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Abstract

This thesis gives a contribution to strategy-proof social choice theory, in which one

investigates to what extent there exist voting procedures that never can be manipu-

lated in the sense that some voter by misrepresentation of his preferences can change

the outcome of the voting and obtain an alternative he prefers to that honest voting

would give. When exactly one element should be elected from aset of at least three

alternatives, then the fundamental result in strategy-proof social choice theory, the

Gibbard-Satterthwaite theorem, shows that there in general exists no satisfactory

non-manipulable voting procedure. However, in many practical voting situations,

e.g., when the available alternatives can be ordered on a political left–right scale,

individual preferences have a structure which is known as single-peakedness, and

in this case it is possible to find reasonable strategy-proofvoting procedures.

In this thesis, we analyze the more general voting situationwhen the number

of alternatives that should be elected is greater than one but fixed, which for in-

stance is the case in elections to national parliaments, andwe are able to prove re-

sults analogous to the single-valued case: in general, there exist no reasonable non-

manipulable voting procedures, but when preferences are single-peaked, voting can

be made strategy-proof. In connection with our analysis of the strategy-proof so-

cial choice of fixed-sized subsets, we obtain also two additional interesting results:

firstly, we show that the Gibbard-Satterthwaite theorem notonly holds for com-

plete preferences, but also for a large class of domains of partial preferences, and

secondly, we are able to make the statement of the original Gibbard-Satterthwaite

theorem more precise by proving that every reasonable voting procedure not only

can be manipulated, but some voter can manipulate it in such away that he obtains

at least his second best alternative.

Keywords: Strategy-proofness, Multi-valuedness, Gibbard-Satterthwaite theorem,

Linked domains, Partial preference relations.
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1 Introduction

EVERYONE WHO HAS ever participated in a voting among several alternatives

should recognize the following line of thought: It is true thatx is my most preferred

alternative, but I understand that it has no support among other voters; instead of

wasting my vote, I should therefore vote fory, which is an acceptable alternative

with a true chance to win, because I do not want to seez being elected. If you

do not vote according to your true opinion, we will say that you misrepresentyour

preference, and if your misrepresentation indeed changes the outcome of the voting

in a for you beneficial way, we say that youmanipulatethe voting procedure.1 Of

course, whether a voter is able to manipulate a certain voting depends on the way

in which the voting is carried out, and since manipulation seems ethically unap-

pealing, one may ask whether there exist anystrategy-proofvoting procedures, i.e.,

voting procedures that can never be manipulated. Unfortunately, it turns out that

if a single element should be elected from a set of at least three alternatives, then

there exists no reasonable strategy-proof voting procedure. This result is known

as theGibbard-Satterthwaite theorem, and since it has been established in 1973,

much research has been devoted to investigate whether its pessimistic conclusion

still holds in other voting situations with different assumptions, and in some cases it

was indeed possible to find strategy-proof voting procedures (examples of this can

be found in Example 2.8, Chapter 3, and Section 5.4 in this thesis). To our know-

ledge, however, there exists still a voting situation that has not yet been considered

in the context of strategy-proofness, namely:

The social choice of fixed-sized subsets:A group of voters has to

choose a fixed number of elements from a set of alternatives.

This voting situation is common in any democracy, the foremost example of course

being elections to national parliaments, but it is also present whenever society elects

a fixed number of members to a committee. The purpose of this thesis is toinves-

tigate whether there exist any reasonable strategy-proof voting procedures for the

social choice of fixed-sized subsets. In the following, we will propose the specific

questions we thereby have to answer.

By definition, a voting procedure is strategy-proof if no voter by misrepresenta-

tion can obtain an outcome that he prefers to the outcome thathonest voting would

give. Thus, to decide whether there exist any strategy-proof voting procedures for

1This introduction is kept rather informal in order to conveya better first understanding for the

subject of this thesis. Definitions and results will get their precise formulations from Chapter 2 on.
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the social choice of fixed-sized subsets, we need first to knowwhen a voter prefers

one outcome to another. In the context of the original Gibbard-Satterthwaite the-

orem, this is straight forward because there, different outcomes of a voting can be

ranked directly by voters’ preferences; by this, we simply mean that if you by mis-

representation can obtainx instead ofy, then this will make you better off if and

only if you preferx to y. This is trivial, of course, but when outcomes are subsets

of a fixed size, it is no longer obvious how voters rank different outcomes. Sup-

pose, for example, that a committee has to choose two of the alternatives in the set

{a1,a2,a3,a4}, and assume that you prefera1 to a2, a2 to a3, anda3 to a4. If you by

misrepresentation can obtain{a1,a3} instead of{a2,a3}, you should certainly be

better off, because besides the common alternativea3, the former set containsa1,

which you prefer toa2 in the latter set. But suppose now that misrepresentation can

give you{a1,a4} instead of{a2,a3}. The first set contains your most preferred, but

also your worst alternative, whereas the second set contains the two middle alter-

natives, and it is not clear which set you will prefer. In somecases we will thus be

able to draw conclusions about voters’ preferences over subsets, but in other cases

we will fail to do so. The first question to answer in this thesis must therefore be:

Question 1:When can a voter be assumed to prefer one subset to an-

other, or, more formally, what structure do voters’ preferences over sub-

sets of a fixed size have?

Once we know the structure of voters’ preferences over subsets, we are able to

define what is meant by manipulation of a voting procedure forthe social choice of

fixed-sized subsets, and we can turn to the next question:

Question 2: Do there exist any reasonable voting procedures for the

social choice of fixed-sized subsets that can never be manipulated?

We will show that the answer to this question is negative in general, precisely as in

the case of the Gibbard-Satterthwaite theorem. However, the general impossibility

result of the Gibbard-Satterthwaite theorem can be modifiedin many real voting sit-

uations because voters’ preferences have often a structurethat makes strategy-proof

voting possible. This is, for example, the case when partiesparticipating in a poli-

tical election can be ordered on a traditional left-right scale. Then preferences have

a structure which is known assingle-peakedness, and it turns out that when soci-

ety has to elect a single alternative and voters have single-peaked preferences, then

there exist reasonable strategy-proof voting procedures.Since single-peaked pref-

erences appear frequently in applications, our analysis ofwhether strategy-proof
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social choice of fixed-sized subsets is possible would not becomplete if we would

not investigate whether we can draw a similar conclusion forthe social choice of

fixed-sized subsets; thus, we will have to answer the following question:

Question 3: Do there exist any strategy-proof voting procedures for

the social choice of fixed-sized subsets if voters’ preferences over the

available alternatives are single-peaked?

When the three questions above are answered, the purpose of this thesis is fulfilled.

However, in research one should always be grateful when one’s analysis of a prob-

lem not only solves this problem, but also allows to answer another question of

interest, which at first glance may seem unrelated to the original problem. In this

thesis, the analysis of the social choice of fixed-sized subsets leads with no extra

effort also to a more informative variant of the Gibbard-Satterthwaite theorem. In

its original form, the Gibbard-Satterthwaite theorem is a purely qualitative theorem,

because it only states that every voting procedure can be manipulated at some in-

stance. But one can imagine that different voting procedures are manipulable to

different extents. For instance, one voting procedure maybe allows some voter to

obtain his seventh best alternative instead of his eighth best by misrepresentation,

whereas another voting procedure is more vulnerable to misrepresentation and some

voter can by insincere voting obtain his second best alternative instead of his third

best. However, for every voting procedure there must obviously be a highest rank

that can be obtained by manipulation, and therefore one may ask the following ques-

tion, the answer of which emerged in connection with our analysis of Question 2:

Question 4:What is the best alternative that can be obtained at every

voting procedure by means of manipulation?

This thesis is organized as follows: Chapter 2 provides the general background.

We start with a brief survey ofsocial choice theory, the branch of economics to

which this thesis belongs, but then we consider more closelythe issue ofstrategy-

proofnessand discuss the Gibbard-Satterthwaite theorem.

Chapter 3 and Chapter 4 contain the general notions and results needed to an-

swer the questions proposed in this introduction. More concretely, in Chapter 3,

we considerrestricted preference domains, i.e., domains of preferences that arise

when preferences, for some reasons, can be assumed to have a certain structure, and

it will turn out that some of these domains admit strategy-proof voting procedure,

whereas others do not. We will need restricted preference domains in two ways:

firstly, preferences over subsets have, as indicated above,a certain structure, and
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they will thus constitute a restricted preference domain; secondly, also the single-

peaked preferences in Question 3 constitute a restricted preference domain.

In Chapter 4, we introduce appropriate notions to describe the structure of pre-

ferences over subsets, and we will also show that preferencedomains that satisfy

a certain general condition do not admit strategy-proof voting procedures, a result

which we will need in order to answer Question 2.

In Chapter 5, we are then sufficiently prepared to analyze whether strategy-proof

social choice of fixed-sized subsets is possible, and we willanswer the questions

proposed above. Chapter 5 contains also a survey of related literature.

Chapter 6, finally, summarizes the results of this thesis.

This thesis also contains two appendices: Appendix A explains the mathema-

tical notations and techniques used in the formalizations and proofs in this thesis,

and it is therefore a good starting point for the mathematically inexperienced reader.

Appendix B contains a complete and elementary proof of the Gibbard-Satterthwaite

theorem, the main result of strategy-proof social choice theory.

Throughout this thesis, we use a larger number of notations and terms with a

very precise meaning, and therefore we found it appropriateto provide both a list

of notations and an index at the end of the thesis.
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2 Social Choice Theory and Strategy-proofness

THIS THESIS GIVESa contribution to strategy-proof social choice theory. In order

to introduce the reader to this branch of economics and to clarify the theoretical

background of this thesis, we present in this chapter an overview over the main

issues and results in social choice theory in general and in strategy-proof social

choice theory in particular.

2.1 What is Social Choice Theory?

The founder of social choice theory and Nobel Laureate Kenneth Arrow begins

his classical monographSocial Choice and Individual Valueswith the fundamen-

tal observation that “in a capitalist democracy there are essentially two methods by

which social choices can be made: voting, typically used to make ‘political’ de-

cisions, and the market mechanism, typically used to make ‘economic’ decisions”

(1963, 1). Political decision making consists of course also of debate, negotiation,

and compromise, for example, but the final decision is in deedmost often made

by voting. While the market mechanism is studied in traditional microeconomics,

the decision making by voting is systematically studied in the field of social choice

theory. A voting can be carried out in different ways, which is illustrated by the

following two examples, and it is therefore of interest to study voting procedures

theoretically.

Example 2.1.The probably simplest voting procedure is the(ordinary) majority

rule, where every voter has exactly one vote, which he can cast on one of the

available alternatives, and the alternative that get most votes will be elected. To

be well-defined, this method must be supplemented by an appropriate tie-breaking

rule, which for example can be drawing of lots.

Example 2.2.A more sophisticated voting procedure than the majority rule is the

Borda count. This procedure takes the voters’ entire ranking of the available alter-

natives into account by allowing the voters to assign pointsto every alternative. For

instance, when there are three alternatives, then voters are allowed to assign three

points to one alternative, two points to a second, and one point to the remaining

alternative, and the alternative that get most points in total will be elected.

The majority rule and the Borda count are only two thinkable voting procedures.

In fact, the number of all possible voting procedures is enormous. For example,

when three voters have to choose one of three alternatives byvoting, then there
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are approximately 10103 different voting procedures that can be used to carry out

this voting,2 which should be compared with the number of particles in the uni-

verse which sometimes is claimed to be 1080. Different voting procedures can of

course lead to different social outcomes, which has consequences for the members

in the society, and the choice of voting procedure should therefore be carried out

with carefulness. In social choice theory, one specifies hence criterions that a vot-

ing procedure preferably should satisfy, and analyzes thenwhich voting procedures

actually satisfy these criterions.

In the remainder of this section, we present the main result in social choice

theory,Arrow’s theorem, which shows that the possibility to construct voting pro-

cedures with desirable properties has strong theoretical limitations. But first, we

introduce the basic assumptions and notations used in this thesis to formalize the

analysis of voting procedures: We will consider a society consisting ofN individu-

als, and we will use the setI = {1,2, . . . ,N} to index these individuals. The society

is facing a set of alternatives, denoted byA , which containsM elements and from

which one alternative must be chosen.3 We will assume that the individuals in the

society havepreferencesover the alternatives inA , which will be denoted by the

letterP, often equipped with an index or primes, and disregarded from Chapter 4,

we will assume that preferences satisfy the following properties:

Completeness.A preferenceP can rank any pair of alternatives, which means that

if a andb are two distinct alternatives inA , thenP either prefersa to b, or b

to a, and in casea is preferred tob by P, we shortly writeaPb.

Antisymmetry.A preferenceP is strict in the sense that ifP prefersa to b, then it

cannot preferb to a. Note that this assumption excludes the possibility of

indifference between two alternatives.4

Transitivity. If a preferenceP prefersa to b andb to c, then it must also prefera

to c. This assumption makesP’s ordering of the alternatives inA internally

consistent.
2This number can be derived in the following way: Each voter can choose his top alternative in

three possible ways, after which his second alternative must be one of the two remaining ones, and

the last alternative is then fixed. Hence, each voter can rankthe three alternatives in 3· 2 · 1 = 6

ways. Since there are three voters, a voting procedure must thus be able to generate an outcome for

6 ·6 ·6 = 216 different preference profiles. Choosing one of the threepossible alternatives for each

preference profile gives then 3216≈ 10103 different voting procedures.
3Both the number of individualsN and the number of alternativesM are assumed to be finite.
4If there are infinitely many alternatives available, then this assumption is too restrictive, but it

seems justifiable in the present context.
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A preferenceP satisfying these three properties ranks the alternatives in A in a

strict order, and we will use the notationrk(P) to refer to the alternative that is

ranked on thekth place byP. In particular,r1(P) is that alternative inA which

is preferred to all other alternatives byP, and it is also called thetop alternative

of P. The set of all preferences over the alternatives inA satisfying the properties

above will be referred to as theset of unrestricted preferencesoverA and will be

denoted by the Greek letterΣ. The preference of individuali will be denoted by

Pi, and we denote further byP = (P1,P2, . . . ,PN) the collection of all individual

preferences, and callP a preference profile. We will frequently investigate how a

social choice is affected when individuali changes his preferences, and thereby, it

will be convenient to denote preference profiles by

(Pi,P−i) = (P1,P2, . . . ,Pi−1,Pi,Pi+1, . . . ,PN),

whereP−i thus stands for the preference profile of all individuals in the society apart

from individual i. So far, society was somewhat imprecisely supposed to make

its choice using somevoting procedure. From now on, we will be more specific

and assume that social choice is made using asocial choice function f: ΣN → A

that assigns to every preference profile a unique alternative, thesocial choice. If

a∈ A is the social choice for the preference profileP = (P1,P2, . . . ,PN), we write

f (P1,P2, . . . ,PN) = a, or f (Pi,P−i) = a, or just f (P) = a.

