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Abstract

In the credit derivatives market, the observed default correlation smile, implied
by the Gaussian copula, constitutes a major problem when we want to price be-
spoke CDO tranches. The industry standard approach for countering this dilemma
is to use the concept of base correlation to try to estimate the ingoing default corre-
lation parameters for non-standard tranche intervals. However, this approach is far
from mathematically consistent and the method of interpolating between different
points on the base correlation curve is all but accurate. In this paper, we generalize
the Gaussian one factor model proposed by Vasicek (1987) to work with any under-
lying Lévy process. Further, we show that our one Factor Lévy model induces an
infinite number of different copulas. Given this mathematical framework, we pro-
pose three different hyperbolic copulas, namely a normal inverse Gaussian copula,
a variance gamma copula and a skewed Student t copula. In addition to calculate
the loss distributions by FFT methods, we generalize the LHP approximation
given by Vasicek (1991) to work with our Lévy model. Finally, we show that the
proposed alternative copulas give superior results and we give a comparative view
on the different methods for calculating the loss distributions.
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1 Introduction

1 Introduction

The first collateralized debt obligations (CDOs) were structured out of pools of high
yield bonds and mortgages in the late 1980s. Later, as the credit default swap (CDS)
market became more liquid and standardized in the 1990s, the first synthetic CDOs
were introduced by JPMorgan and the Swiss Bank Corporation in 1997. Today, this
type of CDO structure makes up the majority of the market size and the total trading
volume has surpassed that of corporate bonds.

The de facto industry standard approach for pricing CDOs is the Gaussian copula
model, where the correlation structure is set up by the one factor model, first proposed
by Vasicek (1987). The great advantage of this latent factor approach is that the dimen-
sionality problem of calculating the aggregate loss distribution is drastically reduced.
However, as has been shown in the literature, the Gaussian copula does a poor job at
explaining the market prices. In particular, if the Gaussian copula is fitted to the traded
tranches of a CDO, it produces a distinct correlation smile. This smile forms a major
problem if we want to price non-standard CDO tranches. The industry has mainly used
the concept of base correlation for bespoke pricing but that approach is inconsistent
and has shown to yield unsatisfactory results. A more adequate methodology would
be to choose another copula that describes the default dependence in a more realistic
manner.

Burtschell et al. (2005) present a comparative analysis of Student t, Clayton and
Marshall-Olkin copulas, where the double t copula generates the best market fit. How-
ever, more recent proposals using hyperbolic distributions have shown to give even
better results. Kalemanova et al. (2005) and Guegan and Houdain (2005) propose two
different types of normal inverse Gaussian (NIG) copulas and Moosbrucker (2005)
propose a variance gamma (VG) copula. These papers all show that skewness is of
great importance, indicating that the dependence of negative default events are higher
than the positive ones.

In this paper we generalize the structural approach made by Vasicek (1987) to work
with any kind of underlying Lévy process. We investigate on the set of possible copulas
induced by our one factor Lévy model and propose a skewed Student t (St) copula in
addition to a NIG and VG copula. Further, we deduce the LHP approximation for our
Lévy setup, generalizing the result in Vasicek (1991). Loss distributions are calculated
using both LHP approximations and Fourier methods, investigating whether the Fourier
based approach, which in theory should be more exact, yields better results.

The rest of this paper will be organized as follows. In section 2, we present the one
factor Lévy model. In section 3, we derive the possible set of copulas given our model
and set up the battery of hyperbolic copulas that will be used for market calibration.
In section 4, exact and approximative methods for loss distribution calculation will be
presented. In section 5, we give the arbitrage relations for CDO tranche pricing. In
section 6, the proposed models will be calibrated to current market data. Concluding
remarks close the paper.
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2 A One Factor Lévy Model

Preliminaries

We shall assume a complete and filtered probability space of the form (Ω,F ,F,Q),
which satisfies the usual conditions and where F = {Ft, t > 0}. Throughout the paper,
we will fix an equivalent martingale measure Q directly on our probability space and we
shall assume that such a measure always exists. Further, we will not worry about market
incompleteness and simply focus on pricing issues. When modelling credit portfolio
risk, we shall assume that all stopping times are totally inaccessible, i.e. defaults cannot
occur simultaneously.

