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Abstract 

 
My data consists of closing prices between January 2000 and December 2004. 
My interest is, by looking at the return, to apply the Model Confidence Set. I 
work with ten volatility models. The Model Confidence set is analogous to a 
confidence interval of a specific parameter. This means that the Model 
Confidence Set is used to choose model/models that is/are considered to be 
“best”. The empirical exercise is based on ten models, and by applying the 
method I came to the conclusion that the Asymmetric Garch (1,1) was inferior 
compared to the other models. 
 
Keywords: forecasting error, hypothesis testing, model selection and forecasting 
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1) Introduction 

Forecasting is today of great importance in economics. It is important to be precise when 

one is forecasting because forecasts are used to guide decisions. The precision of 

forecasting is also important to those who produce forecasts because the producers’ 

reputations (and fortunes) rise and fall with forecast accuracy (Diebold and Mariano 

1995). 

Traditional research within financial economics focused on the mean of stock returns. 

Today researchers are more interested in the volatility of these returns. Volatility 

forecasting is used within several areas. Analysis of market timing decisions and 

portfolio selection are two examples (Brailsford and Faff, 1996). Another area is 

comparison of forecast accuracy. This area is of importance to economists who are 

interested in comparing competing economic models. The focus of this paper is on the 

forecasting precision of 20-day index market volatility from 10 different statistical 

models. The basic methodology involves the estimation of parameters of each model 

using an initial set of data (daily returns).  

There is a large number of conditional volatility models to dispose of today. The first two 

were the ARCH model of Engle (1982) and the GARCH model of Bollerslev (1986). A 

volatility function can be composed into two parts, one predictable component and one 

unpredictable. Researchers have focused on the predictable part.  

The conditional variance of a time series is important for pricing derivatives, calculating 

risk and hedging. The conditional variance cannot be observed. That is why it is 

estimated by the realized variance. Initially the conditional variance was estimated by the 

squared return. This estimate typically resulted in a poor performance. By using the 

realized variance as an estimate, instead of the squared return, Andersen & Bollerslev 

(1998) showed that volatility models perform well. Another argument for using the 

realized variance instead of the squared return was introduced by Hansen & Lunde 

(2003). They show that if one is using the squared return as the estimate for the 

conditional variance the empirical ranking may be inconsistent for the true ranking. 

Several papers have tried to answer the following question: Which model is the best? 

There are a couple of reasons to why it is difficult to establish if there exists a ”best” 

model: 
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1) Asset returns often do not contain enough information to identify a single 

volatility model as “best”. (Hansen, Lunde & Nason, 2003). 

2) The set of competing models is large. (Hansen, Lunde & Nason, 2005)  

Volatility models attempts to explain the changing behaviour of the volatility in the daily 

return of my chosen index. As I mentioned before there exist a number of papers 

discussing the evaluation and comparison of volatility models. One example is Hansen & 

Lunde (2001) who report that there is no evidence that the GARCH (1,1) model is 

outperformed by other models in an analysis of exchange rates. But, on the contrary, 

when the analysis evaluates IBM stock returns the conclusion is that the GARCH (1,1) is 

inferior to the other volatility models in M0. 

Another paper examining model selection techniques is the one of Brailsford and Faff 

(1993). They conducted an extensive model exercise based on Australian data. They 

examined asymmetric volatility models and found support for the Glosten, Jagannathan 

& Runkle (1993) modified GARCH model. Specifically, they came to the conclusion that 

the GJR-GARCH (3,1) was the superior model. The Poon and Granger study examines 

93 papers. Seventeen of these compare alternative versions of GARCH. They concluded 

that GARCH-models dominated the ARCH model.  

The purpose of my paper is to determine which forecasting model/models that is/are 

significantly inferior from a set of competing models. The starting point is to reduce the 

set of competing models to a smaller set of models, the Model Confidence Set (MCS). 

The Model Confidence Set is similar to the confidence interval of a parameter. A 

confidence interval is a sequence of numbers in which the true number is believed to lie 

with, in my case, a 95% probability. The interval can be interpreted in different ways. 

One way is by looking at the midpoint of the interval. The value in the middle can be 

seen as the “best” guess for the true answer. Thus, the MCS can be seen as the approach 

of choosing the “best” forecasting model/models.  

