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Chapter 1

Objective and outline

This study is concerned with the statistical analysis of tick-borne encephalitis (TBE) antibody

decrease after vaccination. The objective is to derive conclusions about protection duration of

vaccination. TBE is a serious infection a�ecting the central nervous system and Austria is a

high risk region of TBE. Active immunization by vaccination prevents TBE and nowadays 88%

of Austria's population is vaccinated.

The statistical analysis is based on observational data collected from persons who deliberately

went for a test of their TBE antibody level at the Institut für Hygiene, Mikrobiologie und Tropen-

medizin des Allgemeinen ö�entlichen Krankenhauses der Elisabethinen in Linz . In addition to

antibody concentration in blood serum (titer) obtained from an ELISA-test, the data set con-

tains information on sex, number of booster vaccinations, age and time since last vaccination

(covariates).

Various parametric regression type models are �t to investigate the decrease of titer after vacci-

nation. Pure regression models turned out not to be adequate for explaining titer decrease due

to considerably heterogeneity between individuals. Subject-speci�c random e�ects have to be

taken into account.

The thesis is divided into four main parts:

1. introduction and overview of TBE epidemiology, pathology and vaccination in Austria

2. analysis of the �rst measurements of each person starting with simple explorative data

analysis, followed by classical regression models and generalized linear models

3. analysis of repeated measurements starting with simple explorative data analysis, followed

by models for longitudinal data in Gaussian and non-Gaussian case

4. comparison of all models and prediction of titer

In each chapter a short theoretical overview is provided before applying the presented models

to the observed data using the software SAS r9.1. For detailed explanations of procedures and

syntax the SAS online documentation (SAS Institute Inc., 2003) is recommended.
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Chapter 2

Tick-borne encephalitis

In this chapter background knowledge on the disease TBE itself and information on TBE vac-

cination in Austria are gathered and some interesting articles and studies considering TBE are

pointed out.

2.1 Epidemiology

TBE is a serious viral infectious disease a�ecting the central nervous system (CNS) caused by

the TBE virus (TBEV). TBEV is a Flavivirus and is distinguished by the following subtypes

due to its endemic region (Rendi-Wagner (2004a, p.307); Zoehrer et al. (2003, p.1165)):

- European subtype: Central Europe, Eastern Europe, Southern Sweden, Southern Finland

- Far-Eastern subtype: Asian part of Russia, Northern China, Northern Japan

- Siberian subtype

The term tick-borne encephalitis already indicates that the TBEV is mainly transmitted by ticks.

Rarely infection occurs after consumption of unpasteurized dairy products (Rendi-Wagner, 2004a,

p.307). Humans become most likely infected with TBEV by the sting1 of infected ticks, which

might be wiped o� from grass or bushes during outdoor activities. Ticks live in vegetation at

ground level up to one meter. Children are often stung by ticks into the head, arms and the

upper part of the body, whereas grown-ups are rather stung into the legs and the lower part of

the body (Stanek & Hofmann, 1994).

In Central Europe ticks are active between April and November. Main activity takes place in

May/June and September/October. Three to four weeks after those periods more occurrences

of TBE cases can be observed. The �rst description of an unknown seasonal peak of serious

meningitis cases in an eastern district of Austria was done by Schneider (1931). The incidence

of ticks is highest in humid areas with annual average temperature above seven degrees Celsius

(Kunz, 1992). Mild winters and humid summers support the reproduction of ticks and the

activity of ticks increases. Ticks prefer meadows and woodlands where a lot of little mammals

live which might serve as alternate hosts. Detailed explanations of development cycle of ticks

and TBEV go beyond the scope of this introductive part and can be found in Dumpis et al.

(1999), Charrel (2004) and Heinz (2006).

The prevalence of TBEV in ticks di�ers from year to year and varies between regions. An

investigation on TBEV prevalence in ticks was for example done in Styria (Upper-Austria) 1992

1The term of sting instead of bite shall be used in this thesis on the account of Löser et al. (2002).
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and the rate of infected ticks was 0.44% (Labuda, 1993). Areas in Austria with high risk to

be infected by TBE are situated along the Danube, in Styria, Carinthia and in Burgenland, see

�gure 2.1.

Figure 2.1: TBE risk areas in Austria, ARGE Gesundheitsvorsorge (Download:
2006-11-13)

2.2 Pathology

The incubation time for TBE normally lies between 4 and 14 days. The course of TBE can often

be distinguished in two phases. In the �rst phase, which lasts three to �ve days, patients su�er

from illness similar to in�uenza (Binder, 1996, p.52). After a symptom free interval of about

one week, approximately two third of infected persons pass into the second phase of the disease

with encephalitic symptoms involving the CNS (Kaiser, 2002). Depending on the a�ection of

the CNS, time to recovery is extended to several months. The course of TBE disease is strongly

related to the age of the victim. Especially persons above 40 years su�er severe discomfort. The

risk of postencephalitic syndromes including spinal nerve paralysis, neuropsychiatric complaints,

dysphasia, ataxia and paresis as well as the risk of permanent sequelae rises with increasing age

(Charrel, 2004, p.1043). Mortality rate for TBE in Europe is less than 1%. More information

on symptoms, di�erent manifestations and prognosis of TBE is available in Kaiser (2006). Some

examples for clinical studies investigating the severity of TBE diseases are Jezyna (1984) in

Poland, Köck (1992) in Austria, Haglund (1996) in Sweden, Kaiser (1999) in Germany and

Mickiene (2002) in Lithuania.

2.3 Vaccination

So far no e�cient drug against TBEV has been found and treatment of TBE is only supportive

(Dumpis et al. , 1999, p.887). Besides avoiding to get stung by an infected tick, accurately timed

active immunization against TBEV appears the most e�ective way to prevent TBE. The �rst

vaccine was developed in the early 1970s in Austria. The full vaccine dosage (0.5 ml) contains 2.0
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to 2.75 µg TBEV-antigen. For children and adolescents up to 16 years only half of the dosage

(0.25 ml) is used. (Gesellschaft für Virologie e.V., Download: 2007-03-18; P.N. et al. , 2003;

Barrett, 2004)

The basic immunization protocol consists of three vaccinations. The �rst two vaccinations should

be 2 - 12 weeks apart. The third vaccination follows 9 - 12 months later. The protection rate

after three basic vaccinations is 96 - 98.7% (Kunz, 2003). Formerly it was recommended to do

booster vaccinations every three years after the basic immunization. Several studies like Rendi-

Wagner (2004b) and Kind (2004) evinced a longer protective immunity. The current proposal in

Austria is to do the �rst booster vaccination after three years and the following vaccinations every

�ve years. With increasing age the e�ect of vaccination and its protection time decrease (Hainz,

2002). The Austrian National Board for Immunization recommends people older than 60 years to

do booster immunization every three years. In urgent cases an accelerated basic immunization

schedule can be applied (0, 7, 21 days). This is especially interesting for travellers (ARGE

Gesundheitsvorsorge, Download: 2007-03-31b). Problems with unprotected people travelling to

TBE risk areas are discussed in Rendi-Wagner (2004a).

2.3.1 Mass vaccination campaign in Austria

In the 1970s Austria, former Czechoslovakia, Hungary, Slovenia and Croatia had the highest

number of TBE incidents. In Austria a wide-spread TBE vaccination campaign was introduced

in 1981. Nowadays around 88% of Austrians are vaccinated against TBE. Nevertheless there were

100 incidents of TBE in 2005 and 84 in 2006 (ARGE Gesundheitsvorsorge, Download: 2007-03-

31a). Among the countries where TBE is endemic, Austria is the only one where TBE incidence

has decreased since 1974. In all other countries the number of TBE cases has increased (Süss,

2006, p.19). TBE vaccination in Austria was especially promoted in schools and the proportion

of TBE cases among older people increased. For this reason the age pattern of TBE cases in

Austria is di�erent than in other European countries. (Kunz, 2003, p.52)

2.4 Laboratory diagnosis

As soon the human immune system detects TBE agents in the blood circulation it reacts by

producing speci�c defensive antibodies, so-called immunoglobulin (Ig). Testing for immunity

after a TBEV infection and immune response after TBE vaccination is based on ELISA (enzyme

linked immuno sorbent assay) systems. These are methods to detect substances like hormones

or proteins, e.g. Ig. The existence of those substances is proved if they react with so-called

detection-antibodies, which are marked with an enzyme. This enzyme enables the conversion of

a substrate and an antigen-antibody reaction can be proved.

TBE speci�c antibodies can be detected for several months after infection or basic immunization.

In cases of former incidences with other Flaviviruses like vaccination against yellow fever or

Japan encephalitis or a previous Dengue virus infection it is necessary to use the more costly

but more speci�c neutralization test (Holzmann, 2003, p.39), because cross-reactions with other

Flaviviruses are possible by using ELISA (Zoehrer et al. , 2003, p.1167). After a natural infection

the victim is immune against TBEV and also against other subtypes for the whole life (Mickiene,

2006). Interested medical readers are recommended to study Holzmann (2003).
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Chapter 3

Data

In the following chapter observed data on TBE vaccination are explored. First, the process of

data collection and features of the data are described. Second, a population of interest is de�ned

upon which statistical models for titer are applied in the subsequent chapters. Finally, simple

frequency analysis on the constricted data is executed.

Similar studies on the protection of TBE vaccination with similar data situation have been done

by Kind (2004), Kind (2005) in Switzerland and a clinical trial was done by Rendi-Wagner

(2004b) in Austria.

