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Purpose: The purpose of this thesis is to determine the best linear time series model for 

forecasting Swedish real GDP growth. The study evaluates the performance of random walk, 

pure autoregressive and vector autoregressive models that use forward looking surveys as 

explanatory variables. 

 

Methodology: The forecast comparison uses quarterly data for Swedish real GDP from 

1993:1 to 2006:4. The forecasts from the different models are generated using an expanding 

information window approach and the different models are evaluated using standard 

forecast evaluation criteria. 

 

Conclusion: The empirical analysis leads to the conclusion that the vector autoregressive 

model with 1 lag and confidence in the manufacturing industry as explanatory variable 

performs best for forecast horizon t+1, that the vector autoregressive model with 2 lags and 

consumer confidence as explanatory variable performs best for forecast horizon t+4, and 

that the vector autoregressive model with 3 lags and consumer confidence as explanatory 

variable performs best for forecast horizons t+8 and t+12. Nonetheless, the performance 

differences are small and the best models are not statistically significantly better than the 

second best models for any forecast horizon. 
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1 Introduction 
Forecasts of macroeconomic variables are crucial to many agents in the economy, including 

economic policymakers. The most important macroeconomic variables to forecast include 

the Gross National Product (GDP), inflation, and unemployment. As an aggregate measure 

of total economic production for a country, GDP is one of the primary indicators used to 

gauge the country's economy, and because of what the measure represents it has a large 

impact on nearly everyone within that country's economy. Because important economic and 

political decisions are based on forecasts of these macroeconomic variables, it is imperative 

that they are as reliable and accurate as possible. Inaccurate forecasts may result in 

destabilizing policies and a more volatile business cycle.  

 

Due to the important nature of the subject, extensive research has been done and studies 

have examined many aspects related to macroeconomic forecasting. The research includes 

studies on the use of direct and iterated forecasting methods (Marcellino et al. 2006), linear 

and nonlinear models (Binner et al. 2005), and whether explanatory variables improve 

forecast accuracy (Ang et al. 2007). Most of the research available focuses on forecasting US 

macroeconomic variables and particularly US inflation. 

 

There are several comprehensive studies comparing methods of forecasting. Marcellino et al. 

(2006) compares the direct and iterated forecasting methods from linear univariate models 

based on US macroeconomic time series such as unemployment, interest rate and wages. 

Their results indicate that the indirect forecasting method generally does better. Banerjee et 

al. (2003) compares the forecasting accuracy of models using leading indicators and simple 

autoregressive models for forecasting US inflation and GDP growth. Their results indicate 

that pure autoregressive models perform best. Ang et al. (2007) examines whether 

macroeconomic variables, asset markets, or surveys best forecasts out-of-sample U.S. 

inflation. Their results indicate that surveys best forecasts out-of-sample U.S. inflation. As 

for research on Swedish macroeconomic variables, Grahn (2006) examines whether the 

GDP-gap forecasts Swedish inflation better than the unemployment gap. His results indicate 

that the GDP-gap better forecasts Swedish inflation. Hansson et al. (2003) use a Dynamic 

Factor Model (DFM) to examine whether data from business tendency surveys are useful for 
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forecasting Swedish macroeconomic variables and primarily real GDP growth. Their 

findings show that in most cases the DFM with business tendency surveys outperforms the 

competing alternatives for forecasting real GDP growth. 

 

The bulk of Swedish GDP forecasts (as well as forecasts of inflation and unemployment) are 

made by Konjunkturinstitutet and the Riksbank. The models employed by 

Konjunkturinstitutet and the Riksbank are extremely complex, and are neither available nor 

practically feasible to researchers carrying out applied work. However, forecasts made from 

simple models are often only marginally less accurate than forecasts made from more 

complex alternatives, and Granger and Newbold (1986) argue that only when the benefits of 

the complex techniques outweigh the additional costs of using them should they be the 

preferred choice. 

 

This thesis examines whether vector autoregressive models that use forward looking surveys 

as explanatory variables perform better than random walk and pure autoregressive models 

for forecasting Swedish real GDP growth. The motive for using forward looking survey data 

in the vector autoregressive models is that surveys tend to yield improved forecasts for 

macroeconomic variables (Ang et al. 2007). The forward looking properties of the surveys 

should sensibly qualify the explanatory variables as being leading indicators of total 

economic production as measured by GDP. 