The Model Confidence Set method has a couple of advantages compared to methods 

involving a single model. It doesn’t require that the “true” model is among the set of 

competing models, M0.  A MCS doesn’t rule out a model unless it is found to be 

significantly inferior compared to the other models. Also, in reality it is often so that two 

or more models are considered to be equally likely. That is why it is more appealing to 

work with a set of forecasting models. This implies that MCS dominates methods that 
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require a single model being selected as “best”. A test that is quite similar to the MCS is 

the test for superior predictive ability (SPA). SPA can test if other models significantly 

outperform a particular ”benchmark” model. A simple random walk model is the 

benchmark model in Hansen (2001). The benchmark is compared to a large number of 

regression-based forecasts and the empirical result showed that the random walk model 

was significantly outperformed. However, it is worth to point out that the Model 

Confidence Set can consist of a single model (Hansen, Lunde and Nason 2003).  

My set of competing models consists of the following models: symmetric and 

asymmetric Garch (1,1), symmetric and asymmetric Garch (1,2), symmetric and 

asymmetric Garch (2,1), Random walk model, Historical mean model, Moving Average 

model and an Exponential Smoothing model. To construct a Model Confidence set I use 

a test for equal predictive ability (EPA). The Pantula (1989) testing method is used. This 

test erases the models that are found to be statistically significant, that is rejecting the 

null hypothesis (Hill, Griffiths & Judge). The null hypothesis is explained in section 3.2. 

The set of surviving models, M*, is the MCS. This set contains, with a 95 % probability, 

the ‘best’ model. 

The volatility models examined in this paper are mentioned above. I implement the 

Model Confidence set with this set of models. There is one finding of my empirical 

analysis: When testing the null hypothesis I could delete the asymmetric GARCH (1,1) 

model. That is, I find no evidence that the asymmetric GARCH (1,1) is superior to the 

other models. 

My data are daily closing prices from the Stockholm Stock exchange general index 

between January 1 2000 and December 31 2004. I have chosen to base my empirical part 

only on this index. 

This paper is organized as follows. Section 2 describes the theory of some basic 

calculations I am going to make. Section 3 contains Introduction to the Model 

Confidence Set and hypothesis testing. In section 4, I describe my ten chosen volatility 

models. Section 5 describes my data and the empirical results that were obtained. Section 

6 is the discussion. Section 7 concludes. 

 

 
 
 



 6

2 Some basic calculations 

In this part I am going to describe some basic calculations I have made to be able to 

perform the Model Confidence Set approach. The compounded return are based on 

closing prices. 

 
2.1 Compounded return 

Let  {pt} be the closing price on day t. My analysis involves 20-day volatility forecasts. 

The continuously compounded daily returns are calculated as: 

Rm,t = ln(pm,t / pm,t-1)              (2.1.1) 

pm,t is the closing price from Stockholm stock exchange general index and Rm,t is the 

continuously compounded return on trading day t in month m.  

 

2.2 How to determine the forecasting error. 

My sample is divided into an estimation period and an evaluation period where the 

estimation period and evaluation period is one year respectively (Hansen, Lunde & 

Nason 2003). The parameters of the volatility models are estimated using the calculated 

daily returns above. These estimates (based on one year) are used to make 20-day-ahead 

forecasts for the following year (Hansen and Lunde 2001). My estimates for year 2000 

are used to make 20-day forecasts for 2001. The same idea applies for 2001, 2002, 2003 

and 2004. Thus model m, m=1,…,10 gives a sequence of forecasts denoted by h2
t,m. 

 

Estimation 

period 

Forecasting 

period 

 

 The purpose is to determine the forecasting error. The forecasting error is the difference 

between the forecast for model m at time t and the conditional variance. I have calculated 

the variance from the daily returns. The conditional variance is this variance at time t. 
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The conditional variance, στ
2, is not known so an estimate is used. This estimate is given 

by 

2ˆτσ  = ∑
=−

N

N 1
(

1
1

τ

Rτ - R )2                  (2.2.1) 

 

where⎯R is the mean return in year a. a=2000…2004    

σ2
t  is the realized variance, which is a precise measure of σ2

t . I would like to point out 

that it is important to use accurate measures of the conditional variance to avoid an 

inconsistent ranking of the alternatives (Hansen & Lunde 2003). 