3.1 Data collection and de�nition of the population of interest

From 1995 to 2004 data for 4031 measurements were recorded of persons who went to the mi-

crobiologic ambulance of the hospital Allgemein öffentliches Krankenhaus der Elisa-

bethinen Linz for testing their TBE antibody level. The underlying questionnaire was designed

by deputy Dr. Lothar Binder. The attending physician �lled in the questionnaire in cooperation

with the tested persons who are referred to as proband or participants in the following. Important

items of the questionnaire were:

- How old is the proband at the moment?

- Which sex?

- Is the basic immunization protocol consisting of three vaccinations completed?

- When did those �rst three basic vaccinations take place?

- How many TBE booster vaccinations has the proband had so far?

- When did the last TBE-vaccination take place?

- Has the proband had any former incidents concerning yellow fever, Japan encephalitis or Dengue

fever (vaccination or disease)?

If the proband had brought her/his personal vaccination card the physician could use this "ex-

act" data. Otherwise the answers were referred to the more or less vague statements of the

participants from their memory. A few persons went to the ambulance for testing their titer two

or more times and several data records of them are available.

Unfortunately two di�erent tests, EnzygnostTM Anti-TBE Virus ELISA and VIE-ELISA, where

used to determine the TBE antibody concentration. Both methods belong to ELISA systems,

which have already been explained in the previous chapter, section 2.4. For simpli�cation En-

zygnost ELISA and VIE-ELISA are annotated as method A and method B, respectively.
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The analysis of the measured titers is not so simple, because in 383 cases titers measured by

method A were only noted down as "< 7 U/ml". This values were coded with 6.99 to be able to

use them as numerical values. Furthermore, titers measured by method B were often recorded as

"<" or ">" some value, that makes an accurate analysis of titer di�cult. However, these mea-

sures have been coded and are included in the analyzes. So far no functional relation between the

results of these two ELISA methods have been found and there is no possibility to analyze the

measured results of method A and method B together. Another option is to classify the results

of both methods. According to the physicians at the Institut for Hygiene, Mikrobiologie

und Tropenmedizin titers above 25 U/ml measured by method A and titers above 126 V IEU

measured by method B can be referred to as seropositive and a booster vaccination is not nec-

essary at the moment. In table 3.1 the categories for the measured titers in both methods are

summarized.

Table 3.1: Used categories for titers measured by method A and method B

category method A in U/ml method B in V IEU

negative <7 <63

borderline 7-25 63-126

positive >25 >126

As the data do not origin from a planned clinical trial, it is necessary to de�ne properly a

population on which the statistical analysis will be based. Background knowledge about TBE

is taken into consideration. First all 35 cases, where former contact with other Flaviviruses was

stated, are excluded to avoid biased results due to cross-reactivity of Flaviviruses in ELISA tests.

The main interest in this study is the evolution of TBE titer after basic immunization. Therefore

only those few data records are used, where the basic immunization is de�nitely completed. After

this exclusions a data collection consisting of 430 data records is obtained where 250 records are

measured by method A and 180 are measured by method B. This is going to be the sample of

interest on which the following analyzes are based.

3.2 Restricting the analysis to the �rst measurements

In this section data is split in a part with only measurements by method A and another part

with only measurements by method B. To guarantee that observations are independent from

each other only the �rst measurement of each participant is used. This results in 213 �rst

measurements by method A (sample A1) and 159 �rst measurements by method B (sample B1).

In sample A1 66.20% and in B1 61.78% of the observations are from female participants. The

slight di�erence between the groups is not signi�cant (χ2-, Fisher's exact test). In table 3.2

age at time of the titer test, time since last vaccination and number of booster vaccinations are

compared for the samples A1 and B1. For none of these variables a signi�cant di�erence between

the samples A1 and B1 can be proved (Mann-Whitney-U-, χ2- test).

Table 3.3 shows the frequency for the categorized variable. The relative frequency for seropositive

titer is almost equal for both samples. A Fisher's Exact test did not detect a signi�cant di�erence

between sample A1 and sample B1. As there are only 9 cases in the negative category it is better

for further analyzes to combine the classes borderline and negative in one category. Another
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Table 3.2: Descriptive statistics of age (in years) at the time of titer test, time (in years) since
last vaccination and number of booster vaccinations for the �rst measurements in the split data

age (in years) min Q0.25 median Q0.75 max mean std n missing

A1 5 24 37 46 85 36.98 18.31 213 (100%) 0

B1 5 24 35 48 75 35.99 17.99 159 (100%) 0

time since last vacc. (in years)

A1 0.01 3.00 4.75 6.00 11.00 4.83 2.34 194 (100%) 19

B1 0.01 3.00 4.00 5.00 15.05 4.46 2.30 152 (100%) 7

number of booster vacc.

A1 0 0 2 4 6 2.14 1.93 142 71

B1 0 0 1 3 5 1.71 1.53 126 33

Table 3.3: Frequency analysis of categories for the �rst measurements in the split data

category positive borderline negative n

A1 193 (90.61%) 17 (7.98%) 3 (1.41%) 213 (100%)

B1 145 (91.19%) 8 (5.03 %) 6 (3.77%) 159 (100%)

positive e�ect of this procedure is that the relative frequencies in group A1 and B1 become

almost equal.

3.2.1 Investigation of dependence of titer on other variables

The goal of this thesis is to describe the dependence of TBE antibody concentration on the

measured covariates sex, number of booster vaccinations, age and time since last vaccination.

Comparative boxplots were created in �gure 3.1 and �gure 3.2 to compare the distribution

of measured titers by sex and number of booster vaccinations. According to Vittingho� et al.

(2005, p.12) a boxplot provides information on location, spread, range of observations, presence of

outliers and some information about the shape of the distribution. The box sizes are proportional

to the number of observations in the group.

In �gure 3.3 and �gure 3.4 scatterplots for logarithm of titers depending on age at the time of

titer test and time since last vaccination are printed. The logarithmic scale was chosen to get

better comparability of titers measured by method A and titers measured by method B. The two

horizontal lines represent the borders for the categories seronegative and borderline, according

to table 3.1. A non-parametric scatterplot smoother is added to get a better impression on the

trend of the logarithm of titer depending on age at the time of titer test and time since last

vaccination. For both methods logarithm of titer decreases with increasing age and time since

last vaccination. After investigating the dependency of the outcome variable titer on each of the

covariates sex, number of booster vaccinations, age and time since last vaccinations following

tendencies can be summarized:

- Women have lower titers than men (at least for method A)

- Titers increase with increasing number of booster vaccinations

- Titers decrease with increasing age

- Titers decrease with increasing time since last vaccination
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Figure 3.1: Boxplots of titers measured by method A (left) and method B (right) for female
and male participants

Figure 3.2: Boxplots of titers measured by method A (left) and method B (right) for di�erent
numbers of booster vaccinations
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log(titer), method A log(titer), method B

Figure 3.3: Scatterplots of logarithm of titers measured by method A (left) and method B
(right) against age at the time of titer test

log(titer), method A
log(titer), method B

Figure 3.4: Scatterplots of logarithm of titers measured by method A (left) and method B
(right) against time since last vaccination
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Chapter 4

Linear regression

In the following chapter linear regression analysis is applied to investigate the relation between

titer and the covariates sex, number of booster vaccinations, age and time since last vaccination

in the sample A1.

4.1 The model

The outcome variable titer as well as the predictors age and time since last vaccination can be

considered as continuous. From now on the variable age represents the age of the participant at

her/his last vaccination. Sex is a nominal variable with two values (0 = male and 1 = female).

The variable number of booster vaccinations is divided into three categories (0 = zero booster

vaccinations, 1 = one booster vaccination, 2 = two or more booster vaccinations) and dummy

variables have to be used. Figure 4.1 shows a scatterplot matrix of these variables.

Figure 4.1: Scatterplot matrix of titer, sex, number of
booster vaccinations, age and time since last vaccination

Supposing that the Gauss-Markov conditions hold, the following linear regression model is as-
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sumed

titeri = β0 + β1sexi + β2boosters1i + β3boosters2i + β4agei + β5lastV acci + εi (4.1)

εi ∼ N(0, σ2) i.i.d.

4.2 Estimation of parameters

The estimated parameters for model (4.1) are given in table 4.1.

Table 4.1: Estimated parameters for regression model (4.1)

n=140, missing=73

Parameter Standard

Variable DF Estimate Error t Value Pr > |t|

Intercept 1 406.97 63.55 6.40 <.0001

sex 1 1 -68.50 35.19 -1.95 0.0537

boosters 1 1 3.50 49.88 0.07 0.9442

boosters 2 1 81.52 42.04 1.94 0.0546

age 1 -3.06 1.01 -3.04 0.0029

lastVacc 1 -18.50 7.34 -2.52 0.0129

It is estimated that female participants have lower titer than men. The expected titer increases

with the number of booster vaccinations. These results are not signi�cant (signi�cance-level =

0.05) but both parameters for the continuous predictors age and time since last vaccination are

signi�cant. The estimated error variance is very high, σ̂2 = 36906.

4.3 Model validation

The coe�cient of determination R2 = 0.1210 is very low and indicates that the variability of titer

is poorly explained by the variables sex, number of boosters, age and time since last vaccinations.

Although accounting for the observed covariates a high degree of heterogeneity in the data , so-

called unobserved heterogeneity, is left. Several interactions were tested if their inclusion would

improve the model, but t-tests did not show any signi�cance. Hence, the model with only main

e�ects of the predictors is analyzed in the next steps. In the next step the model is checked for

validity by analyzing the residuals.

