new state estimate, chosen to minimize the á posteriori error covariance Sk: Intuitively,

it is a factor that tells the trustfulness of our prediction. Practically, by substituting

x̂k = x̂
�
k +K

�
yk � Cx̂�k

�
into our de�nition of ek and latter into our á posteriori estimate

error covariance. Hence, it follows that

Sk = E
�
xk � x̂�k +K

�
yk � Cx̂�k

� �
xk � x̂�k +K

�
yk � Cx̂�k

��T� : (9)

7



Our optimization criterion is the sum of the variances of the á posteriori estimation

error, therefore we take the derivative of the trace with respect to K, set it equal to zero

and solve for K: The result of this measurement weighting can be represented as

Kk = AS�k C
T
�
V̂k

��1
=

AS�k C
T

CS�k C
T +R

: (10)

A intuitive way of thinking about K is that when the measurement error covariance

R approaches zero, the observable measurement taken, yk; is trusted more, meanwhile the

predicted one, Cx̂�k ; is trusted less. However, as the á priori estimate error covariance

S�k goes towards zero, the actual measurement, yk; is trusted less while the predicted

measurement, Cx̂�k ; is trusted more. In short, a large K gives the observation lot of

creditability whereas a small K gives the measurement y small credibility when computing

the next x̂k:

Our prediction, the á priori estimate error covariance, can alternatively be formulated

in our state space as

S�k = ASk�1A
T +Q

and a derived version of the á posteriori estimate covariance matrix, see e.g. (6) can

be presented as,

Sk = (I �KC)S�k : (11)

Next step in the �lter operation is to update and correct the measurement. We do

this by updating the state estimate with the measurement yk to obtain á posteriori state

estimate, equation (6), and update the error covariance (11).

2.1.1.2 Kalman Filter equations. Hence, the �lter equations, in the discrete

case, can be summarized in three steps (�ve bullets), predict, weighting, and correction.
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� Time update or prediction of the á priori state ahead, i.e. state estimate of conditional

mean. 
 has zero mean, therefore it is omitted.

x̂k = Ax̂
�
k�1 +Buk�1 (12)

� Project the error covariance, the conditional á priori state covariance ahead.

S�k = ASk�1A
T +Q: (13)

� Measurement weighting by compute the Kalman gain

Kk = AS
�
k C

T
�
CS�k C

T +R
��1

: (14)

� Measurement update, correct the á posteriori estimates with noise measurement of

the process yk. This gives us an á posteriori state estimate x̂k;

x̂k = Ax̂
�
k +K

�
yk � Cx̂�k

�
: (15)

� Update the error covariance to obtain an á posteriori error covariance Sk;

Sk = (I �KC)S�k : (16)

This constitutes the Kalman �lter. It needs initial estimates of x̂k�1 and S
�
k�1 in

order to start, as the process is recursively updated by using previous á posteriori estimate

to propagate the new á priori estimate. The equations assume zero mean errors and that

all errors and noises are normally distributed.

2.1.2 Extended Kalman Filter for nonlinear Gaussian problems. However, if the

model is nonlinear, the Kalman �lter has to be extended through a linearization procedure.

The linearization is necessary in order to analytically propagate the Gaussian random

variable (GRV) representation. The resulting �lter is referred to as the Extended Kalman

Filter (EKF).
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In the basic framework for an EKF we estimate, as previous, a state of a discrete-time

system. However, the system is now represented by a nonlinear dynamic model, f and h;

which are assumed known (i.e. computable). Our nonlinear dynamic system in state space

representation becomes:

xk+1 = f (xk; uk) + wk;

yk = h (xk; z) + nk: (17)

f (xk; uk) is a nonlinear transition matrix, i.e. known system dynamics and h (xk; z) de-

notes a nonlinear measurement matrix, i.e. an observation function. h is nonlinear map

which is parameterized by the known parameter vector z:

To perform the EKF, the nonlinear dynamics are, �rstly, approximated by a �rst

order linearization of the state space representation, using partial derivatives of f and h;

at each time instant around the most recent state estimate. Secondly, the standard Kalman

�lter equations are applied on the linearization. These two steps constitute the EKF.

10



III. Ozaki and Peng�s model

Bouchaud and Cont (2) use a phenomenological approach to describe market dynamics in

a �nancial market by using a simple nonlinear Langevin equation. This approach is often

used in order to describe many physical phenomena. They model �nancial asset price

dynamics by deriving a microstructure model that focuses on the phenomenon of demand

and supply on a time scale where a collective behavior of the market and impact on prices

can be represented by a few stochastic dynamic equations. On this time scale, researchers

have found regularities which are common between markets with di¤erent microstructures,

i.e. where they have found price variations to be strongly non-Gaussian c.f. (15).

Iino and Ozaki (8) and Peng et. al. (22) provide a concise notation for Bouchaud�s

and Cont�s model. Let Pt denote the �nancial asset price at time t. Let �, � 6= 0, denote

the inverse of market depth or market liquidity1, and let us call �+t the demand and �
�
t the

supply. Demand and supply is the instantaneous size of the demand and supply order-�ow

innovation. We now de�ne �t as the excess demand for the �nancial asset at time t (i.e.

the di¤erence between demand and supply), with �t � �+t � ��t . Bouchaud�s and Cont�s

model can then be written as

dPt = ��tdt: (18)

We see that the �nancial asset price process in (18) is driven by the excess demand

and that the magnitude in price changes is determined by the market liquidity, i.e. the

instantaneous excess demand required to move the �nancial asset price by one unit. This

simple model works in accordance with the postulates of the most fundamental of all

economic models, the demand-price model; in an over-valued market, i.e. when �t > 0,

the asset price will tend to be pushed up and in an under-valued market, i.e. when �t < 0,

it will tend to be pushed down. In a market with high liquidity, i.e. when 1
� is low, only

a small price change will be necessary to absorb a given excess demand, and in a market

1Some researchers propose a much wider de�nition of market liquidity, e.g. Fisher Black de�nes a liquid
market as one which is almost in�nitely tight, which is not in�nitely deep and which is resilient enough so
that prices eventially tend towards their underlying value.(13)
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with low liquidity, i.e. when 1
� is high, large price change will be needed to absorb a given

excess demand.

Certainly a simple model, alas �t and � are often immeasurable variables and thus

equation (18) cannot be used for practical modelling in many markets but only as an

intellectual exercise.

Based on this equation, Iino and Ozaki (8) propose a system of stochastic di¤erential

equations where � and �t are treated as unobservable state variables. This made it possible

for the authors to model these two variables in relation to a price process; thus made (18)

useful for practical purposes.

Let Wi;t, i = 1; : : : ; 3, denote mutually independent Wiener-processes, and �1, �2,

�1, �2, 
1, and 
2 denote constant model parameters. The model of Bouchaud and Cont

can then be written as

dPt = �t�tdt+ �tdW1;t;

d�t = (�1 + �1�t)dt+ 
1dW2;t; (19)

d log �t = (�2 + �2 log �t)dt+ 
2dW3;t:

The �rst equation in (19) describes the �nancial asset price process. It is notable

that the conditional expected value and conditional variance of the �nancial asset price

process is given by

Et(dPt) = Et(�t�tdt+ �tdW1;t) = Et(�t�tdt) + Et(�tdW1;t) = �t�tdt;

respectively,

V art(dPt) = Vt(�t�tdt+ �tdW1;t) = Vt(�tdW1;t) = �
2
t :

This tells us that (19) is the same as (18), with a noise added and letting � become time

variant.