 

The forecast comparison is conducted using quarterly Swedish real GDP data from 1993:1 

to 2006:4. The iterated multi-period-ahead time series forecast performance of random walk 

(RW), autoregressive (AR), and vector autoregressive (VAR) models is evaluated. The in-

sample data used for initial parameter estimation ranges from 1993:1 to 1999:4, leaving 28 

observations for forecast evaluation. The models are used to make out-of-sample forecasts 

for forecast horizons t+1, t+4, t+8 and t+12. The forecasts are evaluated using standard 

forecast evaluation criteria: Mean Errors (ME), Mean Absolute Errors (MAE) and Root 

Mean Square Errors (RMSE). The difference in forecast performance is tested for 

significance using an F-test. 
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The empirical analysis finds that the vector autoregressive model with 1 lag and confidence 

in the manufacturing industry as explanatory variable performs best for forecast horizon t+1, 

that the vector autoregressive model with 2 lags and consumer confidence as explanatory 

variable performs best for forecast horizon t+4, and that the vector autoregressive model 

with 3 lags and consumer confidence as explanatory variable performs best for forecast 

horizons t+8 and t+12. Nonetheless, the performance differences are small and the best 

models are not significantly better than the second best models for any forecast horizon. 

 

The structure of the thesis is as follows: Section 2 describes the theoretical aspects, Section 3 

describes the data, Section 4 deals with the methodology, Section 5 presents the results and 

comparisons, and the conclusions drawn are summarized in Section 6. 

2 Theory 

2.1 Time series modelling 

There is limited knowledge about the economic processes that generate observed data and 

models have been developed to try and explain these processes. There are two different 

approaches; models formulated by economic theory and tested using econometric 

techniques, and models based on statistical theory that try to characterize the statistical 

process whereby the data were generated (Verbeek, 2004). 

 

The main reason for estimating econometric models is often so that the estimated model can 

be used to make forecasts of the modeled data. Because forecasts made from simple linear 

univariate models often are more accurate or only marginally less accurate than forecasts 

from more complex alternatives, univariate time series models such as pure AR models have 

proved to be the most popular (Harris & Sollis, 2005). 

 

AR models belong to the statistical model type. The model states that a variable  is 

generated by its own past together with a residual term . The residual term represents the 

influence of all exogenous variables and is assumed to be random such that  has zero 

mean , constant variance 

ty

te

te

( )[ 0=teE ] ( )[ ]22 σ=teE , and no autocorrelation ([ ]0) =−iteteE  
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(Harris & Sollis, 2005). The statistical properties of  imply that  can be treated as a 

stochastic variable.  

te ty

 

A stationary univariate p-th order (where  depends on past values of ty y  up to a lag length 

of p) AR model is formulated: 

 

tptpttt eybybybay +++++= −−− ...2211    (2.1) 

 

where , , and  are lagged values of the dependant variable  and  is a 

constant.  

ty 1−ty 2−ty pty − y a

 

AR models require stationary time series and the Dickey-Fuller (DF) test (Dickey & Fuller, 

1979) and Augmented Dickey-Fuller (ADF) test can be used to test for the presence of unit 

roots, where the presence of a unit root implies a non-stationary time series. Although unit 

roots are not tested for, forecasting Swedish real GDP growth implies that the time series 

containing real GDP is differenced once, resulting in a stationary series provided an order of 

integration equal to at most one. 

2.2 Forecasting with time series models 

Two types of forecast methods exist; the direct and iterated forecast methods (Enders, 

2004). The most commonly used type is the iterated multi-period-ahead forecast method 

where forecasts are made using the one-period-ahead model which is iterated forward the 

desired number of periods. The direct forecast method uses a horizon-specific estimated 

model to make multi-period-ahead forecasts. In this thesis the iterated multi-period-ahead 

forecast method is used together with AR and VAR models.  

 

The iterated multi-period-ahead forecast method with time series models is illustrated using 

the AR(1) (2.2) and VAR(1) (2.3) model. 

 

ttt eybay ˆˆˆ 1 ++= −       (2.2) 
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tttt excybay ˆˆˆˆ 11 +++= −−      (2.3) 

 

The parameters of (2.2) and (2.3) are estimated using Ordinary Least Squares (OLS), yielding 

the univariate and multivariate one-step-ahead forecast equations (2.4) and (2.5). 

 

ttt ybayE ˆˆ)( 1 +=+       (2.4) 

 

tttt xcybayE ˆˆˆ)( 1 ++=+      (2.5) 

 

For forecast horizons greater than one, (2.4) and (2.5) are iterated forward the desired 

number of periods. The iterated forecast method implies that forecasts of horizons greater 

than one can be based on both actual and forecasted values of the dependant and 

explanatory variables. 

2.3 Leading indicators 

Leading indicators are variables containing information about how other variables are likely 

to change in a future time period. The VAR models in this thesis use historical values of 

forward looking surveys as explanatory variables. The motive for using forward looking 

survey data in the VAR models is that surveys tend to yield improved forecasts for 

macroeconomic variables (Ang et al. 2007). The intuition is that forward looking surveys, in 

this case business and consumer confidence surveys, are leading indicators of GDP.  