Each of the forecasts was compared to 2
10

2
2

2
1 ˆ,...,ˆ,ˆ σσσ  , using a loss function L. Let the 

first model, m=1, be a fix model that is compared to the rest of the models. Each model 

leads to a sequence of losses 

 

Lm,τ 22
, ,( ττ σmhL≡ ) ═   (

22
, ˆττ σ−mh )

2.       (2.2.2)   

 

τ =1,2,,...,t   τ =1 is the first 20-day forecasting period. τ =t is the last 20-day forecasting 

period. 

Equation (2.2.2) is known as the mean square error, MSE. (Hansen, Lunde & Nason 

2003) rank models according to their expected loss using the MSE. h2
m,τ  is model i:s  

forecast of  στ
2. 
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3 Theory behind the Model Confidence Set 

The approach of the MCS involves hypothesis testing. I will explain how this test works 

and how to decide whether to accept or reject a null hypothesis. I will also mention the 

main idea with the Model Confidence Set. Hansen, Lunde and Nason (2003) implement 

the Model Confidence Set with a study of volatility models of return. 

 

3.1 Introduction to the model confidence set 

The empirical problem is to determine which models are in M*  and which are not. It is 

known that a confidence interval is an interval that contains a specific parameter with 

probability 1-α. The same interpretation applies for the MCS. The MCS contains the best 

model/models with probability 95 %, where α=0,05 is the level of significance. Thus, the 

MCS is a random data-dependent set of models that includes the best forecasting 

model(s), as a standard confidence interval covers the population parameter with a 

certain probability. 

 

3.2 Hypothesis testing 

My null hypothesis is H0 : E(di,j,τ) =0.  The interpretation of this is that one is testing the 

null hypothesis that the expected value of  the difference between the two loss functions 

is 0 (Diebold and Mariano). That is, I want to test the null hypothesis that the benchmark 

model is as good as any other model in terms of the MSE. 

The alternative hypothesis is H1: E(di,j,τ) ≠0 . I want to test the null for my set of 

candidate models M0. When testing H0  I used the t-test. My test value can be expressed 

as  

 

 ti,j =
50/,,

0,

( τji

ji

dse
d −    (3.2.1) 

 
where se denotes the standard error.  

Thus, the t-test is a way to test if a model is significant. 

How does one know whether to reject or accept a null hypothesis? The null hypothesis, 

H0 is the same as an statement. H0 is tested against an alternative hypothesis denoted H1. 
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The theory of hypothesis testing is concerned with developing rules for deciding whether 

to reject or not reject the null hypothesis. The rule applied in this paper is the confidence 

interval. Since I use the t-test in this paper the confidence interval becomes: 

Pr [ -tα/2 ≤ test value ≤ + tα/2] = 1-α. tα/2 is called the critical value.  

If my test value lies within the critical value I will not reject the null hypothesis 

(Gujarati). Not rejecting the null hypothesis implies that t is a “statistically significant” 

statistic (Hill, Griffiths and Judge 1997). 

When I performed this test I could eliminate the Asymmetric Garch (1,1)-model. Thus I 

have decided which models that belong to the model confidence set. 

 

3.3 Approach to determine the worst performing model. 

Section 2.2 described the forecasting error and how it was determined. The definition of 

the forecasting error was given by equation (2.2.2). The coming equation is extended to 

compare the existing models. That is, I want to study the forecasting error but this time 

between models.  

The loss differential between models i and j is given by  

 

di,j,τ  = L( 22
, ˆ, ττ σih ) – L( 22

, ˆ, ττ σjh )                    (3.3.1) 

∀ i, j≠i  ; i,j=1,…,m    , τ=1,….,t  

 

The first term is the deviation for model i from the conditional variance. The second term 

is the deviation for model j from the conditional variance. Then the difference between 

these two terms was calculated. 

To be able to determine the worst performing model it was necessary to define the 

following two equations and equation (3.3.1). 

I define the variables 

1) jid , =(∑
=

50

1
,,

τ
τjid )/50       (3.3.2) 
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2) di.= [∑ ∑=

−

=

50

1

1

1
,,τ τ

m

j
jid ]/[50*(m-1))    (3.3.3) 

 
                
Equation (3.3.2) measures how model i perform in proportion to model j. Model i is fix 

and model j , where j=1..9 are every possible combination together with model i. 

