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1. Introduction

The first scientific approach to value options dateack to 1900 when the French
mathematician Louis Bachelier created the well-knodrownian motion to model the
evolution of stock prices (which became the nornthim 1960s). Option pricing formulas were
at that time derived by taking the discounted etqiean. However, the major break-through
within the field of option pricing was made by Bkaand Scholes (1973) and Merton (1973).
Like previous pricing models, the Black-Scholes73p(henceforth BS) model assumes that
the evolution of the stock price follows a geonte®rownian motion. Another assumption
made in the BS model is that of a constant vatatihich according to Ross (1989) implies a
constant flow of information as he means that viglatcan be considered as a measure of
information flow. The correctness of this constaptatility assumption has however been
guestioned by many since it is known that the B®lehdnas some pricing biases (Rubinstein
(1985)). Hull and White (1987) and Wiggins (198a&mong many, suggest that this constant
volatility assumption might be a reason for théufa of the BS model to value options exactly.
A common way to express the deficiencies of the B&el is by plotting BS implied
volatilities against strike pricdg) or moneynes&S/K or K/S). This plot is also known as
the volatility smile, where a constant volatilitiiaild result in “a neutral facial expression”
(Dumas, Fleming, and Whaley (1998)). However, evt#@eagainst this has been presented
numerous times. Two examples are Rubinstein (1984 examines the S&P 500 index
option market, and Heynen (1993), who examinesBhmpean Options Exchange. These
deficiencies are naturally what induce researcteemirsuit the development of more realistic
models, incorporating empirical features such asksprice volatilities and interest rates as
stochastic processes. Extensions of the BS modekctoporate the fact that the volatility of
stock prices varies stochastically have for exarbplen made by Scott (1987), Hull and White
(1987), and Wiggins (1987). These so-called staahaslatility (SV) models are divided into
two groups, considering the volatility in contingeuand discrete-time. One alternative
approach to characterize a stochastic volatilitglehan discrete-time is to use the generalized
autoregressive conditional heteroskedasticity (GAIR@odel (see Bollerslev (1986)).

This thesis is based on Heston and Nandi (2000, mriesent a closed-form discrete-time
GARCH (henceforth HN GARCHXq)) model for pricing European options. The model
applies for assets whose variances follow GARGd( processes. It should however be
mentioned that only the GARCH(1,1) case is considen this thesis, which according to a
survey made by Bollerslev et al. (1992) is the $@&®pand most robust one of the family of
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volatility models. The HN GARCHq) model values options by using the volatilities
computed directly from the history of asset pricas] it incorporates the correlation between
spot prices and their volatility. Heston (1993) whkothat this correlation is important for
explaining the skewness seen in stock returns, mgaki this aspect the model superior to the
BS model (which assumes that (continuously compedhdstock returns are normally
distributed with known mean and variance). In addito this, the HN GARCHyg) model
combines also the cross-sectional information ¢oathin options with the information in the
time series of the underlying asset. In other wpitisincorporates the volatility smile.
Numerical methods such as simulations are valuadgthods for pricing options and are for
that reason widely used. However, despite theiremsing popularity led by the growing
capacity of computing power, they can be both ttmesuming and computationally intensive.
This drawback is however an advantage of the HN GHp,q) model, since its
implementation is analytical.

The purpose of this thesis is to implement the HNRGH(p,q) model for the Swedish stock
index (OMXS30) using the Normal- and the Studedhistribution and compare its performance
with the BS- and the ad hoc BS model.

The methodology is organized such that the BS-thadid hoc BS model are estimated first,
followed by two versions of the HN GARCH(1,1) modehe with constant- and one with
updated parameters. The HN GARCH(1,1) model is eftonated using the Normal- and the
Student-t distribution. All the models are estindaé®d compared in both in-sample and out-of-
sample.

There are four main restrictions imposed in thesth. The first one is that closing prices are
used instead of intra-daily. This restriction slibbbwever not affect the results in a significant
way since OMXS30 options are frequently traded, lymg that the closing prices of the
options and the stock index should still be reaslynaynchronous. The second restriction
considers the estimation of the HN GARCH(1,1) mqgumiameters. While Heston and Nandi
(2000) use non-linear least squares (NLLS) (whexjfuires the usage of option prices) for this
purpose, the method used here is maximum likelingdid). Heston and Nandi (2000) point
out that the NLLS procedure is preferable since itifermation in option prices is more
forward looking than the price of the underlyingets This argument has however not been
proven empirically, which is why the easier methibd, ML procedure, is used here. The third
restriction is that dividends are not taken inteccamt. This should in general not have any
significant effects on the results since many efskocks in the OMXS30 index pay dividends



only once a year (mostly in Mars or April). The fttuand final restriction is that only call
options are valued. However, put options can eéasilyalued using the put-call parity.

The outline of this thesis is as follows: Sectioprgsents a theoretical framework discussing
the BS-, the ad hoc BS-, and the HN GAR@H) model. Section 3 presents the empirical

results, and finally, section 4 gives a conclusiad a discussion.



2. Theoretical Framework

This section is the foundation of the theory behatidhe aspects considered in the empirical
part, and with that, constitutes a major cornenetof the thesis. It is comprised of various
subsections considering discussions about riskraleualuation, implied volatility, different

option pricing models, etc. The first subsectionegi a brief discussion about the concept of

risk-neutral valuation.

2.1. Risk-Neutral Valuation

Risk-neutrality implies that agents are indifferémtisk, meaning that they do not require any
compensation for the exposure of it. A result idtrced by Cox and Ross (1976) is that the
expected return on all assets in a so-called reskral world is equal to the risk-free interest
rate. This follows that the price of an asset igado its expected payoff, discounted at the

risk-free rate. Hence the value of a Europeanaglbn for instance is given by

C =E |exp —fr(t)dt Max(S(T) —K,0)| =e " TE[Max(S(T) — K,0)]. (D

0

Clearly, the second equality is an easier exprassgiograsp, but its drawback is that it only
holds if the interest rate is assumed to be cohstdre first equality however holds always.
This result is known as risk-neutral valuation.