Normality assumption

Histogram and normal quantile plot in �gure 4.2 show a strong departure from normality and

transformations are applied to the outcome variable titer. Among the transformations log(titer),√
titer, titer1/3 the cubic root is most satisfying and the model

titer
1/3
i = β0 + β1sexi + β2boosters1i + β3boosters2i + β4agei + β5lastV acci + εi (4.2)

εi ∼ N(0, σ2) i.i.d.

is estimated. Histogram and normal quantile plot of this model do not have any severe departures

from the normality assumption anymore, see �gure 4.3.
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Figure 4.2: Check of normality assumptions for regression analysis of titer by histogram (left)
and normal quantile plot (right) of the residuals

Figure 4.3: Check of normality assumptions for regression analysis of cubic root titer by his-
togram (left) and normal quantile plot (right) of the residuals

Independence assumption

Plots of residuals against observation number for the regression model on cubic root titer (4.2)

did not show a visible structure and the assumption of independence among observations seems

appropriate.

Linearity assumption

For checking the linearity assumption in model (4.2) residuals have been plotted against each

continuous predictor. The linearity assumption for age seems adequate. The plot of residuals

against time since last vaccination shows a slightly quadratic trend, that might be due to only a

few observations with less than 3 years since last vaccination. A regression model including the

quadratic term lastV acc2 was �tted, but t-test for this new parameter was not signi�cant.

Assumption of constant variance

The important assumption of homoscedasticity is checked by plotting the residuals against the

�tted values for both models (4.1) and (4.2), see �gure 4.5. The residuals in the left panel clearly

have the form of a funnel whereas the residuals in the right panel seem quite unstructured. The
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Figure 4.4: Plot of residuals against continuous predictors age (left) and time since last vacci-
nation (right) for regression analysis of cubic root titer

cubic root transformation stabilizes the variance.

Figure 4.5: Plot of residuals against �tted values for regression analysis of titer (left) and cubic
root titer (right)

Outliers, in�uential points

At last in�uential points are investigated. In table 4.2 leverage, residuals, studentized residuals

and DFFIT-statistics are printed for outstanding observations in both models (regression on

titer and titer1/3). Leverages are equal because the design matrix X is the same in both models.

Subjects (ID = 769, 917, 1574, 3151) have been identi�ed as in�uential in both models. Residuals
and in�uential statistics are not displayed for observations which are only in�uential in the

other model. Subjects ID = 769, 917, 3151 can be referred to as x-outliers. Measurement #42

(ID = 769) refers to a 79-year-old man with a titer of 574 U/ml after 0 booster vaccinations

and the last vaccination took place 1.5 months before the test. Observation #50 (ID = 917)
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Table 4.2: In�uence diagnostics for regression analysis of titer and titer1/3

obs ID model leverage residual stud. residual DFFITS

7 69 titer 0.045 468.913 2.548 0.551

33 703 titer1/3 0.064 -3.630 -2.193 -0.573

42 769 titer 0.157 384.217 2.209 0.952

42 769 titer1/3 0.157 3.261 2.071 0.893

50 917 titer 0.078 310.706 1.696 0.493

50 917 titer1/3 0.078 3.379 2.052 0.597

71 1326 titer 0.035 573.710 3.140 0.601

90 1461 titer 0.032 622.565 3.423 0.624

105 1574 titer 0.033 991.185 5.864 1.084

105 1574 titer1/3 0.033 4.447 2.665 0.493

195 3151 titer 0.051 481.148 2.627 0.608

195 3151 titer1/3 0.051 3.344 2.000 0.463

was measured on a woman with no booster vaccination who had her last vaccination 11 years

ago at the age of 28. Observation #195 belongs to a boy with zero booster vaccinations who had

his last vaccination at the age of 2, 8 years ago. Finally measurement #105 (ID = 1574) was
detected as in�uential because it has the largest residual. This observation was obtained on a

man with two or more booster vaccinations who had his last vaccination 4 years ago at the age

of 28.

4.4 Conclusion on regression models

It seems that the model for cubic root transformed titers measured by method A ful�lls the

requirements for a linear regression model best. But for this model it is theoretically possible

that a negative value for titer1/3 is predicted. This is not reasonable because titer can only be

positive and therefore the cubic root of titer has also to be positive. For a woman with no booster

vaccination who had her last vaccination 30 years ago at the age of 50 the expected value for

cubic root of titer is

E(titer1/3) = 7.24− 0.62 ∗ 1 + 0.12 ∗ 0 + 0.85 ∗ 0− 0.03 ∗ 50− 0.19 ∗ 30 = −0.49

Although this case is very unlikely to observe it would be better to create a model which takes

into account that the outcome variable can only be positive. Furthermore cubic root of titer

is hard to interpret and linear regression was also applied to the logarithm of titer. Following

parameters have been estimated:

E(log(titer)i) = 5.96− 0.38sexi + 0.10boosters1i + 0.54boosters2i − 0.02agei − 0.11lastV acci

However, the coe�cient of determination R2 is only 0.1370 in the �rst and 0.1339 in the second

case and probably a more complicated model is required to explain more of the variability of

titers. As already mentioned in earlier sections a very �exible kind of modelling is provided by

general linear models (GLMs). This model family is presented in the next chapter.
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Chapter 5

Generalized linear models

Obviously the untransformed outcome variable titer in U/ml do not ful�ll the requirements

for a linear regression. Titer can only have a positive value and the distribution is strongly

right-skewed. Cubic root of titer appeared to be an appropriate transformation, but is hard to

interpret. An analysis for the outcome variable on the original measured scale is desirable and

is provided by the family of generalized linear models (GLM), which covers linear and nonlinear

models for normal or non-normal, discrete or continuous outcome variables (Montgomery, 2001,

p.594). A further relaxing feature of GLMs in comparison with linear regression is, that the

variance of the outcome variable does not have to be constant. Instead, the variance can be

modelled as a function of the mean.

In this chapter essential ideas of GLMs for continuous and discrete outcomes are presented. For

further reading McCullagh & Nelder (1989), one of the standard books on GLMs, is recom-

mended. An introduction to theory and concepts of GLMs is presented by Dobson (2002) and

an applied approach is given in Olsson (2002).

5.1 The model

In linear regression models the expected value of an individual observation E(yi) is modelled as

a linear combination of the predictors. In GLMs any monotonic and di�erentiable function g(·)
of the expected value can be modelled as a linear combination of the predictor variables. This

function is called link-function because it "links" the expected value for the outcome variable to

the data.

g (E(yi)) = g(µi) = β0 + β1xi1 + . . . + βpxip (5.1)

The distribution of the outcome variable Y in GLMs is assumed to belong to the exponential

family which includes e.g. normal, Poisson, binomial, exponential and gamma distribution. The

general form for the density of a distribution belonging to the exponential family is:

f(y) ≡ f(y|θ, φ) = c (y, φ) · exp
(

θy − b(θ)
φ

)
, (5.2)

where θ and φ are unknown parameters which are often called natural parameter and scale

parameter, respectively. The functions b(·) and c(·, ·) are known and determine the form of the
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distribution. First and second moment for this distribution are given by

E(Y ) = b′(θ) (5.3)

V (Y ) = φ · b′′(θ) (5.4)

and combination of both leads to following relationship between mean and variance:

V (Y ) = φb′′(θ) = φb′′
(
b′−1(E(Y ))

)
= φv(E(Y )), (5.5)

where v(·) is called variance function, see for example Molenberghs & Verbeke (2005, p.27f).

It is assumed that each outcome Yi is from the same distribution with density f(yi|θi, φ). Each
observation can have a di�erent natural parameter θi but the scale parameter φ has to be the

same for all observations. The natural parameter θi can be inserted in expression (5.1).

g(E(yi)) = g(b′(θi)) = β0 + β1xi1 + . . . + βpxip

In most applications g−1(·) = b′(·) is used and g(·) is called the natural link-function, because

then the natural parameter follows a linear regression model:

θi = β0 + β1xi1 + . . . + βpxip.

Distribution, link-function and predictors have to be speci�ed in GLMs. For choosing a rea-

sonable distribution for the outcome variable, the histogram of titer is compared with several

probability distribution functions in �gure 5.1. The normal distribution would clearly not be an

appropriate assumption for the distribution of titer. The density of the logarithmic normal dis-

tribution has a very high peak for low titers. Exponential, Weibull and gamma distribution seem

to be more appropriate. The Weibull distribution can not be brought into the canonical form of

the exponential family and exponential distribution is just a special case of gamma distribution.

