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Abstract 

This thesis is based on Heston and Nandi’s (2000) paper. The aim is to check how their 

closed-form discrete-time GARCH option pricing model performs on Swedish data, and 

if there are any significant changes to its performance when estimating it via maximum 

likelihood using the Normal- and the Student-t distribution. The model is compared 

with the Black-Scholes- and the ad hoc Black-Scholes model of Dumas, Fleming, and 

Whaley (1998). 

The results show that when the model is estimated under the Student-t distribution, its 

out-of-sample valuation performance increases in general when its parameters are 

updated. However, it is also shown that the model suffers from significant mispricing 

errors as it is greatly outperformed by both the BS- and the ad hoc BS model. This error 

is caused by poor estimates of two of its most important parameters, namely the volatility 

of volatility- and the skewness parameter. It is also shown that the model generally 

performs better when it is estimated using the Normal- than the Student-t distribution. 
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1. Introduction 

The first scientific approach to value options dates back to 1900 when the French 

mathematician Louis Bachelier created the well-known Brownian motion to model the 

evolution of stock prices (which became the norm in the 1960s). Option pricing formulas were 

at that time derived by taking the discounted expectation. However, the major break-through 

within the field of option pricing was made by Black and Scholes (1973) and Merton (1973). 

Like previous pricing models, the Black-Scholes (1973) (henceforth BS) model assumes that 

the evolution of the stock price follows a geometric Brownian motion. Another assumption 

made in the BS model is that of a constant volatility, which according to Ross (1989) implies a 

constant flow of information as he means that volatility can be considered as a measure of 

information flow. The correctness of this constant volatility assumption has however been 

questioned by many since it is known that the BS model has some pricing biases (Rubinstein 

(1985)). Hull and White (1987) and Wiggins (1987), among many, suggest that this constant 

volatility assumption might be a reason for the failure of the BS model to value options exactly. 

A common way to express the deficiencies of the BS model is by plotting BS implied 

volatilities against strike price ��� or moneyness �� �⁄  �� � �⁄ �. This plot is also known as 

the volatility smile, where a constant volatility should result in “a neutral facial expression” 

(Dumas, Fleming, and Whaley (1998)). However, evidence against this has been presented 

numerous times. Two examples are Rubinstein (1994), who examines the S&P 500 index 

option market, and Heynen (1993), who examines the European Options Exchange. These 

deficiencies are naturally what induce researchers to pursuit the development of more realistic 

models, incorporating empirical features such as stock price volatilities and interest rates as 

stochastic processes. Extensions of the BS model to incorporate the fact that the volatility of 

stock prices varies stochastically have for example been made by Scott (1987), Hull and White 

(1987), and Wiggins (1987). These so-called stochastic volatility (SV) models are divided into 

two groups, considering the volatility in continuous- and discrete-time. One alternative 

approach to characterize a stochastic volatility model in discrete-time is to use the generalized 

autoregressive conditional heteroskedasticity (GARCH) model (see Bollerslev (1986)). 

This thesis is based on Heston and Nandi (2000), who present a closed-form discrete-time 

GARCH (henceforth HN GARCH(p,q)) model for pricing European options. The model 

applies for assets whose variances follow GARCH(p,q) processes. It should however be 

mentioned that only the GARCH(1,1) case is considered in this thesis, which according to a 

survey made by Bollerslev et al. (1992) is the simplest and most robust one of the family of 
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volatility models. The HN GARCH(p,q) model values options by using the volatilities 

computed directly from the history of asset prices, and it incorporates the correlation between 

spot prices and their volatility. Heston (1993) shows that this correlation is important for 

explaining the skewness seen in stock returns, making in this aspect the model superior to the 

BS model (which assumes that (continuously compounded) stock returns are normally 

distributed with known mean and variance). In addition to this, the HN GARCH(p,q) model 

combines also the cross-sectional information contained in options with the information in the 

time series of the underlying asset. In other words, it incorporates the volatility smile. 

Numerical methods such as simulations are valuable methods for pricing options and are for 

that reason widely used. However, despite their increasing popularity led by the growing 

capacity of computing power, they can be both time consuming and computationally intensive. 

This drawback is however an advantage of the HN GARCH(p,q) model, since its 

implementation is analytical. 

The purpose of this thesis is to implement the HN GARCH(p,q) model for the Swedish stock 

index (OMXS30) using the Normal- and the Student-t distribution and compare its performance 

with the BS- and the ad hoc BS model.  

The methodology is organized such that the BS- and the ad hoc BS model are estimated first, 

followed by two versions of the HN GARCH(1,1) model; one with constant- and one with 

updated parameters. The HN GARCH(1,1) model is also estimated using the Normal- and the 

Student-t distribution. All the models are estimated and compared in both in-sample and out-of-

sample.   

There are four main restrictions imposed in this thesis. The first one is that closing prices are 

used instead of intra-daily. This restriction should however not affect the results in a significant 

way since OMXS30 options are frequently traded, implying that the closing prices of the 

options and the stock index should still be reasonably synchronous. The second restriction 

considers the estimation of the HN GARCH(1,1) model parameters. While Heston and Nandi 

(2000) use non-linear least squares (NLLS) (which requires the usage of option prices) for this 

purpose, the method used here is maximum likelihood (ML). Heston and Nandi (2000) point 

out that the NLLS procedure is preferable since the information in option prices is more 

forward looking than the price of the underlying asset. This argument has however not been 

proven empirically, which is why the easier method, the ML procedure, is used here. The third 

restriction is that dividends are not taken into account. This should in general not have any 

significant effects on the results since many of the stocks in the OMXS30 index pay dividends 
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only once a year (mostly in Mars or April). The fourth and final restriction is that only call 

options are valued. However, put options can easily be valued using the put-call parity. 

The outline of this thesis is as follows: Section 2 presents a theoretical framework discussing 

the BS-, the ad hoc BS-, and the HN GARCH(p,q) model. Section 3 presents the empirical 

results, and finally, section 4 gives a conclusion and a discussion. 
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2. Theoretical Framework 

This section is the foundation of the theory behind all the aspects considered in the empirical 

part, and with that, constitutes a major corner stone of the thesis. It is comprised of various 

subsections considering discussions about risk-neutral valuation, implied volatility, different 

option pricing models, etc. The first subsection gives a brief discussion about the concept of 

risk-neutral valuation.  

 

2.1. Risk-Neutral Valuation  

Risk-neutrality implies that agents are indifferent to risk, meaning that they do not require any 

compensation for the exposure of it. A result introduced by Cox and Ross (1976) is that the 

expected return on all assets in a so-called risk-neutral world is equal to the risk-free interest 

rate. This follows that the price of an asset is equal to its expected payoff, discounted at the 

risk-free rate. Hence the value of a European call option for instance is given by 

 

	 = � �
�� �− � �������
�

� �������� − �, 0�� = 
���� �������� − �, 0�!.          �1� 
 

Clearly, the second equality is an easier expression to grasp, but its drawback is that it only 

holds if the interest rate is assumed to be constant. The first equality however holds always. 