Risk-neutral valuation arises from the fact thahenmf the variables in the BS formulas
(discussed in a later section), i.e. the curremtksprice, the stock price volatility, the time to
maturity, and the risk-free interest rate, are depat of individual risk preferences. This fact
allows for the assumption that all investors as&-rieutral, stating that it is always possible to
assume the world to be risk-neutral when pricingiomys. This assumption simplifies the
analysis of options, or derivatives in generalcsithe resulting prices are valid in all worlds
and not just in the assumed one. The reason tastthsit there are only two changes that occur
when moving from a risk-neutral world to a risk-ese one, and luckily, these two always

offset each other exactly. These are the expectealtly rate in the stock price and the discount

! For more about risk-neutral pricing, see for exnfuffie (1996), Hull (1997), and Wilmott (1998).



rate that must be used for any of the derivatiyegyoffs (Hull (2006)). The significant

simplification followed by using this assumption kea it one of the most important ones in
explaining option prices. Hence the fact that gti@n pricing models are founded on this
assumption is therefore not so surprisingly. HR0Q6) describes it as being “...without doubt

the single most important tool for the analysislefivatives.?

2.2. Implied Volatility

The most popular type of implied volatilityis the so-called BS implied volatility. An optian’
BS implied volatility is that volatility obtained lven equating the option’s market value to its
BS value, given the same strike price and time &bunity. It is extracted numerically due to
the fact that the BS formula cannot be solvedddn terms of the other parameters. Hence
implied volatilities are embedded in option pricesich in turn reflect the future expectations
of the market participants. This means that impliethtilities are important because they form
a forward-looking estimate of the volatility of thederlying asset, and can therefore be used to
monitor the market’'s opinion of it. Traders for exsle use the implied volatilities from
actively traded options in order to estimate anrappate volatility to use to price a less
actively traded option on the same asset (Hull §20®Heston and Nandi (2000) warn however
that “... using implied volatilities to value an agi requires the use of other contemporaneous
options that may not always be feasible if one du@shave reliable option prices such as in
cases of thinly traded or illiquid markefSNoteworthy is that the prices of deep-in-the-meney
and deep-out-of-the-money options are relativelsemnsitive to volatility, meaning that the
implied volatilities calculated from these optidead to be unreliable (Hull (2006)).

2.3. The Black-Scholes Model

Fischer Black and Myron Scholes developed in théyd®70s a method to price options on
non-dividend paying stock, which has turned to be of the most successful and widely used
models in financial economiésThis section presents only its formulas, sincediagvation of

2 See Hull (2006) pp. 293.

3 See Heston and Nandi (2000) pp. 586.

* The first extension of this model was made sharfilgr by Merton (1973), who extended the modelaasider
the case of dividend-paying stocks.
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the model and its underlying assumptions can bendoin every literature in financial
economics.

Assuming that the model’s underlying assumptions ,hithe BS formula for a European call
option on a non-dividend-paying stock trading met is given by

C.(S,, T —t) = S,N(dy) — Ke "T-ON(d,), (2)

where

B log(%) + (r +%02) (T-1)

de = oT —t ' 3)
d, =d, —oVT — L. 4)

C; is the call priceN(d;) is the cumulative probability distribution valuer fa standard normal
random variable with valué;, S; is the price of the underlying asset at titn& is the strike
price,r is the risk-free interest rate, afids the option’s time to maturity.

Two underlying assumptions of the BS model are thatunderlying asset’s volatility is
constant and that its returns are normally distabu(equivalently, that the prices of the
underlying asset are log-normally distributed). Sdéwo assumptions are major drawbacks of
the BS model. Black (1976) for instance pointstbat “if the volatility of a stock changes over
time, the option formulas that assume a constalatility are wrong.® Empirical evidence has
shown to be in accordance with Black’s argumentstfong negative correlation between
stock’s current prices and their future volatibtieas been seen. In other words, volatility tends
to rise in response to “bad news” (i.e. when anxpaeted price drop occurs) and to fall in
response to “good news” (i.e. when an unexpectee pise occurs). This feature is called the
leverage effect and was first noted by Black (197#)o also writes: “I have believed for a
long time that stock returns are related to vatgtdhanges. When stocks go up, volatility seem
to go down; and when stocks go down, volatilitieera go to up.” Figure 1 illustrates this
effect.

® The BS formula for a European put option on a disitend-paying stock trading at timés given by
P.(S,, T —t) = =S,N(—=d;) + Ke "T-IN(—d,).

® See Black (1976) pp. 177.

" See Black (1976) pp. 177.



Figure 1 Leverage effect
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Note: OMXS30 stock index level and BS implied volatilisach Wednesday
during the period 2006-01-04 — 2006-12-27.

Hence Figure 1 clearly shows the leverage effeith acorrelation in the first difference of the
series equalling -0.3977. Empirical evidence has ahown that financial data is generally not
normally distributed, but is instead more skewed has a greater kurtosis. The most known
graphical evidence against the constant volatdggumption is the implied volatility curve,

which is discussed in the next section.

2.4. The Implied Volatility Curve

A well-known and important feature is the impliealatility curve, also known as the volatility
smile or the volatility smirk. This implied volaty curve is simply a plot of the BS implied
volatilities (which are obtained by using a croest®n of option prices with a variety of strike
prices and maturities) against strike pfig8 or moneynes&S/K or K/S). The two factors
that are believed to have the greatest effect enstrape of the implied volatility curve are
moneyness and maturity (Rouah and Vainberg (20G1gure 2 illustrates the pattern in the
OMXS30 BS implied volatilities.



Figure 2 Volatility smile
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from OMXS30 index call option prices for the Jurdely, and August 2005

option expirations. The option prices are equah®maverage of the bid- and ask
prices. Time-adjusted moneyness is definefi@&/S) — 1]/+/T, whereS is

the index level K is the option’s exercise price, addis the option’s time to

maturity (in days).

The wrong assumption that financial data is nonndlktributed is thought to explain the
existence of smiles and smirks. More specificalye data’s relatively higher skewness and
greater kurtosis is thought to explain the existeatsmiles and smirks, respectively (Rouah
and Vainberg (2007)). These are generally moreeexifor short-term options than for long-
term options, which is equivalent with saying thahg-term returns are more normally
distributed than short-term returns (Rouah and Maig (2007)). The relatively greater kurtosis
implies that extreme returns are more likely tousceneaning that deep in-the-money- and
deep out-of-the-money options are more expensikaive to their BS value. The relatively
higher skewness in returns is also often shownetmdégative, meaning that large negative
returns are more likely to occur (which is a featuhat is not allowed by the normal
distribution). This greater likelihood of large ra¢ige returns leads in turn to higher implied
volatilities for in-the-money- than for out-of-threeney calls.