It is reasonable to choose the gamma distribution which is appropriate for non-negative variables

with long right-tailed distributions. The density for a gamma distribution Γ(λ, µ) with a shape

parameter λ and a scale parameter µ is de�ned as:

f(y) =
yλ−1

Γ(λ)
1
µλ

exp
(
− y

µ

)
, (5.6)

where Γ(·) denotes the gamma function. To get the form of an exponential family the parametriza-

tion Γ(λ, ν
λ) is used. A lot of di�erent parameterizations exist for the gamma distribution and

cause a lot of confusion. However, the density can be rewritten as:

f(y) =
yλ−1

Γ(λ)

(
λ

ν

)λ

exp
(
−λy

ν

)
=

yλ−1λλ

Γ(λ)
exp

(
− 1

ν y − log ν
1
λ

)
(5.7)

The natural parameter θ and the scale parameter φ equals − 1
ν and 1

λ , respectively. The function

b(θ) has the form − log(−θ). According to (5.3), (5.4) and (5.5) expectation, variance and
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Figure 5.1: Histogram of titer in U/ml compared with several
distributions

variance function have the following form:

E(Y ) = b′(θ) = −1
θ

= ν = λµ

V (Y ) = φb′′(θ) =
1

λθ2
=

ν2

λ
= λµ2 (5.8)

v(E(Y )) = E(Y )2 = λ2µ2

In conclusion the standard deviation depends proportionally on the mean:

std(Y ) =
√

V (Y ) =

√
1

v(E(Y ))
=

1√
λ
· E(Y )

The variance in (5.8) is µ-times the expectation. If a residual plot for a positive outcome variable

shows that the standard deviation is increasing proportionally to the mean, it is reasonable to
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choose the gamma distribution. (Vittingho� et al. , 2005, p.297)

The expected value of a gamma-distributed variable has to be positive. To ensure that the

predicted mean as a function of the predictors is positive, the log-link-function for the expected

value of titer depending on the predictors sex, number of boosters, age and time since last

vaccination is used.

log (µi) = log (E(titeri)) = β0+β1sexi+β2boosters1i+β3boosters2i+β4agei+β5lastV acci (5.9)

5.2 Estimation of parameters

Usually the parameters β in GLMs are estimated by maximum likelihood (ML) method. ML

estimation is a widely used estimation method where the likelihood function of the observed

data is maximized. The likelihood function re�ects how probable it is to observe the actual data

under the assumed model. Therefore the roles of parameters and random variables in the density

function are simply switched. The random variable is held �x (using the observed data) and the

parameters are varied.

For estimating GLMs the log-likelihood function

l(β, φ) =
1
φ

n∑
i=1

(θiyi − b(θi)) +
n∑

i=1

ln(yi, φ) (5.10)

is maximized by setting the �rst order derivative with respect to the parameter-vector β to zero.

As θi are functions of β and µi = ∂b(θi)
∂θi

we get

S(β) =
n∑

i=1

∂θi

∂β
· (yi − µi) =

n∑
i=1

∂µi

∂β
· v−1

i · (yi − µi) = 0 (5.11)

The last equation in (5.11) is obtained by considering vi = v(µi) = b′′(θi) = ∂2b(θi)
θ2
i

and ∂µi

∂β =

vi · ∂θi
∂β . The obtained equations in (5.11) are called score equations and can be solved iteratively

by e.g. Newton-Raphson algorithm or Fisher scoring.

Table 5.1: Estimated parameters for GLM model (5.9) with assumed gamma distribution and
log-link-function

n=140, missing=73

Standard Wald 95%

Parameter DF Estimate Error Conf. Limits χ2 Pr > χ2

Intercept 1 6.234 0.300 5.647 6.821 433.15 <.0001

sex 0 0 0 0 0 0 . .

sex 1 1 -0.341 0.161 -0.658 -0.025 4.48 0.0343

boosters 0 0 0 0 0 0 . .

boosters 1 1 -0.004 0.228 -0.451 0.443 0.00 0.9854

boosters 2 1 0.319 0.184 -0.040 0.679 3.03 0.0819

age 1 -0.014 0.004 -0.023 -0.006 10.65 0.0011

lastVacc 1 -0.081 0.032 -0.144 -0.018 6.41 0.0113

Scale 1 1.290 0.139 1.045 1.592

NOTE: The scale parameter was estimated by maximum likelihood.
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Estimated parameters for model (5.9) are given in table 5.1 and the expected value of titer is

given by:

E(titeri) = exp(6.23− 0.34sexi − 0.004boosters1i + 0.32boosters2i − 0.01agei − 0.08lastV acci)

= e6.23e−0.34sexie−0.004boosters1ie+0.32boosters2ie−0.01ageie−0.08lastV acci) (5.12)

Equation (5.12) clearly shows that the model is multiplicative. In contrary to an additive model,

where the absolute change of the outcome variable is measured, multiplicative models measure

the relative change. For example it is estimated that a woman in average has only 71% of a

man's titer given the other predictor variables are held constant. If age is increased by one year

titer reduces by 1%. All parameters except the number of booster vaccinations are signi�cant

(signi�cance-level = 0.05). The estimated con�dence interval for the scale parameter in table 5.1

does not cover 1. The hypothesis that an exponential distribution would be adequate is rejected.

5.3 Model validation

(Scaled) deviance and Pearson-χ2 can be used for assessing goodness of �t in GLMs. The

deviance (=121.89) is roughly equal to the degrees of freedom (=134) and indicates a quite fair

model �t. However, for validation of the model a residual analysis has to be carried out.

The plot of standardized deviance residuals against time shows again a slightly departure from

the linearity assumption on time since last vaccination. All other residual plots do not show

worrying departures from the model assumptions and the speci�ed model seems to be adequate.

Methods for checking the choice of link and variance function are explained in McCullagh &

Nelder (1989).

5.4 Conclusion on GLMs

Fitting a GLM based on gamma distribution with log-link-function seems to be quite a good

model for the data. This coincides with the linear regression model on titer1/3 in section (4.1),

because it is known that an accurate normalizing transformation for a gamma distributed variable

Y is

3

((
Y

ν

)1/3

− 1

)
,

where ν is the parameter used in (5.7), see McCullagh & Nelder (1989, p.289). Also discrete

outcome variables can be modelled with GLMs and were applied to the binary variables indicating

seropositive titer for both, titers measured by method A and titers measured by method B.

Dichotomizing the variable titer induces a loss of information. The idea behind modelling the

less informative binary variable was to �nd a possibility for modelling the outcome variables of

method A and method B together, but the results of GLMs on the binary variable for method

B were quite di�erent from GLMs on the binary variable for method A and a common analysis

would not be reasonable. Method A is more commonly used in the laboratories and further

analyzes are concentrated on modelling titers measured by method A.
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Chapter 6

Repeated measures analysis

In the previous chapters models for independent observations were presented and only the �rst

measurement of each person was used in analyzes to guarantee independence between obser-

vations. Now, all available measurements should be included and models are required which

take a possible dependence between repeated measurements on the same observational unit into

consideration. The umbrella term for modelling repeatedly measured data is repeated measures

analysis.

Analysis of repeated measures in general is described in Crowder & Hand (1990). More speci�c

books on analysis of longitudinal data especially in health sciences are provided by Diggle (2002)

and Fitzmaurice et al. (2004). Very extensive books on linear mixed models and models for dis-

crete longitudinal data are given by Verbeke & Molenberghs (2000) and Molenberghs & Verbeke

(2005), respectively. In the last three books SAS program code is printed as well as in Brown &

Prescott (1999). A lot of books on longitudinal analysis exist and only some of them have been

picked out.

6.1 Features of longitudinal data

Longitudinal data are obtained by taking several measurements on a subject at di�erent points

of time. Observations are no longer independent. In Fitzmaurice et al. (2004, p.36�.) three

sources of correlation in longitudinal data are mentioned:

Between-individual heterogeneity: Especially in health sciences there is a lot of natural het-

erogeneity among individuals due to genetic, environmental, social and behavioral factors.

It is expected that repeated measurements on the same subject are more similar than

observations across di�erent individuals.

Within-individual biological variation: Most health-related variables vary considerably over

time. Circadian rhythms, temperature, light, season, diet, infections etc. might have an

in�uence. It is assumed that random departures from the underlying biological process

are more similar for measurements close together in time. Serial correlation is assumed to

decrease over time between repeated measures on an individual.

Measurement error: Random measurement errors occur in almost all studies. The precision

of measurements can be expressed by terms of the variance of the measurement errors. If
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this variance is large the correlation among repeated measurements appears lower than it

would be in a study where more reliable measurements were obtained.

Ignoring the correlation in longitudinal data results in misleading inference on regression coe�-

cients, less e�cient estimates and less protection against bias caused by missing data. (Diggle,

2002, p.19). If the number of repeated observations is the same for all individuals taken at a

common set of occasions, longitudinal data are called balanced (Fitzmaurice et al. , 2004, p.23).

In retrospective studies unbalanced data are common. Incomplete data require some care and

a lot of literature exists on the topic of missing data. In health sciences longitudinal data are

rarely complete and balanced over time and methods for longitudinal analysis should be able to

handle those speci�cs. Once more the goal of longitudinal analysis should be emphasized:

"In summary, the fundamental objective of a longitudinal analysis is the assessment

of within-individual changes in the response and the explanation of systematic dif-

ferences among individuals in their changes." (Fitzmaurice et al. , 2004, p.21)

6.2 Explorative analysis of repeatedly measured data

Figure 6.1: Distribution of all 162 available titers at each occasion (left) and against time since
last vaccination (right). Repeated measurements on the same person are connected.