2 A One Factor Lévy Model

Vasicek (1987) introduced the one factor model as a direct extension to the structural
firm value model presented by Merton (1974). The firm value process in Merton’s
model follows a geometric brownian motion and the value of an entity i at time t is
thus given by

At,i = A0,i exp
{(

r − σ2

2

)
t+ σWt

}
, (1)

where r and σ are known constants and Wt follows a Wiener process. To make a more
general approach, we shall instead assume that At,i is given by

At,i = A0,i exp {Xt} , (2)

where (Xt)t∈R+ is a Lévy process with finite variance. Accordingly, given some default
barrier Di, the probability of default for entity i is given by

pdt,i = Q
[
Xt,i < ln

(
Di

A0,i

)]
= FXi

 ln
(
Di

A0,i

)
√
t

 , (3)

where FXi
denotes the cumulative distribution function of a normalized stationary in-

crement, i.e.

Xi =
Xt+s −Xt√

s
.1 (4)

Now, to introduce a correlation structure into the model, we choose to represent the
Lévy process by a factor model given by

Xt,i = αMt + βεt,i, (5)

where Mt represents the systematic market risk and εt,i represents the idiosyncratic
risk for each entity. For simplicity we assume that the correlation factors are constant

1Hereafter, whenever the subindex t is excluded from a stochastic process, we will refer to a normalized
stationary increment.
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3 Copulas Induced by the Lévy One Factor Model

over time and that the correlation is the same for any pair of credits, e.i. ρt,i,j = ρ for
all i, j. Accordingly, we must have that α2 + β2 = 1 and by Itô calculus we obtain

E[dXt,idXt,j ] = α2σ2dt = ρσ2dt, i 6= j ⇒ α =
√
ρ (6a)

E[(dXt,i)2] = (α2 + β2)σ2dt = σ2dt ⇒ β =
√

1− ρ, (6b)

which finally gives us that equation (5) can be written as

Xt,i =
√
ρMt +

√
1− ρεt,i. (7)

�

Given the above equation, we can now express the probability of default condi-
tioned on the common factor by

p
d|M
t,i = Fεi

(
F−1
Xi

(
pdt,i
)
−√ρM

√
1− ρ

)
. (8)

This setup greatly reduces the dimensionality problem of calculating joint distributions
of a credit portfolio, since the default probabilities conditioned on the common factor
are mutually independent. In particular, it provides us with a method to get univariate
marginal distribution functions that can be used in a copula.

3 Copulas Induced by the Lévy One Factor Model

As Vasicek’s one factor model results in a Gaussian copula, the more general approach
of a Lévy factor model provides us with an endless variety of different copulas. To
understand the extent of the class of copulas that we can choose from, we start by
presenting some characteristics of the Lévy process.

For every infinitely divisible distribution X , we can define a Lévy process. The
distribution of X is said to be infinitely divisible if we can find a sum of i.i.d. variables
such that X =

∑n
i=1 Zi, n ∈ N. Further, the sum of two infinitely divisible distribu-

tions is also infinitely divisible, see Sato (1999). Alas, the only restrictions to our Lévy
factor copula are that M and εi need to be infinitely divisible distributions with zero
mean and equal finite variance.

3.1 Generalized Hyperbolic Copulas

The generalized hyperbolic (GH) distribution was introduced by Barndorff-Nielsen
(1977b) for describing dune movements and was first applied to financial time series
by Eberlein and Keller (1995). Today, the GH distribution and its subclasses are very
popular within the finance field since they have proven to be able to give almost exact
fits to different log returns, see e.g. Prause (1999). Barndorff-Nielsen (1977a) proves
that the GH distribution is infinitely divisible and thus induce a Lévy process. These
facts motivate using hyperbolic distributions for correlated default modelling.
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3 Copulas Induced by the Lévy One Factor Model