Equation (3.3.3) can be seen as how model i perform in proportion to the average of all 

the models in M.                                                                          

M=M0 and is the full set of competing models.  

 

var( .id ) = τ,,var(
)1(*50

1
jid

m −
)          (3.3.4) 

 

where  

 

var (di,j,τ) = var (all observations in di,j,τ  for ∀ j).           (3.3.5) 

 

Equation (3.3.5) was interpreted as the variance of all the models observations. The 

measure Hansen, Lunde and Nason (2003) use to rank the models in M is       

                                      

vi,M 
.)

.

( i

i

dse
d

≡           (3.3.6) 

 

Thus, the larger the statistic vi,M  is the worse is this model performing and its rank 

decreases.  

The worst performing model has the highest vi,M 
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4)Volatility models 

In this part I will talk about my ten volatility models. I will also try to make an 

interpretation of what the models mean. There is a considerable number of models used 

for forecasting volatility. I have chosen to examine both simpler models as the random 

walk and the historical mean model as well as more complex models. 

 

4.1 Random walk model 

Under a random walk model, the best forecast of this period volatility is the last period 

observed volatility (Brailsford and Faff 1996). 

 

2ˆτσ (RW) = 2
1−τσ      (4.1.1) 

τ =1,2,3,.....,t 

The random walk model says that the forecasted  volatility should be equal to the last 

observed volatility, which is a volatility that is already known. In practice this mean that 

anyone can speculate in for example stocks and make money on it (Gujarati 2003). 

The forecasts was calculated for one year respectively. Each year consists of fifty 20-day 

forecasts. Thus τ =1,2,3,.....,50. τ =1 is the first 20-day forecast and τ =50 is the last 20-

day forecast. 

 

4.2 Historical mean model 

Under the assumption of a stationary mean, the best forecast of this period volatility is a 

long-term average of past-observed volatilities. The assumption of a stationary mean is 

equivalent to a process with a constant variance (Brailsford and Faff 1996). 

2ˆτσ (LTM) = ∑
−

=−

1

1

2

1
1 τ

σ
τ j

j      (4.1.2) 

 

The random walk model made a forecast based on the last observed volatility. Notice the 

difference from the historical mean model, which forecast with an average of past-

observed volatilities. 
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A 20-day forecast of the volatility is equal to the average of all past observed 20-day 

forecasts. 

 

4.3 Moving average (MA-α) model 

Market analysts often use a moving average as a predictor of mean returns. The moving 

average technique is often used in traditional time-series analysis. The choice of the 

moving average estimation period was chosen arbitrary ( Brailsford and Faff 1996).  

The forecast of the moving average model is expressed as 

2ˆτσ (MA)=
211

j

m

mj
∑
−

−= α

σ
α

        (4.1.3) 

τ =1,2,3,.....,t 

The moving average period was set to six. The term on the right side of equation (4.1.3) 

imply that the moving average model is forecasted with an average of the last six 20-day 

forecasts. 

The moving average model focuses on the most six recent observed 20-day volatilities. 

The historical mean model focuses on all the past-observed volatilities and calculates the 

mean of these. 

Imagine that the volatility for the first 20-day period is extremely high. Because the 

historical mean model will take this high volatility in consideration it could result in a 

poor forecast. This could be a reason to why the moving average model is a better 

volatility model compared with the historical mean model.  

 

4.4 Exponential smoothing model 

According to Dimson and March (1990), an exponential smoothing model is used to 

forecast volatility. This model is also designed to track changes in the volatility (Gujarati 

2003). 

 

2ˆτσ (ES) = 2
1ˆ −Θ τσ (ES)+(1-Θ ) 2

1−τσ              (4.1.4) 
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The first term on the right side is the last periods forecast and the second term is the last 

periods observed volatility (Brailsford and Faff 1996). 

The smoothing parameter, θ, is constrained to lie between zero and one. The optimal 

value of θ must be determined empirically. I let Eviews estimate this parameter. If it is 

zero, the right hand side of the equation will only consist of the realized variance, that is 

the exponential smoothing model collapses to the random walk model. 

The 20-day forecast is a function of the last 20-day forecast and the last 20-day observed 

volatility. 

 

The four models described so far were used to model the levels of the previous data. This 

means that the forecasts calculated the future variance from previous variance. Thus, the 

variance didn’t change over time. Instead it is interesting to study the fact that the 

variance of a time series does vary over time. How can one model such “varying 

variance”? This was the reason that the symmetric GARCH model and asymmetric 

GARCH model was chosen as volatility models. 