The repeated measures in the TBE data at hand belong to the class of longitudinal data, because

several persons went to the hospital two or more times for testing their titer. Unfortunately,

di�erent tests (method A or method B) were sometimes used on the same person. It has already

been mentioned that no formula is known to recalculate results of one test into a measurement

of the other test. One idea to deal with this problem was using only categories seropositive

and seronegative for titer measurements. But the application of GLMs for discrete variables

gave very di�erent results for observations measured by method A and observations measured by

method B. The analysis of a pooled sample would not at all be reliable. Hence, only all available

measurements by method A are analyzed. There are 3 persons with 3 measurements by method
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Table 6.1: Descriptive statistics of titer (in U/ml), age (in years) at the time of titer test and
time (in years) since last vaccination at �rst, second, third measurement

titer (in U/ml) min Q0.25 median Q0.75 max mean std n

M1 6.99 64.50 176.50 302.00 1320.00 217.44 201.18 140 (100%)

M2 31.00 59.00 101.00 213.00 489.00 161.68 141.96 19 (100%)

M3 12.00 12.00 48.00 75.00 75.00 45.00 31.61 3 (100%)

Total 6.99 60.00 154.50 295.00 1320.00 207.70 195.03 162 (100%)

age (in years)

M1 5 17.5 36 43.5 85 35.18 18.53 140 (100%)

M2 11 19 45 66 86 45.58 23.97 19 (100%)

M3 20 20 46 57 57 41.00 19.00 3 (100%)

Total 5 18 37 45 86 36.51 19.41 162 (100%)

time since last vacc. (in years)

M1 0.01 3.00 5.00 7.00 11.00 5.17 2.38 140 (100%)

M2 3.00 5.17 7.00 9.00 10.00 6.83 1.96 19 (100%)

M3 5.34 5.34 10.00 10.00 10.00 8.45 2.69 3 (100%)

Total 0.01 3.00 5.00 7.00 11.00 5.42 2.42 162 (100%)

Table 6.2: Frequency analysis of sex at �rst, second, third measurement

sex male female n

M1 44 (31.43%) 96 (68.57%) 140 (100%)

M2 8 (42.11%) 11 (57.89%) 19 (100%)

M3 2 (66.67%) 1 (33.33%) 3 (100%)

Total 54 (33.33%) 108 (66.66%) 162 (100%)

A where the covariates sex, boosters, age and lastV acc are completely observed. 16 persons

have 2 available measurements by method A and 121 persons have only 1 titer observation. All

162 available observations are illustrated in �gure 6.1. The 140 �rst measurements by method

A which were analyzed in the preceding chapters are a subset of these repeated measures. Data

are highly unbalanced because the number of observations per measurement is quite di�erent.

Furthermore the distances between successive measurements vary individually. Although none

of the participants got a booster vaccination after their titer tests, titer increases in 7 cases of

successive measurements. The outstanding increase by 225 U/ml within 2 years was measured

for a boy (ID = 3022) last vaccination �ve years ago at the age of 5. In only one case of

successive measurements on a participant, a positive titer becomes negative.

Although measurements are not equidistant and not balanced descriptive summaries are provided

for �rst, second and third measurements to get some hints on the evolution of all variables over

time. Table 6.1 summarizes descriptive statistics of the continuous variables titer, age at the

time of titer test and time since last vaccination. Average titer and median titer reduces from

�rst to the third measurement. Time since last vaccination increases in average because none of

the persons with more than one observation got a vaccination in-between. Average age at the

time of titer test would also be expected to increase. The decrease of average age from second

to third measurement is due to the little number of observations. At least the median of age

increases.
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Table 6.3: Frequency analysis of number of booster vaccinations at �rst, second, third mea-
surement

number of boosters 0 1 ≥2 n

M1 40 (28.57%) 24 (17.14%) 76 (54.29%) 140 (100%)

M2 3 (15.79%) 7 (36.84%) 9 (47.37%) 19 (100%)

M3 1 (33.33%) 2 (66.67%) 0 (0.00%) 3 (100%)

Total 44 (27.16%) 33 (20.37%) 85 (52.47%) 162 (100%)

Tables 6.2 and 6.3 present the proportions of sex and number of booster vaccinations at �rst,

second and third measurement. These proportions vary highly due to the small numbers of ob-

servation at second and third measurement. Only a third of all 162 measurements origin from

men. Half of all observations are made on participants with two or more booster vaccinations.

For exploring the degree of association between successive measurements a scatterplot matrix is

printed in �gure 6.2 and correlations are calculated. For computation of correlations all available

pairs of repeatedly measured titers are used. The correlation between �rst and second measure-

ment 0.86 is calculated on 19 pairs and the other two correlations are based on 3 pairs. It seems

that the correlation between successive measurements is equal and decreases with increasing

measurements in-between.

correl=0.86 correl=0.63

correl=0.63

correl=0.86 correl=0.84

correl=0.84

Figure 6.2: Correlation matrix of titers at at �rst, sec-
ond, third measurement

For the TBE data a selection e�ect on repeated measurements can be observed. Persons who had

a very low titer at their �rst measurement go rather for a booster vaccination than to do another

blood test. Repeated measurements are only available of people who expect having a high titer.

One reason for this phenomenon is that the costs for vaccination and blood test are almost the

same. For instance the vaccine in Austria costs 22.50 e for adults (ARGE Gesundheitsvorsorge,

Download: 2007-03-31b) and the titer test at the microbiological ambulance of the hospital

Allgemeines ö�entliches Krankenhauses der Elisabethinen in Linz costs 25 e .
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Chapter 7

Models for longitudinal data in the

Gaussian case

Only a few repeated measures are available and the following chapters are rather an outlook

over possible models for longitudinal data and a guideline how analysis on repeated data could

be performed. Reliable statistical inference for the TBE data is not really possible due to the

scarcity of repeated measurements. For further reading on analysis of Gaussian longitudinal

data Diggle (2002) and Verbeke & Molenberghs (2000) are recommended. Applied approaches

are given in Brown & Prescott (1999) andFitzmaurice et al. (2004).

Following notation for longitudinal data is used: On i = 1, . . . , N subjects an outcome vari-

able Y is measured ni times per subject i. yij denotes the jth observation of subject i and

xij = (xij,1, . . . , xij,p)′ is the corresponding p-dimensional vector of covariate values. The ni-

dimensional vector yi = (yi1, . . . , yini)
′ represents the vector of successive measurements for sub-

ject i and Xi is the corresponding (ni×p)-matrix of predictor values. Finally, the N -dimensional

vector y = (y1, . . . ,yN )′ denotes the vector of all measurements on all subjects and X is the

corresponding (N × p)-matrix of covariate values.

In this chapter regression models for Gaussian data discussed in chapter 4 are extended by

including repeated measures. Titers have turned out not to be normally distributed, but the

cubic root appeared to be a normalizing transformation and models for Gaussian longitudinal

data are applied to the outcome variable titer1/3.

7.1 Marginal models for longitudinal data in the Gaussian case

Marginal or population-averaged models do not account explicitly for between-individual hetero-

geneity and are mainly used in population studies like epidemiology. The interest is on di�erences

between groups in the population with di�erent risk factors (Zeger et al. , 1988, p.1051).

7.1.1 The model

Most parametric models for continuous longitudinal data are based on normality assumptions.

The univariate linear regression model is simply extended to longitudinal data by assuming that

each response vector yi of subject i can be modelled as the multivariate version of a normal
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linear regression model.

yi = Xiβ + εi

Yi ∼ N(Xiβ, Vi)

Vi is the covariance matrix for measurements of subject i. The diagonal-elements represent the

variances and the o�-diagonal-elements denote the covariances for two repeated measurements

on subject i. Conclusively, a model for all measurements is given by:

y = Xβ + ε (7.1)

Y ∼ N(Xβ,V ), (7.2)

where V is a N × N -block diagonal matrix with the individual covariance matrices Vi on the

diagonal and zero elsewhere. This structure assumes that outcomes for di�erent subjects are

independent. If all subjects have an equal number of measurements (ni = n for all i = 1, . . . , N)

taken at �xed points of time then the choice of the same general n×n positive de�nite covariance

matrix for all subjects (Vi = V ) would be appropriate. In this case the covariance structure

is called homogenous. But also heterogeneous version for covariance structures are possible.

(Molenberghs & Verbeke, 2005, p.36)

For the TBE data the outcome vector yi with components yij = titer
1/3
ij for each subject i is

modelled as a regression model depending on the covariates sex, number of booster vaccinations,

age at last booster vaccination and time since last vaccination. Sex is of course constant over

time and lastV acc represents the time variable. Number of boosters and age at last booster

vaccination do not change over time because none of the participants with repeated observa-

tions had a booster vaccination between the measurements. Di�erent covariance pattern models

(unstructured, Toeplitz, AR(1), compound symmetry) for Vi were applied and compared by like-

lihood ratio tests and Akaike information criterion (AIC). It turned out that an auto-regressive

covariance structure (AR(1)) is most appropriate.

Cov(Yi) = Vi = σ2



1 α1 α2 . . . αn−1

α1 1 α1 . . . αn−2

α2 α1 1 αn−3

...
...

. . .
...

αn−1 αn−2 . . . 1


(7.3)

7.1.2 Estimation of parameters

Estimation of parameters in marginal models for Gaussian longitudinal data is based on ML-

principles. Depending on the choices for the block matrices Vi there might be some additionally

unknown parameters α = (α1, α2, . . .)′, so-called variance components which describe aspects of

the covariance or correlation. Usually variance components are not known and must be estimated

from the data at hand. Primary interest is on the estimation of the regression parameters β and

variance components are referred to as nuisance parameters. Their estimation is of secondary
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interest for the research question but they have to be taken into account to assure an appropriate

method of analysis (Fitzmaurice et al. , 2004, p.72).