All hyperbolic distributions can be deduced as subclasses from the GH distribution,
which density function is given by

f(x;λ, α, β, δ, µ)GH =a(λ, α, β, δ, µ)
(
δ2 + (x− µ)2

)(λ− 1
2 )/2

×Kλ− 1
2

(
α
√
δ2 + (x− µ)2

)
exp {β(x− µ)} ,

(9a)

where

a(λ, α, β, δ, µ) =

(
α2 − β2

)λ/2
√

2παλ−
1
2 δλKλ

(
δ
√
α2 − β2

) (9b)

and Kλ(·) denotes the modified Bessel function of the third kind, order λ, given by

Kλ(x) =
1
2

∫ ∞
0

yλ−1 exp
{
−x

2
(
y + y−1

)}
dy, x > 0. (9c)

The parameter restrictions are

µ ∈ R

δ > 0, |β| < α if δ > 0

δ > 0, |β| < α if δ = 0

δ > 0, |β| 6 α if δ < 0,

(10)

where δ and µ describes the scale and location respectively, β describes the skewness
and a decrease in δ

√
α2 − β2 reflects an increase in kurtosis. Further, the moment

generating function and characteristic function are shown to be

ϕ(u)GH = euµ
(

α2 − β2

α2 − (β + u)2

)λ/2 Kλ

(
δ
√
α2 − (β + u)2

)
Kλ

(
δ
√
α2 − β2

) , |β + u| < α (11)

φ(u)GH = ϕ(iu)GH (12)

respectively. We note that φ(u)tGH in general have the form of equation (12) only if
t = 1. Thus, in general, the GH distribution is not stable under convolution. The only
known exceptions are the normal inverse Gaussian (NIG) distribution and the variance
gamma (VG) distribution. Another important characteristic of the GH distribution is
that is has semi-heavy tails, see Barndorff-Nielsen and Blæsild (1981), which behaves
as

f(x;λ, α, β, δ, µ)GH ∼ |x|λ−1 exp {(∓α+ β)x} as x→ ±∞ (13)

up to a multiplicative constant. This allows for greater tail-dependence in our copula
setup, and as such, enables us to model the dependence of extreme default events.
Before we take a closer look at the subclasses that will we used in this paper, we’d like
to mention that the standard Gaussian copula can be obtained as a limiting subclass of
the GH copulas since

lim
δ→∞,δ/α→σ2

GH(λ, α, β, δ, µ) ∼ N (µ+ βσ2, σ2). (14)

For a thorough presentation on limiting behavior of the GH distribution, we refer to
Eberlein and Hammerstein (2002).
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3 Copulas Induced by the Lévy One Factor Model

3.1.1 A Normal Inverse Gaussian Copula

TheNIG distribution was introduced into finance by Barndorff-Nielsen (1997) and its
subclass is given by

NIG (α, β, δ, µ) ∼ GH(−1
2
, α, β, δ, µ). (15)

Taking moments yields that

E[X] = µ+
βδ√
α2 − β2

V[X] =
δα2

(α2 − β2)3/2

S[X] =
3β

α
√
δ (α2 − β2)1/4

K[X] =
3
(

1 + 4
(
β
α

)2
)

δ
√
α2 − β2

.

A strong argument for using the NIG distribution with the one factor Lévy copula is
its closeness under convolution property, given by

X1 ∼ NIG(α1, β1, µ1, δ1)
X2 ∼ NIG(α2, β2, µ2, δ2)
α1 = α2 = α, β1 = β2 = β

⇒ X1 +X2 ∼ NIG(α, β, µ1 + µ2, δ1 + δ2),

(17)

Further, its scaling property is given by

X ∼ NIG(α, β, µ, δ)

⇒ cX ∼ NIG
(
α

c
,
β

c
, cµ, cδ

)
.

(18)

Accordingly, given the right choice of parameterization, we can reduce the number of
free variables and get an analytically tractable copula setup.