2.5. The ad hoc Black-Scholes Model

The existence of the implied volatility curve ar ttwo factors believed to have the greatest

effect on its shape, namely moneyness and mathiatye resulted to the development of what



Dumas, Fleming, and Whaley (1998) (henceforth DE@f)the ad hoc BS mod&IThis model
involves using what DFW call a deterministic vdigitifunction (DVF) to model the implied
volatility, which is nothing more than a simple gquatic function of moneyness and maturity.
Hence the underlying assumption of a constant Nibjatnade in the BS model is dropped by
making the volatility dependent on these two.

DFW considers four different structural forms foetDVF, namely

Model 0: 0 = max(0.01, a,);

Model 1: 0 =max(0.01,a, + a, K + a,K?);

Model 2: 0 =max(0.01,a, + a;K + ay,K? + a;T + asKT);

Model 3: 0 =max(0.01,ay + a;K + a,K? + a3T + a,T? + asKT),

whereay, a, a,, as, a,, as are the model parameters. A minimum value of dwoall volatility
rate equalling 0.01 is imposed in each model ireptd eliminate possible negative values of
fitted volatility. Model O is obviously equivalend the BS constant volatility, followed by
gradually more complicated forms. A final modelascross between Model 1, 2, and 3,
depending on the number of different option maesiin the sample on that day. DFW (1998)
show that Model 0 leads to the largest valuatimarsy which is a result that is consistent with
the fact that volatility is not constant across eymess and maturity.

Christoffersen and Jacobs (2004) compare the greirors of the ad hoc BS- and the Heston
(1993) model (which is discussed in the next sagtibhey conclude that the ad hoc BS model
is the superior one of the two. In addition to thikvzantage of the ad hoc BS model, it is made
even more attractive when considering the easesquires to implement it. The model

parameters are estimated via ordinary least sq@tes) on a series of BS implied volatilities.

8 This same model is referred to as the Practiti@S&model by Christoffersen and Jacobs (2004).



2.6. Stochastic Volatility Models

The behaviour documented in Figures 1 and 2 abamébe explained by some option pricing
models. The stochastic volatility model of Hest@893) for example can explain them when a
negative correlation exists between the asset pndets volatility (DFW (1998)).

Heston (1993) proposed the following two-factoreagsicing model;

dS(t)

o) = (u—8)dt +/h(t)dW(v), (5)
dh(t) = (6 — h(t))dt + a(h)/h(t)dW ()", (6)

whereW, andW/* are two correlated Brownian motion processes adthstant correlatiop,

i.e. E[dW (t)dW (t)"] = pdt.® This expression implies that the correlation betwéhe returns
dS(t)/S(t) (given by equation (5)) and the changes in thalitmmal variancei(t) (given by
equation (6)) is incorporated in the option pricimgdel. Equation (6) models the conditional
varianceh(t) of the percentage change of the stock price asam#reverting process. The first
term on the right-hand side of the equatién; h(t), is a drift that pulls the conditional
variance back to its long-run me@rat ratex. The latter parameter gives the speed of the mean
reversion in the variance process. Hence thelokfbmes negative when the variance at time
is higher than its long-run med&h(t) > 6), making the variance more likely to decrease over

time towards its long-run mean, and vice versa wheis lower than its long-run mean

(h(t) < 6). Due to the,/h(t) term however, the variance cannot become negaihee its
own volatility a(h) approaches zero ds(t) decreases (Heston (1993)). Equation (6) is
intended to fit the non-constant variance by takivgpast into account in a way that the size of
the current volatility relates to the size of thespvolatilities. This feature is called volatility
clustering, meaning that high-volatility period® dllowed by high-volatility periods and vice
versa. The equation takes also into account aip®sautocorrelation of squared log-returns,
which is a well-known characteristic known as AREfects.

One alternative approach to characterize a stachasatility model is to use the generalized
autoregressive conditional heteroskedasticity (GAR@odel (see Bollerslev (1986).

% See Hull (2006) for a discussion about the Browmimtion process.
19 See Bollerslev et. al. (1992) for a literatureieevof some important academic studies on ARCH@ARCH
modelling in finance.

10



2.7. The Heston-Nandi Closed-Form GARCH Option Valuation Model

The HN GARCHp,q) model has two basic assumptions. The first ome@ms the process of
the logarithmic spot prickg(S(t)) of the underlying asset. The second one is needextier
to transform this process to obtain the final m&kitral version of the HN GARCH) model
(explained in more detail below). Thus the firsswasption is that the logarithmic spot price
log(S(t)) of the underlying asset (including accumulatectriest or dividends, if they are

considered) follows the following GARCH process otmne steps of lengtl;

log(S(t)) =log(S(t — A)) + r + Ah(t) + h(t)z(2), (7

q

14
MO =0+ Y Bt — i) + ) a (20— i) -yt D), ®

=1

where

p.q =0,

w >0,
Bi=0,i=1.2,..,p,
a;=>0,i=12,..,q.

Equation (7) and (8) is the mean model and théhststc volatility model, respectively.is the
continuously compounded interest rate for the timterval A, 1is a parameteh(t) is the
conditional variance of the log-return between timeA and t, andz(t) is a standard normal
disturbance. Despite the fact that the specificatibthe volatility model above might seem a
bit complex, it is still in the end nothing moreatha version of the ordinary GARQbf)
model. The appearance of the conditional varidr{¢g in the mean model is interpreted as a
return premium since it allows the average spairreto depend on the risk levélMoreover,
the termAh(t) implies that the expected spot return is assumeaxkt¢eed the risk-free rate by
an amount proportional to the variaride).

Since this thesis focuses only on the single lagiore of the HN GARCH model, it follows
naturally to discuss some of its process properfié® first property is that the first-order

1 is assumed to be constant since option pricegeayeinsensitive to this parameter. The functidoan of this
risk premium, i.eAh(t), prevents arbitrage by ensuring that the spatassns the risk-free interest rate when it
itself is risk-free, which is the case when thearace equals zero.
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process is stationary i§; + a;y? < 1. Moreover, the conditional varianaét + A) can be

observed as a function of the spot price at timee.

(108(S(8)) — Log(S(t — &) = ¥ = 2h(8) = y1h(®))

h(t+A) = w+ Bh(t) + a; o)

9)

a,; andy; determines the kurtosis and the skewness of teiildition of the log returns,
respectively. Thex, parameter being zero implies a deterministic twaeying variance,

whereas a zero value of thg(andA) parameter implies a symmetric distribution. Tleance

processi(t) and the spot retuﬂlmg(S(t)) are in general correlated as

Covt_A[h(t + A),log(S(t))] = —2a,y,h(t). (10)

Given a positivar; parameter, a positive value fpr results in a negative correlation between
asset price and volatility.