If the covariance matrix Vi has been wrongly speci�ed the point estimators for the parameters

β are still unbiased but the standard errors become incorrect. Valid standard errors for β̂

can be obtained by the so-called information sandwich estimator or Huber estimator (Dobson,

2002, p.200), which is robust to speci�cation of the structure of the covariance matrices and

is a consistent estimator for the variance of the estimated parameter vector V (β̂) as long as

the mean is correctly speci�ed (Molenberghs & Verbeke, 2005, p.61). In �nite samples ML-

estimates of Vi have well-known bias because the ML-estimates do not take into consideration

that the parameter vector β was also estimated from the data. Therefore the method of restricted

maximum likelihood (REML) estimation was introduced by Patterson & Thompson (1971) for

estimating variance components.

REML-estimated parameters are given in table 7.1 for the marginal model of titer1/3 assuming

an AR(1) covariance structure. For the standard errors the robust Huber estimator was used.

Table 7.1: Estimated parameters for the marginal model of cubic root of titer with assumed
AR(1) covariance structure

number of subjects=140, number of observations=162

Standard t

Parameter Estimate Error DF value Pr > |t|

Intercept 7.112 0.517 135 13.76 <.0001

sex 0 0 . . . .

sex 1 -0.643 0.323 135 -1.99 0.0484

boosters 0 0 . . . .

boosters 1 0.177 0.458 135 0.39 0.6996

boosters 2 0.846 0.402 135 2.11 0.0369

age -0.029 0.009 135 -3.10 0.0024

lastVacc -0.162 0.049 21 -3.33 0.0032

α 0.92

σ2 3.03

The parameter estimates and the estimated error variance (σ2 = 3.03) are quite similar to those
of the linear regression model on cubic root of titer in (4.2) in chapter 4. Residual checks do not

show any severe departures from the model assumptions.

Marginal models do not take the di�erent sources of variability into account. Furthermore most

covariance pattern models are not appropriate for unbalanced data. In the next section subject-

speci�c models are applied for explicitly considering natural di�erences between individuals and

avoiding problems with unbalanced data.

7.2 Linear mixed models for longitudinal data

A di�erent approach to model longitudinal data is provided by random-e�ects models. These

subject-speci�c models are used when the individual response-evolution of subjects is of interest.
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7.2.1 The model

Each subject is supposed to have its own trajectory over time which can be modelled by a

linear regression model on the subject-speci�c regression coe�cients β̃i = (β̃i0, . . . , β̃ip). The jth

observation of subject i is assumed to follow the model

yij = β̃i0 + β̃i1xij,1 + . . . + β̃ipxij,p + εij .

The error component εij is assumed to be normal distributed with mean zero. As subjects are

a random sample from a population of subjects, the subject-speci�c regression coe�cients β̃i

are considered as a sample from a population of regression coe�cients. Denoting the departure

of the subject-speci�c regression parameters from the population-averaged parameters by the

so-called random e�ects bij = β̃ij − βj the model can be re-written:

yij = (β0 + bi0) + (β1 + bi1)xij,1 + . . . + (βp + bip)xij,p + εij .

Usually random e�ects are assumed to be normally distributed with mean zero and covariance

matrix D. In the above case all covariates were supposed to have a random e�ect and the model

for subject i could be written in matrix form as

yi = Xiβ + Xibi + εi, where εi ∼ N(0,Σi) i = 1, . . . , N

The elements in the parameter vector β are called �xed e�ects and the elements in the vector

of subject-speci�c regression coe�cients bi are called random e�ects. Models including �xed

and random e�ects are called mixed models. In practice some predictors are assumed to be �xed

across all individuals and only a subset of covariates is assumed to vary randomly across subjects.

The general linear mixed model including a vector of p unknown regression coe�cients β and a

vector of q subject-speci�c regression coe�cients bi is formulated as

yi = Xiβ + Zibi + εi, i = 1, . . . , N (7.4)

bi ∼ N(0, D) and εi ∼ N(0,Σi) independent

Xi and Zi are (ni × p) and (ni × q) design matrices and q ≤ p. The errors εi are assumed to be

independent from the subject-speci�c e�ects bi. The error components εi may be regarded as

sampling or measurement errors which are uncorrelated and have equal variance across time. In

this case Σi is assumed to be a diagonal matrix σ2Ini . (Fitzmaurice et al. , 2004, p.195)

Given the subject-speci�c parameters bi the conditional model is formulated as:

Yi|bi ∼ N(Xiβ + Zibi,Σi) (7.5)

bi ∼ N(0, D) (7.6)

From the conditional model in linear mixed models a marginal model formulation can be easily

obtained using the properties of normal distribution. Under the assumption E(bi) = 0 and
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independence assumption for bi and εi, marginal mean and variance can be obtained by

E(Yi) = E(E(Yi|bi)) = E(Xiβ + Zibi) = Xiβ + ZiE(bi) = Xiβ

Vi = V (Yi) = V (Xiβ + Zibi + εi) = ZiV (bi)Z ′
i + V (εi) = ZiDZ ′

i + Σi.

The marginal model of linear mixed model is given by

Yi ∼ N(Xiβ, ZiDZ ′
i + Σi) (7.7)

This close relationship between conditional and marginal model in linear mixed models re-

sults from the speci�c feature of multivariate normal distributions having normally distributed

marginal distributions, see e.g. Hafner (1989, p.119).

Now, a linear mixed model is applied for the transformed variable titer1/3. If su�cient repeated

measurements on each person would be available individual random intercept and random slope

for each participant would be included in the model.

titer
1/3
ij = (β0+bi0)+β1sexi+β2boosters1i+β3boosters2i+β4ageM1i+(β5+bi1)lastV accij +εij

Linear mixed models including random intercepts and random slopes are very common in studies

of evolution of titers or antibody concentrations. A random intercept takes into account that

di�erent individuals reach naturally di�erent antibody concentrations after basic immunization.

The random slope takes into account that some people's titer decrease faster than the average

and other peoples's titer declines slower over time.

However, for TBE data too few repeated measurements are available for estimating a random

slope and only a random intercept is assumed. For the �xed e�ects the predictors sex, number

of boosters, age and time since last vaccinations are used and the model equation for the cubic

root transformed titer at occasion j of participant i is:

titer
1/3
ij = β0 +bi0 +β1sexi +β2boosters1i +β3boosters2i +β4ageM1i +β5lastV accij +εij (7.8)

The random intercept is assumed to be normally distributed with mean zero and variance τ2,

bi0 ∼ N(0, τ2). The random errors are also assumed to be normally distributed with mean zero

and covariance matrix σ2Ini , εi ∼ N(0, σ2Ini).

7.2.2 Estimation of parameters

Estimation and inference in linear mixed models is based on the marginal model formulation in

(7.7), except the models are �tted in a Bayesian context (Verbeke & Molenberghs, 2000, p.41).

The interest is usually directed towards estimating the parameters in β in the marginal model.

ML-, REML-estimation methods and robust inference as brie�y explained in section 7.1 are

applied by using Vi(α) = ZiDZ ′
i + Σi. If the research interest is prediction of subject-speci�c

evolutions, estimates for the random e�ects bi are needed and the conditional model speci�cation

in (7.5) must be considered. As the subject-speci�c parameters bi are random they are predicted

with Bayesian methods.
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Table 7.2: Estimated parameters for the random intercept model of cubic root of titer (7.8)

number of subjects=140, number of observations=162

Standard t-

Parameter Estimate Error DF value Pr > |t|

Intercept 7.106 0.511 135 13.91 <.0001

sex 0 0 . . . .

sex 1 -0.640 0.323 21 -1.98 0.0608

boosters 0 0 . . . .

boosters 1 0.175 0.459 21 0.38 0.7063

boosters 2 0.846 0.401 21 2.11 0.0472

age -0.029 0.009 21 -3.10 0.0054

lastVacc -0.162 0.047 21 -3.44 0.0024

Standard Z-

Variance components Estimate Error value Pr > Z

τ 2.740 0.377 7.27 <.0001

σ2 0.286 0.088 3.24 0.0006

Estimated �xed e�ects and variance components for the random intercept model (7.8) are given

in table 7.2.

The parameter estimates for the �xed e�ects in table 7.2 are almost the same as the parameter

estimates in the marginal model, see table 7.1. Although a marginal model formulation can be

obtained from a random-e�ects model they are not the same. Di�erent random-e�ects mod-

els can produce the same marginal model and there are also some marginal models which are

not implied by a mixed model. In contrast to the covariance patterns mentioned in section 7.1

random e�ects covariance structures do not require balanced data and the structure can be de-

scribed with few parameters. Linear mixed e�ects models are particularly useful for the analysis

of unbalanced longitudinal data. (Fitzmaurice et al. , 2004, p.198f.)

The assumed covariance structure could be checked by so-called empirical semi-variograms, but

for the data at hand too few repeated measurements are available. Residual checks for the

linear mixed model of cubic root titer do not display any worrying departures from the model

assumptions.

7.3 Conclusion on models for Gaussian longitudinal data

In �gure 7.1 estimated titers are compared to the actually observed titer for the participant with

ID = 766. This man had two or more booster vaccinations and had had his last vaccination at the
age of 36. Titers measured by method A are available 7, 9 and 10 years after the last vaccination.

The increase of titer after the second measurement might be due to within-individual biological

variation or measurement error. However, this participant was chosen because he represents

the most ordinary case among the three persons with three measurements (ID = 530, 763, 766).
Measurements for the woman with ID = 530 were taken within 4 months and the participant

with ID = 763 had diabetes and had had his last vaccination at the age of 10.