We start by defining the systematic risk factor as

M ∼ NIG

(
α, β,

(
α2 − β2

)3/2
α2

,−
β
(
α2 − β2

)
α2

)
, (19)

where δM and µM is chosen so that M gets zero mean and unit variance. Keeping Xi

NIG distributed, we then get that

εi ∼ NIG

(√
1− ρ
√
ρ

α,

√
1− ρ
√
ρ

β

,

√
1− ρ
√
ρ

(
α2 − β2

)3/2
α2

,−
√

1− ρ
√
ρ

β
(
α2 − β2

)
α2

) (20a)
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3 Copulas Induced by the Lévy One Factor Model

Xi ∼ NIG

(
1
√
ρ
α,

1
√
ρ
β,

1
√
ρ

(
α2 − β2

)3/2
α2

,− 1
√
ρ

β
(
α2 − β2

)
α2

)
, (20b)

3.1.2 A Variance Gamma Copula

The VG distribution was introduced by Madan and Seneta (1990) and its subclass is
given by

VG (λ, α, β, µ) ∼ GH (λ, α, β, 0, µ) 2 (21)

Taking moments yields that

E[X] = µ+
2βλ

α2 − β2

V[X] =
2λ
(
α2 + β2

)
(α2 − β2)2

S[X] =

√
2β
(
3α2 + β2

)√
λ(α2+β2)

(α2−β2)2
(α4 − β4)

K[X] =
3
(
λα4 + 2λα2β2 + λβ4 + α4 + 6α2β2 + β4

)
λ (α2 + β2)2 .

Its convolution property is given by
X1 ∼ VG (λ1, α1, β1, µ1)
X2 ∼ VG (λ2, α2, β2, µ2)
α1 = α2 = α, β1 = β2 = β

⇒ X1 +X2 ∼ VG (λ1 + λ2, α, β, µ1 + µ2)

(22)

and its scaling property by

X ∼ VG (λ, α, β, µ)

⇒ cX ∼ VG
(
λ,
α

c
,
β

c
, cµ

)
.

(23)

Being the second subclass that is closed under convolution, the VG distribution is a
good candidate for our Lévy one factor copula.

We start by defining the systematic risk factor as

M ∼ VG

((
α2 − β2

)2
2 (α2 + β2)

, α, β,−βα
2 − β2

α2 + β2

)
, (24)

2The alternative notation VG (θ, ν, σ, µ̄) is also common in the literature. This parameterization is ob-
tained by doing the following substitutions; σ2 = 2λ

α2−β2 , ν = 1
λ
, θ = βσ2, µ̄ = µ.
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3 Copulas Induced by the Lévy One Factor Model

where δM and µM is set so to get zero mean and unit variance. Thus, keeping Xi VG
distributed, we get that

εi ∼ VG

(
1− ρ
ρ

(
α2 − β2

)2
2 (α2 + β2)

,

√
1− ρ
√
ρ

α,

√
1− ρ
√
ρ

β,−
√

1− ρ
√
ρ

β
α2 − β2

α2 + β2

)
(25a)

Xi ∼ VG

(
1
ρ

(
α2 − β2

)2
2 (α2 + β2)

,
1
√
ρ
α,

1
√
ρ
β,− 1
√
ρ
β
α2 − β2

α2 + β2

)
. (25b)

3.1.3 A Skewed Student t Copula

Both the NIG distribution and the VG distribution have semi-heavy tails and can be
modified to give skewness. However, if the financial data has heavy tails, it might be
desirable to use a distribution with polynomial tails. The Student t distribution has poly-
nomial tails but it can’t be modified to give skewness. Furthermore, empirical studies
indicate that it is often preferable to have only one tail polynomial and keep the second
exponential. The St distribution, introduced by Aas and Haff (2006), can model both
skewness as well as having one polynomial tail and one exponential tail. It is the only
subclass that possess these properties and it is given by

St (ν, β, δ, µ) ∼ GH
(
−ν

2
, |β|, β, δ, µ

)
. (26)

Taking moments yields that

E[X] = µ+
βδ2

ν − 2

V[X] =
2β2δ4

(ν − 2)2(ν − 4)
+

δ2

ν − 2
, ν > 4

S[X] =
2(ν − 4)1/2βδ

(2β2δ2 + (ν − 2)(ν − 4))3/2

(
3(ν − 2) +

8β2δ2

ν − 6

)
, ν > 7

K[X] =
6

(2β2δ2 + (ν − 2)(ν − 4))2

(
(ν − 2)2(ν − 4)

+
16β2δ2(ν − 2)(ν − 4)

ν − 6
+

8β4δ4(5ν − 22)
(ν − 6)(ν − 8)

)
, ν > 9.