 

4.5 Symmetric Generalized autoregressive conditional heteroskedasticity (GARCH)(p,q)  

The GARCH model is a generalization of the ARCH model. Heteroskedasticity implies 

that a time series doesn’t have a constant variance (Gujarati 2003) that is it doesn’t 

behave like the Random walk model or any of the other models described earlier in this 

section. 

The GARCH process introduced by Bollerslev (1986) recognizes the difference between 

the unconditional and the conditional variance allowing the latter to change over time as 

a function of past errors. The assumption underlying a GARCH model is thus that the 

volatility (variance) change as time goes on. During some periods volatility is relatively 

high; during other periods it is relatively low. 

 The conditional variance can be stated as 

 

2
τσ = 2σ +∑

=

p

j
j

1
β 2

jt−σ +∑
=

q

k
k

1
α 2

ktu −          (4.1.5) 
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If the lag length parameters are set to 1 this implies that the conditional variance is 

calculated with the most recent observation of the past error, 2
ktu − , and the most recent 

20-day forecasting volatility, 2
jt−σ . If the sum of my estimated parameters, α and β are 

larger then 1 then the Garch process diverges. α is the weight connected to the past 

forecasting error. β is the weight assigned to the conditional variance and omega is the 

weight connected to the unconditional variance. 

 

4.6 Asymmetric GARCH (p,q) 

The conditional variance is expressed as 

 

2
τσ = 2σ +∑

=

p

j
j

1
β 2

jt−σ +∑
=

q

m
m

1
α mtmt du −−

2 +∑
=

q

k
k

1
α 2

ktu −          (4.1.6) 

 

p and q are called lag length parameters. I estimated the symmetric and asymmetric 

Garch-models over p,q=1,2. The dummy variable is just a constant with the value 1. 2
ktu −  

is the (squared) forecasting error connected to the Arch term in the model. 
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5) Empirical part using the Model Confidence Set 

This section accounts for my data and empirical results. I will explain how the data is 
used to make forecasts for my chosen volatility models. In the section for the empirical 
result I will mention which model/models that is/are considered to be inferior. I will also 
try to explain why a model is inferior. 
 

5.1 Data and method        

 My data are daily closing prices from the SAX-index (Stockholm stock exchange). My 

empirical part is based on the realized variance. The realized variance was based on 

closing prices with a sample period that runs from January 1 2000 through December 31 

2004. The data was collected from Six Trust database. 

When the data was absolute I decided the estimation period and the forecasting period. 

The estimation period has a time horizon of one year that is I have estimates for 2000, 

2001, 2002, 2003 and 2004 respectively. Based on my estimates for 2000 I make a 

forecast for 2001. The same applies for the other years. At the end of each forecasting 

period I calculated the forecasts of the realized variance. The forecasts is denoted by 

h2
t,m. The realized variance is a function of the return r and the mean µ. The mean is 

calculated for each year. 

The first step was to estimate the parameters of my chosen volatility models. Based on 

the daily return data from 2000 I estimated the parameters. Note that the daily return was 

calculated from equation 2.1.1. 

These parameters are then used to make 20-day-ahead forecasts for 2001. Thus, my first 

20-day-ahead forecast is from January 1 2001 to January 20 2001. By this method I get 

fifty  20-day forecasts for 2001. 

Then, I estimate the same parameters, but this time based on my daily return data from 

2001. In the same way I make 20-day-ahead forecasts for 2002. To get the forecasts for 

each model I use the equations for my ten volatility models described earlier. 

There are several other methods for constructing the realized variance and several of 

these are discussed in Andersen, Bollerslev & Diebold (2003). A disadvantage using 

different measures of the realized variance is that it can lead to different results. 
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5.2 Empirical Results 

The conditional variance, σ2
t,  is thus the mail object of interest and my analysis includes 

10 specifications that make up my set of candidate models, M0.  

 

The first empirical finding was established when I tested the null hypothesis. I earlier 

described how one should do to be able to reject or not reject the null. I used the t-test 

when I performed this method. I use a two-tail test. My critical values are –2.02 and 

+2.02. These values are based on 48 degrees of freedom and the significance level α is 

set to 0.05.  