Estimates for titer were obtained by applying models for Gaussian longitudinal data to the

transformed variable cubic root of titer. The estimates for titer on the original scale were simply
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Figure 7.1: Comparison of estimated titers in marginal models (left) and subject-speci�c models
(right) for cubic root of titer for the participant with ID = 766

obtained by taking the �tted values ŷij = ̂titer1/3
ij to the power of 3.

In marginal models estimation is done for the average of subgroups of a population. In the left

panel of �gure 7.1 estimates are quite far apart from the observed titer because the estimation

is not done on the individual level but for an average person in the group of men with two or

more booster vaccinations who had their last vaccination at the age of 36. By assuming the un-

structured covariance pattern the estimated titers are lower than for other choices of covariance

structure. The subject-speci�c estimated titers in the right panel of �gure 7.1 are much closer

to the observed titers because individual random e�ects were included.

In the case of normally distributed outcome variables, marginal models and subject-speci�c mod-

els have a close relationship. For other distributions there is no such close connection (Molen-

berghs & Verbeke, 2005, p.47). In the following chapter models are presented which extend on

the one hand marginal models and on the other hand subject-speci�c models to distributions

other than normal distribution.
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Chapter 8

Models for longitudinal data in the

non-Gaussian case

So far only models for longitudinal data on the cubic root transformation of titer have been

applied. This transformation "normalizes" the strongly right-skewed outcome variable titer, but

there is no illustrative interpretation of cubic root of titer and might be di�cult to communicate.

Application of GLMs to the 140 �rst measurements has shown that a gamma distribution might

be a good choice for the distribution of titer measured by method A and because of that models

are �tted by using generalized estimating equations (GEE) and generalized linear mixed mod-

els. Due to the elegant properties of multivariate normal distribution the connection between

marginal and subject-speci�c model formulation is straightforward. Such close relations are not

provided for other distributions. Depending on the research question either a marginal model

formulation is used to model population-averaged means or a subject-speci�c model is formulated

for inference on an individual level.

This chapter provides only a short outlook on models for non-Gaussian longitudinal data because

no profound analysis is possible pertinent to the scarcity of repeated measurements. For further

reading Diggle (2002) and Fitzmaurice et al. (2004) are recommended as well as the elaborated

book on models for discrete longitudinal data by Molenberghs & Verbeke (2005).

8.1 Marginal models for longitudinal data in the non-Gaussian

case

If researchers are primarily interested in population means, marginal model formulations are

used by extending the ideas of GLMs, see chapter 5. The same notation for longitudinal data as

in chapter 7 and same terminology as for GLMs in chapter 5 are used in the following.

8.1.1 The model

Expectations of the outcome variable Y measured on subject i are linked by a known link-function

to a linear combination of covariate values annotated in the design matrix Xi:

g(µi) = Xiβ,
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where µi = E(yi) denotes the ni-dimensional vector of expected values for the outcome variable.

The variance of each response Yij is depending on the mean by a scale parameter φ and the

variance function ν(·).
V (Yij) = φν(µij)

In contrast to GLMs for independent observations, additionally a covariance structure Cov(Yi) =
Vi for repeated measurements on subject i has to be speci�ed with variances V (Yij) = φν(µij)
along the diagonal. An additional set α = (α1, α2, . . .) of within-subject association parameters

is needed and the covariance matrix will be denoted by Vi(α). This matrix can be decomposed

by

Vi(α) = A
1
2
i Ri(α)A

1
2
i , (8.1)

where Ai is a diagonal matrix with the variances V (Yij) on the main diagonal and Ri(α) is

the correlation matrix for Yi depending on the within-subject association parameters α. If the

model for the marginal mean g(µi) = Xiβ is correctly speci�ed the parameter vector β can be

estimated even if the correlation matrix Ri(α) is not correct. For a start only a so-called working
correlation structure has to be assumed.

In order to �t a marginal model to the original outcome variable titer, gamma distribution is

assumed and log-link-function and the same predictor variables are used as for the �tted GLM

in chapter 5.

log(E(titerij)) = β0 + β1sexi + β2boosters1i + β3boosters2i + β4agei + β5lastV accij (8.2)

For the marginal model in the Gaussian case the AR(1) covariance pattern model seemed to be

satisfying. On that account an AR(1) working correlation structure is chosen for Ri(α).

8.1.2 Parameter estimation

For analyzing correlated data that can be discrete or continuous an alternative method to ML-

estimation is provided by generalized estimating equations (GEE). This method is based on

extension of the usual score equations for GLMs (5.11) by including the covariance matrix Vi(α).

S(β) =
N∑

i=1

∂µi

∂β′ V
−1
i (α)(yi − µi) =

N∑
i=1

D′
iV

−1
i (α)(yi − µi) = 0, (8.3)

where Di simply denotes the matrix of derivatives Di = ∂µi

∂β . The equations in (8.3) are called

generalized estimating equations or quasi-score equations (Dobson, 2002, p.203). The correlation

parameters α are usually estimated by standardized residuals

rij =
yij − µij√

v(µij)
. (8.4)

These residuals depend on the expectation µij = x′
ijβ and conclusively on the parameter vector

β. On the other hand the solution for β in equation (8.3) depends on the correlation parameters

α. Because of this interdependence between the parameters an iterative procedure is used to

estimate alternately β and α:

1. Choice of an initial correlation matrix Ri. Usually the identity matrix is used, assuming
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independence between all measurements and a univariate GLM is �t to the data.

2. Calculation of the initial parameter estimate β(0) by solving the score equations (8.3).

3. Computation of the estimated mean µ̂i = g−1(Xiβ̂) and the standardized residuals

4. Residuals are used to estimate the parameters of Ai and Ri(α)

5. Computation of Ri(α) and Vi(α)

6. The current estimate for β is updated by

β(t+1) = β(t) −

[
N∑

i=1

D′
iV

−1
i Di

]−1

×

[
N∑

i=1

D′
iV

−1
i (yi − µi)

]
(8.5)

The last four steps are iterated until convergence is reached. This standard GEE method is the

most common way to estimate parameters for correlated non-Gaussian data. An advantage of

GEE is that the joint distribution of the outcomes needs not to be fully speci�ed (Molenberghs

& Verbeke, 2005, p.158). Even if the working correlation matrix is not correct an appropriate

variance estimator for β̂ can be obtained by using the robust sandwich-estimator or empircal

corrected variance.

Table 8.1 displays GEE parameter estimates and empirical standard error estimates for the

marginal model on titer speci�ed in (8.2). The parameter estimates in table 8.1 are quite similar

to the parameter estimates for the GLM (5.12) in chapter 5.

Table 8.1: Estimated parameters obtained by GEE for marginal model of titer (8.2) with
assumed gamma distribution, log-link-function and AR(1)-working correlation structure

number of subjects=140, number of observations=162

Standard 95% Conf.

Parameter Estimate Error Limits Z Pr > |Z|

Intercept 6.178 0.263 5.663 6.693 23.51 <.0001

sex 0 0 0 0 0 . .

sex 1 -0.352 0.164 -0.673 -0.031 -2.15 0.0314

boosters 0 0 0 0 0 . .

boosters 1 0.021 0.229 -0.429 0.470 0.09 0.9288

boosters 2 0.320 0.220 -0.110 0.751 1.46 0.1445

age -0.014 0.005 -0.025 -0.003 -2.54 0.0112

lastVacc -0.071 0.026 -0.123 -0.020 -2.71 0.0067

Scale 0.846 . . . . .

NOTE: The scale parameter for GEE estimation was computed

as the square root of the normalized Pearson's χ2

In the next section random e�ects are included into the mean model of GLMs to explicitly

account for between-subject heterogeneity.

8.2 Generalized linear mixed models for longitudinal data

Generalized linear mixed models are an extension of linear mixed models to the non-Gaussian case

by including random e�ects in the GLM framework. Especially for discrete repeated outcomes
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this kind of modelling becomes more and more common for studies in social and health sciences.

8.2.1 The model

Corresponding to the linear mixed model applied to the TBE data in section 7.2, a subject-

speci�c model is now �tted to the outcome variable titer by including a random intercept in

the mean model of the GLM (5.9). The expected value of titer given the random intercepts is

modelled as

E(titerij |b0i) = exp (β0 + b0i + β1sexi + β2boosters1i + β3boosters2i

+β4agei + β5lastV accij) . (8.6)

The random intercepts are supposed to be normally distributed with mean zero and variance τ2.

In contrast to GLMs the distribution assumption is not made on the outcome variable titer itself

but on the conditional outcome titerij |b0i. It is supposed that titer given the random e�ects is

gamma distributed.

titerij |b0i ∼ Γ(shape, scale) and bi0 ∼ N(0, τ2)

The covariance matrix of the vector of titers for subject i conditional on the random intercept is

CoV (titeri|b0i) = A
1
2
i RiA

1
2
i .

Ai is a diagonal matrix and contains the variance function of the speci�ed distribution. Ri is

assumed to be φIni . Hence, the conditional variance for one observation is V (titerij |b0i) = µ2
ijφ.

8.2.2 Estimation of parameters

Parameters in generalized linear mixed models are based on maximizing the likelihood for the

�xed parameters β, the covariance matrix D for the random e�ects and the scale parameter φ:

L(β, D, φ) =
N∏

i=1

fi(yi|β, D, φ) =
N∏

i=1

∫  ni∏
j=1

fij(yij |bi,β, φ)q(bi|D)

dbi


The problem in maximizing this likelihood are the N integrals over the q-dimensional vector

bi. Only in some special cases, like for the normal assumption, an analytical solution exists.