This result is known as risk-neutral valuation.1 

Risk-neutral valuation arises from the fact that none of the variables in the BS formulas 

(discussed in a later section), i.e. the current stock price, the stock price volatility, the time to 

maturity, and the risk-free interest rate, are dependent of individual risk preferences. This fact 

allows for the assumption that all investors are risk-neutral, stating that it is always possible to 

assume the world to be risk-neutral when pricing options. This assumption simplifies the 

analysis of options, or derivatives in general, since the resulting prices are valid in all worlds 

and not just in the assumed one. The reason to this is that there are only two changes that occur 

when moving from a risk-neutral world to a risk-averse one, and luckily, these two always 

offset each other exactly. These are the expected growth rate in the stock price and the discount 

                                                   
1 For more about risk-neutral pricing, see for example Duffie (1996), Hull (1997), and Wilmott (1998). 
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rate that must be used for any of the derivative’s payoffs (Hull (2006)). The significant 

simplification followed by using this assumption makes it one of the most important ones in 

explaining option prices. Hence the fact that all option pricing models are founded on this 

assumption is therefore not so surprisingly. Hull (2006) describes it as being “…without doubt 

the single most important tool for the analysis of derivatives.”2 

 

2.2. Implied Volatility  

The most popular type of implied volatility σ is the so-called BS implied volatility. An option’s 

BS implied volatility is that volatility obtained when equating the option’s market value to its 

BS value, given the same strike price and time to maturity. It is extracted numerically due to 

the fact that the BS formula cannot be solved for σ in terms of the other parameters. Hence 

implied volatilities are embedded in option prices, which in turn reflect the future expectations 

of the market participants. This means that implied volatilities are important because they form 

a forward-looking estimate of the volatility of the underlying asset, and can therefore be used to 

monitor the market’s opinion of it. Traders for example use the implied volatilities from 

actively traded options in order to estimate an appropriate volatility to use to price a less 

actively traded option on the same asset (Hull (2006)). Heston and Nandi (2000) warn however 

that “… using implied volatilities to value an option requires the use of other contemporaneous 

options that may not always be feasible if one does not have reliable option prices such as in 

cases of thinly traded or illiquid markets.”3 Noteworthy is that the prices of deep-in-the-money- 

and deep-out-of-the-money options are relatively insensitive to volatility, meaning that the 

implied volatilities calculated from these options tend to be unreliable (Hull (2006)).  

 

2.3. The Black-Scholes Model   

Fischer Black and Myron Scholes developed in the early 1970s a method to price options on 

non-dividend paying stock, which has turned to be one of the most successful and widely used 

models in financial economics.4 This section presents only its formulas, since the derivation of 

                                                   
2 See Hull (2006) pp. 293.  
3 See Heston and Nandi (2000) pp. 586. 
4 The first extension of this model was made shortly after by Merton (1973), who extended the model to consider 
the case of dividend-paying stocks. 
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the model and its underlying assumptions can be found in every literature in financial 

economics.  

Assuming that the model’s underlying assumptions hold, the BS formula for a European call 

option on a non-dividend-paying stock trading at time t is given by:5 

 	$��$ , � − �� = �$%��&� − �
�����$�%��'�,                                   �2� 

 

where  

 

�$ = log ,�$�- + ,� + 12 /'- �� − ��/√� − � ,                                               �3� 

 �' = �& − /√� − �.                                                              �4� 
 	$ is the call price, %��3� is the cumulative probability distribution value for a standard normal 

random variable with value �3, �$ is the price of the underlying asset at time �, � is the strike 

price, � is the risk-free interest rate, and � is the option’s time to maturity.  

Two underlying assumptions of the BS model are that the underlying asset’s volatility is 

constant and that its returns are normally distributed (equivalently, that the prices of the 

underlying asset are log-normally distributed). These two assumptions are major drawbacks of 

the BS model. Black (1976) for instance points out that “if the volatility of a stock changes over 

time, the option formulas that assume a constant volatility are wrong.”6 Empirical evidence has 

shown to be in accordance with Black’s argument. A strong negative correlation between 

stock’s current prices and their future volatilities has been seen. In other words, volatility tends 

to rise in response to “bad news” (i.e. when an unexpected price drop occurs) and to fall in 

response to “good news” (i.e. when an unexpected price rise occurs). This feature is called the 

leverage effect and was first noted by Black (1976), who also writes: “I have believed for a 

long time that stock returns are related to volatility changes. When stocks go up, volatility seem 

to go down; and when stocks go down, volatilities seem go to up.”7 Figure 1 illustrates this 

effect. 

                                                   
5 The BS formula for a European put option on a non-dividend-paying stock trading at time t is given by 4$ ��$ , � − �� = −�$%�−�&� + �
�����$�%�−�'�. 
6 See Black (1976) pp. 177. 
7 See Black (1976) pp. 177. 
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Figure 1 Leverage effect 

 
Note: OMXS30 stock index level and BS implied volatility each Wednesday 

during the period 2006-01-04 – 2006-12-27.  

 

Hence Figure 1 clearly shows the leverage effect, with a correlation in the first difference of the 

series equalling -0.3977. Empirical evidence has also shown that financial data is generally not 

normally distributed, but is instead more skewed and has a greater kurtosis. The most known 

graphical evidence against the constant volatility assumption is the implied volatility curve, 

which is discussed in the next section.  

 

2.4. The Implied Volatility Curve   

A well-known and important feature is the implied volatility curve, also known as the volatility 

smile or the volatility smirk. This implied volatility curve is simply a plot of the BS implied 

volatilities (which are obtained by using a cross-section of option prices with a variety of strike 

prices and maturities) against strike price ��� or moneyness �� �⁄  �� � �⁄ �. The two factors 

that are believed to have the greatest effect on the shape of the implied volatility curve are 

moneyness and maturity (Rouah and Vainberg (2007)). Figure 2 illustrates the pattern in the 

OMXS30 BS implied volatilities. 
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Figure 2 Volatility smile 

 

Note: BS implied volatilities on May 25, 2005. Implied volatilities are computed 

from OMXS30 index call option prices for the June, July, and August 2005 

option expirations. The option prices are equal to the average of the bid- and ask 

prices. Time-adjusted moneyness is defined as  �� �⁄ � − 1! √�⁄ , where � is 

the index level, � is the option’s exercise price, and � is the option’s time to 

maturity (in days).  

 

The wrong assumption that financial data is normally distributed is thought to explain the 

existence of smiles and smirks. More specifically, the data’s relatively higher skewness and 

greater kurtosis is thought to explain the existence of smiles and smirks, respectively (Rouah 

and Vainberg (2007)). These are generally more evident for short-term options than for long-

term options, which is equivalent with saying that long-term returns are more normally 

distributed than short-term returns (Rouah and Vainberg (2007)). The relatively greater kurtosis 

implies that extreme returns are more likely to occur, meaning that deep in-the-money- and 

deep out-of-the-money options are more expensive relative to their BS value. The relatively 

higher skewness in returns is also often shown to be negative, meaning that large negative 

returns are more likely to occur (which is a feature that is not allowed by the normal 

distribution). This greater likelihood of large negative returns leads in turn to higher implied 

volatilities for in-the-money- than for out-of-the-money calls.  