12



The second equation model the process of the immeasurable hidden excess demand

variable �t. It is notable that, with the �rst R.H.S. term, Iino and Ozaki have modelled a

mean reversion e¤ect or stationary process around �1:

The third equation in (19) models the dynamics of liquidity, which together with the

�rst line resemble an EGARCH which is a model for heteroscedastic volatility. Its property,

as such, catches asymmetries in �nancial time series, c.f. (25) and (18). Consequently, the

third equation tells the �rst�s its volatility dynamics.

According the authors, model (19) o¤ers a better representation of the internal char-

acteristics of a �nancial price varying process. They �nd that the information o¤ered by

the hidden variables posses better stability than the market trend information obtained

for the mere prediction of a price process.

It is notable that they model an underlying process that directly a¤ects and explains,

the change of a price. This contrasts to a traditional model framework were most �nancial

stochastic processes focus on modelling the price dynamics in itself and its conditional

variance.

3.1 A discrete time microstructure model

However, when Iino and Ozaki tested the model (19) with a local linearization tech-

nique they found that it was very sensitive and computationally heavy, hence inappro-

priate for some practical applications. Therefore, Hui Peng, Tohru Ozaki, and Valerie

Haggan-Ozaki in (21), and (22), used an alternative version which discretize (19) using an

Euler-Maruyama scheme.

Consider a Langevin equation on the form

dx = f(x) + g(x)�(t);

for which the stationary distribution is unknown. Solving such a system often uses time

discretization and numerical solution, where we let the system �nd its "equilibrium" and

reconstruct the stationary distribution from the numerical trajectories.
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When �(t) is assumed to be Gaussian white noise, the Euler-Maruyama scheme can

be used to solve this system. In this scheme, the numerical trajectory is generated by

xn+1 = xn + hf(xn) +
p
hg(xn)�n;

where h is the time step and �n is a discrete Gaussian white noise. (12)

With h = 1, f = A, and g = � in the system (19) and letting the conditional

variance �2t be directly modeled of the price Pt, Peng et. al. obtain the following discrete

time model:

Pk = Pk�1�k�1�k�1 + 
3�k�1�1;k;

�k = �1 + (1 + �1)�k�1 + 
1�2;k; (20)

log �2k = �2 + (1 + �2) log �
2
k�1 + 
2�3;k;

where �i;k 2 N(0; 1), i = 1; : : : ; 3, are independent Gaussian white noise processes.

The authors also add a new constant parameter, 
3; to the discretized system which de-

scribes the relation between Pk, �k�1 and �k�1.

According to Peng et al. the resulting model (20) produces similar results to (19),

while o¤ering more �exibility and stability with a considerable reduction in computational

burden.

In order to estimate the derived discrete time microstructure model using the Kalman

�ltering and maximum likelihood; a state space model of the parameters of the non-

observable state variables has to be built.

To construct a signal equation that ful�lls the observability condition within the

state space theory (as mentioned above), Peng et al. square the �rst equation in (19), and

ignoring the higher order of terms according to rules of Itô calculus, i.e.

(dPt)
2 � (�t�tdt+ �tdW1;t)

2 = (�t�tdt)
2 + 2�t�tdt�tdW1;t + (�tdW1;t)

2;

14



which together with the simpli�ed rules of squares for Itô-calculus, i.e. (dW )2 = dt and

dWdt = (dt)2 = 0, gives us

(dPt)
2 � �2tdt: (21)

A Euler-Maruyama scheme applied to (21) and by taking the logarithms of it, we get

log(Pk+1 � Pk)2 � log �2k: (22)

Hence, Peng et al. regard Pk and log(Pk+1 � Pk)2 as two separable observation

variables and applies (22) to construct their model in state space form which ful�lls the

observability condition.

If � is a vector which includes all the constant parameters in (20), and P 0k denotes

the systems-true, unobservable, asset price at time k, which together with

Xk =

0BBB@
P 0k

�k

log �2k

1CCCA ;A(Xk�1j�) =
0BBBB@

1 �k�1 0

�1
P 0k�1

1 + �1 0

�2
P 0k�1

0 1 + �2

1CCCCA ;


k =

0BBB@

3�k�1�1;k


1�2;k


2�3;k

1CCCA ;

and

E
�

k


T
k

�
=

0BBB@

23�

2
k�1 0 0

0 
21 0

0 0 
22

1CCCA =: Qk;

form the state transition equation of model (20) in state space. This could be condensed

to;

Xk = A(Xk�1j�)Xk�1 +
k; (23)

where 
k 2 N1(01;Qk).
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The observation function for model (20) is in state space formulated as;

Yk =

0@ Pk

log(Pk � Pk�1)2

1A ;C(Xkj�) =
0@ 1 0 0

�
Pk

0 1

1A ;
�k =

0@ �1;k

�2;k

1A ;
with covariance matrix

E
�
�k�

T
k

�
=

0@ �21 0

0 �22

1A =: Rk:

Hence, in a more condensed form, expressed as

Yk = C(Xkj�)Xk + �k; (24)

where �k 2 N2(02;Rk).

If we expand (24) we get

Yk =

0@ Pk

log(Pk � Pk�1)2

1A =

0@ 1 0 0

�
P 0k

0 1

1A
0BBB@

P 0k

�k

log �2k

1CCCA+
0@ �1;k

�2;k

1A ;

i.e.

Pk = P 0k + �1;k; (25)

log(Pt � Pk�1)2 = � + log �2k + �2;k:

Peng et al consider �i;k i = 1; 2, together with � as constants, with the latter as an

adjustment for the bias in the variable transformation stated in (22). The model developed

above is accordingly simpler in its presentation (and function) than the previous model,

thus easier to generalize.
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3.2 Model estimation

Peng et al. use A(X̂kjkj�) and C(X̂kjkj�) to approximate A(Xkj�) and C(Xkj�);

and according the �lter approach, described above, X̂k is calculated through an extended

Kalman �ltering scheme, starting with the prediction.

� X̂kjk�1 is the conditional mean of Xk given Y k�1 = (Y1; : : : ; Yk�1) : It is the matrix

corresponding to our previous mentioned x̂�k in our description of the Kalman �lter.

X̂kjk is our posteriori state estimate at time k; hence X̂k�1jk�1 is the same for k� 1:

X̂kjk�1 = E
n
XkjY k�1

o
= A

�
X̂k�1jk�1j�

�
X̂k�1jk�1: (26)

�̂k is the measurement residual (or innovation) between observation Yk and predicted

Ŷk = C
�
X̂k�1jk�1j�

�
X̂kjk�1;

�̂k = Yk � C
�
X̂k�1jk�1j�

�
X̂kjk�1: (27)

� S�k is the á priori conditional variance of Xk given Y k�1 = (Y1; : : : ; Yk�1) : It project

the error covariance ahead,

S�k = E
��
Xk � X̂kjk�1

��
Xk � X̂kjk�1

�T�
= A

�
X̂k�1jk�1j�

�
Sk�1A

�
X̂k�1jk�1j�

�T
+Qk: (28)

� Then comes the weighting part of the Kalman �lter equations. First we need the

measurement or residual á posteriori covariance V̂;

V̂ = E
n
�̂k �̂Tk

o
= C

�
X̂k�1jk�1j�

�
S�k C

�
X̂k�1jk�1j�

�T
+Rk; (29)

to be used when we doing measurement weighting by compute the Kalman gain, Kk;

Kk = S
�
k C

�
X̂k�1jk�1j�

�T
V̂�1: (30)
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� The measurement update or correction �rst starts with the update of conditional

mean. Peng et al. uses following equation to update the state estimation with

measurement Y k;

X̂kjk = E
n
XkjY k

o
= X̂kjk�1 +Kk�̂k: (31)

� The last part, the update of the á posteriori state error conditional covariance Sk;

Sk = E
��
Xk � X̂kjk

��
Xk � X̂kjk

�T�
=

h
I �KkC

�
X̂k�1jk�1j�

�i
S�k : (32)

3.2.1 Parameter estimation. In order to determine the parameters � and the

initial state Xkjk�1 = E fXkjYk�1; : : : ; Y1g in the model, Peng et al. minimizing a log-

likelihood function derived from equation (27).