It is not possible to use equations (7) and (8)90rabove to value options due to the fact
that the risk-neutral distribution of the spot pris unknown. This is where the second
assumption comes in, which enables the transfoomatif equation (7) and (8) to their
respective final risk-neutral versions. Heston &fahdi (2000) formalize this assumption as
Proposition 1, which ensures that the risk-neydratess has the same form as the real process,
i.e. as equations (7) and (8) but witheplaced by- 1/2 in the mean model and replaced by
¥Yi =71 + 4+ 1/2 in the volatility model. Hence the final risk-nealtversions of equation (7)

and (8) above are

log(S(t)) = log(S(t — A)) + 71— %h(t) +h(®)z* (1), (1)

P q
h(E) = w + Zﬁih(t —iA) + Z & (2(t — i) — y/AlE - m))2 ta, (27t — &) — yi A - A))Z, (12)

where
1
2(t) = 2(t) + (z + 5) NG}

12



1
ri=rtits
Z (t) denotes now a standard normal risk-neutral disinze.

The price of a European call option at time&ith strike priceX that expires at tim& is given

by
C=e "TOE [Max(S(T) —K,0)] = S(t)P, — Ke™""P,, (13)

whereE;[.] is the expectation at timteunder the risk-neutral distribution aRgdandP, are the
risk-neutral probabilities.

P; is simply the delta of the call option wherdgsis the risk-neutral probability of the asset
price being greater than the strike price at mturie. P, = Pr[S(T) > K]. The values of
these two risk-neutral probabilities must be calted in order to obtain the call price. The
generating function of the underlying asset pridenoted () =Et[S(T)®], is also the
moment generating function of the logarithm of tepot priceS(T). In other words,
E.[S(T)?] = E,[@1og S(T)]. Denoting the generating function for the riskinauprocess in
(11) and (12) ag* (@), it takes the following log-linear form;

q-1

2
P
(@) =S(t)%exp (A(t: T,0)+ Z B;(t; T,®)h(t + 2A — iA) + Z Ci(6;T,®)z(t +A—iA) —y;/h(t +A— iA)) ,(14)

i=1 i=1

where

1
AT, 0) = At + 40T, 0) + 0r + B, (t + AT, ®)w — Eln(l —2a,B,(t +A;T,0)), (15)

1 1/2(® —y1)?
171 y 4
B;(t;T,®) = B;B,(t + A;T,0) + By (t + A;T,0), for1 < i <p, 17)
Ci(t;T,0) = aj B (t+ AT, 0) + Cip1(t+A;T,0), forl <i < q— 1. (18)

By using the following conditions as starting vaue

13



the coefficients for the generating function (1giyen by equation (15), (16), (17), and (18),
can be derived recursively from tirfieto t.

Due to that the generating function of the spateis also the moment generating function of
the logarithm of the spot price, it follows th&ti@) is the characteristic function of the latter
price. In order to use this functio@,in equations (15), (16), (17), and (18), must h@aeed
by i@ everywhere. Once the generating function is ddritke risk-neutral probabilitiesP(
andP, ) required for the call price can be calculatedrierting this characteristic functidf.
This requires numerical integration since the irdégy representing these risk-neutral
probabilities cannot be derived analytically. Hestand Nandi (2000) show that these
probabilities have the following form;

1 e ® [K 2F(ip+1)
1 1(*° [K@f(ip
PZ = E + ;] Re lf—a(wl d@, (21)
0

whereRel.] denotes the real part of a complex number. Thieisian of these probabilities in
equation (13) completes the option valuation foemience the value of a European call
option at timet is given by

C=e "T-OE [Max(S(T) — K,0)] =

1 eV [ —“Z’fl@+1 1 1(  [K®f;
- _ -r(T-t) | — 4 _ i9
25(t)+ fRel ld(Z) Ke 2+ﬂfRel 0 ld(Z) , (22)
0

0

whereE;[.] denotes the expectation under the risk-neutrailoligion *3

12 See Feller (1971), Kendall and Stuart (1977), estbh (1993).
13 European put options can easily be valued by usiagut-call parity.
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2.8. Mispricing Error Measures

Three different pricing error measures are impleenn order to compare the different
pricing models. The mean outside pricing error (MOQ&easures the average pricing error
outside the bid-ask spread. It is equal to theetbfice between the model value and the ask
price if the model value exceeds the ask price,tarttie difference between the model value
and the bid price if the bid price exceeds the rhodkie. In cases where the model price is

within the bid-ask spread, the MOE is simply setado zero. Thus

|Zpo Pa If Do > Pa

Zpo Do if Do < Db’
k OlfpaSpoSpb

MOE == (23)

whereN is the number of errorp, is the model valuey, is the ask price angl, is the bid

price. MOE measures whether the model overpricesugh as it underprices the option price,
or if there are any systematic biases in the nmaspgicompared to the bid-ask spread. The
mean absolute error (MAE) is the average absohlteevof the MOE, i.e.

|z|po pa if o > Pa

|Z|po Pl if Po < b’
k 0if pa <Po <Py

MAE = = (24)

meaning that it does not consider the directionthef pricing error, i.e. whether the price is
over- or underestimated. The root mean squared @RB®ISE) measures the squared errors

between the model- and the market price.

1
RMSE = jﬁz(”" — Pm)?, (25)

wherep,, is the market price. The errors are squared befag are averaged, meaning that
higher weights are given to larger errors. HeneeRMSE is always larger than the two other
measures.

The next section considers the obtained empiresllts.
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3. Results

3.1. Data Information

The data used in this thesis is daily on the OMXB8@x call options traded on the Stockholm
Stock Exchange and the risk-free rate is compusaaguhe 90-day Treasury Bill SSVX. The
stock- and the bond index are secondary and olotdnoen DataStreamwhereas the index
options are obtained directly from the exchangeidends are not considered since many of
the stocks in the OMXS30 index pay dividends ontgep a year (mostly in Mars or April),
meaning that their exclusion should in generalhave significant affects on the results.

The daily data set comprising the call options asngled every Wednesday (or the next
trading day if Wednesday is a holiday) for the ge2005 and 2008’ The mid-point of the bid-
ask quote is used as the option price.