 

2.5. The ad hoc Black-Scholes Model   

The existence of the implied volatility curve and the two factors believed to have the greatest 

effect on its shape, namely moneyness and maturity, have resulted to the development of what 
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Dumas, Fleming, and Whaley (1998) (henceforth DFW) call the ad hoc BS model.8 This model 

involves using what DFW call a deterministic volatility function (DVF) to model the implied 

volatility, which is nothing more than a simple quadratic function of moneyness and maturity. 

Hence the underlying assumption of a constant volatility made in the BS model is dropped by 

making the volatility dependent on these two.  

DFW considers four different structural forms for the DVF, namely 

 ���
5 0: / = max�0.01, ���; 
 ���
5 1: / =max�0.01, �� + �&� + �'�'�; 
 ���
5 2: / =max�0.01, �� + �&� + �'�' + �;� + �<���; 
 ���
5 3: / =max�0.01, �� + �&� + �'�' + �;� + �=�' + �<���, 
 

where ��, �&, �', �;, �=, �< are the model parameters. A minimum value of the local volatility 

rate equalling 0.01 is imposed in each model in order to eliminate possible negative values of 

fitted volatility. Model 0 is obviously equivalent to the BS constant volatility, followed by 

gradually more complicated forms. A final model is a cross between Model 1, 2, and 3, 

depending on the number of different option maturities in the sample on that day. DFW (1998) 

show that Model 0 leads to the largest valuation errors, which is a result that is consistent with 

the fact that volatility is not constant across moneyness and maturity.  

Christoffersen and Jacobs (2004) compare the pricing errors of the ad hoc BS- and the Heston 

(1993) model (which is discussed in the next section). They conclude that the ad hoc BS model 

is the superior one of the two. In addition to this advantage of the ad hoc BS model, it is made 

even more attractive when considering the ease it requires to implement it. The model 

parameters are estimated via ordinary least squares (OLS) on a series of BS implied volatilities.  

                                                   
8 This same model is referred to as the Practitioner BS model by Christoffersen and Jacobs (2004).  
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2.6. Stochastic Volatility Models   

The behaviour documented in Figures 1 and 2 above can be explained by some option pricing 

models. The stochastic volatility model of Heston (1993) for example can explain them when a 

negative correlation exists between the asset price and its volatility (DFW (1998)). 

Heston (1993) proposed the following two-factor asset pricing model; 

 ��������� = �> − ?��� + @ℎ����B���,                                          �5� 

 

�ℎ��� = κDE − ℎ���F�� + /�ℎ�@ℎ����B���G ,                                 �6� 

 

where B$ and B$G  are two correlated Brownian motion processes with constant correlation I, 

i.e. � �B����B���G! = I��.9 This expression implies that the correlation between the returns ����� ����⁄  (given by equation (5)) and the changes in the conditional variance ℎ��� (given by 

equation (6)) is incorporated in the option pricing model. Equation (6) models the conditional 

variance ℎ��� of the percentage change of the stock price as a mean-reverting process. The first 

term on the right-hand side of the equation, E − ℎ���, is a drift that pulls the conditional 

variance back to its long-run mean E at rate J. The latter parameter gives the speed of the mean 

reversion in the variance process. Hence the drift becomes negative when the variance at time t 

is higher than its long-run mean �ℎ��� > E�, making the variance more likely to decrease over 

time towards its long-run mean, and vice versa when it is lower than its long-run mean 

�ℎ��� < E�. Due to the @ℎ��� term however, the variance cannot become negative since its 

own volatility /�ℎ� approaches zero as ℎ��� decreases (Heston (1993)). Equation (6) is 

intended to fit the non-constant variance by taking the past into account in a way that the size of 

the current volatility relates to the size of the past volatilities. This feature is called volatility 

clustering, meaning that high-volatility periods are followed by high-volatility periods and vice 

versa. The equation takes also into account a positive autocorrelation of squared log-returns, 

which is a well-known characteristic known as ARCH-effects.  

One alternative approach to characterize a stochastic volatility model is to use the generalized 

autoregressive conditional heteroskedasticity (GARCH) model (see Bollerslev (1986)).10    

                                                   
9 See Hull (2006) for a discussion about the Brownian motion process. 
10 See Bollerslev et. al. (1992) for a literature review of some important academic studies on ARCH and GARCH 
modelling in finance.  
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2.7. The Heston-Nandi Closed-Form GARCH Option Valuation Model   

The HN GARCH(p,q) model has two basic assumptions. The first one concerns the process of 

the logarithmic spot price logD����F of the underlying asset. The second one is needed in order 

to transform this process to obtain the final risk-neutral version of the HN GARCH(p,q) model 

(explained in more detail below). Thus the first assumption is that the logarithmic spot price logD����F of the underlying asset (including accumulated interest or dividends, if they are 

considered) follows the following GARCH process over time steps of length ; 

 

logD����F = logD��� − ∆�F + � + λℎ��� + @ℎ���N���,                         �7� 

 

ℎ��� = P + Q R3ℎ�� − S∆�T
3U& + Q V3 ,N�� − S∆� − W3@ℎ�� − S∆�-' ,           �8�Y

3U&  

where 

 �, Z ≥ 0, P > 0, R3 ≥ 0, S = 1,2, … , �, V3 ≥ 0, S = 1,2, … , Z. 

 

Equation (7) and (8) is the mean model and the stochastic volatility model, respectively. � is the 

continuously compounded interest rate for the time interval , ] is a parameter, ℎ��� is the 

conditional variance of the log-return between time � − ∆ and  �, and N��� is a standard normal 

disturbance. Despite the fact that the specification of the volatility model above might seem a 

bit complex, it is still in the end nothing more than a version of the ordinary GARCH(p,q) 

model. The appearance of the conditional variance ℎ��� in the mean model is interpreted as a 

return premium since it allows the average spot return to depend on the risk level.11 Moreover, 

the term λℎ��� implies that the expected spot return is assumed to exceed the risk-free rate by 

an amount proportional to the variance ℎ���.  
Since this thesis focuses only on the single lag version of the HN GARCH model, it follows 

naturally to discuss some of its process properties. The first property is that the first-order 

                                                   
11 λ is assumed to be constant since option prices are very insensitive to this parameter. The functional form of this 
risk premium, i.e. λh(t), prevents arbitrage by ensuring that the spot asset earns the risk-free interest rate when it 
itself is risk-free, which is the case when the variance equals zero. 
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process is stationary if R& + V&W&' < 1. Moreover, the conditional variance ℎ�� + ∆� can be 

observed as a function of the spot price at time �, i.e. 