The first rigorous analysis of to what extent it is possible toaggregate individual

preferences in a desirable way was carried out by Kenneth Arrow in the monograph

Social Choice and Individual Values, which was published in 1951 and which can

be seen as the starting-point of social choice theory. For theoretical reasons, Arrow

did not study social choice functions, butsocial welfare functions, that is, functions

of the form F : ΣN → Σ that aggregate preference profiles to a social preference

over the alternatives inA .5 By definition, a social welfare function is required to

assign toeverypreference profile auniquesocial preference, and in addition, Arrow

requires a social welfare function to have the following three properties:6

Pareto optimality.A social welfare function should respect unanimity in the society

in the sense that if all individuals prefera to b, then also the socially chosen

5Arrow’s social welfare functions are actually more generalthan presented here since he allows

individual preferences to beweak, i.e., preferences do not need to satisfy antisymmetry. However,

to keep the exposition simple, we assume throughout this thesis that preferences are antisymmetric.
6Arrow’s conditions for a social welfare function exist in different variants in the literature, and

the exposition here follows closely Mas-Colell et al. (1995, 792–96). For an extensive discussion of

Arrow’s conditions, we refer to Arrow (1963, 22–33).
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preference prefersa to b. Formally, this means that if(P1,P2, . . . ,PN) ∈ ΣN is

such thataPi b for all i ∈ I andF(P1,P2, . . . ,PN) = P̄, then alsoaP̄b.

Independence of irrelevant alternatives.A social welfare function should rank any

pair of alternativesa,b ∈ A only depending on how the individuals in the

society ranka andb, but not on how they rank other alternatives. Formally,

this means that ifP andP ′ are two preference profiles that ranka andb

equally in the sense thataPi b if and only if aP′

i b for all i ∈ I, thenaF(P)b

if and only if aF(P ′)b.

No dictatorship.A social welfare function should not bedictatorial, that is, there

should be no individual that alone decides on the socially chosen preference.

Formally, this means there should be noi ∈ I such thatF(P1,P2, . . . ,PN) = Pi

for all preference profiles(P1,P2, . . . ,PN) ∈ ΣN.

These conditions may seem to be weak and uncontroversial requirements, but they

are nevertheless incompatible, which Arrow showed in his impossibility theorem:

Theorem 2.1 (Arrow’s Impossibility Theorem). Suppose thatA is a finite set of

at least three alternatives. Then every social welfare function F : ΣN → Σ that satis-

fies the conditions of Pareto optimality and independence ofirrelevant alternatives

is dictatorial.

Note that Arrow’s analysis consists both of anormativepart, in which he formulates

his conditions for a social welfare function, and apositivepart, where he shows the

incompatibility of the required conditions. We will not present a proof of Theo-

rem 2.1,7 but we illustrate by an example that even a widely accepted voting proce-

dure as the majority rule may lead to unsatisfactory outcomes.

Example 2.3 (The Condorcet Paradox).Consider a small society consisting of three

individuals that want to order the alternatives in the setA = {a,b,c} using the ma-

jority rule, i.e., one alternative will be socially preferred to another alternative if and

only if at least two individuals prefer the former to the latter. Note that the majority

rule is well-defined for all preference profiles, it is non-dictatorial, and it satis-

fies the conditions of Pareto optimality and independence ofirrelevant alternatives.

Suppose now that the three individuals have the preferencesP1, P2 respectivelyP3,

which order the alternatives inA according to

a P1 b P1 c, b P2 c P2 a, respectively c P3 a P3 b.

7For a formal proof of Arrow’s impossibility theorem, we refer to Arrow (1963, 51–59) or Mas-

Colell et al. (1995, 796–799).
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Applying the majority rule, we find that the society prefersa to b, b to c, but alsoc to

a. Hence, the majority rule leads in this case not to a transitive social preference, and

is therefore neither able to rank the alternatives inA in an unambiguous order.

In many practical voting situations, society is of course not primarily interested in

obtaining a social ranking of all available alternatives, but wants only to choose one

of the alternatives using a social choice function. This seems to be a simpler prob-

lem, but it turns out that an analysis similar to that for social welfare functions also

can be carried out for social choice functions. For example,Mas-Colell et al. (1995,

807–8) formulate the following three conditions for socialchoice functions:

Monotonicity. A social choice functionf : ΣN → A should react in the right way

when the members in the society change their preferences in the sense that if

an individual moves an alternative up in his preference order, then this should

not worsen that alternatives chance to be elected. Formally, this means that if

P andP
′ are two preference profiles such thatf (P) = a andaPi b implies

aP′

i b for all i ∈ I andb∈ A , then we should also havef (P ′) = a.

Pareto optimality.A social choice functionf : ΣN →A should respect unanimity in

the society in the sense that if all members prefera to b, then the social choice

should not beb, i.e., if aPi b for all i ∈ I, then we should havef (P) 6= b.

No dictatorship.A social choice function should not have adictator, that is, an

individual that alone decides on the social choice. Formally, this means that

there should be noi ∈ I such thatf (P1,P2, . . . ,PN) = r1(Pi) for all preference

profiles(P1,P2, . . . ,PN) ∈ ΣN.

In analogy with Arrow’s theorem, we have the following impossibility result for

social choice functions:8

Theorem 2.2. Suppose thatA is a finite set of at least three alternatives. Then

every social choice function f: ΣN →A that satisfies the conditions of monotonicity

and Pareto optimality is dictatorial.

Arrow’s theorem and Theorem 2.2 are strong theoretical limitations for the pos-

sibility to carry out a voting in a satisfactory way, but it must be pointed out, as

Mas-Colell et al. (1995, 799) does, that “it would be too facile to conclude from it

that ‘democracy is impossible’. What it shows is somewhat else—that we should

8In fact, Theorem 2.2 is not an independent result, but Mas-Colell et al. (1995, 809–11) show

that it is an almost immediate consequence of Arrow’s theorem.
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not expect a collectivity of individuals to behave with the kind of coherence that we

may hope from an individual.”

This section provided only a short introduction to the main issues of social

choice theory. For a readable and more general introductionto the problems of

social choice theory, we refer to the Nobel lecture “The possibility of social choice”

by Amartya Sen (1999), which also contains an extensive reference list over the

immense literature in this branch. A formal and rigorous survey of the fundamental

concepts and results in social choice theory can be found in the fifth part of Mas-

Colell et al. (1995), and for an overview over present research interest in social

choice theory, see Bossert and Weymark (2006).

2.2 Strategy-proof Social Choice Theory

The demands of monotonicity and Pareto optimality we made onsocial choice func-

tions in the previous section are of course somewhat arbitrary, and one can there-

fore ask whether there exist other desirable properties that can be satisfied by so-

cial choice functions. In the sub-branch of social choice theory that is known as

strategy-proof social choice theory, one investigates under what conditions social

choice functions can bestrategy-proofin the sense that voters never can gain from

misrepresenting their preferences and hence have no incentives to vote tactically.

Below, we explain to what extent strategy-proof social choice is possible, but

first, we consider some normative motivations for why strategy-proofness can be re-

garded a desirable property of a social choice function. In general, tactical voting

appears ethically unappealing to many people because in a voting, society assigns

one vote to every voter, and one can find that a voter who misrepresents his prefer-

ences in order to gain from this tries to take more influence than he has a right to.

Moreover, strategy-proofness simplifies voting for the rational voter since any

kind of misrepresentation can give at most the same outcome as sincere voting. In

particular, in strategy-proof votings, voters need not worry about whether honest

voting may be disadvantageous to them.

Strategy-proofness can thus be a normatively desirable property on its own, but

it can also be a means to achieve other goals: Often, the construction of a specific

voting procedure is based on some normative desires. If, forexample, the consti-

tuting assembly in a country is of the opinion that the national parliament should

be a miniature copy of the whole population, then a proportional voting system, by

which a party’s share of seats in the parliament approximately equals the party’s

share of votes in the elections, is a good choice, and it is implemented for instance

in Sweden. On the other hand, if it, in order to guarantee political stability, is desir-
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able that the winning party in the elections is able to governon its own, then some

form of plurality voting, where the country is divided into electoral districts and the

candidate that receives most votes in a district takes a seatin the parliament, should

be adopted, and such a voting procedure is for example used inthe United King-

dom. The realization of such normative goals may, however, depend on whether the

individuals in the society vote sincerely, and the designerof a voting procedure can

only be sure that it works in the intended way if it is strategy-proof.

Example 2.4.To see that the lack of strategy-proofness can have far-reaching con-

sequences, consider the following situation: Suppose thatthe elections to the na-

tional parliament in a country are carried out using a proportional voting system

with a threshold of four per cent, which means that parties that receive less than

four per cent of the votes take no seats in the parliament at all. Assume now that a

small party is the top alternative of five per cent of the voters. This information is

of course not available to anyone, so when it comes to elections, supporters of this

party may fell unsure about whether it will clear the threshold, and at least some

voters will therefore vote for another party since they do not want to waste their

votes. In the end, this may lead to that the party gets less than four per cents of

the votes. Hence, the lack of strategy-proofness can cause people to vote tactically,

which, as in this case, even can be disadvantageous to them, and we note that the

voting procedure above does not work in the intended way because a party with a

support of five per cent should belong to the parliament.

On the other hand, the importance of strategy-proofness should not be overempha-

sized, because one can object as Sen (1970, 195) that in elections “individuals are

guided not so much by maximization of expected utility, but by something much

simpler, viz., just a desire to record one’s true preference.”

We will now formalize the analysis of strategy-proof socialchoice, starting with

the following definition:

Definition 2.1 (Manipulability and Strategy-proofness). A social choice function

f : ΣN → A is said to bemanipulableif there for somei ∈ I existPi ,P′

i ∈ Σ and

P−i ∈ ΣN−1 such that

f (P′

i ,P−i) Pi f (Pi,P−i) (2.1)

If f is not manipulable, we say thatf is strategy-proof.

Note that manipulation not only means that an individual misrepresents his pref-

erence, but that he also changes the social choice and gains from doing so. We

illustrate by an example.
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Example 2.5.Suppose that two individuals want to choose one of the alternatives

in the setA = {a,b,c,d} using the Borda count, i.e., they assign four points to

their first, three points to their second, two points to theirthird, and one point to

their fourth alternative, and the alternative with most points in total will be elected.

Assume that the two individuals have the preferencesP1 respectivelyP2, defined by

a P1 b P1 c P1 d and b P2 c P2 a P2 d.

If both individuals vote sincerely, alternativeb will be elected with seven points.

However, if individual 1 pretends that his preference instead of P1 is P′

1, defined

by aP′

1 d P′

1 cP′

1 b, then alternativeb gets only five points and alternativea will be

elected with six points. Thus, by misrepresentation, individual 1 can change the

social choice and obtain his top alternative instead of his second alternative.

On the other hand, it is also possible to find voting procedures that are strategy-

proof, which the following three examples show:

Example 2.6.Consider a society with an odd number of individuals and suppose

that the set of alternatives consists of the two alternatives a andb. In this case, the

majority rule is well-defined and obviously strategy-proofbecause if you prefera

to b, then the only way to misrepresent your preference is to castyour vote onb,

but this will never make you better off.

Example 2.7.Suppose now that the set of alternatives isA = {a,b,c}, but that the

social choice functionf : ΣN →A is such thatf (P) = a for all preference profiles

P ∈ ΣN. Also this social choice function is obviously strategy-proof because no

individual can ever change the social choice by misrepresentation.

Example 2.8.Consider finally the following voting procedure which involves an

element of chance and works for any number of alternatives: The individuals in the

society are asked to write down their top alternative on ballots, and the social choice

is determined by drawing one of the ballots at random. Also this voting procedure is

strategy-proof because if your ballot is drawn, you are bestoff if you have reported

your true top alternative, but if your ballot is not drawn, itdoes not matter what

alternative you have reported.9

The voting procedures in these three examples have of coursesome shortcomings:

The majority rule for two alternatives in Example 2.6 is certainly strategy-proof,

but it is not obvious whether it is strategy-proof when the number of alternatives

9This example has been taken from Gibbard (1973, 593).
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becomes larger than two. Next, the constant social choice function in Example 2.7

is not efficient because even if all individuals have the sametop alternative, the

social choice can nevertheless differ from this alternative. Finally, the voting proce-

dure from Example 2.8 can seem unsatisfactory since it leaves too much to chance,

and even alternatives with little support can be elected. However, if we go beyond

these limitations and consider voting procedures that (1) work for at least three alter-

natives, (2) satisfy unanimity in the society in the sense that if all individuals agree

on the same top alternative, then this alternative will alsobe the social choice,10

and (3) whose outcome only depends on the preferences of the individuals in the

society, and not, for example, on chance, which means that the voting is carried out

using a social choice function, then we obtain again an impossibility result:

Theorem 2.3 (The Gibbard-Satterthwaite Theorem).Let A be a finite set of at

least three alternatives, and suppose that f: ΣN → A is a social choice function

that satisfies unanimity. Then f is strategy-proof if and only if f is dictatorial.

The Gibbard-Satterthwaite theorem, proved independentlyby Gibbard (1973) and

Satterthwaite (1975), is the fundamental result in strategy-proof social choice the-

ory, and because of its importance, we present a formal proofin Appendix B. In

the following, we will briefly discuss the significance of theGibbard-Satterthwaite

theorem. Note first that the interesting part of the theorem is not that a dictatorial

social choice function is strategy-proof, which is quite obvious, but it is the other

implication, namely that every non-dictatorial social choice function that satisfies

unanimity is manipulable, which is important. A direct consequence of this is,

for example, that the ordinary majority rule and the Borda count are manipulable,

provided that the number of alternatives is at least three. Note next that the Gibbard-

Satterthwaite theorem only implies that a non-dictatorialsocial choice function is

manipulable atsomepreference profile, but it does not tell us at which preference

profiles this is the case, nor in which way voters have to misrepresent their prefer-

ences in order to be better off. In practice, most social choice functions are actually

non-manipulable at most preference profiles, and in secretevotes, it is in general

impossible for voters to know whether they are in a position to manipulate a voting.