Consider the probability density function for the normal distribution with mean �

and standard deviation �,

f (x;�; �) =
1

�
p
2�
e�(x��)

2=2�2 : (33)

Assume �k is two dimensional and normally distributed with covariance matrix V̂:

The conditional distribution for �k; (33) can then be written as

Pr (�kjYk�1; : : : ; Y1;�) =
1

2�

r���V̂k���e
�( 12�

T
k V̂

�1
k �k): (34)

18



Taking the (�2) log of the expression (34), a log likelihood model is obtained, where

N is the number of data-points;

(�2) log Pr (Yk�1; : : : ; Y1j�)

=
NX
k=1

(�2) log Pr (YkjYk�1; : : : ; Y1;�)

=

NX
k=1

(�2) log Pr (�kjYk�1; : : : ; Y1;�)

=
NX
k=1

n
log
���V̂k���+ �̂k (�)Tk V̂k (�)�1 �̂k (�)o+ 2N log 2�: (35)

To obtain the optimal parameters, ��; from the estimation of innovations and its

covariance, can be done by minimizing (35) as,

�� = argmin
�

NX
k=1

n
log
���V̂k (�)���+ �̂k (�)Tk V̂k (�)�1 �̂k (�)o+ 2N log 2�: (36)

The initial conditions X0j0 and V0 and the system observation noise variance Rk

are also regarded as parameters by Peng et. al., to be estimated and are included in the

parameter vector �:
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IV. Numerical study

4.1 Introduction

To test the validity of the derived process of excess demand and the accompanying

proposed model, a numerical study was undertaken. The �nancial time series chosen,

were the foreign exchange rate of the Danish and the Swedish Krona, both against the

US Dollar during the periods 13/09/1989 - 13/05/1997 (2000 price observations), and

01/06/2005 - 31/03/2005 (1000 price observations). The exchange rate data was obtained

from a Bloomberg Professional terminal. The observation data analyzed was calculated

as Pk = 100 (log(FXk)) ; where FXk is the foreign exchange daily closing spot price of

DKK/USD and SEK/USD, i.e. at discrete time steps k. The log transformation was

applied to stabilize the variance, c.f. (1).

We divide the two Pk series into two series each, in which the �rst part constitute

the training part which is used to estimate the parameters in (36), and the threshold

parameters for the strategy evaluation below, see equation (42). These trained parameters

are then used to retrieve the �ltered excess demand variable and its liquidity, which are

then evaluated in the asset allocation model (43), with the trained threshold parameters.

To get a picture of the model�s performance, the strategy is evaluated against a

passive portfolio, were the model�s trained parameters are used in the second, testing, part

of the data, see �gures 1, and 2.

As can be seen, the two chosen series di¤ers in characteristics. The DKK/USD series

constitutes of several local trends whereas the SEK/USD series constitutes of a major

trend. It is interesting to study these two series as both have recognizable trends but di¤er

in type. This could answer the question if a predetermined trend pattern are decisive for

the proposed model�s performance.

4.2 Analyzing the �rst di¤erences in the series

To determine possible structures in the data, we take the �rst di¤erence and examine

the innovations. We are looking for a white noise process to explain our return residuals

and determine if such is present. White noise is de�ned by:
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Figure 3 First di¤erence in the Pk;DKK data

De�nition 3 For a given time series fPkg determine a general function f such that f"tg

de�ned by f (fPkg) = "t is a strict white noise; a sequence of independent random variables.

I.e. white noise is a sequence of uncorrelated, identical distributed random variables.

In discrete time white noise is sometimes referred to as a completely uncorrelated process

or a pure random process.(17)

The white noise process is important to identify as it gives validity to our model

(that is Markov). By visual inspection of �gures 3, and 4, we can see that the innova-

tions resemble white noise very much, with a slight tendency of volatility clustering or

volatility pooling within it. This is easier to see in the SEK/USD series as it less dense

in observation than the DKK/USD series. The clustering e¤ect is due to heteroscedastic

innovations that possess "autocorrelation" in which large changes tend to follow each other

and small changes vice versa. In other words, the current level of volatility tends to be

positively correlated with its level during the immediately preceding periods. This means

that previous period�s disturbances can be a part of constructing a volatility forecast in

the next period.
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Figure 4 First di¤erence in the Pk;SEK data

The clustering e¤ect is commonly known in �nancial time series data and its expla-

nation lies much in the series�leptokurtic distribution, also known as a fat tail distribution.

To determine the existence of such a distribution, we plot the two series in a density plot

and try to �t a normal, as well as an alternative, distribution to them.

From �gure 5, we can see that the di¤erentiated Pk;DKK series has a slightly skewed

normal mean, which is �0:00888715 with kurtosis 5:1946 (of normal 3) and skewness of

0:0356. We might suspect the distribution is not normal. De�ning N as number of observa-

tions, S as skewness, andK as kurtosis the Jarque-Bera (JB) test
�
JB = N

6

�
S2 + (K�3)2

4

��
;

and the Lilliefors test (Lillie) for goodness-of-�t to a normal distribution, reject the null

hypothesis of a normal distribution. After �tting the data to a t-distribution instead, we

conclude the di¤erences in the DKK/USD data is better represented by a t-distribution

with mean �0:0125172, variance 0:490076 and shape parameter of 4:25215 degree of free-

dom.

Looking at the di¤erentiated Pk;SEK series, �gure 6 has a slightly skewed normal

mean of �0:0431931 with kurtosis 3:5776 (of normal 3), and skewness of 0:1529. Variance

is 0:452162. We could suspect this better represent a normal distribution than the Pk;DKK
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Figure 7 Normality Plot of the di¤erenced Pk;DKK series

series but the JB and Lillie test reject our null hypotheses again. After �tting the data to

a t-distribution instead we conclude the di¤erences in the SEK/USD data is better repre-

sented by a t-distribution with mean �0:0508788, variance 0:604005 and shape parameter

of 10:1697 degree of freedom.

An alternative way of looking at the studied distributions is to use the Probability-

Probability plots (also known as P-P plots or its normal variant, Norm-Plots). The P-P

plot is used to see if the given data follows some speci�ed distribution. Given a normal

distribution, the ordered residuals should form a linear relation. Deviation from the linear

cumulative distribution function can be explained by an another probability density func-

tion. Visually, the plots 7, and 8 also conclude what was analyzed above in the probability

density function. We �nd the leptokurtic characteristics of excess kurtosis and (slight) fat

tails is better explained by a t-distribution than a Gaussian.