The disadvantage of the St distribution is that it is not stable under convolution. Thus,
any convolution must be calculated numerically. Secondly, letting both the systematic
and idiosyncratic risk factors be St distributed would yield many free variables, mak-
ing the copula impractical due to optimization issues. Therefore, we propose a copula
where the systematic risk factor follows a St distribution and the idiosyncratic risk
factor follows a Gaussian distribution. We let

M ∼ St (ν, β, δM , µM ) (28a)

εi ∼ N (0, 1), (28b)
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4 Loss Distribution Calculation

where δM and µM are set so that our systematic risk factor has zero mean and unit
variance, e.i.

δM =
1

2β

√(
4− ν +

√
ν2 − 8ν + 16 + 8β2ν − 32β2

)
(ν − 2) (29a)

µM = − βδ
2
M

ν − 2
. (29b)

To calculate the convolution of these factors, we simply multiply their characteristic
functions and take inversions, recommendly by using FFT . This method is faster and
more accurate than using Monte Carlo methods.

3.1.4 Further Suggestions

As this paper shows, the number of possible copulas are infinite. We could of course
look at many more subclasses of the GH distribution and even set up a copula with
the GH distribution itself. However, increased model complexity in terms of additional
free parameters etc., drastically complicates calibration issues. Therefore, we have re-
stricted ourself to use the most popular hyperbolic distributions in finance and kept the
number off free variables to three.

4 Loss Distribution Calculation

In this paper we will only calibrate our battery of copulas to homogenous credit portfo-
lios, e.i. portfolios where all underlying credits have equal nominals and are assumed
to have equal constant recovery rates. The problem of calculating the loss distribution
of a homogenous credit portfolio is equivalent with calculating the number of defaults
distribution of that portfolio. This follows since every default will result in the same
amount of additional loss ∆L = A(1−%), where A denotes the nominal of each credit
and % denotes the recovery rate. To compute the number of defaults distribution we use
the probability generating function, as suggested by Laurent and Gregory (2005).

Assume a portfolio consisting of n credits. The loss distribution, denoted Υ, will
then be a discrete distribution, taking values in [0, Lmax], where Lmax = n×∆L. We
will denote the default counting process of that portfolio by

N(t) =
n∑
i=1

Ni(t), Ni(t) = 1{τi6t}, (30)

where Ni are Bernoulli random variables. With this notation in hand we get that the
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4 Loss Distribution Calculation

probability generating function of N(t) can be written as

ψN(t)(u) = E

[
E

[
n∏
i=1

uNi(t)|V

]]

= E

[
n∏
i=1

(
q
d|M
t,i + p

d|M
t,i u

)]

=
∫ ∞
−∞

n∏
i=1

(
q
d|m
t,i + p

d|m
t,i u

)
fM (m)dm,

(31)

where qd|Mt,i = 1− pd|Mt,i . Furthermore, we can rewrite our probability generating func-
tion as

ψN(t)(u) = E [θ0(M) + θ1(M)u+ ...+ θn(M)un] ,

where θk(M) is given by a formal expansion of
∏n
i=1

(
q
d|M
t,i + p

d|M
t,i u

)
. Thus, we get

that the probability of k names being in default at time t is given by

Q[N(t) = k] = E[θk(M)] =
∫ ∞
−∞

θk(m)fM (m)dvm. (32)

Accordingly, the probability of an equivalent loss rate is shown to be

Q[Υ(t) 6 l ×∆L] =
l∑

k=0

Q[N(t) = k], l = 0, 1, ..., n. (33)

To calculate these probabilities we need a method to get the value for each θk(m).
If we assume equal credit spreads on all the underlying assets, i.e. pd|Mt,i = p

d|M
t for all

ß, the problem can be solved analytically by the binomial distribution. However, if the
credit spreads are not equal, we need a more general methodology to get the values of
our θk(v). We solve this problem by circular convolution, preferably by using FFT
as suggested by Robertson (1992) and Melchiori (2004). Finally, we’d like to point
out that since the probable application of alternative copulas is for bespoke tranche
pricing, it could be desirable to use a method that can handle heterogeneous portfolios.
For an alternative FFT method that can incorporate heterogeneity, we refer the reader
to Debuysscher and Szegö (2003).