 

There are many surveys available on the optimism of businesses and consumers on current 

conditions and future expectations of the economy. The Swedish National Institute of 

Economic Research publishes a comprehensive monthly report called the Economic 

Tendency Survey that compiles businesses and consumers view of the economy. The report 

contains the Economic Tendency Indicator, the Business Tendency Survey and the 

Consumer Tendency Survey.  

 

The Consumer Tendency Survey is a monthly household survey where 1,500 Swedish 

households are interviewed. The survey provides a quick qualitative indication of household 
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plans to purchase durable goods and consumer sentiment on the economic situation in 

Sweden, personal finances, inflation and saving (Konjunkturinstitutet, 2007). The Business 

Tendency Survey is a survey conducted in the business sector where 3,000-7,000 firms in the 

business sector are interviewed on actual outcomes, the current situation and future 

expectations. It is intended to provide a quick qualitative indication of actual outcomes and 

expectations regarding central economic variables for which no quantitative data are yet 

available (Konjunkturinstitutet, 2007). The variables in the survey include new orders, 

output, and employment. A more extensive quarterly survey is conducted in January, April, 

July, and October where the difference between the quarterly and the monthly survey is that 

the quarterly survey covers a larger sample of firms and more questions. The Economic 

Tendency Indicator is based on the monthly surveys of households and firms and captures 

the sentiment among these agents in the Swedish economy; the indicator is based on the 

information contained in the confidence indicators for industry, the service sector, 

construction, the retail trade and consumers (Konjunkturinstitutet, 2007). The Economic 

Tendency Indicator can be compared most closely with the EU Commission’s Economic 

Sentiment Indicator (ESI). 

 

The explanatory variables used in the VAR models are the Consumer Confidence Index 

(CCI) and the Manufacturing Industry Confidence Index (MCI). Both measures are so-called 

net percentages, which show the proportion of consumers and firms indicating a positive 

change in a particular variable, less the proportion indicating a negative change 

(Konjunkturinstitutet, 2007). The CCI is found in the Consumer Tendency Survey and is 

defined as the consumers’ degree of optimism on current conditions and future (the next 12 

months) expectations of the economy. The MCI is found in the Business Tendency Survey 

and is defined as the degree of optimism on current conditions and future expectations in 

the manufacturing industry. 

3 Data 
Seasonally adjusted quarterly data (1993:1-2006:4) for Swedish real GDP is taken from 

Statistics Sweden (SCB). To obtain the data for the dependant variable, Swedish real GDP 

growth, the seasonally adjusted quarterly data for real GDP is log differenced.  
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)ln()ln( 1−−=Δ ttt YYy      (3.1) 

 

For the explanatory variables, the forward looking surveys, seasonally adjusted data of 

quarterly frequency (1993:1-2006:4) for MCI and of monthly frequency (1993:1-2006:12) for 

CCI is taken from Konjunkturinstitutet (KI). The monthly data for CCI is converted into 

quarterly data through averaging. 
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Figure 3.1 Quarterly Real GDP Growth
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From Figures 3.1 and 3.2, it appears that real GDP growth and MCI are coincident; the 

variables appear synchronized and the peaks and troughs in line with one another. The only 

evident exceptions occur in 1999 and 2006, where the troughs in MCI do not reflect similar 

troughs in real GDP growth. Real GDP growth and CCI do not appear to exhibit the same 
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degree of synchronization and regular co-movement as do real GDP growth and MCI. The 

co-movement appears to be irregular and CCI seems to at different times be leading, 

coinciding and lagging real GDP growth. 

4 Methodology 

4.1 Forecasting 

The time series containing  is divided into in-sample (1993:1 to 1999:4) and out-of-

sample (2000:1 to 2006:4) data. The in-sample data is used for initial parameter estimation 

and the out-of-sample data is used for forecast evaluation. The AR and VAR models with 1-

4 lags are used to forecast out-of-sample 

yΔ

yΔ  for forecast horizons t+1, t+4, t+8 and t+12. 