 

ℎ�� + ∆� = P + R&ℎ��� + V& ,logD����F − logD��� − ∆�F − � − ]ℎ��� − W&ℎ���-'
ℎ��� .        �9� 

 V& and W& determines the kurtosis and the skewness of the distribution of the log returns, 

respectively. The V& parameter being zero implies a deterministic time varying variance, 

whereas a zero value of the W& (and ]) parameter implies a symmetric distribution. The variance 

process ℎ��� and the spot return logD����F are in general correlated as 

 	�_$�∆`ℎ�� + ∆�, logD����Fa = −2V&W&ℎ���.                                 �10� 

 

Given a positive V& parameter, a positive value for W& results in a negative correlation between 

asset price and volatility.  

It is not possible to use equations (7) and (8), or (9), above to value options due to the fact 

that the risk-neutral distribution of the spot price is unknown. This is where the second 

assumption comes in, which enables the transformation of equation (7) and (8) to their 

respective final risk-neutral versions. Heston and Nandi (2000) formalize this assumption as 

Proposition 1, which ensures that the risk-neutral process has the same form as the real process, 

i.e. as equations (7) and (8) but with λ replaced by − 1 2⁄  in the mean model and W& replaced by W&∗ = W& + λ + 1 2⁄  in the volatility model. Hence the final risk-neutral versions of equation (7) 

and (8) above are 

 

logD����F = logD��� − ∆�F + � − 12 ℎ��� + @ℎ���N∗���,                                          �11� 
ℎ��� = P + Q R3ℎ�� − S∆�T

3U& + Q V3 ,N�� − S∆� − W3@ℎ�� − S∆�-'Y
3U' + V& ,N∗�� − ∆� − W&∗@ℎ�� − ∆�-' ,   �12� 

 

where 

 

N∗��� = N��� + cλ + 12d @ℎ���, 
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W&∗ = W& + λ + 12. 
 

z*(t) denotes now a standard normal risk-neutral disturbance.  

The price of a European call option at time � with strike price � that expires at time � is given 

by 

 	 = 
�����$��$∗ �������� − �, 0�! = ����4& − �
���4',                    �13� 

 

where �$∗ . ! is the expectation at time � under the risk-neutral distribution and 4& and 4' are the 

risk-neutral probabilities.  4& is simply the delta of the call option whereas 4' is the risk-neutral probability of the asset 

price being greater than the strike price at maturity, i.e. 4' = 4� ���� > �!. The values of 

these two risk-neutral probabilities must be calculated in order to obtain the call price. The 

generating function of the underlying asset price, denoted e�∅� = �$`����∅a, is also the 

moment generating function of the logarithm of the spot price  ����. In other words,  �$`����∅a = �$ ∅ log ����!. Denoting the generating function for the risk-neutral process in 

(11) and (12) as e∗�∅�, it takes the following log-linear form; 

 

e�∅� = ����∅
�� gh��; �, ∅� + Q i3��; �, ∅�ℎ�� + 2∆ − S∆�T
3U& + Q 	3��; �, ∅�N�� + ∆ − S∆� − W3@ℎ�� + ∆ − S∆�Y�&

3U& j' , �14� 
 

where 

 

h��; �, ∅� = h�� + ∆; �, ∅� + ∅� + i&�� + ∆; �, ∅�P − 12 5kD1 − 2V&i&�� + ∆; �, ∅�F,    �15� 
i&��; �, ∅� = ∅�λ + W&� − 12 W&' + R&i&�� + ∆; �, ∅� + 1 2⁄ �∅ − W&�'1 − 2V&i&�� + ∆; �, ∅�,      �16� 

 i3��; �, ∅� = R3i&�� + ∆; �, ∅� + i3l&�� + ∆; �, ∅�, for 1 < S ≤ �,                      �17� 
 	3��; �, ∅� = V3l&i&�� + ∆; �, ∅� + 	3l&�� + ∆; �, ∅�, for 1 < S ≤ Z − 1.               �18� 

 

By using the following conditions as starting values: 
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h��; �, ∅� = i3��; �, ∅� = 	3��; �, ∅� = 0,                                    �19� 

 

the coefficients for the generating function (14), given by equation (15), (16), (17), and (18), 

can be derived recursively from time � to �.  

Due to that the generating function of the spot price is also the moment generating function of 

the logarithm of the spot price, it follows that e�S∅� is the characteristic function of the latter 

price. In order to use this function,  in equations (15), (16), (17), and (18), must be replaced 

by S∅ everywhere. Once the generating function is derived, the risk-neutral probabilities (4& 

and 4' ) required for the call price can be calculated by inverting this characteristic function.12 

This requires numerical integration since the integrals representing these risk-neutral 

probabilities cannot be derived analytically. Heston and Nandi (2000) show that these 

probabilities have the following form; 

 

4& = 12 + 
���n�$ � o
 p��3∅e∗�S∅ + 1�S∅ q �∅,                                 �20�r
�  

 

4' = 12 + 1n � o
 p��3∅e∗�S∅�S∅ q �∅,                                         �21�r
�  

 

where o
 . ! denotes the real part of a complex number. The inclusion of these probabilities in 

equation (13) completes the option valuation formula. Hence the value of a European call 

option at time t is given by  

 	 = 
�����$��$∗ �������� − �, 0�! = 

12 ���� + 
�����$�n � o
 p��3∅e3∅l&∗S∅ q �∅r
�

− �
�����$� g12 + 1n � o
 p��3∅e3∅∗S∅ q �∅r
�

j , �22� 
 

where �$∗ . ! denotes the expectation under the risk-neutral distribution.13     

                                                   
12 See Feller (1971), Kendall and Stuart (1977), or Heston (1993). 
13 European put options can easily be valued by using the put-call parity. 
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2.8. Mispricing Error Measures   

Three different pricing error measures are implemented in order to compare the different 

pricing models. The mean outside pricing error (MOE) measures the average pricing error 

outside the bid-ask spread. It is equal to the difference between the model value and the ask 

price if the model value exceeds the ask price, and to the difference between the model value 

and the bid price if the bid price exceeds the model value. In cases where the model price is 

within the bid-ask spread, the MOE is simply set equal to zero. Thus  

 

�s� = 1% tuv
uwQ �x − �y Se �x > �y

Q �x − �z Se �x < �z0 Se �y ≤ �x ≤ �z
{ ,                                                  �23� 

 

where % is the number of errors, �x is the model value, �y is the ask price and �z is the bid 

price. MOE measures whether the model overprices as much as it underprices the option price, 

or if there are any systematic biases in the mispricing compared to the bid-ask spread. The 

mean absolute error (MAE) is the average absolute value of the MOE, i.e. 

 

�h� = 1% tuv
uwQ|�x − �y| Se �x > �y

Q|�x − �z| Se �x < �z0 Se �y ≤ �x ≤ �z
{ ,                                                �24� 

 

meaning that it does not consider the direction of the pricing error, i.e. whether the price is 

over- or underestimated. The root mean squared error (RMSE) measures the squared errors 

between the model- and the market price.  

 

o��� = }1% Q��� − �~�' ,                                                  �25� 
 

where �~ is the market price. The errors are squared before they are averaged, meaning that 

higher weights are given to larger errors. Hence the RMSE is always larger than the two other 

measures.  