However, when a social choice function is manipulable, it isoften enough for a voter

to have a vague understanding of other voters’ preferences in order to know how to

use his vote in the most beneficial way. Note also that Theorem2.3 only says that

some individual at some preference profile can be better off if he misrepresents his

preference, but it contains no information about how much anindividual can gain

10Formally, we say that a social choice functionf : ΣN → A satisfies unanimity if

f (P1,P2, . . . ,PN) = a wheneverr1(Pi) = a for all i ∈ I.
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from misrepresentation. In Chapter 4, however, we show thatevery non-dictatorial

social choice function that satisfies unanimity can be manipulated in such a way

that some individual obtains at least his second best alternative.

Finally, we would like to remark that strategy-proof socialchoice theory is not

unrelated to the issues of social choice theory considered in the previous section,

as it might appear at first glance. In fact, the following two lemmas show that a

strategy-proof social choice function that satisfies unanimity also satisfies mono-

tonicity and Pareto optimality. The formulation and proofsof Lemma 2.4 and 2.5

follow closely the exposition in Svensson (1999).

Lemma 2.4 (Monotonicity). If f : ΣN → A is a strategy-proof social choice func-

tion, then f satisfies monotonicity.

Proof. We must show that ifP andP
′ are preference profiles such thatf (P) = a

andaPi b impliesaP′

i b for all i ∈ I andb∈ A , then alsof (P ′) = a. To this end,

suppose first that only individual 1 changes his preference.We argue by contra-

diction and assume thatf (P ′) = a′ anda′ 6= a. If a′P1a, then individual 1 can

manipulatef by going fromP1 to P′

1, and hence, we must haveaP1a′. But then

we must also haveaP′

1a′, and individual 1 can manipulatef by going fromP′

1

to P1. Thus, the assumptiona′ 6= a must have been wrong, and we conclude that

f (P ′) = a. The lemma follows now when we change the preferences only for

individual 2, individual 3, and so forth.

Lemma 2.5 (Pareto Optimality). If f : ΣN → A is a strategy-proof social choice

function that satisfies unanimity, then f satisfies Pareto optimality.

Proof. We have to show that ifa and b are two distinct alternatives inA and

(P1,P2, . . . ,PN)∈ΣN is a preference profile such thataPi b for all i ∈ I, then we have

f (P1,P2, . . . ,PN) 6= b. We argue by contradiction and assume thatf (P1,P2, . . . ,PN) =

b. Replacing(P1,P2, . . . ,PN) by a preference profile(P′

1,P
′

2, . . . ,P
′

N) with the prop-

erty thatr1(P′

i ) = a andr2(P′

i ) = b for all i ∈ I, we get by monotonicity that also

f (P′

1,P
′

2, . . . ,P
′

N) = b. On the other hand, sincer1(P′

i ) = a for all i ∈ I, unanimity

implies f (P′

1,P
′

2, . . . ,P
′

N) = a, which is a contradiction. Hencef (P1,P2, . . . ,PN) 6= b,

and the lemma is proved.

In the light of these two lemmas, the Gibbard-Satterthwaitetheorem can be seen

as a direct consequence of Theorem 2.2, but Lemma 2.4 and 2.5 play also an im-

portant role in the direct proof of the Gibbard-Satterthwaite theorem presented in

Appendix B. Lemma 2.4 and 2.5 are presented here with their proofs because in

Chapter 4 we will need to derive weaker variants of these two lemmas.
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3 Restricted Preference Domains

IN THIS CHAPTER, we begin to introduce the theoretical tools we will need in order

to investigate to what extent strategy-proof social choiceof fixed-sized subsets is

possible. In many voting situations, it is reasonable to assume that voters’ prefer-

ences have a certain structure, and some structures turn outto admit non-dictatorial

strategy-proof social choice functions, whereas others donot. In this thesis, such

structures, orrestricted preference domains, come up in two ways: Firstly, in Chap-

ter 5, we will analyze the structure of preferences over fixed-sized subsets, and we

will need a criterion to decide whether this structure admits non-dictatorial strategy-

proof social choice functions. Secondly, in many practicalvotings, e.g., in political

elections, it is reasonable to assume that voters’ preferences have a structure that

is known assingle-peakedness. These preferences are of special interest because

they admit non-dictatorial strategy-proof social choice functions when society must

choose one alternative, and therefore, we proposed Question 3 in the introduction

and asked whether the same is true for the social choice of fixed-sized subsets. This

chapter is disposed as follows: Section 3.1 provides a briefintroduction to the con-

cept of restricted preference domains. In Section 3.2, we introduce single-peaked

preferences and demonstrate the existence of non-dictatorial strategy-proof social

choice functions on this kind of preference domains. In Section 3.3, finally, we

consider the notion oflinked domains, which in a modified form will be applied to

the structure of preferences over subset of a fixed size.

3.1 Restricted Preferences and Strategy-proof Social Choice

One of the assumptions in the Gibbard-Satterthwaite theorem is that the social

choice function has the formf : ΣN → A , which means thatf is defined forall

possible preference profiles, and the individuals in the society are thus implicitly

assumed to be capable of having any of the preferences inΣ as their true prefer-

ence. Often, however, this may be an unnecessarily general assumption, because

one can argue as Sen (1970, 165) that “individual preferences are determined not

by turning a roulette wheel over all possible alternatives,but by certain specific so-

cial, economic, political and cultural forces”, and “this may easily produce patterns

in the set of individual preferences”. As a consequence of this, we may in a given

context have reason to classify some preferences as unreasonable and therefore ex-

clude them from the set of admissible preferences. This is ofinterest because it

will allow us to construct non-dictatorial strategy-proofsocial choice functions. To
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see this, recall that a social choice functionf by definition is manipulable at the

preference profile(Pi,P−i) if

f (P′

i ,P−i) Pi f (Pi,P−i) (3.1)

for some preferenceP′

i . If we now, for some objective reasons, can assume that no

individual in the society hasPi as his true preference, thenf can only theoretically

be manipulated at(Pi,P−i), but in practice, this will never happen. If we can exclude

sufficiently many of the preferences inΣ, so that there no longer exists a preferences

profile (Pi,P−i) satisfying (3.1), then we end up with a social choice function that

obviously is strategy-proof.11 We illustrate this by a simple example.

Example 3.1.Suppose a society has to choose a macroeconomic policy that affects

the rate of inflation and the rate of unemployment (and only these). There are three

policies available, and they are known to lead to the following outcomes:

Inflation Unemployment

Policy A 2 % 4 %

Policy B 4 % 2 %

Policy C 4 % 4 %

Since the number of alternatives is greater than two, there are according to the

Gibbard-Satterthwaite theorem no non-dictatorial strategy-proof social choice func-

tions that the society can use to make its decision. But take acloser look on the three

policies. It seems reasonable that the individuals in the society at a given rate of un-

employment will prefer a lower rate of inflation to a higher rate, i.e., they will prefer

Policy A to Policy C. Similarly, at a given rate of inflation, alower rate of unem-

ployment seems more desirable than a higher rate, so the individuals in the society

can be assumed to prefer Policy B to Policy C. On the other hand, the members

in the society may disagree on whether low inflation or low unemployment is more

important, so an individual may prefer Policy A to Policy B, or vice versa. Consider

now the setΣ of unrestricted preferences over the three policies, whichcontains the

following six preferences:

P1 P2 P3 P4 P5 P6

A B A B C C

B A C C A B

C C B A B A

11Note, however, that one is not allowed to exclude a preference without reason, but one needs an

acceptable economic motivation for doing so.
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According to the discussion above, onlyP1 andP2 will appear as true preferences

among the members in the society. But now we can easily find a strategy-proof

social choice function. For instance, the majority rule, which chooses Policy A

if most voters reportP1 and Policy B if most voters reportP2, is strategy-proof,

non-dictatorial, and satisfies unanimity.

The set of all preferences that are admissible in a certain context will in general be a

strict subsetΩ of Σ, andΩ will then be said to be arestricted (preference) domain.

In Example 3.1, for instance, we haveΩ = {P1,P2}. Precisely as in the case of unre-

stricted preferences, we will say that a social choice function f : ΩN →A is manip-

ulableif there existPi ,P′

i ∈Ω andP−i ∈ ΩN−1 such that (3.1) holds, but note that all

preferences in (3.1) are now assumed to belong toΩ. The restricted preference do-

main in Example 3.1 above allowed us to construct a non-dictatorial strategy-proof

social choice function, but we will not be able to do so for allrestricted domains;

with other words, a restricted domainΩ either admits non-dictatorial strategy-proof

social choice functions that satisfy unanimity, or not, andin the latter case, we will

say thatΩ is adictatorial domain.

In the literature of strategy-proof social choice theory, restricted preference do-

mains are studied from two different perspectives that complement each other: On

the one hand, one is interested in to describe the structure of restricted domains that

come up in a given context as a consequence of the nature of theavailable alterna-

tives in combination with the economic incentives of the individuals in the society

(see for instance Section 3.2). On the other hand, after having derived the struc-

ture of a certain restricted preference domain, one wants ofcourse to know whether

this domain admits non-dictatorial strategy-proof socialchoice functions, and there-

fore, a number of criteria has been developed to decide whether a given domain is

dictatorial or non-dictatorial (see for instance Section 3.3). Note that the first two

questions from the introduction combine these two aspects:Question 1 asks us to

derive the structure of preferences over subsets of a fixed size, while Question 2

then asks whether this structure admits non-dictatorial strategy-proof social choice

functions.

Finally, we would like to remark that a thorough introduction to restricted pref-

erence domains can be found in Sprumont (1995), and for a detailed survey of the

most important restricted domains in social choice theory,we refer to the mono-

graph of Gaertner (2001).
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3.2 Single-peaked Preferences

The most common type of restricted preference domains is theclass ofsingle-

peaked preferences, introduced by Black (1948) in order to model political pre-

ferences. It turns out that when the individuals in a societyhave single-peaked

preferences, then the method of majority decision will leadto a transitive ordering

of the available alternatives, which thus implies an escapefrom the impossibility

result of Arrow’s theorem. In strategy-proof social choicetheory, single-peaked

preferences are of similar interest because they admit non-dictatorial strategy-proof

social choice functions, and it is therefore natural to ask whether the same is true

for the social choice of fixed-sized subsets, whence we proposed Question 3 in the

introduction. In the following, we illustrate how single-peaked preferences come

up in applications, we present an appropriate formalization of single-peaked pref-

erences, and we demonstrate the existence of a non-dictatorial strategy-proof social

choice function on a domain of single-peaked preferences.

We begin with a political example. Suppose that the parties in an election can

be ordered on a traditional left–right scale in the following way:

Strongly left
party (SL)

–
Modestly left
party (ML)

–
Center

party (C)
–

Modestly right
party (MR)

–
Strongly right

party (SR)

If your most preferred party isC, then it seems reasonable that you will preferMR

to SR, and alsoML to SL. Similarly, if your top alternative isML, then you should

preferC to MR andMR to SR.

Consider next, as an economic example, possible preferences over the rate of

inflation in a country. If you think that the optimal rate of inflation is two per cent,

then you will probably prefer three per cent inflation to fourper cent when the

choice is between these two alternatives, and similarly, choosing between one per

cent inflation and zero inflation, you prefer probably the former to the latter.

In both examples, the available alternatives can be orderedon a line, every indi-

vidual can be assumed to have a most preferred alternative, thepeak, and the more

we get to the left respectively to the right of the peak, the less preferred are the al-

ternatives. This is the structure that defines single-peaked preferences. We will now

formalize this structure, and thereby, we follow closely the exposition in Mas-Colell

et al. (1995). To begin with, the fact that alternatives can be ordered on a line will

be modelled mathematically by alinear order:

Definition 3.1 (Linear Order). A (strict) linear orderon a setA of alternatives is

a binary relation≺ onA that is complete, antisymmetric, and transitive.
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If ≺ is a linear order onA anda≺ b, we say thata lies to the left ofb, or equiva-

lently, thatb lies to the right ofa. We will use the notationa 4 b to indicate that

eithera≺ b or a = b. Sometimes, we also writea≻ b (or a < b) instead ofb≺ a

(or b 4 a). Starting with a linear order, a preference is single-peaked if alternatives

are more desirable the closer they are to the most preferred alternative, or formally:

Definition 3.2 (Single-Peaked Preference).A preferenceP over the alternatives in

A is said to besingle-peakedwith respect to the linear order≺ if

r1(P) 4 a≺ b =⇒ aPb

and r1(P) < a≻ b =⇒ aPb.
(3.2)

Preferences that satisfy (3.2) are called single-peaked because if the set of alterna-

tives is a continuous variable, like the rate of inflation in the example above, then

a single-peaked preference can be represented by utility function that is strictly in-

creasing to the most preferred alternatives and then strictly decreasing, i.e., it has a

single peak.

If a setA is equipped with a linear order≺ and the number of individuals in the

society is odd, then it is possible to define a social choice function that respects the

underlying order of the alternatives. Consider first an example where a society has

to choose one of four alternatives that are ordered according to a1 ≺ a2 ≺ a3 ≺ a4,

and suppose that a voting results in:

Alternative a1 a2 a3 a4

Number of votes 3 1 1 2

Here, alternativea2 can be claimed to be the natural outcome of this voting because

it has equally many votes to its left as to its right. An alternative with this property

is called amedian alternative:

Definition 3.3 (Median Alternative). Suppose that the setA of alternatives is

equipped with a linear order≺, and letP ∈ ΣN be a preference profile. An alterna-

tive ā is said to be amedian alternativefor P if

♯
{

Pi ∈ P; r1(Pi) < ā
}
≥ N

2

and ♯
{

Pi ∈ P; r1(Pi) 4 ā
}
≥ N

2
.