Also, RW models are used as benchmarks to forecast out-of-sample  for forecast 

horizons t+1, t+4, t+8 and t+12. 

yΔ

 

The RW model forecasts are given by: 

 

hthtt yyE +++ Δ=Δ )( 1       (4.1) 

 

The AR(1) model forecasts are given by: 

 

hthtt ybayE +++ Δ+=Δ ˆˆ)( 1      (4.2) 

 

The VAR(1) model forecasts are given by: 

 

hththtt xcybayE ++++ +Δ+=Δ ˆˆˆ)( 1     (4.3) 

 

where h is the forecast horizon and x either MCI or CCI. For lag lengths greater than 1, 

lagged values of the dependant variable yΔ are added to the AR and VAR models as shown 

in (2.1).  
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The one-step-ahead (horizon t+1) forecast )( 1+Δ tt yE  is made using the initially estimated 

model parameters and information available at period t. Then, for the entire out-of-sample 

period, the estimated model parameters are updated and all available information used to 

make one-step-ahead forecasts one period after another.   

 

The h-step-ahead (horizon t+h) forecast )( 1++Δ htt yE

)( 1+

uses both actual and forecasted values 

of . First, the one-step-ahead forecast yΔ Δ tt yE  is made using the initially estimated 

model parameters and the information available at period t. Then, the one-step-ahead 

forecasting model is iterated forward one period after another until period t+h. The 

procedure is repeated for the entire out-of-sample, where the estimated model parameters 

are updated and all available information at period t used to make h-step-ahead forecasts one 

period after another. 

4.2 Forecasting accuracy 

To determine which model is most accurate the out-of-sample forecast errors are evaluated 

using common forecast evaluation criteria; ME, MAE and RMSE (Binner et al., 2005). ME is 

simply the average of the out-of-sample forecast errors and gives an indication as to whether 

the forecast is biased. MAE is similar to ME but averages the absolute values of the out-of-

sample forecast errors. RMSE is the most frequently used measure and is known to be more 

sensitive to outliers than MAE. 

 

The forecast error (ε ) is given by: 

 

t
f
t

f
t yy Δ−Δ=ε       (4.4) 

 

where is forecasted and  is actual f
tyΔ yΔ tyΔ yΔ at period t. 

 

The forecast error evaluation criterions are given by:  

 

∑
−+=

=
4:2006

11:2000

1
ht

f
tK

ME ε       (4.5) 
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1
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f
tK

MAE ε       (4.6) 
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2
1

24:2006

11:2000

1
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑

−+h

f
tK

RMSE ε      (4.7) 

 

where K is the total number of out-of-sample forecasts and h is the forecast horizon. 

 

Although ME, MAE and RMSE are calculated for all models and forecast horizons, only 

RMSE is used when ranking the performance of the models. An F-test is used to test 

whether the differences in forecast RMSE are significant (Enders, 2004). The F-test assumes 

that the forecast errors have zero mean and are normally distributed, serially uncorrelated 

and contemporaneously uncorrelated with each other. 

 

The F-test is formulated (standard F-distribution with H-H degrees of freedom): 

 

∑

∑

=

== H

i
i

H

i
i

e

e
F

2

2
2

1

2
1

       (4.8) 

 

where the larger of the forecast RMSE is put in the numerator. The null hypothesis is for 

equal forecasting performance for the two models being compared. The intuition is that the 

F-value will equal unity if the forecast RMSE from the two models are equal, while a very 

large F-value implies that the forecast RMSE from the first model is substantially larger than 

the forecast RMSE from the second model (Enders, 2004). 

5 Results 
A MATLAB code was written to perform the computations required to find the best model 

to forecast . For each forecast horizon the code estimates the models, uses the estimated yΔ
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models to forecast the out-of-sample, calculates the out-of-sample ME, MAE and RMSE, 

and ranks the models by the latter. The results generated by the code are presented in Table 

5.1, where the models are ranked from best to worst performing based on forecast RMSE. 

 

Table 5.1 

t+1 t+4 t+8 t+12 

Model RMSE Model RMSE Model RMSE Model RMSE 

VAR1(1) 0,0007216 VAR2(2) 0,0008141 VAR2(3) 0,0008112 VAR2(3) 0,0009591

AR(4) 0,0007475 VAR2(3) 0,0008178 VAR2(2) 0,0008213 RW 0,0009905

AR(1) 0,0007540 AR(2) 0,0008384 AR(3) 0,0008556 VAR2(2) 0,0011000

VAR1(2) 0,0007656 AR(3) 0,0008478 RW 0,0008616 AR(3) 0,0011000

AR(2) 0,0007665 RW 0,0008512 AR(2) 0,0008621 AR(2) 0,0011000

VAR2(1) 0,0007788 VAR1(2) 0,0008649 VAR1(4) 0,0008932 VAR1(2) 0,0011000

AR(3) 0,0007858 VAR1(4) 0,000866 VAR1(2) 0,0008986 VAR1(3) 0,0012000

RW 0,0007930 AR(4) 0,0009079 VAR1(3) 0,0009014 VAR1(4) 0,0012000

VAR1(4) 0,0007985 VAR2(1) 0,0009318 AR(4) 0,0009971 AR(4) 0,0013000

VAR1(3) 0,0008298 VAR1(1) 0,0009664 VAR2(1) 0,0011000 VAR2(4) 0,0014000

VAR2(2) 0,0008533 VAR1(3) 0,000972 VAR1(1) 0,0011000 VAR2(1) 0,0014000

VAR2(4) 0,0008927 AR(1) 0,0009736 VAR2(4) 0,0011000 VAR1(1) 0,0014000

VAR2(3) 0,0008931 VAR2(4) 0,0010000 AR(1) 0,0012000 AR(1) 0,0015000

 