As a stochastic process may exhibit degrees of serial correlation from an observation

to the next, i.e. be able to use its volatility structure to predict future events, it is useful

to determine the existence of such structure in the studied series, to conclude if it is white

noise data or not. The Box-Pierce/Ljung-Box Q-statistics for residual serial correlation up
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Figure 8 Normality Plot of the di¤erenced Pk;SEK series

to a speci�ed order (see (16) for details and their p-values (14)) are often used as a tool to

determine this.

If the �k is the k:th autocorrelation and N is the number of observations, the Q-

statistics at lag k is a test statistic for the null hypothesis that there is no autocorrelation

up to order k: It is computed as: QLB = N(N +2)
PK
k=1

�
�2k
N�k

�
: Since the autocorrelated

values can also be autocorrelated, the Q test should be used a preliminary identi�cation

tool but provide an indication of the broad correlation structure within the series.(3)

In �gure 9, we can see the sample autocorrelation function (ACF) with con�dence

bounds of 95% for the Pk;DKK series. There are tendencies for serial correlation on lag 6 as

that lag is lying outside the lower con�dence bound, as indicated in the �gure. Using the

(E-Views) produced Q-statistics probability on 95% con�dence level (see table below), it

cannot reject the null hypothesis of no serial correlation up to lag 6 on the 5% con�dence

level. Therefore, it is concluded that the �rst di¤erence of the Pk;DKK series is white noise.
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Figure 9 ACF for the di¤erenced Pk;DKK series, with con�dence bounds.

DKK Lag 1 2 3 4 5 6 7 8 9

Q-Stat 0:1979 0:3351 0:3438 0:3485 2:9759 12:331 12:436 12:511 12:572

Prob 0:656 0:846 0:952 0:986 0:704 0:055 0:087 0:13 0:183

10 11 12 13 14 15 16 17 18 19 20

13:185 14:587 14:589 15:037 17:82 17:824 18:524 20:843 22:041 22:469 22:469

0:214 0:202 0:265 0:305 0:215 0:272 0:294 0:233 0:23 0:262 0:316

In �gure 10, we can see the same function as above for the Pk;SEK series and the function

value is lying inside the upper and lower standard deviation con�dence bounds, based

on the assumption that all autocorrelations are zero beyond lag zero. Therefore, it is

concluded that the �rst di¤erence of the Pk;SEK series also is white noise.
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Figure 10 ACF for the di¤erenced Pk;SEK series, with con�dence bounds.

SEK Lag 1 2 3 4 5 6 7 8 9

Q-Stat 0:7368 1:7415 1:7813 3:7506 4:0114 4:0914 5:2403 9:1371 9:4002

Prob 0:391 0:419 0:619 0:441 0:548 0:664 0:631 0:331 0:401

10 11 12 13 14 15 16 17 18 19 20

9:5966 12:29 12:496 12:58 14:591 14:608 15:817 17:573 17:579 17:617 17:673

0:477 0:342 0:407 0:481 0:407 0:48 0:466 0:416 0:484 0:548 0:609

In both series we can see a pattern of volatility clustering or heteroscedastisity which

explains the excess kurtosis or fat tail e¤ect displayed; which is typically observed in

�nancial data. We cannot reject the null hypotheses of zero autocorrelation, hence we can

conclude both series are good for our modelling purposes.

4.3 Analyzing the performance of the proposed model

We now divide the two series into their two sub-parts, training data and testing data.

In order to deal with zero logarithms in our observation equationYk =
�
Pk log(Pk � Pk�1)2

�T
;

we use an approximation suggested by Fuller (5) and also used by Peng et al. Assume �2p
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Figure 11 The estimated �̂kjk for our Pk;DKK training data.

is the sample variance of Pk � Pk�1 and � is a constant, (Peng et al. (22), (24) set this to

0.2) the following proposed model is used:

log (Pk � Pk�1)2 � log
h
(Pk � Pk�1)2 + ��2p

i
�

��2p

(Pk � Pk�1)2 + ��2p
: (37)

As mentioned, we are using the �rst half of the data to train our model. In order

to optimize the model�s parameters, Matlab�s fminsearch function is used to minimize our

function (36).

Inspecting our estimated excess demand �̂kjk for the Pk;DKK and the Pk;SEK series

(�gures 11, and 12) we can see the mean revering process of �̂kjk approximately around

zero explaining when the asset is considered under or overvalued. Its dynamics are better

explained by a smooth process than purely a random series.

We also plot the process of the estimated liquidity parameters �̂kjk: Together with

the estimated �̂kjk the model express the variation of conditional variance of price by the

change of market liquidity. Therefore, the liquidity parameter is equally important for the

model to work.

29



0 50 100 150 200 250 300 350 400 450 500
­0.1

­0.08

­0.06

­0.04

­0.02

0

0.02

0.04

0.06

0.08

0.1

Data Points

Le
ve

l o
f u

nd
er

 o
r o

ve
r v

al
ua

tio
n

Excess Demand State Variable, SEK Training Data

Figure 12 The estimated �̂kjk for our Pk;SEK training data.

The patterns di¤ers between the series, re�ecting the variation in the unobservable

market liquidity. The high level of the �rst data points in the �̂k;SEK series is due to which

start value we are using. In this case we let it stay in for illustrative purpose and it does

not a¤ect our study too much - we can see the smoothing e¤ect of the Fuller approximation

as the calculation base of the conditional variance increases.
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Figure 13 The estimated �̂kjk for our Pk;DKK training data.
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Figure 14 The estimated �̂kjk for our Pk;SEK training data.

31



Applying fminsearch on formula (36), we obtain following estimated parameters and

initial conditions for the training part:

DKK training Parameters26666666664

�1 �0:00016627 
1 0:06365

�2 �0:0018725 
2 0:081369

�1 �0:044753 
3 0:89422

�2 �0:008597 � �1:0121

"1 0:0010512 "2 1:2653

37777777775
; (38)

V0 =

0BBB@
2:8457e� 009 0 0

0 1:955e� 009 0

0 0 6:0482e� 010

1CCCA ;

X0j0 =

0BBB@
204:01

�0:0002164

�0:05687

1CCCA : (39)

Contrary to Peng et al. (22), this study have chosen not to estimate P0: Instead we

are using the �rst value in the Pk training series, for the testing part we are using the

last Pk in the training series. This is because it lets us estimate fewer parameters. For

the Pk;DKK training series the start value is P0 = 204:01; and for the Pk;SEK series it is
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233:04; as seen in the X0j0 matrices (39), and (41).

SEK Training Parameters26666666664

�1 8:4481e� 005 
1 0:067794

�2 0:0064737 
2 0:10046

�1 �0:10214 
3 1:1392

�2 �0:00085975 � �0:42383

"1 0:00023767 "2 1:2894

37777777775
; (40)

V0 =

0BBB@
9:9553e� 010 0 0

0 1:354e� 009 0

0 0 1:2407e� 009

1CCCA ;

X0j0 =

0BBB@
233:04

�0:00032235

0:33192

1CCCA : (41)

Although this reduction of parameters, it was found hard to �nd good initial values

for the estimation process. As there are 15 parameters to be estimated, there are reasons

to assume there exists numerous of local maximum (minimum) within which, the model

converges. Also, that the model is sensitive to our starting values, as it within certain

ranges did not converge at all. Consequently, the model is very sensitive and as the

numerical study�s performance is much due to the calibration of the initial guesses, we

would expect its performance to be di¤erent when using other start values than presented

above.