(3.3)

One can show that every preference profile has a median alternative, and in addition,

whenN is odd, then the median alternative turns out to be unique. Inthis case, one

can thus define a social choice functionf that assigns to each preference profile
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its median alternative, and this social choice function is known as themedian rule.

The median rule is of interest in this thesis because it is strategy-proof if preferences

are single-peaked, a result which for instance can be found in Sprumont (1995) or

Barberà (2001):

Theorem 3.1. Let A be a set of alternatives equipped with a linear order≺, and

suppose that the number of individuals in the society is odd.If Ω is a domain of

preferences overA that are single-peaked with respect to≺, then the median rule

f (P) = median(P) for all P ∈ ΩN

is strategy-proof.

The median rule is of course non-dictatorial and satisfies unanimity, so Theorem 3.1

shows that strategy-proofness and non-dictatorship do notexclude each other when

preferences are single-peaked. It is straight forward to argue why Theorem 3.1 must

hold: Suppose that the median rule applied to the preferenceprofileP leads to the

social choice ¯a. If your own top alternative equals ¯a, then you can obviously not

gain from misrepresentation. Consider therefore the case when your top alternative

a differs from ā and is located, say, to the right of ¯a, and suppose you are think-

ing of your possible gains from voting for some alternativea′ instead of your true

preferencea. If a′ also lies to the right of ¯a, or equals ¯a, then none of the cardinali-

ties in (3.3) is affected, and your misrepresentation has thus no effect on the social

choice. On the other hand, ifa′ lies to the left of ¯a, then either the median remains

unaffected, or it is moved to the left, i.e., further away from your top alternative.

Misrepresentation will therefore never be beneficial for you, and the median rule is

thus strategy-proof.

In Chapter 5, we show that the median rule can be generalized to a social choice

function for the social choice of fixed-sized subsets, and ifpreferences are single-

peaked, then also this social choice function will turn out to be strategy-proof.

3.3 A Theoretical Tool: Linked Domains

The single-peaked preference domains considered in the previous section come up

naturally in specific political or economic contexts, and they are easily accessible

to economic intuition. On the contrary, the interest in linked domains, which we

will discuss in this section, is not economicly motivated, but by the fact that linked

domains provide a sufficient theoretical criterion for a domain to be dictatorial.
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Linked domains have been introduced in Aswal et al. (2003), and Definition 3.4,

Definition 3.5, and Theorem 3.2 in this section have been taken from this paper.

Recall from Section 3.1 that a restricted preference domainmust contain suffi-

ciently many preferences in order to be dictatorial. The criterion of linked domains

shows that a domain is dictatorial if we can find sufficiently many inversions of al-

ternatives in the top of the preferences. This will be made precise below, but first,

we illustrate the underlying idea by an example: LetΩ be a preference domain over

the setA = {a,b,c}, and consider the following preferences, which are supposed

to belong toΩ:
P1 P2 P′

2

a b b

b a c

c c a

Note thata and b appear in inverted order in the top ofP1 respectivelyP2, and

we will show that the existence of such preferences implies that every strategy-

proof social choice function onΩ is at least partly dictatorial.12 For simplicity we

consider only the case when there are two individuals in the society, so suppose now

that f : Ω2 → A is a strategy-proof social choice function that satisfies unanimity.

Our first observation is that we because of Pareto optimality(Lemma 2.5) either

have f (P1,P2) = a or f (P1,P2) = b, and we assume here thatf (P1,P2) = a. Simi-

larly, Pareto optimality implies also thatf (P1,P′

2) ∈ {a,b}, but if f (P1,P′

2) = b,

then individual 2 would be able to manipulatef by representingP′

2 instead ofP2.

Hence, we havef (P1,P′

2) = a, and monotonicity (Lemma 2.4) implies then that the

social choice must bea whenevera is the top alternative of individual 1, and thus,

individual 1 can be said to be a dictator for alternativea.

If there exist preferencesP1 andP2 such thata andb are the two top alternatives

in these preferences, but in inverted order, which was essential for the argument

above, then we say thata andb areconnected:

Definition 3.4 (Connectedness of Two Alternatives).Let A be a set of alterna-

tives, and suppose thatΩ is a restricted preferences domain overA . Two alterna-

tivesai,a j ∈ A are said to beconnectedin Ω if there exist bothP ∈ Ω such that

r1(P) = ai andr2(P) = a j , andP′ ∈ Ω such thatr1(P′) = a j andr2(P′) = ai. If ai

anda j are connected, this will be denoted byai ∼ a j .13

12The following argument has been taken from Svensson (1999).
13Like the definition of connectedness of two alternatives, also the notationai ∼ a j has been intro-

duced by Aswal et al. (2003). There is no reason to deviate from it here, but we would like to point
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For example, in the setΣ of unrestricted preferences, all pairs of alternatives are

connected because every alternative can be ranked first and have any other alter-

native on the second rank. In this case, it is easy to extend the argument above

in order to show that every strategy-proof social choice function f : ΣN → A that

satisfies unanimity must be dictatorial, and it is actually in this way we prove the

Gibbard-Satterthwaite theorem in Appendix B.

Before we turn to the criterion of linked domains, we show, for pedagogical

purposes, how the notion of connectedness can be used to understand single-peaked

preferences in a different way than in Section 3.2: Ifa1 ≺ a2 ≺ . . .≺ aM is an under-

lying linear order of the elements inA , then preferences that are single-peaked with

respect to≺ have the property that everyai , with the exception ofa1, is connected

to exactlyone alternative in{a1,a2, . . . ,ai−1}, namely to its direct predecessorai−1.

We saw in the previous section that this structure is sufficiently restrictive to allow

non-dictatorial strategy-proof social choice functions.

More generally, single-peaked preferences satisfy the following condition: The

alternatives inA can be indexed in such way that everyai is connected to at most

one element in{a1,a2, . . . ,ai−1}. Replacingat most onein this condition withat

least twoleads to much less restricted domains, calledlinked domains:

Definition 3.5 (Linked Domains). A preference domainΩ over A is said to be

linked if the alternatives inA can be indexed in a sequencea1,a2, . . . ,aM in such a

way that thata1 ∼ a2 and everyai with i ≥ 3 is connected to at least two alternatives

in {a1,a2, . . . ,ai−1}.

Contrary to domains of single-peaked preferences, linked domains contain suffi-

ciently many preferences to be dictatorial:

Theorem 3.2 (Theorem 3.1 in Aswal et al. (2003)).LetA be a set of at least three

alternatives, and suppose thatΩ is a linked domain overA . Then a social choice

function f : ΩN → A that satisfies unanimity is strategy-proof if and only if f is

dictatorial.

Theorem 3.2 should mainly be seen as a theoretical tool. For example, since the

setΣ of unrestricted preference is obviously linked, the Gibbard-Satterthwaite the-

orem can be obtained as a direct consequence of Theorem 3.2. Note, however, that

out that the symbol∼ is traditionally used in the economic literature to indicate that an individual is

indifferent between two alternatives, see for instance Mas-Colell et al. (1995, 6). However, it should

be clear thatconnectednessandindifferenceare two entirely different concepts.
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the fact that a domain is linked is only a sufficient conditionfor a domain to be

dictatorial, but it is not necessary, see Aswal et al. (2003,46–47).

In this thesis, Theorem 3.2 plays the following role: IfA is a set of alternatives,

then the set of all preferences over subsets ofA of a fixed size has a structure that

is almost that of linked domains, but it consists of preferences that in general are

not complete. In the following chapter, we will therefore generalize Theorem 3.2 to

partial preference relations, and this result will then in Chapter 5 be used to conclude

that non-dictatorial strategy-proof social choice of fixed-sized subsets is impossible

in general.
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4 Partial Preference Relations

and Strategy-proof Social Choice

WE NOTED ALREADY in the introduction that preferences over subsets of a fixed

size can fail to rank some subsets, and we will argue in Chapter 5 that these pref-

erences are best modelled by partial preference relations.Therefore, we present in

Section 4.1 in this chapter a short general introduction to partial preferences and

we introduce some notions to describe their structure. In Section 4.2, we adjust

the notion of linked domains in such a way that it can be applied to preferences

over fixed-sized subsets, and we will generalize Theorem 3.2to a large class of

partial preferences. In Section 4.3, finally, we answer, as afirst application of our

generalization, Question 4 from the introduction.

4.1 Partial Preference Relations

Partial preference relationsare preferences that are antisymmetric and transitive,

but contrary to the preferences considered in the previous two chapters, they are not

necessarily complete, which means that a partial preference may fail to rank some

pairs of alternatives. Partial preferences are thus more general than complete pref-

erences, and every result that holds for partial preferences holds also for complete

preferences. In the economic literature, however, the use of partial preferences is

quite limited because it seems natural to assume that an individual that is facing two

alternativesa andb either prefersa to b, or b to a, or regards them as equally good.

To involve a fourth possible attitude, namely, that the individual does not ranka and

b at all, seems to be a needless complication. In general, however, there are at least

two aspects that can motivate the use of partial preference relations.

Firstly, the nature of available alternatives can be such that they are not unam-

biguously comparable, for example, because they have several independent qual-

ity dimensions that can come into conflict. In essence, this conflict is about how

to compare a comfortable house at an unattractive place witha less comfortable

house at an attractive place. Confronted with such a choice situation, many people

feel uncomfortable and might be unwilling to express any preference. It might be

tempting, at first glance, to consider this inability or unwillingness to rank two al-

ternatives as being the same as indifference. However, in Section 5.1, we will show

that this view leads to a contradiction (see page 50), which means that the absence

of explicit preference or indifference as it is modelled by partial preference rela-

tions differs not only philosophically from complete preferences, but can also lead
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to different, possibly more reasonable, results in the mathematical formalization.

Secondly, facing a number of alternatives people are often truly engaged in only

one or two of them and prefer these to any other alternative, but they are not es-

pecially interested in ranking the remaining alternativesinternally. This kind of

preference structure, which is particularly likely when the number of alternatives is

large, is conveniently modelled by partial preferences.

Beside these general aspects, there are economic applications that give rise to a

more direct need for partial preference relations because the available information

about individual preferences may be insufficient. This is, for instance, the case for

the voting problem considered in this thesis because in Chapter 5, we will show

that if voters have complete preferences over the alternatives in a setA , then these

preferences can be used to rank some subsets ofA , whereas other subsets cannot

be ranked with this information.

In many cases in economics, it may thus be a good choice to model individual

preferences by partial preference relations. Often, however, it will be convenient

to assume that even incomplete preferences have more structure than only antisym-

metry and transitivity, and we introduce now two types of partial preferences with

additional structure. As pointed out above, it is often reasonable to assume that an

individual has a special interest in some of the available alternatives, and the weak-

est economicly meaningful assumption is that an individualat least can point out

one of the alternatives to be his most preferred. Preferences with this property will

be calledtop-1 preference relations:

Definition 4.1 (Top-1 Preference Relation).A partial preference relationP on a

setA of alternatives is said to be atop-1 preference relationon A , if there exists

an alternativea∈ A such that

a P x for all x∈ A \{a}. (4.1)

A set of top-1 preference relations onA will be called atop-1 domain.

If P is a top-1 preference relation, then the alternativea ∈ A satisfying (4.1) is

unique,14 and it will henceforth be denoted byr1(P). Note also, that condition (4.1)

is only a minimal requirement on a top-1 preference and does not exclude thatP

also ranks other alternatives. Starting with the concept oftop-1 preference relations

14This follows easily from the antisymmetry property of a partial preference: Suppose there are

two different alternativesa,a′ ∈ A satisfying (4.1). Then we must have bothaPa′ anda′Pa, but as

this contradicts antisymmetry, we conclude that there can be at most onea∈ A satisfying (4.1).
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it is straight forward to add more structure by requiring notonly a top alternative,

but also a second best alternative:

Definition 4.2 (Top-2 Preference Relation).A top-1 preference relationP on a set

A is said to be also atop-2 preference relationon A , if there exists an alternative

a∈ A \{r1(P)} such that

a P x for all x∈ A \{r1(P),a}. (4.2)

A set of top-2 preference relations onA will be called atop-2 domain, and the

unique elementa satisfying (4.2) will be denoted byr2(P).

Top-2 preferences are introduced in this thesis because preferences over subsets of

a fixed size turn out to have precisely this structure, which we will see in Chapter 5.

But in general, top-2 preferences can also be useful in othereconomic applications,

which the following example illustrates.

Example 4.1.Students at Lund university applying for spring term 2006 had the

possibility to choose among 208 different beginners’ courses. On the application

form, the students were allowed to fill in a main alternative and a reserve alternative.

Most students know that this can be a sufficiently demanding task, and it is not

very reasonable to assume that students have complete preferences over all courses.

Hence, it could be a good idea to model students’ preferencesover courses by top-2

preference relations.

Remark 4.1.After having defined top-2 preference relations from top-1 preference

relations, one can of course continue to add more structure to preference relations

by requiring that an individual is able to report a top of his preferences consisting

of three, four, or generallyk top alternatives, which would lead us to a definition of

top-k preference relations. However, since this more general concept is not needed

in the sequel, we refrain from considering it in detail.

Note finally that a partial preference can be thought of as a part of complete prefer-

ence in the following sense: A complete preferenceP̄ is said to becompatiblewith

the partial preferenceP if any ranking of two alternatives that holds underP also

holds underP̄, that is, if

a P b =⇒ a P̄ b

for all a,b∈A . Given a partial preferenceP, there exists always a complete prefer-

ence compatible withP, and in general there will actually be several such complete

preferences. This result, which is known asSzpilrajn’s theorem, has been proved in

Szpilrajn (1930), and it will be used in Chapter 5.
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4.2 Strategy-proof Social Choice on Linked Top-2 Domains

In this section, we generalize Theorem 3.2 to top-2 preference relations. To begin

with, we re-formulate in Section 4.2.1 the definitions that are used in Theorem 3.2

for top-2 domains, and we state our generalization of Theorem 3.2. This result is

one of the main contributions of this thesis, and we will therefore prove it in detail.

Section 4.2.2 introduces some preparatory results that arefrequently used in the

proof, and Section 4.2.3 contains the complete proof.