Note: VAR1 is a bivariate model based on MCI and VAR2 is a bivariate model based on CCI.

 

Table 5.1 shows that the VAR(1) model with MCI as explanatory variable performs best for 

forecast horizon t+1, that the VAR(2) model with CCI as explanatory variable performs best 

for forecast horizon t+4, and that the VAR(3) model with CCI as explanatory variable 

performs best for forecast horizons t+8 and t+12. The forecasts are plotted in Figures 5.1-4; 

the forecasts made by the VAR1(1) model for forecast horizon t+1 are plotted in Figure 5.1, 

the forecasts made by the VAR2(2) model for forecast horizons t+4 in Figure 5.2, and the 

forecasts made by the VAR2(3) model for forecast horizons t+8 and t+12 in Figures 5.3-4. 
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 Figure 5.1 Forecast horizon t+1, VAR(1) based on MCI
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 Figure 5.3 Forecast horizon t+8, VAR(3) based on CCI
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Figure 5.4 Forecast horizon t+12, VAR(3) based on CCI
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Using the F-test described in Section 4.2, the differences in forecast RMSE between the best 

performing and the second best performing models are tested for significance. The F-

statistics and P-values of the F-tests are presented in Table 5.2. Table 5.2 reveals that the 

best performing models are not significantly better than the second best performing models 

for any forecast horizon. 

 

Table 5.2 

Horizon Models F-statistic P-value 

t+1 AR(4)/VAR1(1) 1,035948 0,463108

t+4 VAR2(3)/VAR2(2) 1,004533 0,495269

t+8 VAR2(2)/VAR2(3) 1,012488 0,487019

t+12 RW/VAR2(3) 1,032750 0,466329

 

When comparing the forecast RMSE of the best performing model with the forecast RMSE 

of the RW benchmark model (the F-statistics and P-values of the F-tests are presented in 

Table 5.3), the F-test again shows that it is not significantly lower for any forecast horizon.  

 

Table 5.3 

Horizon Models F-statistic P-value 

t+1 RW/VAR1(1) 1,099002 0,40226 

t+4 RW/VAR2(2) 1,045621 0,453439

t+8 RW/VAR2(3) 1,062169 0,437172

t+12 RW/VAR2(3) 1,032750 0,466329

 

Even when comparing the forecast RMSE of the best performing model with the forecast 

RMSE of the worst performing model (the F-statistics and P-values of the F-tests are 

presented in Table 5.4), the F-test shows that it is not significantly lower for any forecast 

horizon. 
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Table 5.4 

Horizon Models F-statistic P-value 

t+1 VAR2(3)/VAR1(1) 1,237611 0,288254

t+4 VAR2(4)/VAR2(2) 1,228365 0,294984

t+8 AR(1)/VAR2(3) 1,479326 0,153009

t+12 AR(1)/VAR2(3) 1,564015 0,121399

 

Although the differences in forecast RMSE between the models are very small, it may be 

that the formulated F-test used is inappropriate, producing incorrect F-statistics and P-

values. A reason for the inappropriateness of the formulated F-test could be the non-

satisfaction of any one or more of the F-test assumptions; that the forecast errors have zero 

mean and are normally distributed, serially uncorrelated, and contemporaneously 

uncorrelated with each other. 

 

Enders (2004) describes alternative methods for forecast evaluation that relax the mentioned 

assumptions. The Granger-Newbold test (1976) is an alternative that overcomes the problem 

of contemporaneously correlated forecast errors, while the Diebold-Mariano (1995) test is an 

alternative that also overcomes the problem of forecast errors not having a zero mean and 

normal distribution, and not being serially uncorrelated (Enders, 2004). 