Table 5.2.1 

Test value Asymmetric Garch (1,1)

Symmetric Garch (1,1) -4,63997 

Symmetric Garch (1,2) -4,63989 

Asymmetric Garch (1,2) -4,616 

Symmetric Garch (2,1) -4,63998 

Asymmetric Garch (2,1) -3,91873 

Random walk -4,63988 

Historical mean -4,6398 

Moving average -4,63991 

Exponential Smoothing -4,64022 
 

 

By noticing from table 5.2.1 that the test values for the asymmetric Garch (1,1) lies in the 

critical region I reject the null hypothesis. This mean that the Asymmetric Garch (1,1) 

don’t belong to the Model Confidence Set. If my MCS would have been just one model, 

the result becomes stronger. Section 6 accounts for the relation between a significance 

test and a potential poor model, the Asymmetric Garch (1,2). In table 5.2.2 I have 

calculated νi,M  which is the measure Hansen, Lunde and Nason (2003) use to rank the 

models. If one is looking at the number for the asymmetric Garch (1,1) one can see that 

this variance is higher than for the other models.  
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It is naturally also of interest to study the models in the Model Confidence Set. How will 

the remaining nine models be ranked according to the information I have? The statistic 

vi,m was used as a measure to rank models. The model with the maximum vi,m was the 

worst performing model.  

 

Table 5.2.2 

Model Vi,m Rank

Exponential smoothing -1,7062 1 

Symmetric Garch (1,1) -1,7054 2 

Symmetric Garch (2,1) -1,705421 3 

Moving average -1,70513 4 

Symmetric Garch (1,2) -1,7051 5 

Random walk -1,705079 6 

Historical mean -1,70485 7 

Asymmetric Garch (1,2) -1,52746 8 

Asymmetric Garch (2,1) -0,285323 9 

Asymmetric Garch (1,1) 4,729705 10 

 

That an observation has a higher/large variance means that it is located further away from 

the regression line, that is, it is more possible that the observation is an outlier. Based on 

the empirical part it wasn’t possible to establish if the Asymmetric Garch (1,1) model 

really was inferior or if the model was simply ‘unlucky’ in this sample. An alternative 

way to determine if a model was inferior was to study the estimated parameters. A 

presentation and analyse of these will be introduced in section six. 
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6) Discussion    

In this paper I have studied the model confidence set. The MCS method was introduced 

by Hansen, Lunde and Nason (2003). The theory and empirical part in this paper is 

therefore based on the paper by Hansen et. Al. 

I want to, based on the empirical part, determine which forecasting models are “better” 

from my set of 10 competing models M0. That is, I want to determine which models are 

in M*.  

I apply the MCS to 10 different volatility models to be able to judge their ability to 

forecast the volatility of returns from the Stockholm stock exchange index. There is a 

wide sphere of volatility models. The motive for this large number of models is that the 

possibility  to make empirical findings and economic interpretations increases (Hansen 

and Lunde). When I had applied the model confidence set to my ten models I came to the 

conclusion that the Asymmetric Garch(1,1) didn’t belong to the MCS. I have estimated 

parameters for 2000, 2001, 2002, 2003 and 2004. Below is a table containing the 

estimates for the Asymmetric Garch (1,1) in year 2001. 

Omega 7.18E-06 
Alfa -0.052614 
(RESID<0)*Alfa 0.158819 
Beta 0.953199 
Unconditional variance -0,00012 
 

If I look at the estimated parameters in year 2001 and sum these estimates I get a sum 

that is greater then 1. That the sum of my estimates is larger then 1 is another way to say 

that this model has a volatility that either strongly decreases or strongly increases.  

 

Garch(1,1) asy

0
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0,02

1 3 5 7 9 11 13

20-day forecast

Va
ria

nc
e

Serie1



 19

This conclusion agrees with the graph above. In the beginning the graph has a calmer 

look, which imply that it doesn’t contain so many jumps. But at the end of the year the 

forecasted conditional is strongly downward sloping. 

In the same way, if I consider the estimates for 2002 and 2003 I can see that the sum is 

above 1, thus the forecasted conditional variance doesn’t converge. This is also in line 

with the increasing slope for the Asymmetric Garch (1,1). Also, the Garch-term, the 

weight connected to the past conditional variance is greater then 1 in 2002 and 2003 

which could explain that the forecasted variances for these two years are upward sloping. 