4.2.1 Basic Definitions and Statement of the Main Theorem

All notions used in the formulation of Theorem 3.2 have been defined under the

silent assumption that preferences are complete. In the following, we check there-

fore that these definitions can be transferred to top-2 preference relations, and we

introduce also a new notion of manipulability, which is moreappropriate when pre-

ferences belong to a top-2 domain.

The basic scenario is now as follows: A society consisting ofN individuals,

indexed by the setI = {1,2, . . . ,N}, must choose one element from a setA that

containsM alternatives. The individuals are assumed to have top-2 preferences over

the alternatives inA , and the set of all admissible preferences will be denoted by

the Greek letterΓ.15 The social choice is made using a social choice function which

now has the formf : ΓN → A .

The definitions of dictatorship, respect of unanimity, and linked domains can

now be applied almost without modifications, but in order to avoid any confu-

sions, we will re-formulate these definitions explicitly: Asocial choice function

f : ΓN → A is said to bedictatorial if there exists an individuali, the dictator,

such thatf (P1,P2, . . . ,PN) = r1(Pi) for all preferences profiles(P1,P2, . . . ,PN)∈ ΓN.

Next, we will say thatf : ΓN → A satisfiesunanimity with respect to alternative

a∈ A if f (P1,P2, . . . ,PN) = a for all preference profiles(P1,P2, . . . ,PN) ∈ ΓN such

thatr1(Pi) = a for everyi ∈ I, and if f satisfies unanimity with respect to every al-

ternative inA , we simply say thatf satisfiesunanimity. Note that these definitions

can be transferred to top-2 preferences because the top alternative r1(P) is well-

defined for every top-2 preferenceP. Since top-2 preferences also have a second

best alternative, it is also possible to translate the definition of linked domains. To

begin with, we will say that two alternativesai ,a j ∈A areconnectedin a top-2 do-

mainΓ if there exist bothP∈ Γ such thatr1(P) = ai andr2(P) = a j , andP′ ∈ Γ such

15Γ is not necessarily the set ofall top-2 preferences overA , butΓ can be any top-2 domain.
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that r1(P′) = a j andr2(P′) = ai , and ifai anda j are connected, this will as before

be denoted byai ∼ a j . A top-2 domainΓ is said to belinked if the alternatives in

A can be indexed as a sequencea1,a2, . . . ,aM in such a way thata1 ∼ a2 and every

ai with i ≥ 3 is connected with at least two alternatives in{a1,a2, . . . ,ai−1}. For

later use, we introduce also one more notation: IfΓ is a linked top-2 domain and

ai1,ai2, . . . ,ain aren alternatives inA , we will use the short form[ai1,ai2, . . . ,ain] to

indicate that

ai1 ∼ ai2 , ai2 ∼ ai3 , . . . , ain−2 ∼ ain−1 , and ain−1 ∼ ain,

and we will say that[ai1,ai2, . . . ,ain] is achainconnectingai1 with ain. Note that if

ai anda j are two alternatives inA that are not connected, then it is always possible

to find a chain that connectsai anda j .16

We turn now to the notions of manipulability and strategy-proofness for top-2

preferences. Of course, a social choice functionf : ΓN →A can, precisely as in the

case of complete preferences, be defined to be manipulable ifsome individual has

incentives to misrepresent his preferences:

Definition 4.3 (Manipulability and Strategy-proofness). A social choice function

f : ΓN → A is said to bemanipulableif there exist preferencesPi,P′

i ∈ Γ and some

preference profileP−i ∈ ΓN−1 such that

f (P′

i ,P−i) Pi f (Pi,P−i). (4.3)

If f is not manipulable, we say thatf is strategy-proof.

Note that (4.3) is precisely the same condition as before, but sincePi now only is

assumed to be a partial preference, which in general consists of fewer rankings than

a complete preference does, it should be more difficult to finda P′

i such that (4.3)

is satisfied, and therefore, it should a priori be easier to find strategy-proof social

choice functions. For reasons to be explained below we will here in connection

with top-2 preferences not use the definition above, but we will work with a more

informative notion of manipulability that only focuses on whether some individual

can obtain one of his two top alternatives:

16This can be seen in the following way: Ifai 6= a1, then there exists an alternative precedingai in

a1,a2, . . . ,aM that is connected withai, and this alternative has also a preceding alternative to which

it is connected, and so on. Thus, there must be a chain connecting ai with a1. Similarly, there exists

also a chain connectinga1 with a j , and joining the two chains gives a chain that connectsai with a j .
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Definition 4.4 (Top-2 Manipulability and Top-2 Strategy-proofness).If Γ is a

top-2 domain, we say that a social choice functionf : ΓN →A is top-2 manipulable

if there exist preferencesPi,P′

i ∈Γ and some preference profileP−i ∈ ΓN−1 such that

f (P′

i ,P−i) Pi f (Pi,P−i) and f (P′

i ,P−i) = r1(Pi) or f (P′

i ,P−i) = r2(Pi).

If f is not top-2 manipulable, we say thatf is top-2 strategy-proof.

Definition 4.3 and Definition 4.4 are of course related in the following way: A

strategy-proof social choice function is also top-2 strategy-proof, and a top-2 ma-

nipulable social choice function is also manipulable, but the converse implications

need not be true. The notion of top-2 manipulability is introduced here for two rea-

sons: Firstly, out generalization of Theorem 3.2 shows thata large class of social

choice functions actually is top-2 manipulable, and it is thus natural to use this no-

tion of manipulability because it is more informative than ordinary manipulability.

Secondly, some steps in the proof of our generalization of Theorem 3.2 are only

valid if we assume top-2 manipulability, which forces us to work with this notion

of manipulability.17

We are now able to state our generalization of Theorem 3.2, which will be

proved in the remainder of this section:

Theorem 4.1.Let Γ be a linked top-2 domain over a finite setA , and assume that

f : ΓN → A is a social choice function that satisfies unanimity. Then f is top-2

strategy-proof if and only if f is dictatorial.

4.2.2 Some Preparatory Results

In this subsection, we derive three basic result which will be needed in the formal

proof of Theorem 4.1 in the next subsection. In the proof of the original Gibbard-

Satterthwaite theorem in Appendix B, the properties of monotonicity and Pareto

optimality, which we already considered in Chapter 2, play an important role, and

17Beside these concrete reasons, there are also economic motivations for the use of top-2 strategy-

proofness: As pointed out above, people facing a number of alternatives are often truly engaged in

only a few of them. If it is reasonable to assume that individuals only are engaged in two alternatives,

preferring these to all other alternatives without rankingany other pair of alternatives, then no indi-

vidual will have incentives to misrepresent his preferences when a top-2 strategy-proof social choice

function is used, which means that top-2 strategy-proofness in practice implies strategy-proofness.

On the other hand, if a social choice function is top-2 manipulable, then some individual can at some

instance by misrepresentation obtain an alternative in which he his truly engaged, and therefore

individuals have incentives to think about tactical voting.
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they will also be central in our proof of Theorem 4.1. The definitions of mono-

tonicity and Pareto optimality given in Chapter 2 are however only applicable to

complete preferences, and therefore, we introduce here weaker variants of these

properties, which then are shown to be valid for top-2 strategy-proof social choice

functions. We will also prove a reduction lemma, which is needed in the proof of

Theorem 4.1.

The monotonicity property of strategy-proof social choicefunctions will be

weakened in the following way: IfP andP′ are two preferences in a top-2 domain

Γ, we will say that an alternativea ∈ A moves to the topfrom P to P′ whenever

r1(P′) = a, that is, even ifa already is the top alternative ofP, and we have then the

following lemma:

Lemma 4.2 (Monotonicity for Top-moving Alternatives). Let Γ be a top-2 do-

main, and suppose that f: ΓN →A is a top-2 strategy-proof social choice function.

If the preference profile(Pi,P−i) ∈ ΓN gives f(Pi,P−i) = a, and a moves to the top

from Pi to the preference P′i ∈ Γ, then we also have f(P′

i ,P−i) = a.

Proof. We argue by contradiction and assume thatf (P′

i ,P−i) = b andb 6= a. Since

r1(P′

i ) = a, we haveaP′

i b, and individuali can manipulatef by going from(P′

i ,P−i)

to (Pi,P−i). As this contradicts the top-2 strategy-proofness off , the assumption

f (P′

i ,P−i) 6= a must have been wrong, and the lemma is proved.

Note that monotonicity for top-moving alternatives of course is a special case of

the monotonicity property from Chapter 2. We will frequently use a generalized

monotonicity property of top-2 strategy-proof social choice functions, which easily

follows from Lemma 4.2: Suppose that a preference profile(P1,P2, . . . ,PN) ∈ ΓN

gives f (P1,P2, . . . ,PN) = a. If (P′

1,P
′

2, . . . ,P
′

N) ∈ ΓN is another preference profile

such that eitherr1(P′

i ) = a or P′

i = Pi for all i ∈ I, that is, eithera moves to the

top of an individual’s preference, or an individual’s preference remains unchanged,

then repeated use of Lemma 4.2 shows that alsof (P′

1,P
′

2, . . . ,P
′

N) = a.

Also in the case of Pareto optimality, we are only able to prove a much weaker

variant of the Pareto optimality considered in Chapter 2.

Lemma 4.3 (Simple Pareto Optimality). Let Γ be a top-2 domain, and suppose

that f : ΓN → A is a top-2 strategy-proof social choice function. Let further a

and b be two distinct alternatives inA , and suppose that f satisfies unanimity with

respect to a. IfP ∈ ΓN is a preference profile such that every Pi ∈P satisfies either

r1(Pi) = a, or r1(Pi) = b and r2(Pi) = a, then either f(P) = a or f(P) = b.
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Proof. Note first that if allPi ∈ P satisfyr1(Pi) = a, then f (P) = a by unanimity.

Next, consider the case when exactly one individual, say individual 1 for simplicity,

ranksb first, that is,r1(P1) = b, r2(P1) = a, and r1(Pi) = a for all i ≥ 2. If we

would havef (P1,P−1) = c for somec∈A \{a,b}, then individual 1 would be able

to top-2 manipulatef becausef (P′

1,P−1) = a for everyP′

1 ∈ Γ with r1(P′

1) = a,

and hence, we conclude thatf (P1,P−1) ∈ {a,b}. If exactly two individuals, say

individual 1 and individual 2, rankb first and f (P1,P2, . . . ,PN) = c for somec ∈

A \{a,b}, then individual 2 is able to top-2 manipulatef because by the previous

argumentf (P1,P′

2,P3, . . . ,PN) ∈ {a,b} for everyP′

2 ∈ Γ with r1(P′

2) = a, and we

can thus conclude thatf (P1,P2, . . . ,PN) ∈ {a,b}. The lemma follows now when we

successively consider the cases when exactly three, four, and so forth, individuals

rankb first.

In the proof of Theorem 4.1, we will repeated times consider preference profiles

where all but one individual in the society have the same preference, and thereby,

we will need the following reduction lemma.

Lemma 4.4 (Reduction Lemma).Let Γ be a top-2 domain, and suppose that f:

ΓN → A is a top-2 strategy-proof social choice function. Construct, for some fixed

i ∈ I, the social choice function fi : Γ2 → A from f by setting all arguments in f

equal to P2, except from the ith one, where we insert P1, that is

fi(P1,P2) = f (P2, . . . ,P2 ,P1 ,P2 , . . . ,P2). (4.4)
i−1 i i+1

If f is top-2 strategy-proof, then also fi is top-2 strategy-proof.

Proof. Suppose, for simplicity, thati = 1. Sincef is top-2 strategy-proof, it is clear

that f1 is top-2 strategy-proof with respect toP1. To show thatf1 also is top-2

strategy-proof with respect toP2, we will argue by contradiction. Suppose therefore

that there exista,b∈ A andP1,P2,P′

2 ∈ Γ such that

f1(P1,P2) = b, f1(P1,P
′

2) = a, aP2b, and a∈
{

r1(P2), r2(P2)
}
. (4.5)

By the definition off1, we have

f1(P1,P2) = b ⇐⇒ f (P1,P2,P2, . . . ,P2) = b,

and f1(P1,P
′

2) = a ⇐⇒ f (P1,P
′

2,P
′

2, . . . ,P
′

2) = a.

Changing the preferences in the argument off successively from(P1,P2, . . . ,P2) to

(P1,P′

2, . . . ,P
′

2) for one individual at a time, that is, first for individual 1, then for
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individual 2, and so forth, we conclude that there must be an instance such that

f (P1,P
′

2, . . . ,P
′

2,P2,P2, . . . ,P2) = c, (4.6)

for somec∈ A \{a}, but

f (P1,P
′

2, . . . ,P
′

2,P
′

2,P2, . . . ,P2) = a. (4.7)

We claim thataP2c. This will prove the lemma because (4.6) and (4.7) combined

with aP2c and a ∈ {r1(P2), r2(P2)} contradict the top-2 strategy-proofness off .

We have to consider two cases, firstly,a = r1(P2), and secondly,a = r2(P2). If

a = r1(P2), it is obvious thataP2c. On the other hand, ifa = r2(P2), we must show

thatc 6= r1(P2). We argue by contradiction and assume thatr1(P2) = c. Applying

monotonicity of top-moving alternatives to (4.6), we obtain f (P1,P2, . . . ,P2) = c,

and since alsof (P1,P2, . . . ,P2) = b, we conclude thatb= c. But thenb= c= r1(P2)

impliesbP2a, which contradicts the assumptionaP2b in (4.5). Thusc 6= r1(P2), and

we are done.

4.2.3 The Proof of Theorem 4.1

We turn now to the proof of Theorem 4.1, the interesting part of which of course

is to show that top-2 strategy-proofness implies dictatorship. This will be proved

in the following by a chain of lemmas, and in order to avoid repeated formulations,

we assume now that the following assumptions hold throughout this subsection:

We assume thatΓ is a linked top-2 domain over a setA , which containsM ≥ 3

alternatives, and we suppose thata1,a2, . . . ,aM is an indexing of the alternatives

in A that satisfies (1)a1 ∼ a2 and (2) everyai with i ≥ 3 is connected to at least

two alternatives in{a1,a2, . . . ,ai−1}. Further, we consider a social choice function

f : ΓN → A that is assumed to be top-2 strategy-proof.