4.3.1 Dynamic Asset allocation strategy in-sample. To see whether the proposed

model, using excess demand, is valid or not, we develop, like Peng et al. an asset allocation

strategy for illustrative and testing purposes. We want to determine on which levels of the

estimated �̂kjk we want to buy or sell, i.e. by using thresholds. We determine a strategy
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which have the following properties;

�(�̂kjk) = if

8>>>>>>>>><>>>>>>>>>:

�̂kjk > �1; keep Asset 1 100%

�2 < �̂kjk � �1; keep Asset 1 80%, Asset 2 20%

��3 < �̂kjk � �2; keep Asset 1 50%, Asset 2 50%

��4 < �̂kjk � �3; keep Asset 1 20%, Asset 2 80%

�̂kjk � ��4;3; keep Asset 2 100%

(42)

Intuitively, this means that if the estimated �̂kjk are within certain levels, it tells us to

keep a certain proportion of our assets 1 and 2: The studied assets are DKK/USD, and

SEK/USD. Our initial investment, A0; is 100 USD.

In order to optimize the � i; i = 1; : : : ; 4 threshold parameters, we are using a asset

valuation function proposed by Peng et al. (22), (24). In this, initial asset A0, Ak assets at

time k, and � is a weighting factor a model can be built where the �rst part describing the

requirements for �nal assets, and a second part representing �uctuations in asset during

the test period,

J (�) = �AN (�) +
�

N

NX
k=1

�
Ak (�)�

�
A0 +

k

N
(AN (�)�A0)

��2
: (43)

Thus, the function represent that it is not only the largest �nal portfolio value that is

considered but also the robustness of the allocation strategy. This is because a trader may

make bad decisions based of the strategy.(24)

Function (43) is optimized with respect to following constraint:

�� = argmin
�
J (�) ; s:t:�1 > 0; �2 > 0; �3 > 0; �4 > 0; �1 > �2; �3 < �4: (44)

However, this optimization problem can be rewritten as a standard minimization problem

with constraints �� = argmin
�
J (�) s.t. �min � � � �max; A� � �b A =

0@�1 1 0 0

0 0 1 �1

1A ;
b =

0@b1
b2

1A ; where the elements of �min and b is very small positive numbers (e.g. 10�10
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Figure 15 The DKK switching strategy for training data

) and �max is given by the varying along the estimated process for �̂kjk: This latter mini-

mization problem is solved by Matlabs�s fmincon function, that is constraint minimization.

Alternatively, one could use trial and error to �nd the best threshold parameters. A

more educated guess in this process is to produce a histogram of the �̂kjk variable, to see

how it is distributed around a mean. This study have chosen this method in conjuction with

the fminsearch function where the initial guesses are in line with the threshold conditions

in (44).

After optimizing function (43), we receive the following �� for �̂kjk;DKK and �̂kjk;SEK .

N denotes the sample size of the data, parameter � is set to 1 and initial investment is

100:

��1 ��2 ��3 ��4 N � A0

DKK �� 0:033726 0:004378 0:0007057 0:001356 1000 1 100

SEK �� 0:00807 0:0001 3e� 005 3:1e� 005 500 1 100

(45)

This results in the following switching strategies for our training series, see �gures 15, and

16.
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Figure 16 The SEK switching strategy for training data

The switching strategy tells which proportions that are allocated in the two assets

at any given time. It is ranging from 0 to 100% investing in DKK or SEK, the rest in

USD.Using the proposed strategy versus a passive strategy, we can now plot the result of

the training series. The total value of the portfolio is calculated in respective currency,

as well as the initial starting sum, 100 USD. The passive portfolio does not exhibit any

allocation control and only re�ects the current exchange rate at each time instance. It is

against this passive portfolio we can measure the relative performance of our allocation

strategy.

From �gures 17, and 18 we can see that the Kalman �ltered hidden excess demand

variable in combination with the allocation strategy. It smooths the underlying price

process into line segments of di¤erent lengths and tends to avoid sharp price drops most of

the time. This is since the inner working of our Kalman �lter, our Kalman gain K; gives

a low credibility to large deviations, thus realizes more on the predicted measurement

Cx̂�k : The deviations slowly trains the covariance matrix which produces new levels in the

gain matrix. Consequently, the �ltered series produces a smoother curve than the passive

portfolio.
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Figure 17 Portfolio value, allocation strategy versus passive strategy for Pk;DKK training
series
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Figure 19 Estimated �̂kjk for Pk;DKK testing series

4.3.2 Dynamic Asset allocation strategy out-of-sample. The analysis above is

dealing with in-the-sample data and it may be that the performance of the model is worse

using out-of-sample data. To test this, we are using our estimated parameters and start

values in (39), and (41) together with our estimated threshold parameters in (45). Given

these, we recursively produce a new series of �̂kjk; and �̂Kjk from the testing data to be

evaluated in the asset allocation strategy (42).

As we can see in �gures 19, 20, 21, 22, 23, 24, 25, and 26 our results are consistent with

the one obtained for our training data. For the Pk;DKK series, our strategy produces DKK

689.57 versus passive strategy of 644.25 Danish Krona. The discrete time asset allocation

strategy also beat the passive strategy for the Pk;SEK series, with 770.18 Swedish Krona

versus SEK 707.46.

From the �gures, we can see that the only miss-performing in the proposed model is

between observations 100 and 200 for the Pk;DKK testing data, were the model cannot beat

the passive strategy. Assumedly, this result could be enhanced by �ne-tuning the starting

values before we estimate parameters for our training data (hence, get better estimates for

the testing part).
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Figure 20 Estimated �̂kjk for Pk;SEK testing series
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Figure 21 Estimated �̂kjk for Pk;DKK testing series
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Figure 22 Estimated �̂kjk for Pk;SEK testing series
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Figure 23 The DKK switching strategy for testing data
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Figure 24 The SEK switching strategy for testing data
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V. Conclusions

In this paper we have studied a discrete time microstructure model, proposed by Ozaki and

Peng (21), (22). This model suggests the use of excess demand � and the inverse of market

liquidity � as two unobservable state variables as marker, determining whether the market

is overvalued or undervalued. The model expresses the variation of conditional variance of

price, were the amplitude of the price changes is dependent on the liquidity of the market

that is allowed to vary over time and has e¤ects on the conditional mean, as well as the

conditional variance. We have shown that using this process of hidden excess demand and

its liquidity is meaningful to base an asset allocation strategy which is e¢ cient in terms of

producing a residual money gain compared to a passive strategy.

To study these hidden state variables we have used state space analysis in combi-

nation with extended Kalman �ltering and by this an interesting alternative analysis to

traditional time series analysis have emerged, although it shows similarities to existing

methods of model reduction and EGARCH. However, the analysis should foremost be put

in contrast to a model framework were most �nancial stochastic processes traditionally

focus on modelling the price dynamics in itself and its conditional variance.

The study has also shown that the viewpoint to consider the existence of a di¤usion

of information between informed markets participants and the less informed participants

is fruitful. This di¤usion causes trends in markets (in �nancial time series) which may

exist at di¤erent degrees. By �ltering its process, i.e. extracting the underlying trend

information, we obtain a process with which we can use in a dynamic asset allocation

model. By choosing sample data with two di¤erent kind of broad trend characteristics,

one consisting of several smaller, and one consisting of mainly a directional trend, our

model does not make any visible di¤erence between them. This implies that the broad

trend information does not need to have a certain pro�le in order to extract a useful process

of hidden state variables.