The next section considers the obtained empirical results.  
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3. Results 

 

3.1. Data Information  

The data used in this thesis is daily on the OMXS30 index call options traded on the Stockholm 

Stock Exchange and the risk-free rate is computed using the 90-day Treasury Bill SSVX. The 

stock- and the bond index are secondary and obtained from DataStream whereas the index 

options are obtained directly from the exchange. Dividends are not considered since many of 

the stocks in the OMXS30 index pay dividends only once a year (mostly in Mars or April), 

meaning that their exclusion should in general not have significant affects on the results.  

The daily data set comprising the call options is sampled every Wednesday (or the next 

trading day if Wednesday is a holiday) for the years 2005 and 2006.14 The mid-point of the bid-

ask quote is used as the option price.  

Three criterions are used as filters when sampling the call options: The first one is to only 

include options with an absolute moneyness less than or equal to ten percent, i.e. |� �⁄ − 1| ≤0.1. The second one is to only include options whose time to maturity is between six- to 100 

days.15 The third and final restriction is that a transaction must satisfy the no-arbitrage 

relationship (Merton (1973)), meaning that 	 ≥ � − �
��� must hold.16  

The data set comprising the call options consists of 2,046 observations. The average number 

of options per day is 20 with a minimum of three and a maximum of 31. The average bid-ask-

spread is 1.70 SEK.  

 

3.2. Estimations  

Similar to Heston and Nandi (2000), this thesis focuses only on the single lag version of the HN 

GARCH model. Unlike their estimations however, the ones here are done by not only using the 

Normal distribution, but also the Student-t distribution. The GARCH(1,1) process is estimated 

via the maximum likelihood estimation (MLE) using the daily (Δ = 1� index stock returns 

                                                   
14 The reason to why Wednesdays are used is that fewer holidays fall on a Wednesday than on any other trading 
day. In the sample used here, all but one day are Wednesdays. 
15 See DFW (1998) for a further explanation of the exclusionary criteria about moneyness and maturity.  
16 The no-arbitrage relationship (Merton (1973)) for put options implies that 4 ≥ �
��� − �. 
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during the period 2005-01-04 – 2006-12-29. 17 Two specifications of the GARCH(1,1) model 

are estimated in order to analyze the significance of the skewness parameter W& (which was said 

to capture leverage effects). First an unrestricted model is estimated, followed by a restricted 

one in which W& is set equal to zero (which is equivalent to a symmetric GARCH). Both these 

processes are plotted and presented in the figures below. Figure 3A illustrates the process for 

the restricted model while Figure 3B illustrates the one for the unrestricted. 

 

Figure 3A Restricted GARCH Figure 3B Unrestricted GARCH 

    
Note: Figure 3A and 3B illustrate the daily annualized spot volatility from the restricted-/symmetric- and the unrestricted/asymmetric 

GARCH model, respectively, during the period 2005-01-04 – 2006-12-29 using daily OMXS30 index stock returns. 

 

These plots indicate a difference between the two processes, emphasizing thereby the 

significance of the skewness parameter W&. However, since “eyeballing” the data is not a 

substitute for formally testing for the significance of the parameter, a likelihood ratio (LR) test 

is made for each respective year and for the whole two-year period. The outcome is given in 

Table 1 below. 

 

 

 

 

 

 

 

 

 

                                                   
17 The starting value of the conditional variance h(0) is set to equal the sample variance of the stock returns. The 
results are quite indifferent to the starting value of h(0) due to the strong mean reversion in volatility.  
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Table 1 

          Maximum likelihood estimations using the Normal distribution and likelihood ratio tests 

           Year   αααα1 ββββ1 γγγγ1 ωωωω    λλλλ    θθθθ    ββββ1+αααα1γγγγ1
2
 Log-Likelihood LR test (p-value) 

2005 

       

      

  GARCH 2.23E-06 0.4828 343.0002 1.05E-05 17.009 11.20% 0.7449 1157.9187   

  GARCH, γ1=0 3.96E-06 0.6215 

 

1.55E-05 0.2996 11.37% 0.6215 1150.7243 0.0002 

2006 

       

    

  GARCH 1.24E-05 0.5757 124.4700 1.62E-05 8.5926 17.62% 0.7679 1049.9289   

  GARCH, γ1=0 1.85E-05 0.8663 

 

8.79E-07 0.9950 19.10% 0.8663 1041.2404 0.0002 

2005-2006 

       

    

  GARCH 8.08E-06 0.7782 106.4889 2.83E-06 8.4110 14.53% 0.8698 2193.1971   

  GARCH, γ1=0 1.15E-05 0.8490 1.79E-06 19.0708     2190.2635 0.0532 

Note: Maximum likelihood estimations of the HN GARCH(1,1) model with Δ = 1 (day) using the OMXS30 stock index returns during the period 2005-01-

04 – 2006-12-29 for the unrestricted �W& ≠ 0� and the restricted  �W& = 0� model. 

 

5��D����F = 5��D��� − ∆�F + � + Wℎ��� + @ℎ���N���, 
ℎ��� = P + R&ℎ�� − ∆� + V& ,N�� − Δ� − W&@ℎ�� − Δ�-'. 

 

The log-likelihood function is  ∑ −0.5 ,5��Dℎ���F-�$U& + N���', where T is the number of days in the sample used. The likelihood ratio test statistic is 

computed as ��� = 2`log �DE�F − log �DE�Fa, where E� and E� is the unrestricted- and the restricted ML estimator, respectively. The test statistic has a Chi-

squared distribution with J degrees of freedom under the null hypothesis. E = @252�P + V&�/�1 − R& − V&W&'� is the annualized (252 days) long run 

volatility implied by the parameter estimates. R& + V&W&' measures the degree of mean reversion, where R& + V&W&' = 1 implies that the conditional variance 

process is integrated. 

 

The LR test easily rejects the null hypothesis of a symmetric GARCH for each respective year, 

implying that the negative correlation between returns and variance is an obvious feature of the 

stock index during each single year. However, the LR test does not reject the null hypothesis at 

a five percent significance level for the whole two-year period, i.e. 2005-2006. Apart from 

these results, the degree of mean reversion (given by R& + V&W&' ) for the unrestricted GARCH 

process is 0.8698, the volatility of volatility (given by V&) is 8.08e-06, and the annualized long-

run mean of volatility (given by E) is 14.53%.      

 

3.3. Model Comparisons 

This section presents the ML estimates of the HN GARCH(1,1) model using both the Normal- 

and the Student-t distribution. It gives also a discussion of the in-sample and the out-of-sample 

differences between the HN GARCH(1,1)-, the BS-, and the ad hoc BS model.  
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3.3.1. In-sample Model Comparison 

The BS model is implemented using a single implied volatility that is estimated across all 

strikes and maturities on a given day. As was mentioned earlier, the implied volatility of the ad 

hoc BS model on a given day is modelled using the DVF.18 Both the BS- and the ad hoc BS 

model are re-estimated every week while the parameters of the HN GARCH(1,1) model are 

held constant over the entire estimation period, which are the first six months of each year. This 

implies that the model is constrained to use the variance from the history of asset prices. The 

ML estimates under each distribution and the in-sample valuation errors are given in Table 2 

below, for both 2005 and 2006.  