For a clearer exposition, we will at several places present top-2 preferences in

tables where we indicate the two top alternatives; for example, we write

Pi P−i

a1 a3

a2
...

in order to indicate thatPi ∈ Γ is a preference such thatr1(Pi) = a1 andr2(Pi) = a2,

whereas every preferencePj in the preference profileP−i satisfiesr1(Pj) = a3.

The proof of the fact that top-2 strategy-proofness impliesdictatorship consists

essentially of two parts. In the first part (Lemma 4.5 to Lemma4.9), we investigate

how the preference of a single individual affects the set of possible social choices,
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that is, we ask what alternatives are left for society when individual i has reported

his preference. Thereby, the set of all social choices that still are available when

individual i has chosen preferencePi will be denoted by

O−i(Pi, f ) =
{

a∈ A ; a = f (Pi ,P−i) for someP−i ∈ ΓN−1},

and it is called theoption setwith respect toPi and f . When the social choice

function f is obvious from the context, we will shortly writeO−i(Pi) instead of

O−i(Pi, f ). The idea behind this approach is that if there exists a dictator for f ,

which we want to prove, then there should be somei ∈ I such that society’s possible

choices are always restricted to individuali’s top alternative, that is,O−i(Pi) should

collapse to{r1(Pi)} for all Pi ∈ Γ. To begin with, we will in two respects restrict

our attention to the first three elements inA only: firstly, we will only consider

preferences whose top alternative is one ofa1, a2, or a3, and secondly, we will only

investigate whether the preference of a single individual affects society’s possibility

to choose amonga1, a2, or a3. Formally, this means we will analyze the set

O−i(Pi)∩{a1,a2,a3} for Pi ∈ Γ1∪Γ2∪Γ3,

whereΓk for k ∈ {1,2, . . . ,M} denotes the set of all preferences inΓ that haveak

as top alternative. At the end of the first part of the proof, wewill have shown that

there exists exactly one individuali such thatf , under a weak additional condition,

always chooses individuali’s top alternative if this is one ofa1, a2, or a3. This

individual should then clearly be regarded as a seed for a dictator for f , and in

the second part of the proof, we will show thatf still chooses individuali’s top

alternative when we successively extend the set of admissible preferences, first for

the other individuals in the society (Lemma 4.10), and then also for the presumed

dictator (Lemma 4.11). In a final step, we remove the weak restriction mentioned

above and show that individuali indeed is a dictator forf .

Throughout the proof, two arguments will be used repeated times. For the sake

of clarity, they are presented here, and when we use them in the sequel, we will only

shortly refer to them asObservation 1respectivelyObservation 2.

Observation 1: If P = (P1,P2, . . . ,PN) is a preference profile such thata∈O−i(Pi)

for somei ∈ I, andr1(Pj) = a for all Pj with j 6= i, then f (P1,P2, . . . ,PN) = a. This

can be seen in the following way: Sincea ∈ O−i(Pi), there must be a preference

profile P ′ = (Pi,P′

−i) such thatf (Pi,P′

−i) = a. Going fromP′

−i to P−i, alternative

a moves to the top of all preferences inP−i, and sincef is assumed to be strategy-

proof, we can apply Lemma 4.2 in order to conclude thatf (P1,P2, . . . ,PN) = a. 2
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Observation 2: Let a andb be two distinct alternatives inA , and suppose that

P = (P1,P2, . . . ,PN) is a preference profile such thatr1(Pi) = a andr2(Pi) = b for

somei ∈ I, and for all j ∈ I \{i}, we haver1(Pj) = b, that is

P1 · · · Pi−1 Pi Pi+1 · · · PN

b · · · b a b · · · b
... · · ·

... b
... · · ·

...

If b /∈ O−i(Pi) and f satisfies unanimity with respect toa, then f (P) = a. This

follows easily once we noted that simple Pareto optimality implies f (P) ∈ {a,b},

because thenb /∈O−i(Pi) excludes the casef (P) = b, and hencef (P) = a. Simi-

larly, if r1(Pi) = a andr1(Pj) = b andr2(Pj) = a for everyPj ∈P−i, thenb /∈O−i(Pi)

implies alsof (P) = a, provided thatf satisfies unanimity with respect toa. 2

We enter now the first part of the proof. As indicated before, our attention will here

be restricted toa1, a2, anda3, and therefore we will from Lemma 4.5 to Lemma 4.9

only require thatf satisfies unanimity with respect toa1, a2, anda3 (in the second

part, however, we will require thatf satisfies unanimity with respect to all alterna-

tives inA ). The first three lemmas in the proof (Lemma 4.5 to Lemma 4.7) clarify

the structure of the setO−i(Pi)∩{a1,a2,a3}. Thereby, it will turn out that an indi-

vidual i either can reduce the set of possible social choices to his top alternative, or

his preferencePi has no impact on this set. The first lemma shows that for a fixed

top alternative, say for simplicityr1(Pi) = a1, the setO−i(Pi)∩{a1,a2,a3} does not

depend on the particular choice ofPi ∈ Γ1.

Lemma 4.5. Assume that Pi ∈ Γ1∪Γ2∪Γ3. Then

O−i(Pi)∩{a1,a2,a3} = O−i(P̄i)∩{a1,a2,a3}

for all P̄i with r1(P̄i) = r1(Pi).

Proof. Assume, without loss of generality, thatr1(Pi) = r1(P̄i) = a1. The lemma

will be proved by a contradiction argument. Assume therefore further, again without

loss of generality, thata2 ∈ O−i(Pi)∩{a1,a2,a3}, but a2 /∈ O−i(P̄i)∩{a1,a2,a3}.

Sincea1 ∼ a2, we can choose some preference profileP−i such thatr1(Pj) = a2

andr2(Pj) = a1 for all j ∈ I \ {i}. On the one hand, sincea2 ∈ O−i(Pi), we have

f (Pi,P−i) = a2 by Observation 1. On the other hand,f (P̄i,P−i) = a1 according to

Observation 2. But sincer1(P1) = a1, this means that individuali can top-2 ma-

nipulate f by going from(Pi,P−i) to (P̄i,P−i), which contradicts the top-2 strategy-

proofness off . The lemma is proved.
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Next, we will see thatO−i(Pi)∩{a1,a2,a3} either contains the top alternative in

Pi or all of a1, a2, anda3. Note that the former case implies that individuali can

reduce society’s possible choice drastically, whereas thelatter case means the he

has no such power.

Lemma 4.6. Assume that Pi ∈ Γ1∪Γ2∪Γ3. Then either

O−i(Pi)∩{a1,a2,a3} = {r1(Pi)} or O−i(Pi)∩{a1,a2,a3} = {a1,a2,a3}.

Proof. Again, we will argue by contradiction. Suppose therefore, without loss of

generality, thatPi ∈ Γ1 andO−i(Pi)∩{a1,a2,a3} = {a1,a2}. Moreover, in spite of

the previous lemma, we can also assume thatr2(Pi) = a3. Consider now preference

profilesP−i andP′

−i such that

Pi P−i P′

−i

a1 a3 a2

a3 a2 a3

By Observation 2, we havef (Pi,P−i) = a1. On the other hand, from Observation 1

follows f (Pi,P′

−i) = a2. But this means that the functionfi defined by (4.4) is top-2

manipulable, which by Lemma 4.4 contradicts the top-2 strategy-proofness off ,

and the lemma is proved.

An individual that can reduce society’s possible choices with respect to one top

alternative is in fact able to do this with respect to all ofa1, a2, anda3:

Lemma 4.7. For every i∈ I, we have either

O−i(Pi)∩{a1,a2,a3} = {r1(Pi)} for all Pi ∈ Γ1∪Γ2∪Γ3

or O−i(Pi)∩{a1,a2,a3} = {a1,a2,a3} for all Pi ∈ Γ1∪Γ2∪Γ3.

Proof. If O−i(Pi)∩{a1,a2,a3}= {a1,a2,a3} for all Pi ∈ Γ1∪Γ2∪Γ3, the lemma is

obviously true. Consider therefore the case whenO−i(Pi)∩{a1,a2,a3} = {r1(Pi)}

for somePi ∈ Γ1∪Γ2∪Γ3, and we assume without loss of generality thatPi ∈ Γ1.

Moreover, due to Lemma 4.5, we can also assume thatr2(Pi) = a3. Note that such

a Pi exists becausea1 ∼ a3. Suppose now, contrary to the claim of the lemma,

that for someP′

i ∈ Γ1∪Γ2∪Γ3 we haveO−i(P′

i )∩{a1,a2,a3} = {a1,a2,a3}. From

Lemma 4.5 it is clear thatP′

i /∈ Γ1; we assume without loss of generality thatP′

i ∈Γ2,

and by Lemma 4.5, we can also assume thatr2(P′

i ) = a1. Consider now

Pi P′

i P−i

a1 a2 a3
... a1 a1
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As a consequence of Observation 2, we must havef (Pi ,P−i) = a1. On the other

hand, Observation 1 impliesf (P′

i ,P−i) = a3. But this means that individuali can

manipulatef from (P′

i ,P−i) to (Pi,P−i). Thus, ifO−i(Pi)∩{a1,a2,a3} = {r1(Pi)}

for Pi ∈ Γ1, thenO−i(Pi)∩{a1,a2,a3} = {r1(Pi)} for all Pi ∈ Γ1∪Γ2∪Γ3, and the

lemma is proved.

Up to this point, we have shown that an individual either can restrict society’s choice

to his favour, or that he has no such power, without having ensured the existence of

either of these types. Next, we show that there in deed existsone individual whose

choice restricts society’s possible choices, and this individual must then of course

be unique.

Lemma 4.8. There is exactly one i∈ I such that

O−i(Pi)∩{a1,a2,a3} = {r1(Pi)} for all Pi ∈ Γ1∪Γ2∪Γ3. (4.8)

Proof. Note first that there can be at most onei ∈ I satisfying (4.8). To see this

suppose that (4.8) holds for at least two individuals, and assume for simplicity that

these are individual 1 and 2. Thus

O−1(P1)∩{a1,a2,a3} = {r1(P1)} for all P1 ∈ Γ1∪Γ2∪Γ3, (4.9)

and O−2(P2)∩{a1,a2,a3} = {r1(P2)} for all P2 ∈ Γ1∪Γ2∪Γ3. (4.10)

Consider now a preference profileP = (P1,P2, . . . ,PN) where r1(Pj) = a1 and

r2(Pj) = a2 for all j ≥ 3, andP1 andP2 are such that

P1 P2 P3 · · · PN

a1 a2 a1 · · · a1

a2 a1 a2 · · · a2

Simple Pareto optimality impliesf (P)∈ {a1,a2}, and sincea2 /∈O−1(P1) by (4.9),

we must havef (P) = a1. But similarly, it follows from (4.10) thatf (P) = a2.

This contradiction shows that at most onei ∈ I can satisfy (4.8).

The other part of the lemma, namely that there exists at leastone i ∈ I for

which (4.8) holds, will be proved by induction over the number of individuals.

Consider thus first the case whenN = 2, and suppose, contrary to the claim of

the lemma, that neither individual 1 nor 2 satisfies (4.8). Inthe light of the previous

lemma, this means

O−1(P1)∩{a1,a2,a3} = O−2(P2)∩{a1,a2,a3} = {a1,a2,a3}
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for all P1,P2 ∈ Γ1∪Γ2∪Γ3. Consider a preference profile(P1,P2) with r1(P1) = a1

and r1(P2) = a2. Sincea1 ∈ O−2(P2) and a1 = r1(P1), we have f (P1,P2) = a1

according to Observation 1. But similarly, sincea2 ∈ O−1(P1) anda2 = r1(P2), it

follows also thatf (P1,P2) = a2. This, however, contradicts the assumption thatf is

a well-defined function, and the basis step of the induction is established.

For the induction step, suppose now that the claim is true forN = n, and assume

that f : Γn+1 → A is defined for a society of sizen+ 1. For individualn+ 1, we

have according to the previous lemma either

O
−(n+1)(Pn+1)∩{a1,a2,a3} = {r1(Pn+1)} for all Pn+1 ∈ Γ1∪Γ2∪Γ3,

or O
−(n+1)(Pn+1)∩{a1,a2,a3} = {a1,a2,a3} for all Pn+1 ∈ Γ1∪Γ2∪Γ3.

In the first case, the claim follows at once, and we assume therefore in the contin-

uation that the second case holds. Fix someP̄n+1 with r1(P̄n+1) = a1, and consider

the function f̃ : Γn → A defined by

f̃ (P1,P2, . . . ,Pn) = f (P1,P2, . . . ,Pn, P̄n+1).

Since f is strategy-proof, it is clear that alsõf must be strategy-proof. Moreover,

sinceO
−(n+1)(P̄n+1, f )∩{a1,a2,a3} = {a1,a2,a3}, it follows from Observation 1

that f̃ satisfies unanimity with respect toa1, a2 anda3. Thus, we can apply the

induction hypothesis tõf and conclude that there exists some individuali such that

O−i(Pi, f̃ )∩{a1,a2,a3} = {r1(Pi)} for all Pi ∈ Γ1∪Γ2∪Γ3. (4.11)

Consider now a preference profileP = (P1,P2, . . . ,Pn) such thatr1(Pi) = a2 and

r1(Pj) = a1 for all j = 1,2, . . . ,n and j 6= i. By (4.11), we havea1 /∈ O−i(Pi, f̃ ), and

hencef̃ (P1,P2, . . . ,Pn) 6= a1. But this means thatf (P1,P2, . . . ,Pn, P̄n+1) 6= a1, and we

conclude thata1 /∈O−i(Pi, f ) because otherwise we would obtain a contradiction to

Observation 1. By the previous lemma follows now that

O−i(Pi, f )∩{a1,a2,a3} = {r1(Pi)} for all Pi ∈ Γ1∪Γ2∪Γ3,

which completes the induction step, and the lemma is proved

From now on we will, without loss of generality, assume that the unique individual

satisfying (4.8) is individual 1. The previous lemma makes anegative statement by

stating that ifr1(P1) = a1, then f (P1,P−1) 6= a2,a3, but it does not tell us what the

social choice actually will be, sincef (P1,P−1) still could belong toA \{a1,a2,a2}.