Given the analysis we can, in accordance with Peng and Ozaki, see that the analyzed

model have desirable properties both from a theoretical as well as a empirical viewpoint.
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The drawbacks of the model, are that it is very sensitive to its initial values and much

of its performance is due to which initial guesses one make before running the optimization.

This is because there are 15 parameters to be estimated and by this, is assumed that there

exist numerous of local minima and maxima, hence it is hard to determine where a global

such exists, or if the model will reach convergence at all.

Also, our study did not take transaction costs into account. Such costs could have

signi�cant impact on the model�s performance, all due to how frequent the switching pat-

tern is and the magnitude of the costs (such as bid/o¤er spread). However, we mentioned

that such tests were undertaken by Peng et. al. (24) suggesting this did not have any

signi�cant negative impact.

5.1 Proposal for further research

There are several ways in which the model could perform better. One such way is,

instead of using the Extended Kalman Filter (EKF) is to use an Unscented Kalman Filter

(UKF). This is as the EKF is only an approximation to the optimal nonlinear estimation.

According to Wan and van der Merwe (7), UKF addresses many of the approximation issues

in the EKF with a better performance, given the same level of computational complexity.

The major di¤erence between EKF and UKF is how the state distribution is measured

and propagated through the dynamics of a system. In the case of EKF, the distribution is

propagated analytically by a �rst order linearization of the nonlinear system using deriva-

tives. Such an approach estimates the �rst moment well but is poor in higher moments, as

it can introduce large errors in the true posteriori mean and covariance of the transformed

Gaussian Random Variable (GRV). This may lead to suboptimal performance and some-

times divergence of the �lter. Instead, the UKF uses sample points, called sigma points, to

approximate the GRV. By choosing a minimal set of them carefully it is possible to capture

the true mean and covariance of the GRV. Therefore, UKF should capture posteriori mean

and covariance accurately to a second order (Taylor series expansion) for any nonlinearity.

This also leads to a more accurate recursive estimation.
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A second improvement of the model is related to the estimation of parameters. There

is a strong interdependence between our state estimation and model estimation where the

state estimation needs a observable model to be estimated and model estimation needs a

clean state to modeling the dynamics.

The EKF framework can be used for estimating a model�s parameters (or weights)

from clean data. This involves learning the nonlinear map h (�) which is now parameterized

by the set of unknown parameters; the vector zk: This approach is sometimes referred to as

system identi�cation, machine learning, or just modeling. The corresponding state space

representation for this problem is formulated as:

zk+1 = I � zk + wk;

yk = h (xk; zk) + nk; (46)

where zk corresponds to a stationary process with identity state transition matrix, driven

by process noise wk: The output yk corresponds to a nonlinear observation on zk:

However, when the input clean state xk is unobserved/hidden (or is not clean enough)

and we can only observe a noisy signal yk it is hard to do predictions, as we preferably need

both. A solution to this problem is denoted as the dual estimation approach. Within an

EKF environment, dual estimation means that two EKFs are run separately and concur-

rently. At every time step, one of the EKFs uses the other EKF�s current map parameter

estimate / weight estimate ŵk for its own state estimate x̂k, while the other EKF uses its

state estimate for a current weight estimate. This procedure can either be done iterative

(o¤-line) where block of data is used, or sequential (on-line) were both EKFs uses new data

point to update the signal estimate or the model estimate. Hence, the dual EKF estima-

tion problem refers to an simultaneous estimation of both the states of the discrete-time

nonlinear dynamic system and its parameters, given only noisy observations.
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In a discrete time nonlinear dynamic state space environment the problem looks like;

xk+1 = f (xk; uk) + vk;

zk+1 = zk + vk; (47)

yk = h (xk; wk) + nk:

Finally, in order to enhance the measurement of the proposed model, we suggest its

performance should be tested in a more traditional framework. This entails the calculations

of di¤erent kind of information criteria, such as the use of mean squared errors (MSE),

log-likelihood values, but also using mean pricing errors (MPE), root mean squared errors

(RMSE) as used by Javaheri et. al. in (10). The model�s value should be compared

with existing models, such as EGARCH(P,Q) and GJR(P,Q) which are both (asymmetric)

models developed to handle negative correlation between volatility and returns. They also

take respect to the sign and the magnitude of the innovation noise term.

However, for the study in question, one should be aware of that there generally are

no asymmetries in foreign exchange rates (9) and therefore models as EGARCH(P,Q) and

GJR(P,Q) are probably not e¢ cient in comparison?
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Appendix A. Matlab programmes

This appendix present the Matlab programming of the model. It constitutes of two pro-

grammes and two functions in total. Below is example code for one of the studied series.

% ********** START FILTER PROGRAM ********************************

% Empty the memory

clear all

clc

% Define variables z and pk as global

global z

global pk

% Load the file pk.mat

load pk.mat

% Determine z as the first 1000 observations

z=pk(1:1000);

% Define parameters K and r. K equals length of z, i.e. in this case

% 1000 and r equals logarithmic reuturn of z(k) and Z(k-1).

K = length(z);

r = z(2:end)-z(1:end-1);

% We define needed matrices in three dimensions, row, column and lenght and

% fill these with empty values.

I =eye(3);

lambda = ones(K+1,1);

phi = zeros(K+1,1);

A = zeros(3,3,K+1);

C = zeros(2,3,K+1);

post_X = zeros(3,1,K+1);

Y = zeros(2,1,K+1);

S_pri = zeros(3,3,K+1);

KG = zeros(3,2,K+1);

47



% ********** START (GUESS) VALUES ***********************************************

% Define the start value on the parameters

a1 = 0.00008267;

a2 = 0.005910;

b1 = 0.9417-1;

b2 = 0.9917-1;

g1 = 0.05442;

g2 = 0.09417;

g3 = 1.001;

delta = -2.253;

e1 = 0.0003169;

e2 = 2.513;

v1 = 0.879*10^-9; v2=1.035*10^-9; v3=0.875*10^-9;

phi0=-0.000166;

x03=-1.4312;

% **********************************************************************

% Change these according: insample - first value of testdata, outsample - last value

% of test data

P0=204.01;

p=[P0; z]; %I.e. we start with P0 and fill the rest with the value in z.

% Define them as parameters

parameter =[a1 a2 b1 b2 g1 g2 g3 delta e1 e2 v1 v2 v3 phi0 x03]�;

% ***********************************************************************

options = optimset(�LargeScale�,�on�,�Display�,�iter�,

�TolFun�,10^(-1),�TolX�,10^(-1),�MaxFunEvals�,10000,�MaxIter�,10000)

[x1,fval,exitflag,output]= fminsearch(�logl_EKF�,parameter, options);

% ****************FUNCTION logl_EKF**START*******************************

function lnl=logl_EKF(initial);

global z
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global pk

K = length(z);

r = z(2:end)-z(1:end-1);

a1 = initial(1);

a2 = initial(2);

b1 = initial(3);

b2 = initial(4);

g1 = initial(5);

g2 = initial(6);

g3 = initial(7);

delta = initial(8);

e1 = initial(9);

e2 = initial(10);

v1 = initial(11); v2=initial(12); v3=initial(13);

phi0=initial(14);

x03=initial(15);

P0=233.04;

% We define needed matrices

I =eye(3);

lambda = ones(K+1,1);

phi = ones(K+1,1);

A = zeros(3,3,K+1);

C = zeros(2,3,K+1);

post_X = zeros(3,1,K+1);

Y = zeros(2,1,K+1);

S_pri = zeros(3,3,K+1);

KG = zeros(3,2,K+1);

Rk=[e1^2 0 ; 0 e2^2];

lambda0 = sqrt(exp(x03));

p=[P0; z];
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% On the surface of the depth - the starting values - , the matrices should

% have the following properties.