Three criterions are used as filters when samglregcall options: The first one is to only
include options with an absolute moneyness less éhaqual to ten percent, iJ& /S — 1| <
0.1. The second one is to only include options whase to maturity is between six- to 100
days®™® The third and final restriction is that a trangmTtmust satisfy the no-arbitrage
relationship (Merton (1973)), meaning titat § — Ke~"" must hold!®

The data set comprising the call options consiE® @16 observations. The average number
of options per day is 20 with a minimum of threel amaximum of 31. The average bid-ask-
spread is 1.70 SEK.

3.2. Estimations

Similar to Heston and Nandi (2000), this thesisig®s only on the single lag version of the HN
GARCH model. Unlike their estimations however, tmes here are done by not only using the
Normal distribution, but also the Student-t digitibn. The GARCH(1,1) process is estimated

via the maximum likelihood estimation (MLE) usiniget daily @ = 1) index stock returns

! The reason to why Wednesdays are used is that feslidays fall on a Wednesday than on any otteatirg
day. In the sample used here, all but one day a@nésdays.

15 See DFW (1998) for a further explanation of thelesionary criteria about moneyness and maturity.

'8 The no-arbitrage relationship (Merton (1973))gat options implies that > Ke™"T — .
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during the period 2005-01-04 — 2006-12-29Two specifications of the GARCH(1,1) model
are estimated in order to analyze the significaridhe skewness parameigr(which was said
to capture leverage effects). First an unrestrictedlel is estimated, followed by a restricted
one in whichy, is set equal to zero (which is equivalent to amgttic GARCH). Both these
processes are plotted and presented in the fidnalesv. Figure 3A illustrates the process for
the restricted model while Figure 3B illustrates tme for the unrestricted.

Figure 3A Restricted GARCH Figure 3B Unrestricted GARCH
Annualized Volatility Annualized Volatility
035 035

0,3 —+ 0,3 -

0,25 + 0,25 -|
02 —+ 02 -

0,15 015

01 -+ 0,1

005 - 0,05 -
0 t t - Time 0 I I . Time
2004-12-29 ATTEx0l 20UCELS AU 2004-12-29 2005-09-05 2006-05-13 2007-01-18

Note: Figure 3A and 3B illustrate the daily annualizedtsyolatility from the restricted-/symmetric- arfietunrestricted/asymmetric
GARCH model, respectively, during the period 20056@ — 2006-12-29 using daily OMXS30 index stodkines.

These plots indicate a difference between the twaocgsses, emphasizing thereby the
significance of the skewness paramegierHowever, since “eyeballing” the data is not a
substitute for formally testing for the significanof the parameter, a likelihood ratio (LR) test
is made for each respective year and for the wivateyear period. The outcome is given in
Table 1 below.

" The starting value of the conditional variam¢@) is set to equal the sample variance of the steitkns. The
results are quite indifferent to the starting vadfib(0) due to the strong mean reversion in volatility.
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Table 1

Maximum likelihood estimations using the Normal distribution and likelihood ratio tests

Year o B1 T o A 0 Blﬂxlylz Log-Likelihood i LR test (p-value)
2005
GARCH 2.23E-06 0.4828 343.0002 1.05E-05 17.009 11.20% 0.7449 1157.9187 |
GARCH,y:=0  3.96E-06 0.6215 1.55E-05 0.2996 11.37% 0.6215 1150.7243 0.0002
2006 | '
GARCH 1.24E-05 0.5757 1244700 1.62E-05 8.5926  17.62% 0.7679 1049.9289
GARCH, y,1=0 1.85E-05 0.8663 8.79E-07 0.9950 19.10% 0.8663 1041.2404 0.0002
2005-2006 i :
GARCH 8.08E-06 0.7782 106.4889 2.83E-06 8.4110 14.53% 0.8698 2193.1971 .
GARCH, y,1=0 1.15E-05 0.8490 1.79E-06 19.0708 2190.2635 0.0532

Note: Maximum likelihood estimations of the HN GARCH(1 hpdel withA = 1 (day) using the OMXS30 stock index returns dutimg period 2005-01-
04 — 2006-12-29 for the unrestrictég +# 0) and the restrictedy, = 0) model.

log(S(®)) = log (St — A)) +  + yh(t) + /h(t)z(D),
h(E) = @ + Bih(t = 8) + a; (2(t = 8) = y,/AGE — D) )

The log-likelihood function isy.?_; —0.5 (log (h(t))) + z(t)?, whereT is the number of days in the sample used. Theliikel ratio test statistic is

computed ag, = 2[logL(8) — log L(8)], whered andd is the unrestricted- and the restricted ML estanatespectively. The test statistic has a Chi-

squared distribution witli degrees of freedom under the null hypotha%is.JZSZ(w +a;)/(1 - B; — a;y?) is the annualized (252 days) long run
volatility implied by the parameter estimat@gs.+ a,yZ measures the degree of mean reversion, whetea,y? = 1 implies that the conditional variance

process is integrated.

The LR test easily rejects the null hypothesis syimmetric GARCH for each respective year,
implying that the negative correlation between meduand variance is an obvious feature of the
stock index during each single year. However, tRetést does not reject the null hypothesis at
a five percent significance level for the whole tyemar period, i.e. 2005-2006. Apart from
these results, the degree of mean reversion (diyeh) + a,y? ) for the unrestricted GARCH
process is 0.8698, the volatility of volatility ygn bya,) is 8.08e-06, and the annualized long-

run mean of volatility (given bg) is 14.53%.

3.3. Model Comparisons

This section presents the ML estimates of the HNRGA(1,1) model using both the Normal-
and the Student-t distribution. It gives also adssion of the in-sample and the out-of-sample
differences between the HN GARCH(1,1)-, the BSd #ie ad hoc BS model.
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3.3.1. In-sample Model Comparison

The BS model is implemented using a single imphethtility that is estimated across all

strikes and maturities on a given day. As was meetl earlier, the implied volatility of the ad

hoc BS model on a given day is modelled using thé & Both the BS- and the ad hoc BS
model are re-estimated every week while the pammmetf the HN GARCH(1,1) model are

held constant over the entire estimation period¢ckvare the first six months of each year. This
implies that the model is constrained to use theamae from the history of asset prices. The
ML estimates under each distribution and the inganvaluation errors are given in Table 2
below, for both 2005 and 2006.