According to Molenberghs & Verbeke (2005, p.268�.) there are three possibilities for numerical

approximations of the likelihood: approximation of the integrand, the data or the integral.

Detailed explanations of these numerical methods go beyond the scope of this thesis. The

interested reader is recommended to study Molenberghs & Verbeke (2005). For the following

it is assumed that procedures exist which provide estimates for the parameters based on ML-

principles. Usually estimation of the parameters β, D, φ is of primary interest. In cases where the

prediction of subject-speci�c evolution is required, estimates for the random e�ects are needed.

Like in linear mixed models those are obtained by Bayes methods based on their posterior

distribution.
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Table 8.2: Estimated parameters for the random intercept model of titer (8.6) with assumed
gamma distribution and log-link-function

number of subjects=140, number of observations=162

Standard t-

Parameter Estimate Error DF value Pr > |t|

Intercept 5.885 0.305 135 19.28 <.0001

sex 0 0 . . . .

sex 1 -0.399 0.189 21 -2.11 0.0470

boosters 0 0 . . . .

boosters 1 0.133 0.300 21 0.44 0.6622

boosters 2 0.533 0.256 21 2.08 0.0501

age -0.017 0.006 21 -2.89 0.0088

lastVacc -0.098 0.028 21 -3.52 0.0020

τ2 1.046 0.143

φ 0.103 0.032

In most statistical software packages tools for �tting generalized linear mixed models are not stan-

dard. For computing estimates for the speci�ed generalized linear mixed model (8.6) the new

SAS procedure PROC GLIMMIX is used. This procedure needs to be downloaded from SAS software

site http://www.sas.com/apps/demosdownloads/setupcat.jsp?cat=SAS\%2FSTAT+Software.

Very detailed explanations on estimation methods and model theory can be found in the SAS

documentation (SAS Institute Inc., 2006) and an introduction for the usage of this procedure is

given by Schabenberger (2005). In SAS so-called residual pseudo likelihood estimation is used

by PROC GLIMMIX and computed estimates for �xed parameters and variance components are

displayed in table 8.2. These estimates are quite di�erent from those obtained from GEE for the

marginal model, see table 8.1. Once more it should be emphasized that there is no close relation

between marginal models and subject-speci�c models in non-Gaussian case.

Plots of Pearson residuals were checked for departures from the model assumptions. The plot

of the residuals against linear predictor displayed a slightly linear trend. Histogram, normal

quantile plot and box plot of Pearson residuals did not show any departures from the model

assumptions.

8.3 Conclusion on models for non-Gaussian longitudinal data

In this chapter models for non-Gaussian longitudinal data were brie�y presented. Depending

on the research question the appropriate type of modelling - marginal or subject-speci�c - has

to be chosen. For the analysis of repeatedly measured titers, random e�ects models are more

appropriate, because they explicitly take di�erent sources of correlation in longitudinal data into

consideration and there are no problems with unbalanced data.

The next chapter completes this thesis with comparison of estimates for all investigated models

and forecasts of titers.
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Chapter 9

Model comparison, prediction and

review

In this last chapter all models are compared and titers are predicted. A short review on models,

results and predictions closes this thesis.

9.1 Model comparison

models for first measurements marginal models for longitudinal data mixed models for longitudinal data 

 

  

Figure 9.1: Comparison of estimated titers in di�erent models by means of a �ctitious man
with two or more booster vaccinations who had his last vaccination at the age of 55

In �gure 9.1 predictions are compared for models for the independent �rst measurements and for

marginal and mixed models for longitudinal data. The predicted titers are illustrated by means

of a �ctitious man with two or more booster vaccinations who had his last vaccination at the

age of 55. All models were �t by using the same predictors sex, number of booster vaccinations

in categories 0, 1 or ≥ 2, age at last booster vaccination and time since last vaccination.
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For the �rst observations measured by method A, classical regression analysis was performed

on the original outcome variable titer. Because titer did not ful�ll the required normality as-

sumption, transformations titer1/3 and log titer were used instead. The cubic root transformed

variable coped best with the underlying model assumptions in linear regression but is hard to in-

terpret. Therefore the more common logarithmic transformation was also applied. The distribu-

tion of the residuals in linear regression analysis of log(titer) showed some left-skewness, but other
model assumptions were adequate. Predictions for titer1/3 and log(titer) were back-transformed
to the original scale of titer and following estimates are compared for linear regression models:

• Ê(titer)

• exp
(
Ê(log titer)

)
•
(
Ê(titer1/3)

)3

Because the original outcome variable titer seemed to �t a gamma distribution quite well, a

generalized linear model was applied using the log-link-function. The di�erence between per-

forming a regression analysis on a logarithmic transformed variable E(log yi) = x′
iβ and using a

logarithmic link-function in a GLM log (E(yi)) = x′
iβ is emphasized. The resulting estimates of

the speci�ed GLM

• Ê(titer)

are compared to the predictions of linear regression models. The estimated titers obtained

from regression analysis of titer1/3 are higher than those obtained from analysis of log(titer).
The predicted values of the GLM are higher than the predictions of regression models on the

transformed variables. The curvature is similar to the curvature of predicted values for the model

on log(titer).
Only around 13% of variability in the �rst measured titers is explained by the covariates sex,

age, number of booster vaccinations and time since last vaccination by �tting linear regression

models. For accounting on this unobserved heterogeneity, models for longitudinal data are ap-

plied including the few available repeatedly measured titers. There are two types of models for

longitudinal data: marginal or so-called population-averaged models and subject-speci�c models.

In marginal models the correlations between repeated measurements are considered by specifying

a covariance structure. As long as the mean is correctly speci�ed valid point estimates for the

regression parameters are obtained even if these covariance pattern is not correct. For computing

valid standard errors robust estimation techniques are used.

Marginal models were applied to the transformed variables titer1/3 and log(titer) supposing a

normal distribution. For titer1/3 the assumption of a �rst-order autoregressive and for log(titer)
the assumption of an unstructured covariance pattern seemed most satisfying. Predicted values

obtained from these models were back-transformed as explained above. A marginal model under

the assumption of a gamma distribution for the variable titer and using the log-link-function was
estimated by applying the method of generalized estimating equations . The predicted values for

marginal models have almost the same range as estimates for models on the �rst measurements,

see �gure 9.1. The curves are a bit �atter than in the �rst panel.
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In vaccination studies large between-individual heterogeneity is expected because of highly vary-

ing response of humans to vaccinations. Subject-speci�c models take between-individual hetero-

geneity into account by including individual random e�ects.

Linear mixed models are widely used in health sciences for modelling normally distributed out-

come variables and were applied to the transformed variables titer1/3 and log(titer).
Generalized linear mixed models are applied to non-Gaussian distributed response variables by

including random e�ects in GLMs. A generalized linear mixed model was applied to the un-

transformed outcome titer, using log-link-function and assuming a gamma distribution. In the

case of TBE data only a randomly varying intercept is included in the mixed models because

estimation of a random slope for these few repeated measurements would be overstated. The

back-transformed predictions of linear mixed models for titer1/3 and log(titer) are almost the
same as for models on the �rst measurements. The curve of estimated titers of the generalized

linear mixed model is much lower than for predictions of GLM in the �rst panel and predictions

of GEE in the second panel.

The generalized linear mixed model is now used to forecast titers for di�erent �ctitious persons.

9.2 Prediction of titer

male female 

  
 

age (in years) at last vaccination, number of boosters category: 

 

Figure 9.2: Prediction of titer

In �gure 9.2 forecasts of titers for several �ctitious persons are displayed from 1 to 10 years after
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their last vaccination. Titers are predicted for men (left panel) and women (right panel) who

had their last vaccination at the age of 20 or 55 and had 0, 1 or ≥ 2 booster vaccinations before.

Estimated titers for women are lower than for men. Titer decreases with increasing age and the

more booster vaccinations the higher the estimated titer. For instance the titer of a 56-year-old

woman who had her last vaccination 1 year ago is estimated to be as high as the titer of a

27-year-old woman who had her last vaccination 7 years ago. In all cases the predicted titers are

seropositive (> 25 U/ml).

9.3 Review and outlook

The goal of this thesis was to investigate the TBE antibody decrease after completion of the

basic immunization protocol. Data were presented on which the further analyzes would be based

after knowledge on TBE, vaccination and methods for measuring antibody concentration had

been acquired. Because lots of data records were not complete and di�erent test methods for as-

sessing antibody concentrations were used, only a small amount of data was available for further

statistical analyzes. On these data several statistical models were performed like linear regres-

sion, GLM, linear mixed models and generalized linear mixed models. Titers were estimated

for all these models and showed that women have lower titer than men and the more booster

vaccinations the higher the antibody concentrations. Titer is decreasing with increasing age and

time since last vaccination.

In Austria it is currently recommended to do a booster vaccination every 5 years, but in all ap-

plied models estimated titers were seropositive longer than �ve years after the last vaccination.

To prove this hypothesis a planned clinical trial would be necessary where at least 3 measure-

ments per person would be available. Because immune response is very heterogeneous across

human beings, subject-speci�c models including a random intercept and random slope would be

appropriate for modelling titer. To estimate a random slope at least 3 measurements per person

would be necessary. If even 5 measurements per person would be available it could be controlled

if the slope remains constant over time. These successive measurements should be taken on men

and women of di�erent age with di�erent number of precedent booster vaccinations. On this

data set it would be possible to make solid estimates on the duration of protection provided by

TBE vaccination.
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