% Functions within the matrices are created.

lambda0 = sqrt(exp(x03));

A(:,:,1) = [1 lambda0 0 ; a1/P0 1+b1 0 ; a2/P0 0 1+b2];

C(:,:,1) = [1 0 0 ; delta/P0 0 1];

Rk=[e1^2 0 ; 0 e2^2];

lambda(1,1)= lambda0;

post_X(:,:,1)= [P0 ; phi0 ; x03];

S_post(:,:,1) =[v1 0 0 ; 0 v2 0 ; 0 0 v3];

% For the depth >= 2 to end, the matrics has the following properties.

% A loop is created.

for k = 2:K+1;

% A priori state estimate of state X given information up to k-1

% is created by A matrix times posteriori X.

% This is the time update or prediction

pri_X(:,:,k)=A(:,:,k-1)*post_X(:,:,k-1);

% The observation function is a vector of observation and its variance

% we use the Fuller (1996) approximation with constant 0.2 and sample

% variance in order to avoid the problem with zero logarithms.

% Y(:,:,k)= [p(k) ; log((p(k)-p(k-1))^2+0.2*varr(k))-(0.2*varr(k))

/((p(k)-p(k-1))^2+0.2*varr(k))];

Y(:,:,k)= [p(k) ; log((p(k)-p(k-1))^2+0.2*var(r))-(0.2*var(r))

/((p(k)-p(k-1))^2+0.2*var(r))];

% The measurement residual, the innovation Gamma, is measured by

% our observation subtracted by our apriori estimate for observation Y.

% This is also part of the prediction.

Gam(:,:,k)=Y(:,:,k)-C(:,:,k-1)*pri_X(:,:,k);

% Q is our variance-covariance matrix of Omega in our state equation,

% i.e. our process noise covariance.

50



Q(:,:,k) = [g3^2*(lambda(k-1,1))^2 0 0; 0 g1^2 0; 0 0 g2^2];

% Given above we now project the conditional state covariance

% ahead. This is done by using A matrix and posteriori state

% covariance + using the process noise covariance.

S_pri(:,:,k)=A(:,:,k-1)*S_post(:,:,k-1)*A(:,:,k-1)�+Q(:,:,k); %Sk

% In the weighting part of the Kalman filter equations we first have to

% determine the measurement residual posteriori covariance. This is

% determined by matrix C, apriori state covariance, and measurement

% covariance R.

V(:,:,k)=C(:,:,k-1)*S_pri(:,:,k)*C(:,:,k-1)�+ Rk; ; %Psi(k)

% The measurement weighting is determined by the Kalman Gain (KG) and

% is calculated using apriori state covariance, matrix C and the

% inverse of the measurement residual posteriori covariance.

KG(:,:,k)=S_pri(:,:,k)*C(:,:,k-1)�*inv(V(:,:,k));

% Updating the posteriori error covariance is determind by Kalman Gain,

% C and apriori error covariance.

S_post(:,:,k)=(I-KG(:,:,k)*C(:,:,k-1))*S_pri(:,:,k); % Vk

% Hence, a posteriori state estimate X is determined by apriori state

% estimate corrected by Kalman Gained innovation.

post_X(:,:,k)=pri_X(:,:,k)+KG(:,:,k)*Gam(:,:,k);

% We now extract our state estimate of the price from the

% posteriori state matrix, it is the first value in the vector at k.

phat(k,1)=post_X(1,:,k);

% And extract our state estimate of excess demand from the

% posteriori state matrix, it is the second value in the vector at k.

phi(k,1)=post_X(2,:,k);

% And finally, extract our state estimate of the price variance.

% It is the third value in the vector at k.

lambda(k,1)=sqrt(exp(post_X(3,:,k)));

% At last we can now fill matrices A and C with information.
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C(:,:,k) = [1 0 0; delta/phat(k,1) 0 1];

A(:,:,k) = [1 lambda(k,1) 0 ; a1/phat(k,1) 1+b1 0 ; a2/phat(k,1) 0 1+b2];

for k = 2:K

lnl_k(k,1) = log(det(V(:,:,k))) + Gam(:,:,k)�* inv(V(:,:,k))*Gam(:,:,k);

end

lnl = sum(lnl_k) + 2*K*log(2*pi) ;

%****************FUNCTION logl_EKF**END**************************************

a1 = x1(1);

a2 = x1(2);

b1 = x1(3);

b2 = x1(4);

g1 = x1(5);

g2 = x1(6);

g3 = x1(7);

delta = x1(8);

e1 = x1(9);

e2 = x1(10);

v1 = x1(11); v2=x1(12); v3=x1(13);

phi0=x1(14); x03=x1(15);

% ***********************************************************************

A(:,:,1) = [1 lambda0 0 ; a1/P0 1+b1 0 ; a2/P0 0 1+b2];

C(:,:,1) = [1 0 0 ; delta/P0 0 1];

Rk=[e1^2 0 ; 0 e2^2];

lambda(1,1)= lambda0;

post_X(:,:,1)= [P0 ; phi0 ; x03];

S_post(:,:,1) =[v1 0 0 ; 0 v2 0 ; 0 0 v3];

for k = 2:K+1 ;

pri_X(:,:,k)=A(:,:,k-1)*post_X(:,:,k-1);

/((p(k)-p(k-1))^2+0.2*varr(k))];

Y(:,:,k)= [p(k) ; log((p(k)-p(k-1))^2+0.2*var(r))-(0.2*var(r))
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/((p(k)-p(k-1))^2+0.2*var(r))];

Gam(:,:,k)=Y(:,:,k)-C(:,:,k-1)*pri_X(:,:,k);

Q(:,:,k) = [g3^2*(lambda(k-1,1))^2 0 0; 0 g1^2 0; 0 0 g2^2];

S_pri(:,:,k)=A(:,:,k-1)*S_post(:,:,k-1)*A(:,:,k-1)�+Q(:,:,k);

V(:,:,k)=C(:,:,k-1)*S_pri(:,:,k)*C(:,:,k-1)�+ Rk; ;

KG(:,:,k)=S_pri(:,:,k)*C(:,:,k-1)�*inv(V(:,:,k));

S_post(:,:,k)=(I-KG(:,:,k)*C(:,:,k-1))*S_pri(:,:,k);

post_X(:,:,k)=pri_X(:,:,k)+KG(:,:,k)*Gam(:,:,k);

phat(k,1)=post_X(1,:,k);

phi(k,1)=post_X(2,:,k);

lambda(k,1)=sqrt(exp(post_X(3,:,k)));

C(:,:,k) = [1 0 0; delta/phat(k,1) 0 1];

A(:,:,k) = [1 lambda(k,1) 0 ; a1/phat(k,1) 1+b1 0 ; a2/phat(k,1) 0 1+b2];

end

save (�phi.mat�,�phi�);

save (�x1.mat�,�x1�);

save(�Kalman_opti�);