 

The MATLAB code also calculates Akaike’s (1974) Information Criterion (AIC) for all 

models at each period of the out-of-sample and determines the best model at each period 

based on the value of the information criteria. When using information criteria to find a 

suitable model, the aim is to minimize the value of the information criteria. For all periods of 

the out-of-sample the model found most suitable based on the information criteria is the 

VAR(4) model with MCI as explanatory variable. Clearly, the model suggested based on the 

information criteria is not coincident with the model suggested based on the out-of-sample 

forecast RMSE. 
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6 Conclusions 
The purpose of this thesis was to determine the best linear time series model to forecast 

Swedish real GDP growth by comparing the forecast performance of RW, AR and VAR 

models that use forward looking surveys as explanatory variables. The motive for using 

forward looking survey data in the VAR models was that surveys tend to yield improved 

forecasts for macroeconomic variables (Ang et al. 2007). The results show that the VAR(1) 

model with MCI as explanatory variable performs best for forecast horizon t+1, that the 

VAR(2) model with CCI as explanatory variable performs best for forecast horizon t+4, and 

that the VAR(3) model with CCI as explanatory variable performs best for forecast horizons 

t+8 and t+12.  

 

Although VAR models based on forward looking surveys are found to best forecast Swedish 

real GDP growth, the differences are small and the best performing models are neither 

statistically significantly better than the second best performing models, the benchmark 

models, nor even the worse performing models. As previously mentioned, this may be 

because the formulated F-test used is inappropriate, producing incorrect F-statistics and P-

values. Examining whether the F, Granger-Newbold, and Diebold-Mariano tests produce 

different results as regards the forecast evaluation of the models could be of interest.  

 

However, the results could also be due to a bad choice of surveys; the chosen surveys may 

have weak forward looking properties and not be leading indicators of Swedish real GDP 

growth. A comparison of a larger number of forward looking surveys and their capacity to 

forecast Swedish real GDP growth could be relevant. Similarly to Ang et al. (2007), it could 

also be relevant to examine if surveys are in fact appropriate or if macroeconomic variables 

better forecasts Swedish real GDP growth. It may be that surveys should not be used. 
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MATLAB code 
⇒ function [modelEvaluation modelStructure] = 

linearForecastModelEvaluation(yFbegin,yFend,lags,horizons,data,var1,var2) 
 

%The function is called to perform the model forecast evaluation on the out-of-
%sample, specifying where the out-of-sample begins and ends, the lags and horizons 
%to use, and the dependant and explanatory variables. 
 
    [forecastEvaluationAR] = 
univariate_forecastPerformance(data,yFbegin,yFend,lags,horizons); 
 
    [forecastEvaluationVAR1] = 
multivariate_forecastPerformance(var1,yFbegin,yFend,lags,horizons); 
 
    [forecastEvaluationVAR2] = 
multivariate_forecastPerformance(var2,yFbegin,yFend,lags,horizons); 
 
    [forecastEvaluationRW] = 
randomwalk_forecastPerformance(data,yFbegin,yFend,horizons); 
 
    [modelEvaluation] = 
evaluateModels(forecastEvaluationAR,forecastEvaluationVAR1,forecastEvaluationVAR2,f
orecastEvaluationRW,lags,horizons); 
 
    [modelStructure] = lagStructure(data,var1,var2,lags,yFbegin,yFend); 
 
end 
 
 

⇒ function [forecastEvaluation] = 
univariate_forecastPerformance(data,yFbegin,yFend,lags,horizons) 

 
%The function determines out-of-sample forecasts and forecast errors using the pure 
%autoregressive model. 
 
    forecastEvaluation=cell(length(lags),length(horizons)); 
 
    for i=1:length(lags) 
        for j=1:length(horizons) 
            [y yF 
mod]=univariate_forecast(data,yFbegin,yFend,cell2mat(lags(i)),cell2mat(horizons(j))
); 
            [ma mae rmse]=errorCalc(y,yF,yFbegin); 
            forecastEvaluation{i,j}.model='AR'; 
            forecastEvaluation{i,j}.lag=cell2mat(lags(i)); 
            forecastEvaluation{i,j}.horizon=cell2mat(horizons(j)); 
            forecastEvaluation{i,j}.ma=ma; 
            forecastEvaluation{i,j}.mae=mae; 
            forecastEvaluation{i,j}.rmse=rmse; 
        end; 
    end; 
 
end 
 
 

⇒ function [y yF mod] = univariate_forecast(data,yFbegin,yFend,lag,horizon) 
 

%The function makes out-of-sample forecasts using the pure autoregressive model. 
 