The next lemma shows, however, that the social choice in deedwill be individual 1’s
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top alternative, at least when there is complete unanimity in the rest of the society.

To simplify the argumentation, we introduce the functionf1 : Γ2 → A , defined by

f1(P1,P2) = f (P1,P2, . . . ,P2), (4.12)

which means thatf1 reports the social choice off when individual 1 choosesP1 and

the rest of the society agrees unanimously onP2. Note thatf1 is top-2 strategy-proof

according to Lemma 4.4 becausef is top-2 strategy-proof.

Lemma 4.9. Suppose that

O−1(P1)∩{a1,a2,a3} = {r1(P1)} for all P1 ∈ Γ1∪Γ2∪Γ3.

Then for all P1,P2 ∈ Γ1∪Γ2∪Γ3, we have

f1(P1,P2) = r1(P1).

Proof. Whenr1(P1) = r1(P2), the claim follows from the assumption thatf satis-

fies unanimity with respect toa1, a2 anda3. Suppose therefore, without loss of

generality, thatr1(P1) = a1 andr1(P2) = a2. If r2(P1) = a2, Observation 2 implies

f1(P1,P2) = a1, and from the monotonicity property of top-2 strategy-proof social

choice functions follows then thatf (P1,P2) = a1 for all P1 ∈ Γ1.

We turn now to the second part of the proof, which is mainly an induction step

where we show that if individual 1’s choiceP1 and the unanimous choiceP2 of the

rest of the society have their top alternatives among{a1,a2, . . . ,ak} and f chooses

individual 1’s top alternative, then the same holds when theset of possible top

alternatives is extended to{a1,a2, . . . ,ak,ak+1}. This induction step is carried out

in the next two lemmas, and in the first one we will only allowP2 to extend its set

of possible top alternatives. From now on we will assume thatf satisfies unanimity

with respect to alla∈ A .

Lemma 4.10.Suppose that for all P1,P2 ∈ Γ1∪ . . .∪Γk we have

f1(P1,P2) = r1(P1). (4.13)

Then(4.13)also holds for all P1 ∈ Γ1∪ . . .∪Γk and P2 ∈ Γ1∪ . . .∪Γk∪Γk+1.

Proof. By assumption, (4.13) holds already forP1,P2 ∈ Γ1∪ . . .∪Γk, so it suffices

to consider the case whenP2 ∈ Γk+1 andP1 ∈ Γ1∪ . . .∪Γk. ForP1, we will consider

one of the setsΓi for 1 ≤ i ≤ k at a time, and we will prove the lemma using

induction over the number of connections betweenai andak+1. Suppose therefore
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first thatai ∼ ak+1. SinceΓ is linked there exists somea j ∈ {a1,a2, . . . ,ak} such

thata j ∼ ak+1 anda j 6= ai. Consider first the preferences

P1 P2 P′

2

ai ak+1 a j

ak+1
... ak+1

By simple Pareto optimality, we havef1(P1,P2) ∈ {ai,ak+1}. On the other hand,

sinceP′

2 ∈ Γ j , we get from (4.13) thatf1(P1,P′

2) = ai . Hence, if f1(P1,P2) = ak+1,

then individual 2 would be able to manipulatef1 by going from(P1,P′

2) to (P1,P2).

Thus, f1(P1,P2) = ai, and by monotonicity we conclude then thatf1(P1,P2) = ai for

all P1 ∈ Γi .

Suppose next that the lemma already has been proved forn connections, and

let [ai,ai1,ai2, . . . ,ain,ak+1] be a chain ofn+1 connections, whereai1,ai2, . . . ,ain ∈

{a1,a2, . . . ,ak}. Consider first the preferences

P1 P′

1 P2 P′

2

ai ai1 ak+1 ai1

ai1 ai
... ai

By the induction hypothesis, we havef1(P′

1,P2) = ai1. Since f1 is top-2 strategy-

proof we can therefore conclude thatf1(P1,P2) ∈ {ai,ai1}. On the other hand,

by (4.13) we havef1(P1,P′

2) = ai . Thus, if f1(P1,P2) = ai1, then individual 2 would

be able to manipulatef1 by moving from(P1,P′

2) to (P1,P2). Hence,f1(P1,P2) = ai ,

and by monotonicity follows then thatf1(P1,P2) = ai for all P1 ∈ Γi , and the lemma

is proved.

In the following second lemma of the induction step, also individual 1 is allowed to

pick his top alternative from the extended set{a1,a2, . . . ,ak,ak+1}.

Lemma 4.11. Suppose that for all P1 ∈ Γ1∪ . . .∪Γk and P2 ∈ Γ1∪ . . .∪Γk∪Γk+1

we have

f1(P1,P2) = r1(P1). (4.14)

Then(4.14)holds also for all P1,P2 ∈ Γ1∪ . . .∪Γk∪Γk+1.

Proof. By assumption (4.14) holds already forP1,P2 ∈ Γ1∪ . . .∪Γk, whence it suf-

fices to consider the case whenP1 ∈ Γk+1 andP2 ∈ Γi for somei with 1≤ i ≤ k+1.

Wheni = k+1, then f1(P1,P2) = ak+1 by unanimity, and there is nothing to prove.

Suppose therefore that 1≤ i ≤ k. The lemma will now be proved by separately

considering the two cases whenai andak+1 are connected, respectively when they
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are not connected. Suppose therefore first thatai ∼ ak+1. Let a j ∈ {a1,a2, . . . ,ak}

be such thata j ∼ ak+1 anda j 6= ai , and consider the preferences

P1 P′

1 P′′

1 P′′′

1 P2 P′

2

ak+1 ak+1 ak+1 a j ai ai
... ai a j ak+1

... ak+1

We will use a contradiction argument and assume thatf1(P1,P2) 6= ak+1. Then, by

strategy-proofness, we also must havef1(P′

1,P2) 6= ak+1. But by simple Pareto op-

timality f1(P′

1,P2) ∈ {ai,ak+1}, and hencef1(P′

1,P2) = ai . Applying monotonicity

to (P′

1,P2), we conclude that then alsof1(P′

1,P
′

2) = ai . But then we must also have

f1(P′′

1 ,P′

2) = ai ; this holds sincef1(P′′

1 ,P′

2)∈ {ai,ak+1} by simple Pareto optimality,

but strategy-proofness excludesak+1, because otherwise individual 1 would be able

to top-2 manipulatef1 at (P′

1,P
′

2). However, by (4.14) we havef1(P′′′

1 ,P′

2) = a j ,

so individual 1 can top-2 manipulate from(P′′

1 ,P′

2) to (P′′′

1 ,P′

2), which contradicts

strategy-proofness. Thus, our initial assumption must have been wrong, and we

conclude thatf1(P1,P2) = ak+1 for all (P1,P2) ∈ Γk+1×Γi with ak+1 ∼ ai .

We turn now to the case whenai andak+1 are not connected. Choose again

a j ∈ {a1,a2, . . . ,ak} such thata j ∼ ak+1 anda j 6= ai , and consider the preferences

P1 P′

1 P′′

1 P2 P′

2

ak+1 ak+1 a j ai a j
... a j ak+1

...
...

By (4.14) we havef1(P′′

1 ,P2) = a j . Since f1 is top-2 strategy-proof, we can con-

clude thatf1(P′

1,P2) ∈ {a j ,ak+1}, because otherwise individual 1 would be able to

obtain his second best alternative by going from(P′

1,P2) to (P′′

1 ,P2). By the previ-

ous paragraph, we havef1(P′

1,P
′

2) = ak+1, sincea j ∼ ak+1. But then we must also

have f1(P′

1,P2) = ak+1, because iff1(P′

1,P2) = a j , then individual 2 would be able

to manipulatef1 by going from(P′

1,P
′

2) to (P′

1,P2). But f1(P′

1,P2) = ak+1 implies

by monotonicity thatf1(P1,P2) = ak+1, and the lemma is proved.

We can now summarize the preceding chain of lemmas and prove Theorem 4.1.

Proof of Theorem 4.1.Let f : ΓN → A be a social choice function that satisfies

unanimity. If f is dictatorial, thenf is obviously top-2 strategy-proof. Conversely,

suppose thatf is top-2 strategy-proof and we want to prove thatf then must be dic-

tatorial. Sincef satisfies unanimity,f satisfies in particular unanimity with respect

to a1, a2 anda3. By Lemma 4.8, we can therefore conclude that there exists exactly
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onei ∈ I such that (4.8) holds, and for simplicity we assume thati = 1. According

to Lemma 4.9, the functionf1 : Γ2 → A defined in (4.12) satisfies

f1(P1,P2) = r1(P1) for all P1,P2 ∈ Γ1∪Γ2∪Γ3.

But then we can use Lemma 4.10 and Lemma 4.11 repeated times toconclude that

f1(P1,P2) = r1(P1) still holds when we successively extend the domain ofP1 andP2.

Noting thatΓ = Γ1∪Γ2∪ . . .∪ΓM, we finally get

f1(P1,P2) = r1(P1) for all P1,P2 ∈ Γ. (4.15)

It remains to show that (4.15) implies that individual 1 is a dictator for f . We

will argue by contradiction and suppose therefore that for some preference profile

(P1,P2, . . . ,PN) ∈ ΓN we have

f (P1,P2, . . . ,PN) = a and a 6= r1(P1).

SinceΓ is linked, there must be a preferenceP′

2 ∈ Γ with r1(P′

2) = a becausea is

connected with at least two alternatives. Replacing all preferences except from the

first one in(P1,P2, . . . ,PN) by P′

2 we obtain by monotonicity that

f1(P1,P
′

2) = f (P1,P
′

2, . . . ,P
′

2) = a 6= r1(P1).

As this contradicts (4.15), we conclude that individual 1 must be a dictator forf ,

and the proof of Theorem 4.1 is fulfilled.

We finish this subsection with some remarks on the history of the preceding proof.

The idea to prove the impossibility of strategy-proof social choice by an analysis of

option sets has its origin in Barberà and Peleg (1990). They introduced the notion

of option sets and used it to prove the Gibbard-Satterthwaite theorem for the case

when the number of alternatives inA is infinite. After that, a similar technique was

used in Aswal et al. (2003) to prove that a strategy-proof social choice function on

a linked domain must be dictatorial (see Theorem 3.2 in this thesis). Theorem 4.1

is then a natural generalization of this result to linked top-2 domains, and of course,

our proof of Theorem 4.1 is to a great extent inspired by the corresponding proof in

Aswal et al. (2003), whence we will give some details about how these two proofs

are related. Aswal et al. (2003) use an induction argument intheir proof: first,

they prove their theorem forN = 2, and second, they show that if their theorem

holds forN = 2, then it actually holds for allN ≥ 2. Concerning the first step, I

am convinced that the proof in Aswal et al. (2003) can, with minor modifications,
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also be applied to linked top-2 domains. The induction step,however, cannot be

applied to top-2 domains, and since it may be instructive to see why, we present

it in Appendix B and explain why it fails for partial preference relations. Because

we were not able to find an alternative proof for the inductionstep for linked top-2

domains, we endeavoured to generalize the proof in Aswal et al. (2003) forN = 2 to

a generalN. In deed, Lemma 4.5 to Lemma 4.7 in the proof above are more or less

the same as Lemma 3.1 to Lemma 3.3 in Aswal et al. (2003). Thereafter, however,

our proof deviates from the proof in Aswal et al. (2003) in a fundamental way.

4.3 The Gibbard-Satterthwaite Theorem

and Top-2 Manipulability

We will now as a first application of Theorem 4.1 state a more informative version

of the Gibbard-Satterthwaite theorem. IfA is a finite set of alternatives, then the

setΣ of all complete, antisymmetric and transitive preferencesoverA is obviously

a linked top-2 domain, and applying Theorem 4.1 toΣ, we get:

Theorem 4.12 (Strengthening of the Gibbard-SatterthwaiteTheorem). If A is

a finite set of at least three alternatives, then every non-dictatorial social choice

function f : ΣN → A that satisfies unanimity is top-2 manipulable.

Theorem 4.12 tells us that iff : ΣN → A is a non-dictatorial social choice function

that satisfies unanimity, then some individual can at some preference profile mani-

pulatef and obtain by this at least his second best alternative. It isnow natural to ask

whether this result can be strengthened further in the sensethat every social choice

function f : ΣN →A that satisfies unanimity is not only top-2 manipulable, but that

some individual by manipulation at some preference profile actually can obtain his

top alternative. The answer to this question, however, is negative in general because

for example the majority rule is such that no voter ever can obtain his top alternative

be manipulation.18 By this, Question 4 from the introduction is answered.

18This can be seen in the following way: If an individual’s top alternative gets most votes when the

individual misrepresents his preferences and does not votefor this alternative, then this alternative

gets surely also most votes when the individual votes for histop alternative. Thus, if misrepresen-

tation gives an individual his top alternative, then also sincere voting does so, and therefore, a top

alternative can never be obtained by manipulation.
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5 Strategy-proof Social

Choice of Fixed-sized Subsets

WE ARE NOW sufficiently prepared to investigate to what extent strategy-proof so-

cial choice of fixed-sizes subsets is possible by answering the first three questions

proposed in the introduction. To begin with, we formalize inSection 5.1 the social

choice of fixed-sized subsets and derive a preference structure that is reasonable

in this context. After this, we show in Section 5.2 that non-dictatorial strategy-

proof social choice of fixed-sized subsets in analogy with the classical Gibbard-

Satterthwaite theorem is impossible in general. This result is then modified in Sec-

tion 5.3, where we show that the social choice of fixed-sized subsets can be made

strategy-proof when voters’ preferences are single-peaked. In Section 5.4, finally,

we compare the voting model and the results presented in thischapter with related

contributions in the literature of strategy-proof social choice theory.