 

I mentioned earlier that the main goal with the model confidence set method is to 

determine, from a set of competing models, which model/models are the ‘best’. Using the 

word ‘best’ is related to the meaning of the word significance (Hansen, Lunde and Nason 

2005). That a variable is significant with the significance level 5% is just another way to 

say that there is a 5 % probability that I will reject the true hypothesis (Gujarati). An 

interpretation of this is that the model confidence set may contain several poor models in 

the finite sample, M*. Could there be a model that seems to be inferior (significant)? It is 

easy to see from appendix 1 that the estimates for the Asymmetric Garch (1,2) for 2001 

and 2002 sum to more then one. Based on the analyse for the Asymmetric Garch (1,1) 

the Asymmetric Garch (1,2) shouldn’t belong to the Model Confidence set. Could there 

be any other explanation? 

I observe the MSE for the Asymmetric Garch (1,2) below. I ranked models to their 

expected loss using the mean square error.  

MSE G (1,1) sy G (1,1) asy G (1,2) sy G (1,2) asy G (2,1) sy G (2,1) asy Rand.w Hist.mean Movave. Exp.smoot.
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That is, I looked at how much the forecast for my model deviates from the realized 

variance. The MSE for the Asymmetric Garch (1,2) is 0.0023. That is a quite low 

number. This could be a reason that the model belongs to the MCS, although the model 

doesn’t describe the variation in the realized variance very well. The MSE criterion is 

more sensitive to outliers. A result is thereby that the model confidence set contains a 

larger number of models when one is using the MSE as a loss function compared to the 

MAD loss function.  

 

Although, the MCS will contain the best model(s) asymptotically. That is, the MCS 

procedure delete a model only if it is found to be significantly inferior to another model.  

In this paper I have set the level of confidence, 1-α, to 95%. Hansen et al. define the 

‘best’ model as the model whose forecasts produce the minimum expected loss. The 

Exponential Smoothing model has the lowest deviation in the loss function. This is a 

interesting observation. If I compare the appearance for the Exponential Smoothing 

model and the realized variance I see that they are quite similar. 

 

 

 In appendix 1 I have presented the estimates for the Exponential Smoothing model in 

2001 and 2002. I can see that they are quite close to 0, which mean that the model almost 

behaves like the random walk model. The random walk model says that the forecasted 

volatility is equal to the last observed volatility. 

In theory it is often so that the number of models in the MCS will increase as the level of 

confidence increases. This is reasonable because the region of acceptance become larger 

(Gujarati). When the MCS contain a single model, this model is very likely to be the 
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truly superior model. Under the condition of the loss function that was applied when one 

is constructing the model confidence set. Based on this theory I can say that the MCS 

contains nine out of the ten models. Thus, the MCS is able to separate superior from 

inferior volatility models, even if it is just one single model, the asymmetric Garch (1,1), 

which is considered to be inferior. 

There are several advantages with using the MCS method. First, it require less 

assumptions/information compared to other methods for model selection. One doesn’t 

need to have knowledge of the optimal forecasting model when one is applying the MCS. 

In most empirical investigations it’s not possible to settle on a single model because of 

limitations in the data. In appendix 2 I present descriptive statistics for my data (return). 

The values of the kurtosis for respective year are less then three. This mean that larger 

movements in the return is less likely. Thus, the closing prices for Stockholm stock 

exchange index didn’t make any larger jumps between 2000 and 2004. This implies that 

the sample variance should be low for the same period, which is consistent with  

appendix 2. 

The statistics for the skewness in 2002 and 2003 are positive. This means that the 

probability is larger for an increase in the return (Gujarati 2003). The model confidence 

set method recognizes this problem. Instead, the MCS usually chooses the models that 

perform significantly better than the rest. 

The MCS method doesn’t contain many problems when it has to classify inferior models 

as truly inferior. Thus, the method is a powerful tool when it comes to choosing the best 

set of forecasting models. Maybe this is why the model confidence set method is useful 

for central banks, other parts of government and in financial markets when problems 

need to be studied (Hansen, Lunde and Nason 2005). 
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7) Conclusion 

I have evaluated ten volatility models by using the Model Confidence Set. The issue of 

my paper is to determine which model/models that belong in the Model Confidence Set. 