Table 2

In-sample estimations of the models in the first half of each year

oy B1 Y1 ® A 0 Bl+a1+'y]2 RMSE  Average price  Observations
2005 11.28 462
BS 5.12
Ad hoc BS 3.01
GARCH Normal 9.91E-06 6.86E-15 63.5136 4.41E-05 11.3403 11.91% 0.0400 14.01

éStudent—t 6.09E-06 6.21E-17 100.7116 4.63E-05 19.8725 11.86%  0.0618 14.11

2006 15.16 435
BS 7.14
Ad hoc BS 2.69
GARCH Normal 2.00E-05 0.5827 96.2208 1.36E-05 -2.9090 19.09% 0.7676 44.28

gStudent—t 1.98E-05 0.5787 88.1739 1.62E-05 4.5113 18.42% 0.7325 46.03

Note: BS is ;[he Black-Scholes model which is implementsidig a single implied volatility that is estimdtecross all strikes and maturities on a given
day. The implied volatility of the ad hoc BS model a given day is modelled using the determiniatiatility function. The parameters of the non-
updated HN GARCH(1,1) model are estimated via maxintikelihood using the Normal- and the Studenistribution. Both the BS- and the ad hoc
BS model are re-estimated every week while thematers of the HN GARCH(1,1) model are held constaet the entire estimation period, i.e. for

the first six months of each year. RMSE is the metin squared error (in SEK). Average price isatrexage option price in the used sample.

Although the long-run annualized volatility is guimilar under the two distributions for both
years, it is higher in 2006 (around 19%) than ir0®2qaround 12%)° This variation in
volatility between the two years is verified by thignificant difference between the degree of
mean reversion, being around five percent in 208@bas high as around 75% in 2006. Hence
this implies that the variation in volatility is o lower in 2005 than in 2006. The average
option price is 11.28 SEK and 15.16 SEK in 2005 20@6, respectively. The RMSE of the BS
model is around 5 SEK in 2005 and around 7 SEKO®62 With a RMSE of around 3 SEK in

18 See section 2.5. The ad hoc Black-Scholes Model.
!9 These numbers should be treated with caution siptiens of up to only 100 days to maturity areduse
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both years, the ad hoc BS- outperforms the BS miodeVery year. The reason to the ad hoc
BS model’s superiority lies in its flexibility tatfboth the volatility smile in strike prices and

the term structure of implied volatilities. Notewny is that the RMSE of the HN GARCH(1,1)

model is around the alarming value of 14 SEK in2@hd 45 SEK in 2006. A possible

explanation to this model's larger in-sample RMSkuld be given by examining the two

figures below. Figure 4A and 4B illustrate the vty process over the in-sample period of
2005 and 2006, respectively.

Figure 4A In-sample volatility 2005 Figure 4B In-sample volatility 2006

HN GARCH(1,1) HN GARCH(1,1)

2,50E-04 — 4,50E-04

2,00E-04 —+ 3,60E-04

1,50E-04 — 2,70E04 —

ISR 9 1,80E-04

B 9,00E-05 +

0,00E+00

0,00E+00
2006-01-03  2006-02-22  2006-04-13  2006-06-02 Time

2005-01-03 2005-02-22 2005-04-13 2005-06-02 Time

Note: Figure 4A and 4B illustrate the volatility processer the in-sample period of 2005 and 2006, respsy.

While the volatility process is relatively tranqoiver the entire sample in 2005, a significant
increase in volatility is seen in the last two niantn the first half of 2006. This significant
increase may affect the estimation of the volgtiht volatility parametew,, which is shown to
have a great impact on the outcome of the HN GARCH(model. Heston and Nandi (2000)
point out that “...option values are more sensitteer; (that measures the volatility of
volatility), and y; (that controls the skewness of index returns) tthery are to the other
parameters. This stability is important for the GAR model to fit the data reasonably well
even with constant parametef$.”

According to Heston and Nandi (2000), the aboveanson of the GARCH model with the
ad hoc BS model is somewhat “unfair’ due to thatldtter model is updated every week. They
also point out that “it is not clear whether theonoved in-sample fit of the ad hoc model stems
from a more flexible functional form or from thestability of the functional form of the
GARCH process over a long enough time perfddrhey estimate therefore also an “updated”

HN GARCH(1,1) model, allowing its parameters to @ every week. Worth noting here

20 See Heston and Nandi (2000) pp. 605.
1 See Heston and Nandi (2000) pp. 604.
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though is that despite this weekly update of thramaters, the varianddt + 1) is still drawn
from the history of asset prices at timeédence the variance is estimated by using theiguev
252 days of stock returdéThis updating is only done in the second halfaxfteyear since the
final objective is to compare the models’ out-ofrgde valuation errors in these same periods.
The outcome of this “fair” in-sample comparisontbé ad hoc BS model with the updated
version of the HN GARCH(1,1) model is presentedafle 3.

Table 3

In-sample comparison of the ad hoc BS model and the updated GARCH model

RMSE Average Option price  Number of observations

2005 15.14 651
Ad hoc BS 1.92
GARCH (updated) | Normal 9.25

 Studentt  9.81

2006 25.74 541
Ad hoc BS 2.20
GARCH (updated) | Normal 17.65

Studentt  17.87

Note: RMSE from fhe weekly estimation using option pri¢asthe second half of each year

(including the last Wednesday of the first half ezfch year) for the ad hoc BS- and the HN
GARCH(1,1) model. The ad hoc BS is implemented gisirdinary least squares whereas the HN
GARCH(1,1) model is estimated via maximum likelikdod@ he conditional variancé(t + 1) used

in the HN GARCH(1,1) model is estimated using théydhistory (last 252 days) of the OMXS30

stock index returns.

The average option price in the sample is aroundSEX and 26 SEK in 2005 and 2006,
respectively. Updating the parameters weekly result a great improvement of the HN
GARCH(1,1) model in 2006. However, the mispricimgpes are still large in both years. Hence
once again, the model is greatly outperformed byatth hoc BS model, whose RMSE is around
2 SEK in each respective year. One way to checktiadity of the updated HN GARCH(1,1)
model's estimated coefficients is to analyze anchmare their mean and standard deviations
with each other. Table 4 presents these calcukatiasmich are estimated via ML using the

Normal- and the Student-t distribution.