 
    if (yFbegin<=yFend) && (1<=lag) && (1<=horizon) 
 
        y=timeseries(data,1:length(data),'name','y'); 
        yF=timeseries('yF'); 
 
            for n=yFbegin+horizon-1:yFend 
                mod=ar(y.data(1:n-horizon),lag); 
                temp=timeseries(data,1:length(data),'name','temp'); 
                if (horizon>1) && (n-horizon+1<=yFend) 
                    for l=n-horizon+1:n 
                        x=0; 
                        for i=1:lag 
                            x=x-(mod.parametervector(i)*temp.data(l-i)); 
                        end; 
                        s.data=x; 
                        s.time=l; 
                        s.overwriteflag=true; 
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                        temp=addsample(temp,s); 
                    end; 
                else 
                    x=0; 
                    for i=1:lag 
                        x=x-(mod.parametervector(i)*y.data(n-i)); 
                    end; 
                    s.data=x; 
                end; 
                s.time=n; 
                s.overwriteflag=true; 
                yF=addsample(yF,s); 
            end; 
    end; 
 
end 
 
 

⇒ function [forecastEvaluation] = 
multivariate_forecastPerformance(data,yFbegin,yFend,lags,horizons) 

 
%The function determines out-of-sample forecasts and forecast errors using the 
%vector autoregressive model. 
 
    forecastEvaluation=cell(length(lags),length(horizons)); 
 
    for i=1:length(lags) 
        for j=1:length(horizons) 
            [y yF 
mod]=multivariate_forecast(data,yFbegin,yFend,cell2mat(lags(i)),cell2mat(horizons(j
))); 
            [ma mae rmse]=errorCalc(y,yF,yFbegin); 
            forecastEvaluation{i,j}.lag=cell2mat(lags(i)); 
            forecastEvaluation{i,j}.horizon=cell2mat(horizons(j)); 
            forecastEvaluation{i,j}.ma=ma; 
            forecastEvaluation{i,j}.mae=mae; 
            forecastEvaluation{i,j}.rmse=rmse; 
        end; 
    end; 
 
end 
 
 

⇒ function [y yF mod] = multivariate_forecast(data,yFbegin,yFend,lag,horizon) 
 

%The function makes out-of-sample forecasts using the vector autoregressive model. 
 

 
    if (yFbegin<=yFend) && (1<=lag) && (1<=horizon) 
 
        y=timeseries(data(1:length(data),:),1:length(data),'name','y'); 
        yF=timeseries('yF'); 
        delay=1; 
 
            for n=yFbegin+horizon-1:yFend 
                mod=arx(y.data(1:n-horizon,:),[lag lag delay]); 
                
temp=timeseries(data(1:length(data),:),1:length(data),'name','temp'); 
                if (horizon>1) && (n-horizon+1<=yFend) 
                    for l=n-horizon+1:n 
                        x1=0; 
                        x2=0; 
                        for i=1:lag 
                            p=temp.data(l-i,1); 
                            x1=x1-(mod.a(i+1)*p); 
                            q=temp.data(l-i,2); 
                            x2=x2+mod.b(i+delay)*q; 
                        end; 
                        temp.data(l,1)=x1; 
                        temp.data(l,2)=x2; 
                        s.data=x1+x2; 
                    end; 
                else 
                    x1=0; 
                    x2=0; 
                    for i=1:lag 
                        p=y.data(n-i,1); 
                        x1=x1-(mod.a(i+1)*p); 
                        q=y.data(n-i,2); 
                        x2=x2+mod.b(i+delay)*q; 

 22



                    end; 
                    s.data=x1+x2; 
                end; 
                s.time=n; 
                s.overwriteflag=true; 
                yF=addsample(yF,s); 
            end; 
    end; 
 
end 
 

⇒ function [forecastEvaluation] = 
randomwalk_forecastPerformance(data,yFbegin,yFend,horizons) 

 
%The function determines out-of-sample forecasts and forecast errors using the 
%random walk model. 

 
 
    forecastEvaluation=cell(1,length(horizons)); 
 
        for i=1:length(horizons) 
            [y yF]=randomwalk_forecast(data,yFbegin,yFend,cell2mat(horizons(i))); 
            [ma mae rmse]=errorCalc(y,yF,yFbegin); 
            forecastEvaluation{i}.model='RW'; 
            forecastEvaluation{i}.horizon=cell2mat(horizons(i)); 
            forecastEvaluation{i}.ma=ma; 
            forecastEvaluation{i}.mae=mae; 
            forecastEvaluation{i}.rmse=rmse; 
        end; 
 
end 
 
 

⇒ function [y yF] = randomwalk_forecast(data,yFbegin,yFend,horizon) 
 

%The function makes out-of-sample forecasts using the random walk model. 
 
    if (yFbegin<=yFend) && (1<=horizon) 
 
        y=timeseries(data,1:length(data),'name','y'); 
        yF=timeseries('yF'); 
                for n=yFbegin+horizon-1:yFend 
                    s.data=y.data(n-horizon); 
                    s.time=n; 
                    s.overwriteflag=true; 
                    yF=addsample(yF,s); 
                end; 
    end; 
 
end 
 
 