          

Table 2 

In-sample estimations of the models in the first half of each year 

               αααα1    ββββ1    γγγγ1    ωωωω    λλλλ    θθθθ    ββββ1111+αααα1111+γγγγ1111
2222    RMSE Average price Observations 

2005 

        

11.28 462 

BS 5.12 

  Ad hoc BS 3.01 

  GARCH Normal 9.91E-06 6.86E-15 63.5136 4.41E-05 11.3403 11.91% 0.0400 14.01 

  Student-t 6.09E-06 6.21E-17 100.7116 4.63E-05 19.8725 11.86% 0.0618 14.11 

  

          2006 

       

15.16 435 

BS 

       

7.14 

Ad hoc BS 

       

2.69 

GARCH Normal 2.00E-05 0.5827 96.2208 1.36E-05 -2.9090 19.09% 0.7676 44.28 

    Student-t 1.98E-05 0.5787 88.1739 1.62E-05 4.5113 18.42% 0.7325 46.03     

Note: BS is the Black-Scholes model which is implemented using a single implied volatility that is estimated across all strikes and maturities on a given 

day. The implied volatility of the ad hoc BS model on a given day is modelled using the deterministic volatility function. The parameters of the non-

updated HN GARCH(1,1) model are estimated via maximum likelihood using the Normal- and the Student-t distribution. Both the BS- and the ad hoc 

BS model are re-estimated every week while the parameters of the HN GARCH(1,1) model are held constant over the entire estimation period, i.e. for 

the first six months of each year. RMSE is the root mean squared error (in SEK). Average price is the average option price in the used sample. 

 

Although the long-run annualized volatility is quite similar under the two distributions for both 

years, it is higher in 2006 (around 19%) than in 2005 (around 12%).19 This variation in 

volatility between the two years is verified by the significant difference between the degree of 

mean reversion, being around five percent in 2005 and as high as around 75% in 2006. Hence 

this implies that the variation in volatility is much lower in 2005 than in 2006. The average 

option price is 11.28 SEK and 15.16 SEK in 2005 and 2006, respectively. The RMSE of the BS 

model is around 5 SEK in 2005 and around 7 SEK in 2006. With a RMSE of around 3 SEK in 

                                                   
18 See section 2.5. The ad hoc Black-Scholes Model. 
19 These numbers should be treated with caution since options of up to only 100 days to maturity are used.  
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both years, the ad hoc BS- outperforms the BS model in every year. The reason to the ad hoc 

BS model’s superiority lies in its flexibility to fit both the volatility smile in strike prices and 

the term structure of implied volatilities. Noteworthy is that the RMSE of the HN GARCH(1,1) 

model is around the alarming value of 14 SEK in 2005 and 45 SEK in 2006. A possible 

explanation to this model’s larger in-sample RMSE could be given by examining the two 

figures below. Figure 4A and 4B illustrate the volatility process over the in-sample period of 

2005 and 2006, respectively.  

 

 Figure 4A In-sample volatility 2005                    Figure 4B In-sample volatility 2006 

    
Note: Figure 4A and 4B illustrate the volatility process over the in-sample period of 2005 and 2006, respectively. 

 

While the volatility process is relatively tranquil over the entire sample in 2005, a significant 

increase in volatility is seen in the last two months in the first half of 2006. This significant 

increase may affect the estimation of the volatility of volatility parameter V&, which is shown to 

have a great impact on the outcome of the HN GARCH(1,1) model. Heston and Nandi (2000) 

point out that “...option values are more sensitive to V& (that measures the volatility of 

volatility), and  W& (that controls the skewness of index returns) than they are to the other 

parameters. This stability is important for the GARCH model to fit the data reasonably well 

even with constant parameters.”20 

According to Heston and Nandi (2000), the above comparison of the GARCH model with the 

ad hoc BS model is somewhat “unfair” due to that the latter model is updated every week. They 

also point out that “it is not clear whether the improved in-sample fit of the ad hoc model stems 

from a more flexible functional form or from the instability of the functional form of the 

GARCH process over a long enough time period.”21 They estimate therefore also an “updated” 

HN GARCH(1,1) model, allowing its parameters to change every week. Worth noting here 

                                                   
20 See Heston and Nandi (2000) pp. 605. 
21 See Heston and Nandi (2000) pp. 604. 
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though is that despite this weekly update of the parameters, the variance ℎ�� + 1� is still drawn 

from the history of asset prices at time �. Hence the variance is estimated by using the previous 

252 days of stock returns.22 This updating is only done in the second half of each year since the 

final objective is to compare the models’ out-of-sample valuation errors in these same periods. 

The outcome of this “fair” in-sample comparison of the ad hoc BS model with the updated 

version of the HN GARCH(1,1) model is presented in Table 3.  

 

Table 3 

In-sample comparison of the ad hoc BS model and the updated GARCH model 

         RMSE Average Option price Number of observations 

2005 15.14 651 

Ad hoc BS 1.92 

  GARCH (updated) Normal 9.25 

  Student-t 9.81 

2006 25.74 541 

Ad hoc BS 2.20 

  GARCH (updated) Normal 17.65 

  Student-t 17.87     

Note: RMSE from the weekly estimation using option prices in the second half of each year 

(including the last Wednesday of the first half of each year) for the ad hoc BS- and the HN 

GARCH(1,1) model. The ad hoc BS is implemented using ordinary least squares whereas the HN 

GARCH(1,1) model is estimated via maximum likelihood. The conditional variance  ℎ�� + 1� used 

in the HN GARCH(1,1) model is estimated using the daily history (last 252 days) of the OMXS30 

stock index returns.  

 

The average option price in the sample is around 15 SEK and 26 SEK in 2005 and 2006, 

respectively. Updating the parameters weekly results in a great improvement of the HN 

GARCH(1,1) model in 2006. However, the mispricing errors are still large in both years. Hence 

once again, the model is greatly outperformed by the ad hoc BS model, whose RMSE is around 

2 SEK in each respective year. One way to check the quality of the updated HN GARCH(1,1) 

model’s estimated coefficients is to analyze and compare their mean and standard deviations 

with each other. Table 4 presents these calculations, which are estimated via ML using the 

Normal- and the Student-t distribution.  

 

 

                                                   
22 According to Heston and Nandi (2000), the results are basically indifferent whether one uses longer time 
intervals or not when estimating the conditional variance. This is due to its strong mean reversion. Hence a period 
of 252 days is therefore satisfying to use here as well. 
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Table 4 

Mean estimates from the updated HN GARCH(1,1) model using maximum likelihood under each distribution 

    αααα1111    ββββ1111    γγγγ1111    ωωωω    

Normal Mean 1.67E-05 0.5832 106.9314 1.46E-05 

  Standard Deviation 3.11E-06 0.0119 10.1059 4.33E-06 

Student-t Mean 1.61E-05 0.5866 105.2341 1.55E-05 

  Standard Deviation 3.49E-06 0.0168 13.7136 5.56E-07 

Note: The mean and standard deviation of the HN GARCH(1,1) model parameters from the weekly estimation via maximum 

likelihood using option prices in the second half of each year (including the last Wednesday of the first half of each year).  