22 pccording to Heston and Nandi (2000), the resarlesbasically indifferent whether one uses lonigee t
intervals or not when estimating the conditionalasmce. This is due to its strong mean reversi@ndd a period
of 252 days is therefore satisfying to use heneels
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Table 4

Mean estimates from the updated HN GARCH(1,1) model using maximum likelihood under each distribution

(7] B T (O]
Normal Mean 1.67E-05 0.5832 106.9314 1.46E-05
Standard Deviation 3.11E-06 0.0119 10.1059 4.33E-06
Student-t Mean 1.61E-05 0.5866 105.2341 1.55E-05
Standard Deviation 3.49E-06 0.0168 13.7136 5.56E-07

Note: The mean and standard deviation of the HN GARCH(thodel parameters from the weekly estimationméimum

likelihood using option prices in the second hdléach year (including the last Wednesday of tret falf of each year).

A striking result under both distributions is tlihe least stable parameter happens ta;be
which is then followed by, . Recalling Heston and Nandi’s (2000) argument eamiag these
parameters, its large in-sample mispricing errabigiously due to the poor estimatesrgfand

V1-
The next section discusses the out-of-sample diffegs between all the models.

3.3.2. Out-of-Sample Model Comparison

Since the interest now lies in the models’ foreioggperformances, the models are
implemented using information at timeo value options at time+ 1. In other words, the BS
model is implemented such that the estimated idpladatility from the current week is used
to value options in the next week. The current ieektimated model parameters of both the
ad hoc BS- and the updated HN GARCH(1,1) modeltaesl to value options in the next
week. A non-updated- and an updated version ofithé&SARCH(1,1) model is once again
estimated. The implementation of the non-updatesiae implies keeping its parameters fixed
at their in-sample estimates for the particularyb®reover, the updating of the conditional
varianceh(t + 1) (which is still drawn from the dynamics of the Igta@tock returns) is done by
first using the same starting variarid@®) as in the in-sample estimation, and then from the
entire daily history of stock prices for that yeatainh(t + 1) for any given time in the out-
of-sample period. This implies that all the outsaimple computations for this non-updated
version of the HN GARCH(1,1) model are based otoopprices from the first six months of
that year. The computation of out-of-sample optialues at time using the updated HN
GARCH(1,1) model implies using the conditional eaceh(t + 1) obtained at time — 1.

“The important distinction between the out-of-saenphplementations is that the non-updated
GARCH model predicts options values up to 26 wedlead, whereas the BS, ad hoc BS, and
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updated GARCH models only predict one week ahé&ditie out-of-sample valuation errors
for the various models aggregated across the twofesample periods are presented in Table
5 (Panel A) below.

Table 5

Out-of-sample valuation errors

Panel A: Aggregate valuation errors across all years

RMSE MAE MOE Average option price  Number of observations

20.05 1149
BS 9.45 1.15 0.34
Ad hoc BS 6.66 0.69 0.11
GARCH (non-updated) | Normal 1449 1.86 1.59

Student-t 15.92 2.06 1.85
GARCH (updated) Normal 14.41 1.90 1.64
Student-t 14.71 1.83 1.53

Panel B: Valuation errors by years

RMSE MAE MOE Average option price  Number of observations

2005 15.16 625
BS 8.28 0.88 0.25
Ad hoc BS 6.43 0.67 0.01
GARCH (non-updated) Normal 9.72 1.34 1.03

 Studentt 981 136 111
GARCH (updated) Normal 9.48 1.23 0.79
 Studentt 999 132 099

2006 25.88 524
BS 10.48 1.42 0.42
Ad hoc BS 6.89 0.71 0.22
GARCH (non-updated) Normal 18.05 2.38 2.15

 Studentt 2026 2.77  2.60
GARCH (updated) Normal 18.03 243 2.27
 Studentt 1825 248 238

Note: Panel A presenté the aggregated out-of-sample RIMIS&EI models. Panel B presents the out-of-sample
RMSE for all models by each year. The BS modehiglemented using the estimated implied volatilignfi the
current week to value options in the next week. @ingent week’s estimated model parameters of thatad hoc
BS- and the updated HN GARCH(1,1) model are use@lioe options in the next week. The implementatibthe
non-updated HN GARCH(1,1) model implies keepingéisameters fixed at their in-sample estimateshfer
particular year and updating the variance fromdhiéy OMXS30 stock index returns. MOE is the meaitside
error (in SEK). MAE is the mean absolute error§EK).

% See Heston and Nandi (2000) pp. 606.
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The average aggregated option price is 20.05 SBK.aggregated RMSE of the BS- and the
ad hoc BS model is around 9 SEK and 7 SEK, respdgtiThe mispricing errors of both
versions of the HN GARCH(1,1) model are slightlyproved when estimated under the
Normal distribution. However, with both versions/imy an aggregated RMSE of around 15
SEK, they are still outperformed by both the BSd #re ad hoc BS model. Table 5 (Panel B)
presents the out-of-sample RMSE for each out-ofptameriod. The BS model improves
slightly in 2005 and worsens in 2006, whereas thea BS model stays quite stable in both
years. Both versions of the HN GARCH(1,1) modelpvane still outperformed in both years,
improve in 2005 and worsen in 2006. Hence the pstimates ofr; andy, obviously affect

the HN GARCH(1,1) model’s forecasting performanae. in addition to the RMSE, Table 5
(Panel A and B) also present the MOE and the MA&hiMg changes concerning the rankings
of the models when looking at these error measesegpt that it can be concluded that the
two versions of the HN GARCH(1,1) model performtbetvhen estimated under the Normal-
than under the Student-t distribution. Table 6 giaaletailed analysis of all the models’ out-of-
sample performances by categorizing their valuagioars (both the RMSE and the MOE in
SEK, and the percentage valuation error (% Erseit}) respect to the options’ moneyness and