⇒ function [y] = 
evaluateModels(forecastEvaluationAR,forecastEvaluationVAR1,forecastEvaluationVAR2,f
orecastEvaluationRW,lags,horizons) 

 
%The function evaluates the performance of the models and ranks them according to 
%RMSE.  
 
 y=cell(length(horizons),1); 
 for k=1:length(horizons) 
  x=cell(3*length(lags)+1,1); 
     n=0; 
     for i=1:length(lags) 
             n=n+1; 
             x(n)=forecastEvaluationAR(i,k); 
             n=n+1; 
             x(n)=forecastEvaluationVAR1(i,k); 
             x{n}.model='VAR1'; 
             n=n+1; 
             x(n)=forecastEvaluationVAR2(i,k); 
             x{n}.model='VAR2'; 
     end; 
             n=n+1; 
             x(n)=forecastEvaluationRW(k); 
     for i=2:length(x) 
         index = cell2mat(x(i)); 
         j = i; 
         while ((j > 1) && (x{j-1}.rmse > index.rmse)) 
           x(j) = x(j-1); 
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           j = j - 1; 
         end; 
         x(j) = {index}; 
     end; 
     y(k)={x}; 
 end; 
 
end 
 
 

⇒ function [ma mae rmse] = errorCalc(y,yF,yFbegin) 
 

%The function calculates the forecast ME, MAE and RMSE. 
 
    sumerrors=0; 
    sumerrorsabs=0; 
    sumerrorssqrt=0; 
    for i=1:length(yF) 
        celln=yFbegin+i-1; 
        sumerrors=sumerrors+(yF.data(i)-y.data(celln)); 
        sumerrorsabs=sumerrorsabs+(abs(yF.data(i)-y.data(celln))); 
        sumerrorssqrt=sumerrorssqrt+((yF.data(i)-y.data(celln))^2); 
    end; 
    ma=(1/length(yF))*(sumerrors); 
    mae=(1/length(yF))*(sumerrorsabs); 
    rmse=(1/length(yF))*((sumerrorssqrt)^(0.5)); 
 
end 
 
 

⇒ function [q] = lagStructure(data,var1,var2,lags,yFbegin,yFend) 
 

%The function determines the best model and lag structure for each period of the 
%out-of-sample using Aikaike’s Information Criterion. 
 
    p=modelAicCalc(data,var1,var2,lags,yFbegin,yFend); 
    q=cell(yFbegin-yFend+1,1); 
        for j=yFbegin:yFend 
            x=p{1}; 
            for k=1:3*length(lags) 
                if p{k}.aic{j}<x.aic{j} 
                   x=p{k}; 
                end; 
            end; 
            s.model=x.model; 
            s.lag=x.lag; 
            s.aic=x.aic{j}; 
            q(j) = {s}; 
        end; 
 
end 
 
 

⇒ function [p] = modelAicCalc(data,var1,var2,lags,yFbegin,yFend) 
 

%The function determines Aikaike’s Information Criterion for all models and periods 
%of the out-of-sample. 
 
    n=0; 
    p=cell(length(lags)*3,1); 
    for i=1:length(lags) 
        n=n+1; 
        p{n}.model = 'AR'; 
        p{n}.lag = cell2mat(lags(i)); 
        p{n}.aic = aicCalc(data,yFbegin,yFend,cell2mat(lags(i)),1); 
        n=n+1; 
        p{n}.model = 'VAR1'; 
        p{n}.lag = cell2mat(lags(i)); 
        p{n}.aic = aicCalc(var1,yFbegin,yFend,cell2mat(lags(i)),2); 
        n=n+1; 
        p{n}.model = 'VAR2'; 
        p{n}.lag = cell2mat(lags(i)); 
        p{n}.aic = aicCalc(var2,yFbegin,yFend,cell2mat(lags(i)),2); 
    end; 
 
end 
 
 

⇒ function [x] = aicCalc(data,yFbegin,yFend,lag,v) 
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%The function calculates Aikaike’s Information Criterion for the specified model 
%structure.  
 
    delay=1; 
    x=cell(yFend-yFbegin+1,1); 
    if v==1 
        y=timeseries(data,1:length(data),'name','y'); 
        for n=yFbegin:yFend 
            x{n}=aic(ar(y.data(1:n),lag)); 
        end; 
    else 
        y=timeseries(data(1:length(data),:),1:length(data),'name','y'); 
        for n=yFbegin:yFend 
            x{n}=aic(arx(y.data(1:n,:),[lag lag delay])); 
        end; 
    end; 
 
end 
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