 

A striking result under both distributions is that the least stable parameter happens to be V&, 

which is then followed by  W&. Recalling Heston and Nandi’s (2000) argument concerning these 

parameters, its large in-sample mispricing error is obviously due to the poor estimates of V& and  W&.   

The next section discusses the out-of-sample differences between all the models. 

 

3.3.2. Out-of-Sample Model Comparison 

Since the interest now lies in the models’ forecasting performances, the models are 

implemented using information at time � to value options at time � + 1. In other words, the BS 

model is implemented such that the estimated implied volatility from the current week is used 

to value options in the next week. The current week’s estimated model parameters of both the 

ad hoc BS- and the updated HN GARCH(1,1) model are used to value options in the next 

week. A non-updated- and an updated version of the HN GARCH(1,1) model is once again 

estimated. The implementation of the non-updated version implies keeping its parameters fixed 

at their in-sample estimates for the particular year. Moreover, the updating of the conditional 

variance ℎ�� + 1� (which is still drawn from the dynamics of the daily stock returns) is done by 

first using the same starting variance ℎ�0� as in the in-sample estimation, and then from the 

entire daily history of stock prices for that year, obtain ℎ�� + 1� for any given time � in the out-

of-sample period. This implies that all the out-of-sample computations for this non-updated 

version of the HN GARCH(1,1) model are based on option prices from the first six months of 

that year. The computation of out-of-sample option values at time � using the updated HN 

GARCH(1,1) model implies using the conditional variance ℎ�� + 1� obtained at time � − 1. 

“The important distinction between the out-of-sample implementations is that the non-updated 

GARCH model predicts options values up to 26 weeks ahead, whereas the BS, ad hoc BS, and 
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updated GARCH models only predict one week ahead.”23 The out-of-sample valuation errors 

for the various models aggregated across the two out-of-sample periods are presented in Table 

5 (Panel A) below. 

 

Table 5 

   Out-of-sample valuation errors 

       Panel A: Aggregate valuation errors across all years   

    RMSE MAE MOE Average option price Number of observations 

20.05 1149 

BS 9.45 1.15 0.34 

Ad hoc BS 6.66 0.69 0.11 

GARCH (non-updated) Normal 14.49 1.86 1.59 

Student-t 15.92 2.06 1.85 

GARCH (updated) Normal 14.41 1.90 1.64 

  Student-t 14.71 1.83 1.53     

Panel B: Valuation errors by years     

    RMSE MAE MOE Average option price Number of observations 

2005 15.16 625 

BS 8.28 0.88 0.25 

Ad hoc BS 6.43 0.67 0.01 

GARCH (non-updated) Normal 9.72 1.34 1.03 

Student-t 9.81 1.36 1.11 

GARCH (updated) Normal 9.48 1.23 0.79 

Student-t 9.99 1.32 0.99 

2006 25.88 524 

BS 10.48 1.42 0.42 

Ad hoc BS 6.89 0.71 0.22 

GARCH (non-updated) Normal 18.05 2.38 2.15 

Student-t 20.26 2.77 2.60 

GARCH (updated) Normal 18.03 2.43 2.27 

  Student-t 18.25 2.48 2.38     

Note: Panel A presents the aggregated out-of-sample RMSE for all models. Panel B presents the out-of-sample 

RMSE for all models by each year. The BS model is implemented using the estimated implied volatility from the 

current week to value options in the next week. The current week’s estimated model parameters of both the ad hoc 

BS- and the updated HN GARCH(1,1) model are used to value options in the next week. The implementation of the 

non-updated HN GARCH(1,1) model implies keeping its parameters fixed at their in-sample estimates for the 

particular year and updating the variance from the daily OMXS30 stock index returns. MOE  is the mean outside 

error (in SEK). MAE  is the mean absolute error (in SEK).  

 

                                                   
23 See Heston and Nandi (2000) pp. 606. 
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The average aggregated option price is 20.05 SEK. The aggregated RMSE of the BS- and the 

ad hoc BS model is around 9 SEK and 7 SEK, respectively. The mispricing errors of both 

versions of the HN GARCH(1,1) model are slightly improved when estimated under the 

Normal distribution. However, with both versions having an aggregated RMSE of around 15 

SEK, they are still outperformed by both the BS- and the ad hoc BS model. Table 5 (Panel B) 

presents the out-of-sample RMSE for each out-of-sample period. The BS model improves 

slightly in 2005 and worsens in 2006, whereas the ad hoc BS model stays quite stable in both 

years. Both versions of the HN GARCH(1,1) model, who are still outperformed in both years, 

improve in 2005 and worsen in 2006. Hence the poor estimates of V& and W&obviously affect 

the HN GARCH(1,1) model’s forecasting performance too. In addition to the RMSE, Table 5 

(Panel A and B) also present the MOE and the MAE. Nothing changes concerning the rankings 

of the models when looking at these error measures, except that it can be concluded that the 

two versions of the HN GARCH(1,1) model perform better when estimated under the Normal- 

than under the Student-t distribution. Table 6 gives a detailed analysis of all the models’ out-of-

sample performances by categorizing their valuation errors (both the RMSE and the MOE in 

SEK, and the percentage valuation error (% Error)) with respect to the options’ moneyness and 

maturities.  
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Table 6 

             Out-of-sample valuation errors for call options 

              
      Days to Expiration 

   

< 40   40 - 70   >70 

Model   Moneyness RMSE % Error MOE   RMSE % Error MOE   RMSE % Error MOE 

BS 

         

  

< 0.95 1.55 2.35 0.01 

 

2.18 3.57 -1.97 

 

6.12 6.53 -0.50 

  

[0.95-0.99) 2.99 8.99 -1.24 

 

3.91 9.37 -1.00 

 

3.36 7.22 -1.14 

  

[0.99-1.01) 2.31 15.56 0.28 

 

2.44 10.20 0.28 

 

2.78 9.27 -0.06 

  

[1.01-1.05] 2.47 48.96 0.94 

 

3.51 29.98 1.75 

 

4.31 25.28 1.40 

  

> 1.05 1.20 114.58 0.71 

 

2.43 58.94 2.00 

 

3.26 48.33 1.47 

Ad hoc BS 

             

  

< 0.95 1.29 1.96 0.75 

 

1.46 2.40 -1.01 

 

3.18 3.39 1.23 

  

[0.95-0.99) 2.10 6.32 -0.56 

 

2.41 5.77 -0.52 

 

2.74 5.89 -1.22 

  

[0.99-1.01) 1.50 10.12 0.10 

 

1.73 7.24 -0.25 

 

2.38 7.93 -0.28 

  