maturities.
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Table 6

Out-of-sample valuation errors for call options

Days to Expiration

<40 40-70 >70
Model Moneyness RMSE % Error MOE RMSE % Error MOE RMSE % Error MOE
BS
<0.95 1.55 2.35 0.01 2.18 3.57 -1.97 6.12 6.53 -0.50
[0.95-0.99) 2.99 8.99 -1.24 391 9.37 -1.00 3.36 7.22 -1.14
[0.99-1.01) 231 15.56 0.28 2.44 10.20 0.28 2.78 9.27 -0.06
[1.01-1.05] 247 48.96 0.94 3.51 29.98 1.75 431 25.28 1.40
>1.05 1.20 114.58 0.71 243 58.94 2.00 3.26 48.33 1.47
Ad hoc BS
<0.95 1.29 1.96 0.75 1.46 2.40 -1.01 3.18 3.39 1.23
[0.95-0.99) 2.10 6.32 -0.56 241 5.77 -0.52 2.74 5.89 -1.22
[0.99-1.01) 1.50 10.12 0.10 1.73 7.24 -0.25 2.38 7.93 -0.28
[1.01-1.05] 1.49 29.53 0.22 2.15 18.36 0.17 3.26 19.13 0.78
>1.05 0.94 89.96 0.19 1.90 45.97 0.58 2.57 38.14 0.90
GARCH (non-updated)
Normal <0.95 2.51 4.14 0.44 2.48 3.62 -1.07 5.32 5.48 1.27
[0.95-0.99) 3.74 11.02 0.87 4.25 9.81 1.48 5.59 11.49 1.06
[0.99-1.01) 3.64 21.14 1.43 4.47 16.36 2.50 5.05 14.91 3.02
[1.01-1.05] 4.01 61.62 1.28 6.47 42.82 2.86 7.86 38.70 3.28
>1.05 1.38 149.56 -0.10 3.50 59.71 1.42 4.67 48.85 2.36
Student-t <0.95 2.73 4.50 0.59 2.75 4.02 0.70 6.18 6.32 1.67
[0.95-0.99) 4.00 11.74 1.04 4.67 10.72 1.84 6.21 12.68 1.65
[0.99-1.01) 3.90 22.32 1.74 4.88 17.61 2.72 5.54 16.14 3.04
[1.01-1.05] 4.35 64.94 1.48 7.07 45.69 3.16 8.63 41.58 3.58
>1.05 1.51 146.48 0.01 4.05 65.32 1.71 5.30 53.02 2.79
GARCH (updated)
Normal <0.95 2.53 4.16 0.68 5.86 10.73 0.89 5.61 5.77 1.46
[0.95-0.99) 3.66 10.82 0.73 4.35 11.90 1.83 5.73 11.77 1.15
(0.99-1.01) 3.79 21.92 1.51 4.98 22.95 243 5.21 15.33 2.53
[1.01-1.05] 3.87 60.25 1.13 6.23 41.40 1.87 7.61 36.29 3.27
>1.05 1.32 161.63 -0.21 3.32 60.16 1.19 4.58 49.11 2.26
Student-t <0.95 2.53 4.16 0.71 6.10 11.15 1.17 5.56 5.72 1.43
[0.95-0.99) 3.69 10.87 0.91 4.46 12.11 1.87 5.70 11.66 1.40
[0.99-1.01) 3.86 22.13 1.67 5.18 23.64 242 5.33 15.51 2.82
[1.01-1.05] 3.97 60.81 1.26 6.44 42.18 2.81 7.86 36.97 3.36
>1.05 1.31 153.50 -0.16 3.40 60.11 1.28 4.74 49.63 2.46

Note: Out-of-sample valuation errors categorized wittpees to moneyness and maturity. Moneyness is d&fisek/F. % Error is the ratio of the

RMSE to the average option price for that optiotegary.
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According to the RMSE and the % Error, the ad h& rBodel dominates the other models
throughout all the moneyness- and the maturitygmates. The three measures indicate that the
performance of the non-updated HN GARCH(1,1) masld¢ligher in all the categories under
the Normal distribution, except for short-term (8 days) deep out-of-the-mond¥/F >
1.05) options and medium-term (40-70 days to expire)pdeethe-money options were the
results are mixed. The performance of the upda@rdian of the model is according to the
RMSE in general also higher under the Normal distron, but with mixed results for the case
of short term deep out-of-the-money options. Thassion of the HN GARCH(1,1) model is
however indicated by all the measures to perforttebeinder the Student-t distribution for
long-term (>70 days) options in the 0.95-0.99 moesg category. An interesting result is that
according to the RMSE, the updated version perfarmgeneral better than the non-updated
one under the Student-t distribution, whereasithmot the case under the Normal distribution.
Figures 5A, 5B, and 5C, illustrate the percentageod-sample pricing errors for options of the
three different maturities by moneyness.

Figure 5A Percentage out-of-sample pricing errors
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Note: This figure presents the models’ percentage owanfiple pricing errors,
defined as 10t RMSE/Option Price, for options with a time to mitiuof less

than 40 days in the second half of each year.
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Figure 5B Percentage out-of-sample pricing errors
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Note: This figure presents the models’ percentage owgaofiple pricing errors, defined as
100 RMSE/Option Price, for options with a time to nréttuof between 40 and 70 days in
the second half of each year.

Figure 5C Percentage out-of-sample pricing errors
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Note: This figure presents the models’ percentage owganfiple pricing errors,
defined as 106~ RMSE/Option Price, for options with a time to nétyuof

more than 70 days in the second half of each year.



4. Conclusions and Discussion

This thesis is based on Heston and Nandi (2000y present a closed-form discrete-time
GARCH (HN GARCH,q)) model for pricing European options. The moddliga options by
using the volatilities computed directly from thistbry of asset prices. It incorporates both the
correlation between spot prices and their volgfikind the volatility smile.

The aim of this thesis is to check how the modetopms on Swedish data and if there are
any significant changes to its performance whemmesing it using the Normal- and the
Student-t distribution.

There are two major differences concerning the oulogy used in this thesis compared to
the one Heston and Nandi (2000) use. These cortherdata frequency and the estimation
method; daily data is used instead of intra-dailyg the HN GARCH(1,1) model is estimated
via maximum likelihood (ML) instead of non-lineadst squares (NLLS).

The results show that when the HN GARCH(1,1) madedéstimated using the Student-t
distribution, its out-of-sample valuation perforsanncreases in general when its parameters
are updated. This is however not the case whenasiimated using the Normal distribution.
The HN GARCH(1,1) model is still shown to suffeorn significant mispricing errors as it is
greatly outperformed by both the BS- and the ad B& model. This meagre forecasting
performance of the model is caused by poor estsratévo of its most important parameters,
namely the volatility of volatility- and the skewsw parameter. This naturally leads to the
guestioning of whether good estimates are diffitulbbtain in general or not. If this would be
the case, then only the ease of implementing tleedther models should lead to them being
preferred. However, it would be wrong to concluldatithe HN GARCH(1,1) model is useless
seeing that its estimates are obtained via MLE @aoidvia NLLS as in Heston and Nandi
(2000). Apart from this, the results show that itié GARCH(1,1) model generally performs
better when estimated using the Normal- than theesit-t distribution.

Further extensions to consider for future reseanahid be to drop the restrictions made here.
The most interesting one is perhaps the estimatiethod. Another extension could be, as
Heston and Nandi (2000) suggest, to estimate tlehwith multiple lags.
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