4.1 Loss Distribution Calculation by LHP Approximation

In a large homogenous portfolio, with equal credit spreads for all the underlying assets,
it is possible to do an approximation of the loss distribution by using the law of large
numbers. This so called LHP approach, first suggested by Vasicek (1991), provides
us with a closed form solution to the probability of different loss levels of a credit
portfolio. A closed form solution to the loss distribution is of course very tractable.
It simplifies calculations and increases computational speed since we get rid of some
tiresome numerical integrations. Still, as suggested by Debuysscher and Szegö (2005),
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4 Loss Distribution Calculation

LHP approximations should only be used on portfolios with more than 500 credits
and even with such large portfolios the method is not as accurate as other previously
mentioned methods. As Vasicek deduced his result from the Gaussian one factor model,
we will make a more general approach and calculate the LHP approximation of a Lévy
one factor model.

As we mentioned in the previous section, the number of defaults distribution, given
a homogenous portfolio with equal underlying credit spreads, is given by a binomial
distribution. By making the substitution

s = Fε

(
F−1
X

(
pdt
)
−√ρm

√
1− ρ

)
,

we can write the number of defaults distribution as

Q[N(t) = k] =
∫ ∞
−∞

(
n

k

)(
p
d|m
t

)k (
q
d|m
t

)n−k
fM (m)dm

= −
∫ 1

0

(
n

k

)
sk(1− s)n−kdγ(s),

(34)

where

γ(s) = FM

(
F−1
X

(
pdt
)
−
√

1− ρF−1
ε (s)

√
ρ

)
.3 (35)

Further, we have that

Q[N(t) 6 l] =
drn∑
k=0

−
∫ 1

0

(
n

k

)
sk(1− s)n−kdγ(s), (36)

where dr = l/n, 0 6 dr 6 100%, denotes the portfolio default rate. Now, by the law
of large numbers, we notice that

lim
n→∞

drn∑
k=0

(
n

k

)
sk(1− s)n−k =

{
1, dr > s

0, dr < s
, (37)

which gives us that equation (36) can be expressed as

Q[N(t) 6 l] = −
∫ 1

0

1{s<dr}dγ(s) = 1− γ(dr). (38)

�

The LHP approximation is highly negatively skewed and has higher kurtosis com-
pared to the more accurate FFT method, see Figure 1.

3Note that FM (−x) 6= 1 − FM (x) if the distribution of M is skewed. Therefore we can’t rewrite our
γ(s) as in Vasicek (1991).
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5 Arbitrage Pricing of CDOs

0 5 10 15 20 25 30
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Portfolio loss in percentage

Pr
ob

ab
ilit

y

Loss Distributions

 

 
FFT
LHP

Figure 1: Loss distributions using a Gaussian copula with 125 names, pdi = 0.1 for all
i, ρ = 0.1, r = 3% and % = 0.4.

5 Arbitrage Pricing of CDOs

Assume a portfolio consisting of n credits. Given the loss distribution of that portfolio,
we can create a default swap for some given loss interval [A,B], where 0 6 A < B 6

Lmax. Every such default swap is called a CDO tranche and every CDO consists of
one or more tranches. The spread for each such tranche is set so that

PL+AL = DL, (39)

where PL, AL and DL denote the premium leg, accrued leg and default leg respec-
tively. In Table 1 we present the CDO structure traded on iTraxx

Table 1: The CDO structure of iTraxx
Tranche Limits Tranche Name

0-3% Equity
3-6% Junior Mezzanine
6-9% Senior Mezzanine
9-12% Senior

12-22% Super Senior

5.1 Pricing the Premium Leg

We let the payment dates follow an equidistant time grid t0, t1, ..., tK , where t0 is
today, tK = T is the maturity date and ∆t = ti− ti−1. The discount factor is given by