SUBPLOT(4,1,1), plot (phi, �DisplayName�, �phi�, �YDataSource�,

�phi�); figure(gcf)

SUBPLOT(4,1,2), plot (lambda, �DisplayName�, �lambda�,

�YDataSource�, �lambda�); figure(gcf)

strateveal

% ************END FILTER PROGRAM******************************************

%****************PROGRAM strateveal**START********************************

clear all

clc

load phi.mat;

load kurs.mat;

spot=kurs(1:500);
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K = length(spot);

bet=100;

tau=ones(4,1);

tau0=[0.00807 0.0001 0.00003 0.000031]�;

% tau0=[0.005504 0.003382 0.003555 0.005937]�;

pos_1_1 = zeros(1,K)�; % Defines dimension of pos_1_1

pos_1_2 = zeros(1,K)�; % Defines dimension of pos_1_2

pos_2_1 = zeros(1,K)�; % Defines dimension of pos_2_1

pos_2_2 = zeros(1,K)�; % Defines dimension of pos_2_2

totpos_2 = zeros(1,K)�; % Defines dimension of totpos_2

netch_1 = zeros(1,K)�; % Defines dimension of netch_1

netch_2 = zeros(1,K)�; % Defines dimension of netch_2

gpos_1 = zeros(1,K)�; % Defines dimension of gpos_1

port_1 = zeros(1,K)�; % Defines dimension of port_1

port_2 = zeros(1,K)�; % Defines dimension of port_2

A=[-1 1 0 0 ;0 0 1 -1];

b=[-10^(-10);-10^(-10)];

% lb = [10^(-10) 10^(-10) 10^(-10) 10^(-10)]; % Lower bounds x > 0

% ub = [phi(k) phi(k) phi(k) phi(k)]; % Upper bounds

options = optimset(�LargeScale�,�off�,�Display�,�iter�,

�TolFun�,10^(-2),�TolCon�,10^(-2),�MaxFunEvals�,10000)

[x2,fval,exitflag,output]= fminsearch(�taumax�,tau0, options);

% [x,fval,exitflag,output] = fmincon(�taumax�,tau0,A,b,[],[],[],[],[],options);

% [x,fval,exitflag,output] = fmincon(�taumax�,tau0,A,b,[],[],lb,ub,[],options);

%****************FUNCTION TAUMAX**START**************************************

function taumin = taumax(tau);

load phi.mat;

load kurs.mat;

spot=kurs(1:500);

54



K = length(spot);

bet=100;

mu=1;

for k = 1:K

if phi(k)>tau(1)

prop_1(k)=1;

elseif (tau(2) < phi(k))& (phi(k) <= tau(1))

prop_1(k)=0.8;

elseif (-tau(3) < phi(k))& (phi(k) <= tau(2))

prop_1(k)=0.5;

elseif (-tau(4) < phi(k))& (phi(k) <= -tau(3))

prop_1(k)=0.2;

elseif phi(k) <= -tau(4)

prop_1(k)=0;

else prop_1(k)=999999

end;

end;

for k = 1:1

pos_1_1(1)=bet;

pos_2_1(1)=0;

totpos_2(1)=(pos_1_1(1)*spot(1))+pos_2_1(1);

gpos_1(1)=(prop_1(1)*totpos_2(1))/spot(1);

netch_1(1)=gpos_1(1)-pos_1_1(1);

netch_2(1)=-netch_1(1)*spot(1);

pos_2_2(1)=pos_2_1(1)+netch_2(1);

pos_1_2(1)=pos_1_1(1)+netch_1(1);

port_2(1)=pos_2_2(1)+pos_1_2(1)*spot(1);

port_1(1)=port_2(1)/spot(1);

end;

for k = 2:K
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pos_1_1(k)=pos_1_2(k-1);

pos_2_1(k)=pos_2_2(k-1);

totpos_2(k)=(pos_1_1(k)*spot(k))+pos_2_1(k);

gpos_1(k)=(prop_1(k)*totpos_2(k))/spot(k);

netch_1(k)=gpos_1(k)-pos_1_1(k);

netch_2(k)=-netch_1(k)*spot(k);

pos_2_2(k)=pos_2_1(k)+netch_2(k);

pos_1_2(k)=pos_1_1(k)+netch_1(k);

port_2(k)=pos_2_2(k)+pos_1_2(k)*spot(k);

port_1(k)=port_2(k)/spot(k);

end;

for k = 1:K

sumport_2 = sum(port_2(k)-(bet+k/K*(port_2(K)-bet)))^2;

end;

taumin(1,1) = -port_2(K)+mu/K*sumport_2;

%****************FUNCTION TAUMAX**END*************************************

tau(1) = x2(1);

tau(2) = x2(2);

tau(3) = x2(3);

tau(4) = x2(4);

for k = 1:K

if phi(k)>tau(1)

prop_1(k)=1;

elseif (tau(2) < phi(k))& (phi(k) <= tau(1))

prop_1(k)=0.8;

elseif (-tau(3) < phi(k))& (phi(k) <= tau(2))

prop_1(k)=0.5;

elseif (-tau(4) < phi(k))& (phi(k) <= -tau(3))

prop_1(k)=0.2;

elseif phi(k) <= -tau(4)
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prop_1(k)=0;

else prop_1(k)=999999

end;

end;

prop_2 = 1 - prop_1;

for k = 1:1

pos_1_1(1)=bet;

pos_2_1(1)=0;

totpos_2(1)=(pos_1_1(1)*spot(1))+pos_2_1(1);

gpos_1(1)=(prop_1(1)*totpos_2(1))/spot(1);

netch_1(1)=gpos_1(1)-pos_1_1(1);

netch_2(1)=-netch_1(1)*spot(1);

pos_2_2(1)=pos_2_1(1)+netch_2(1);

pos_1_2(1)=pos_1_1(1)+netch_1(1);

port_2(1)=pos_2_2(1)+pos_1_2(1)*spot(1);

port_1(1)=port_2(1)/spot(1);

end;

for k = 2:K

pos_1_1(k)=pos_1_2(k-1);

pos_2_1(k)=pos_2_2(k-1);

totpos_2(k)=(pos_1_1(k)*spot(k))+pos_2_1(k);

gpos_1(k)=(prop_1(k)*totpos_2(k))/spot(k);

netch_1(k)=gpos_1(k)-pos_1_1(k);

netch_2(k)=-netch_1(k)*spot(k);

pos_2_2(k)=pos_2_1(k)+netch_2(k);

pos_1_2(k)=pos_1_1(k)+netch_1(k);

port_2(k)=pos_2_2(k)+pos_1_2(k)*spot(k);

port_1(k)=port_2(k)/spot(k);

end;

passp = zeros(1,k)�; % Defines dimension of passp
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for k = 1:K

passp(k) = 100*spot(k);

end;

save (�x2.mat�,�x2�);

save(�Tau_opti�);

SUBPLOT(4,1,3), plot (port_2, �DisplayName�, �port_2�,

�YDataSource�, �port_2�); hold all; plot (passp, �DisplayName�,

�passp�, �YDataSource�, �passp�); hold off; figure(gcf)

SUBPLOT(4,1,4), plot (prop_1, �DisplayName�, �prop_1�,

�YDataSource�, �prop_1�); figure(gcf)

%****************PROGRAM strateveal**END**************************************

%*****************************************************************************
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