[1.01-1.05] 1.49 29.53 0.22 

 

2.15 18.36 0.17 

 

3.26 19.13 0.78 

  

> 1.05 0.94 89.96 0.19 

 

1.90 45.97 0.58 

 

2.57 38.14 0.90 

GARCH (non-updated) 

            

 

Normal < 0.95 2.51 4.14 0.44 

 

2.48 3.62 -1.07 

 

5.32 5.48 1.27 

  

[0.95-0.99) 3.74 11.02 0.87 

 

4.25 9.81 1.48 

 

5.59 11.49 1.06 

  

[0.99-1.01) 3.64 21.14 1.43 

 

4.47 16.36 2.50 

 

5.05 14.91 3.02 

  

[1.01-1.05] 4.01 61.62 1.28 

 

6.47 42.82 2.86 

 

7.86 38.70 3.28 

  

> 1.05 1.38 149.56 -0.10 

 

3.50 59.71 1.42 

 

4.67 48.85 2.36 

              

 

Student-t < 0.95 2.73 4.50 0.59 

 

2.75 4.02 0.70 

 

6.18 6.32 1.67 

  

[0.95-0.99) 4.00 11.74 1.04 

 

4.67 10.72 1.84 

 

6.21 12.68 1.65 

  

[0.99-1.01) 3.90 22.32 1.74 

 

4.88 17.61 2.72 

 

5.54 16.14 3.04 

  

[1.01-1.05] 4.35 64.94 1.48 

 

7.07 45.69 3.16 

 

8.63 41.58 3.58 

  

> 1.05 1.51 146.48 0.01 

 

4.05 65.32 1.71 

 

5.30 53.02 2.79 

GARCH (updated) 

            

 

Normal  < 0.95 2.53 4.16 0.68 

 

5.86 10.73 0.89 

 

5.61 5.77 1.46 

  

[0.95-0.99) 3.66 10.82 0.73 

 

4.35 11.90 1.83 

 

5.73 11.77 1.15 

  

(0.99-1.01) 3.79 21.92 1.51 

 

4.98 22.95 2.43 

 

5.21 15.33 2.53 

  

[1.01-1.05] 3.87 60.25 1.13 

 

6.23 41.40 1.87 

 

7.61 36.29 3.27 

  

> 1.05 1.32 161.63 -0.21 

 

3.32 60.16 1.19 

 

4.58 49.11 2.26 

              

 

Student-t < 0.95 2.53 4.16 0.71 

 

6.10 11.15 1.17 

 

5.56 5.72 1.43 

  

[0.95-0.99) 3.69 10.87 0.91 

 

4.46 12.11 1.87 

 

5.70 11.66 1.40 

  

[0.99-1.01) 3.86 22.13 1.67 

 

5.18 23.64 2.42 

 

5.33 15.51 2.82 

  

[1.01-1.05] 3.97 60.81 1.26 

 

6.44 42.18 2.81 

 

7.86 36.97 3.36 

    > 1.05 1.31 153.50 -0.16   3.40 60.11 1.28   4.74 49.63 2.46 

Note: Out-of-sample valuation errors categorized with respect to moneyness and maturity. Moneyness is defined as K/F. % Error is the ratio of the 

RMSE to the average option price for that option category.  
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According to the RMSE and the % Error, the ad hoc BS model dominates the other models 

throughout all the moneyness- and the maturity categories. The three measures indicate that the 

performance of the non-updated HN GARCH(1,1) model is higher in all the categories under 

the Normal distribution, except for short-term (< 40 days) deep out-of-the-money �� �⁄ >1.05� options and medium-term (40-70 days to expire) deep in-the-money options were the 

results are mixed. The performance of the updated version of the model is according to the 

RMSE in general also higher under the Normal distribution, but with mixed results for the case 

of short term deep out-of-the-money options. This version of the HN GARCH(1,1) model is 

however indicated by all the measures to perform better under the Student-t distribution for 

long-term (>70 days) options in the 0.95-0.99 moneyness category. An interesting result is that 

according to the RMSE, the updated version performs in general better than the non-updated 

one under the Student-t distribution, whereas this is not the case under the Normal distribution. 

Figures 5A, 5B, and 5C, illustrate the percentage out-of-sample pricing errors for options of the 

three different maturities by moneyness.  

 

Figure 5A Percentage out-of-sample pricing errors 

 
Note: This figure presents the models’ percentage out-of-sample pricing errors, 

defined as 100  RMSE/Option Price, for options with a time to maturity of less 

than 40 days in the second half of each year.  

 

 

 

 

 

 

 

 

 

 

 



27 
 

Figure 5B Percentage out-of-sample pricing errors 

 
Note: This figure presents the models’ percentage out-of-sample pricing errors, defined as 

100  RMSE/Option Price, for options with a time to maturity of between 40 and 70 days in 

the second half of each year.  

 

Figure 5C Percentage out-of-sample pricing errors 

 
Note: This figure presents the models’ percentage out-of-sample pricing errors, 

defined as 100  RMSE/Option Price, for options with a time to maturity of 

more than 70 days in the second half of each year.  
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4. Conclusions and Discussion 

This thesis is based on Heston and Nandi (2000), who present a closed-form discrete-time 

GARCH (HN GARCH(p,q)) model for pricing European options. The model values options by 

using the volatilities computed directly from the history of asset prices. It incorporates both the 

correlation between spot prices and their volatility, and the volatility smile.  

The aim of this thesis is to check how the model performs on Swedish data and if there are 

any significant changes to its performance when estimating it using the Normal- and the 

Student-t distribution.  

There are two major differences concerning the methodology used in this thesis compared to 

the one Heston and Nandi (2000) use. These concern the data frequency and the estimation 

method; daily data is used instead of intra-daily, and the HN GARCH(1,1) model is estimated 

via maximum likelihood (ML) instead of non-linear least squares (NLLS).  

The results show that when the HN GARCH(1,1) model is estimated using the Student-t 

distribution, its out-of-sample valuation performance increases in general when its parameters 

are updated. This is however not the case when it is estimated using the Normal distribution. 

The HN GARCH(1,1) model is still shown to suffer from significant mispricing errors as it is 

greatly outperformed by both the BS- and the ad hoc BS model. This meagre forecasting 

performance of the model is caused by poor estimates of two of its most important parameters, 

namely the volatility of volatility- and the skewness parameter. This naturally leads to the 

questioning of whether good estimates are difficult to obtain in general or not. If this would be 

the case, then only the ease of implementing the two other models should lead to them being 

preferred. However, it would be wrong to conclude that the HN GARCH(1,1) model is useless 

seeing that its estimates are obtained via MLE and not via NLLS as in Heston and Nandi 

(2000). Apart from this, the results show that the HN GARCH(1,1) model generally performs 

better when estimated using the Normal- than the Student-t distribution.  

Further extensions to consider for future research could be to drop the restrictions made here. 

The most interesting one is perhaps the estimation method. Another extension could be, as 

Heston and Nandi (2000) suggest, to estimate the model with multiple lags. 
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