13



5 Arbitrage Pricing of CDOs

B(ti), the forward interest rate is assumed to be deterministic and the premium rate is
denoted rp. Further, we let f[A,B](ti) denote the cumulative loss of the CDO tranche
at time ti. Thus, if the total nominal of the portfolio is equal to 1, we have that

f[A,B](t) = 0, Υ(t) 6 A (40a)

f[A,B](t) = Υ(t)−A, A < Υ(t) 6 B (40b)

f[A,B](t) = B −A, Υ(t) > B. (40c)

We denote the outstanding nominal of a tranche by f[A,B](∞) − f[A,B](t), where
f[A,B](∞) denotes the initial nominal. Accordingly, the premium leg can be written
as

ΠPL(t0) =
K∑
i=1

rpB(ti)∆tE
[
f[A,B](∞)− f[A,B](ti)

]
. (41)

To calculate E
[
f[A,B](ti)

]
, we need to know the distribution of Υ at every time ti.

Since this is a discrete distribution, we need to be careful if the tranche limits lay
between two possible loss levels. We let a = A/∆L, b = B/∆L and if a or b is not an
integer, we let au, bu = inf{n ∈ N|n > a, b}. By letting fΥ(ti) denote the probability
function of Υ for the different payment dates, we have that

E
[
f[A,B](ti)

]
=(B −A)

Nmax∑
m=bu

fΥ(ti)(m∆L)

+ ∆L(au − a)fΥ(ti)(au∆L)

+
bu−1∑

m=au+1

(m∆L −A)fΥ(ti)(m∆L).

(42)

This function is applicable for all cases of a and b, since if a is an integer the interpo-
lation term will equal zero. Now, consider the special case of a LHP approximation.
As we showed in section 4.1, the loss distribution provided by a LHP approximation is
continuous. Thus, the expected loss for each tranche can be written as

E
[
f[A,B](ti)

]
= (1− %)

∫ B
(1−%)

A
(1−%)

γ(s)ds. (43)

5.2 Pricing the Accrued Leg

We let ti(k) denote the last payment date before the k-th default time τk. We realize
that the k-th default will only result in an increase of f[A,B] if A < Υ(τk) 6 B.
This possible increase is given by f[A,B](τk) − f[A,B](τ−1

k ), where f[A,B](τ−1
k ) is

the value of the cumulative loss at time τk had the k-th default not happened. Thus, the
accrued leg can be written as

E

[
n∑
k=1

rp1{τk6T}B(τk)(τk − ti(k))
(
f[A,B](τk)− f[A,B](τ−1

k )
)]

. (44)

14



6 Copula Calibrations and Results

Now, since the cumulative loss function of the CDO tranche is strictly increasing, we
can define Stieltjes integrals with respect to f[A,B](t). This gives us that equation (44)
can also be written as

E

[
K−1∑
i=0

rp

∫ ti+1

ti

B(s)(s− ti)df[A,B](s)

]
, (45)

which, by integration by parts, finally gives us that

ΠAL(t0) =
K−1∑
i=0

rp

(
E
[
f[A,B](ti+1)

]
B(ti+1)∆t

−
∫ ti+1

ti

E
[
f[A,B](s)

]
B(s)

(
1− fr(t0, s)(s− ti)

)
ds

)
.

(46)

5.3 Pricing the Default Leg

There is a default payment for every default that effects the CDO tranche. Now, having
priced the accrued leg, the pricing of the default leg is straightforward. We have that

ΠDL(t0) = E

[
n∑
k=1

1{τk6T}B(τk)
(
f[A,B](τk)− f[A,B](τ−1

k )
)]

= E

[∫ T

t0

B(s)df[A,B](s)

]

= E
[
f[A,B](T )

]
B(T ) +

∫ T

t0

E
[
f[A,B](s)

]
fr(t0, s)B(s)ds.