The MCS is analogous to a confidence interval in the sense that the MCS contains a 

specific model or models. A confidence interval is known to contain a specific parameter 

(number). 

When applying the MCS I came to the conclusion that the Asymmetric Garch(1,1) was 

inferior and thereby didn’t belong in the Model Confidence Set. I observed that the test 

value, using the t-test, was in the critical region for this model. This is one of  the reasons 

to why the model is considered to be inferior. Also, the vi,M value showed that the 

Asymmetric Garch(1,1) is the worst performing model between the ten competing. 

I also mentioned that it is possible that the MCS can contain one or more poor models. I 

mentioned that the Asymmetric Garch(1,2) was a possible model for this dilemma. 

Although, the method is a powerful tool when it comes to choosing the best set of 

forecasting models. Finally, the ranking between the models in the MCS is as follows 

1) Exponential Smoothing model 

2) Symmetric Garch (1,1) model 

3) Symmetric Garch (2,1) model 

4) Moving average model 

5) Symmetric Garch (1,2) model 

6) Random walk model 

7) Historical mean model 

8) Asymmetric Garch (1,2) model 

9) Asymmetric Garch (2,1) model 

The empirical results that were obtained were based on data from the Stockholm stock 
exchange market. If a different set of data was chosen the empirical findings could be 
different. 
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Appendix 1 
 
 2001 2002 
Symmetric Garch (1,1)   
Omega 3.36E-05 1.28E-05 
Alfa 0.062178 0.135356 
Beta 0.831317 0.828525 
Unconditional variance 0,000315 0,000354
   
Symmetric Garch (1,2)   
Omega 5.81E-06 1.34E-05 
Alfa (1) 0.012989 0.119716 
Beta (1) 1.782808 1.274924 
Beta (2) -0.813633 -0.430982
Unconditional variance 0,000326 0,000369
   
Asymmetric Garch (1,1)   
Omega 7.18E-06 9.76E-07 
Alfa(1) -0.052614 -0.058167
(RESID<0)*Alfa(1) 0.158819 0.092384 
Beta (1) 0.953199 1.021626 
Unconditional variance -0,00012 -1,7E-05
   
Asymmetric Garch (1,2)   
Omega 7.35E-06 1,99E-07
Alfa(1) -0.054981 -0,05159
(RESID<0)*Alfa (1) 0.160993 0,09376
Beta (1) 0.948481 0,997744
Beta (2) 0.005233 0,005961
Unconditional variance -0,00012 -4,3E-06
   
Asymmetric Garch (2,1)   
Omega 9,53E-06 7.14E-06 
Alfa (1) -0,09604 -0.085355
Alfa (2) 0,041819 0.109538 
(RESID<0)*Alfa (1) 0,154816 0.136002 
Beta (1) 0,941431 0.890768 
Unconditional variance -0,00023 -0,00014
   
Exponential Smoothing 0,001 0,001 
 
Above is a table consisting of the estimated parameters for some chosen symmetric and 
asymmetric Garch models and the Exponential Smoothing model. Year 2001 and year 
2002 was chosen. Omega, alfa and beta were my estimated parameters. The 
unconditional variance, denoted 2σ , was calculated with the help of the three 
parameters. 
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Appendix 2 
 
Return year 2000  
Mean -0,0006 
Standard Error 0,001136 
Median 0,000458 
Standard Deviation 0,018005 
Sample Variance 0,000324 
Kurtosis -0,20792 
Skewness -0,0761 
  
Return year 2001  
Mean -0,00072 
Standard Error 0,001204 
Median -0,00219 
Standard Deviation 0,019044 
Sample Variance 0,000363 
Kurtosis 1,112719 
Skewness -0,00758 
  
Return year 2002  
Mean -0,00166 
Standard Error 0,001176 
Median -0,00268 
Sample Variance 0,000346 
Kurtosis 1,42339 
Skewness 0,481454 
  
Return year 2003  
Mean 0,000941 
Standard Error 0,000757 
Median 0,00113 
Sample Variance 0,000143 
Kurtosis 0,615521 
Skewness 0,053967 
  
Return year 2004  
Mean 0,000598 
Standard Error 0,000559 
Median 0,001212 
Sample Variance 7,88E-05 
Kurtosis 1,377604 
Skewness -0,58536  
 
 
 
 
 
 