(47)

6 Copula Calibrations and Results

Our proposed copula models are calibrated for market data of June 2006, which held
a total of 22 trading days this year. We have used tranche mid-spreads and the equity
tranche is noted in upfront plus 500bp running spread.4 Creditcurves are calculated by
bootstrapping the fair 3 and 5 year index mid-spreads and the interest rate is set to 3%.
Distribution parameters are optimized by minimizing the sum of the quadratic errors
for each tranche.

In Table 2, we show the results of our copula calibrations using FFT to calculate
the loss distributions. The mean absolute errors for each tranche noted and the average
iTraxx prices are presented just to give the reader an idea of the market prices for this
particular month. As we can see, all hyperbolic copulas are far superior to the Gaus-
sian. In Table 3, we present the results using LHP to calculate the loss distributions.
Evidently, the FFT method, which in theory should be more exact, yields better re-
sults for the hyperbolic models whereas the LHP method yields better results for the
Gaussian copula. Alas, the increased negative skewness and kurtosis gained using LHP

4PL(500bp) +AL(500bp) + Upfront× (B −A) = DL
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7 Conclusions

help to improve the Gaussian copula. The calibrated parameters of the hyperbolic cop-
ulas are shown in Table 4 and the implied factor distributions are plotted in Figures 2
and 3. We note that the factor distributions calibrated using LHP have less skewness
and kurtosis as to compensate for the above mentioned LHP properties.

FFT Market Fit of June 2006 ∑
AETL 0-3% 3-6% 6-9% 9-12% 12-22%

iTraxx 23.6% 77.9 21 9.3 4.1
AEΦ 0.1% 44.9 6 7 4 71.9
AENIG 0% 0.3 1.8 2.3 1.2 5.6
AEVG 0% 0.5 0.8 0.8 1.2 3.3
AESt 0% 0.2 2.8 1.1 0.7 4.8

Table 2: Mean absolute errors using FFT .

LHP Market Fit of June 2006 ∑
AETL 0-3% 3-6% 6-9% 9-12% 12-22%

iTraxx 23.6% 77.9 21 9.3 4.1
AEΦ 0% 39.5 3.7 5.6 3.8 52.6
AENIG 0% 0.4 4.5 3.3 1.2 9.4
AEVG 0% 0.7 4.3 2.8 1 8.8
AESt 0% 0.1 2 1.9 1 5

Table 3: Mean absolute errors using LHP.

7 Conclusions

The proposed one factor Lévy model provides a consistent mathematical framework
that offers a large variety of resourceful options for portfolio risk modelling. As pre-
viously shown in the literature, this paper confirms that negative skewness and high
kurtosis are of major importance for depicting how the market distributes credit risk.
In particular, this paper validates the battery of copulas by applying both LHP ap-
proximations as well as FFT methods to a larger set of data. The fact that the more
adequate FFT approach yields better results for the hyperbolic models and worse for
the Gaussian model is of significant interest. It argues just as strongly for the ability
of hyperbolic copulas to capture market behavior, as it does against the likeliness of
Gaussian distributed risk factors. However, even though we achieve persuading results,
we understand the difficulty of motivating the increased model complexity to industry
practitioners. Nevertheless, we strongly argue that the proposed copulas should be used
as a benchmark tool to the base correlation approach of pricing bespoke CDO tranches.
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Distribution Parameters of June 2006
FFT ρ α, ν β V[ρ] V[α],V[ν] V[β]
NIG 0.0986 0.659 -0.1536 0.0002 0.0118 0.0095
VG 0.0856 1.423 -0.723 0.0001 0.0143 0.0168
St 0.1124 4.439 -0.7349 0.0033 0.4925 0.3747

LHP ρ α, ν β V[ρ] V[α],V[ν] V[β]
NIG 0.1243 0.8794 -0.0797 0.0001 0.0127 0.0242
VG 0.1123 1.174 -0.1462 0.0001 0.0219 0.0069
St 0.108 5.112 -0.2583 0.0016 4.006 0.1413

Table 4: Mean and variance of distribution parameters.
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ρM +
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1− ρεi, given the

average parameters in Table 4
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