5.1 Strategy-proof Social Choice of

Subsets Based on Preferences over Alternatives

In this thesis, the social choice of fixed-sized subsets willbe considered in the fol-

lowing formal framework: A society consisting ofN individuals has to choosek

elements from a setA that containsM alternatives. The set of all possible social

choices, i.e., the set of all subsets ofA that contain exactlyk elements, will be

denoted byAk. We will assume that the individuals in the society have complete,

antisymmetric and transitive preferences over the alternatives inA , and the set of

all such preferences will be denoted byΣ, as before. We assume further that social

choice is based on these preferences by using a social choicefunction of the form

f : ΣN → Ak. (5.1)

Note that even though society is going to choose an element from Ak, we assume

that the arguments of the social choice functionf are the individuals’ preferences

overA , but not overAk, which is motivated by the fact that in most of the practi-

cally used voting procedures for the social choice of fixed-sized subsets, voters are

only required to report (a part of) their preferences over the alternatives inA on the

ballots, but not over subsets ofA . We illustrate by the following two examples how

a social choice function for the social choice of fixed-sizedsubsets can look like in

practice, and we will return to these examples later in this chapter.
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Example 5.1.A social choice function of the formf : ΣN → Ak can easily be ob-

tained by generalizing the majority rule from Example 2.1: Let each voter report

his most preferred alternative inA , and let the social choice be the subset ofA

that contains thek alternatives that got most votes. Similarly, we can generalize the

Borda count from Example 2.2: Let each voter assign points tothe alternatives in

A , and let the social choice be the subset ofA that contains thek alternatives that

got most points in total.

Example 5.2.A rather different procedure is used to elect the 659 membersin the

British parliament, the House of Commons: The United Kingdom is divided into

659 electoral districts, and in each of them, voters can choose among a number of

candidates. The candidate who receives most votes in a district will take a seat in

the parliament.

We noted already in the introduction that it is not obvious when a social choice

function of the form (5.1) should be considered manipulable, because contrary to

the case of the classical Gibbard-Satterthwaite theorem, where the social choice

function is of the formf : ΣN → A , the preferences inΣ cannot be used directly

to rank the elements inAk, whence it is not clear when an individual that is able to

change the social choice by misrepresentation gains from doing so. In the follow-

ing, we will therefore answer Question 1 from the introduction and show how the

preferences inΣ can be transferred to preferences overAk, which then automatically

leads to a notion of manipulability for a social choice function of the form (5.1). To

begin with, we illustrate why an individual can find it profitable to misrepresent his

preference when the generalized ordinary majority rule from Example 5.1 is used.

Example 5.3.Using the generalized ordinary majority rule from Example 5.1, there

might be two reasons for a voter to misrepresent his preferences: On the one hand,

when the voter realizes that his top alternative has too little support among other

voters to be elected, then he might want to give his vote to an alternative that has

a more reasonable chance to be elected. On the other hand, when the voter can be

sure that his top alternative has so broad support among other voters that it surely

will be elected, then he might think about voting for anotheralternative that he also

would like to see elected.

The two possible motives for misrepresentation in Example 5.3 are based on the

same underlying reasoning: By casting his vote on an alternative other than his most

preferred one, a voter hopes to lift in a desirable alternative into the socially chosen

subset, thereby pushing out a less desirable alternative. In general, we will therefore
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assume that individual preferences satisfy the followingseparability condition: If

A1 andA2 are two subsets ofA containing exactlyk elements, then an individual

will prefer A1 toA2 if A1 can be obtained fromA2 by replacing one of the alternatives

in A2 by an alternative that the individual finds more desirable. Formally, if Ā is a

subset ofA containingk−1 elements, andA1 = Ā∪{a} andA2 = Ā∪{a′}, then

A1 is preferred toA2 ⇐⇒ a is preferred toa′. (5.2)

In addition to (5.2), we will of course also assume that an individual prefers a subset

A1 ∈ Ak to a subsetA2 ∈ Ak if A1 can be obtained fromA2 by successive replace-

ment of several of the elements inA2 by better alternatives. On the other hand, if

it is not possible to obtain one ofA1 or A2 from the other one in this manner, then

the only way to transferA1 to A2 is to replace some of the elements inA1 by better

and some by worse alternatives, so with available information it is not possible to

decide unambiguously which subset an individual will prefer, and we will therefore

in this case assume that an individual has no explicit preference betweenA1 andA2.

In the described way, we can associate to everyP∈ Σ a unique preferencêP onAk,

which we will call thepreference induced by P onAk, and the formal definition of

this preference is presented below.

Definition 5.1 (Induced Preference onAAAAAkkk). For P∈ Σ, thepreferenceP̂ induced

by P onAk is defined as follows: IfA1,A2 ∈Ak, thenA1 P̂A2 if and only if A1 6= A2,

and we can decomposeA1 andA2 as

A1 = Ā∪{ai1}∪{ai2}∪ . . .∪{ai l}

A2 = Ā∪{ai′1
}∪{ai′2

}∪ . . .∪{ai′l
}

whereĀ = A1∩A2, and we haveai1 Pai′1
, ai2 Pai′2

, . . . , andai l Pai′l
. The set of all

induced preferences overAk will be denoted byΓ(Ak).

Definition 5.1 is our answer to Question 1 from the introduction. Note that ifP̂ is

induced onAk by someP ∈ Σ, thenP̂ is antisymmetricand transitive,19 and we

can thus apply the notions of partial preferences introduced in Chapter 4 toP̂. We

19Antisymmetry follows directly from the definition of̂P, and transitivity can be proved as fol-

lows: Suppose thatA1,A2,A3 ∈ Ak are such thatA1 P̂A2 andA2 P̂A3. ThenA2 can be obtained from

A3 by replacing some of the elements inA3 by alternatives that are better according toP, and simi-

larly, replacing some of the elements inA2 by better alternatives, we can get fromA2 to A1. But this

means of course that if all replacements are carried out at one sweep, then we can get fromA3 to A1

by replacing worse alternatives by better alternatives, and henceA1 P̂A3.
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illustrate by the following example how Definition 5.1 worksin a concrete situation,

and this example shows also thatP̂ is in generalnot complete.20

Example 5.4.Let A = {a,b,c,d,e} be a set of alternatives, and suppose that the

preferenceP ranks the elements inA according toa P b P c P d P e, and letP̂ be the

preference induced byP on A3 according to Definition 5.1. Assume that society

has to elect three of the alternatives inA , and consider the four subsets

A1 = {a,b,c}, A2 = {a,c,e}, A3 = {c,d,e}, and A4 = {b,c,d},

which, of course, all belong toA3. We note thatA1 can be obtained fromA2 by

replacing alternativee by b, and sincebPe, we haveA1 P̂A2. Similarly, replacing

d in A3 by a, we obtainA2, and thusA2 P̂A3, becauseaPd. We also haveA1 P̂A3,

becauseA1 can be obtained fromA3 by replacingd by a andeby b, which indicates

thatP̂ is transitive.

But consider nowA2 andA4. On the one hand,A2 containsa, which is preferred

to all elements inA4, but on the other hand,A2 also containse, to which all elements

in A4 are preferred. Hence,A2 andA4 are not comparable bŷP, which shows that

the preferencêP induced byP onAk will not be complete in general.

Remark 5.1.It must be pointed out that even if the equivalence in (5.2), on which

Definition 5.1 is based, seems very reasonable, it is nevertheless anassumption.

Verbally, (5.2) means that a voter’s opinion on which of two alternatives should be

included in a subset is independent of which other alternatives are contained in the

subset. This separability assumption, however, can fail for at least two reasons.

Firstly, there might be dynamic effects between the alternatives, which can af-

fect an individual’s ranking of different subsets ofA . Suppose, for example, that

you as a head of an institute have to appoint a research group consisting of five

members, of which four already are elected, and to fill the remaining place, you

can choose between doctor Jekyll and professor Hyde. If you think that doctor

Jekyll is a much more skilled researcher than professor Hyde, but professor Hyde

is able to co-operate much more efficiently with the other members in the research

group, and you will therefore appoint professor Hyde, then your preferences do not

satisfy (5.2).

Secondly, an individual might form his opinion of a subset ofA not only de-

pending on which alternatives are included in the subset, but also on the structure of

the subset as a whole. This is the case, for instance, when theindividual considers

20There are actually three instances whenP̂ is complete, namely whenk equals 1,M−1, orM.
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that a balanced distribution of sex or age among the members in a committee is

important, and then the individual’s preferences over subsets ofA will in general

not satisfy (5.2).

Via Definition 5.1, preferences overA can be transferred to preferences overAk,

and it is now straight forward to define a notion of manipulability for a social choice

function of the formf : ΣN → Ak.

Definition 5.2 (Manipulation of the Social Choice of Fixed-sized Subsets).A

social choice functionf : ΣN →Ak is said to bemanipulableif there existPi,P′

i ∈ Σ
andP−i ∈ ΣN−1 such that

f (P′

i ,P−i) P̂i f (Pi,P−i),

whereP̂i is the preference induced byPi onAk.

Having a notion of manipulability, it makes now sense to ask whether there exist

any strategy-proof social choice functions of the formf : ΣN → Ak, and we will

turn to this question in Section 5.2 and Section 5.3.

Before leaving this section, we would like to remark that Definition 5.1 is not

the only way to define preferences overAk based on preferences overA , and we

will therefore briefly consider how one can proceed alternatively. In order to define

a preferenceP̄ on Ak based on a preferenceP on A , we think that it is almost

imperative to require that ifA1,A2 ∈Ak are such thatA1 can be obtained fromA2 by

replacing some of the elements inA2 by more desirable alternatives, then we must

haveA1 P̄A2, or with other words,P̄ should in any case be compatible withP̂. If

none ofA1 andA2 can be obtained from the other by replacing worse alternatives by

better alternatives, then we abstained in our approach fromregarding one ofA1 orA2

to be preferred to the other, because we have no additional information that allows

us to do so. This approach, however, is not unproblematic, because the preference

P̂ defined in this way is in general not complete, which makes themathematical

analysis of whether a social choice functionf : ΣN → Ak can be strategy-proof

more complicated, and since there to our knowledge exist no results for strategy-

proof social choice functions with incomplete preferencesin the literature, we were

forced to derive the notions and results in Chapter 4 in orderto fulfil the purpose of

this thesis. To avoid the problems caused by the incompleteness ofP̂, one could thus

have thought of extendinĝP to a complete preferencēP overAk, which according

to Szpilrajn’s theorem always is possible, and we present below two thinkable ways

to do so. Note, however, that the approach chosen in this thesis is the more general
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one, because we can show that a non-dictatorial social choice function f : ΣN →Ak

must be manipulable with respect to the preferences defined in Definition 5.1, and

thereforef must of course also be manipulable with respect to preferences that are

compatible with the preferences from Definition 5.1, but theconverse need not be

true.

Firstly, the possibly most natural approach to solve the problems caused by the

incompleteness of̂P is to interpret the absence of strict preference between subsets

that are not ranked bŷP asindifference. To be precise, based on̂P, we would like

to define a complete, but weak preferenceR̂ onAk by

i) if A1,A2 ∈ Ak andA1 P̂A2, thenA1R̂A2, and

ii) if A1 = A2 or A1 andA2 are not ranked bŷP, then bothA1R̂A2 andA2R̂A1.

The preferencêR defined in this way is certainly complete and compatible withthe

preferenceP̂. However,R̂ has also a severe weakness because it is not transitive

in general. To see this, setA = {a1,a2,a3,a4}, and suppose that the preferenceP

orders the alternatives inA according toa1Pa2Pa3Pa4Pa5. Let furtherP̂ be the

preference induced byP onAk, and suppose that̂R is defined as above. According

to the definition ofR̂, the following two implications must hold:

{a1,a5} and{a2,a3} are not ranked bŷP =⇒ {a1,a5} R̂{a2,a3},

{a2,a3} and{a1,a4} are not ranked bŷP =⇒ {a2,a3} R̂{a1,a4}.
(5.3)

If R̂ would have been transitive, then (5.3) would imply{a1,a5} R̂{a1,a4}, but this

cannot be the case because{a1,a4} P̂{a1,a5}. This lack of transitivity indicates

that the absence of strict preference is not equivalent to indifference, and therefore

we reject this approach.

Secondly, a more successful approach is to assume that the individuals in the

society base their preferences overAk oncardinal preferencesoverA . By this, we

mean that the individuals assign to each alternative inA a real number, autility, in

such a way that the more desirable an alternative is, the higher is its utility, and an

individual prefers a subsetA1 ∈ Ak to A2 ∈ Ak if and only if the sum of the utilities

of the elements inA1 is larger than the corresponding sum forA2. Interpretating

equality of two sums as indifference between the corresponding subsets, we obtain

preferences overAk that are complete, transitive, and compatible withP̂ because re-

placing an element in a subset with a more desirable alternative increases of course

the sum of utilities. Furthermore, with almost the same arguments which will be

applied toP̂ in the next section, it is possible to show that the set of all preferences

50



overAk that are constructed in this way is a linked domain, and we could therefore

apply Theorem 3.2 tof : ΣN →Ak.21 However, one can object against this approach

that it is more unrealistic than that chosen in this thesis, because real people do not

likely form their opinions of subsets ofA by summing up utilities. On the contrary,

Definition 5.1 seems to be a good approximation of the mental process by which

people actually compare subsets ofA .

5.2 The Case of Unrestricted Preferences

After having derived a notion of manipulability for a socialchoice function of the

form f : ΣN →Ak in the previous section, we turn now to Question 2 from the intro-

duction and investigate whether there exist any non-dictatorial strategy-proof social

choice functions for the social choice of fixed-sized subsets when the domain of

preferences is assumed to be unrestricted. Like in the case of the original Gibbard-

Satterthwaite theorem, it turns out that strategy-proofness and non-dictatorship do

not exclude each other in general, but under an additional efficiency requirement,

strategy-proofness implies dictatorship. To begin with, we show by an example how

one can construct a non-dictatorial strategy-proof socialchoice function for the so-

cial choice of fixed-sized subsets when some degree of inefficiency is accepted.

Example 5.5.Consider a simplified variant of the voting procedure used inthe elec-

tions to the House of Commons presented in Example 5.2: Suppose that society has

to choose two of the alternatives in the setA = {a1,a2,a3,a4}, and to achieve this,

voters are divided into two groups, of which the first one chooses one of the ele-

ments in{a1,a2}, and the second one chooses one of the elements in{a3,a4}. If

voters’ preferences satisfy (5.2), then this voting procedure is obviously strategy-

proof because a voter belonging to the first group, for example, must take the second

group’s choice as given, and the best thing he can do when choosing betweena1 and

a2 is therefore to vote sincerely. However, this procedure hasan unappealing lack

of efficiency. Suppose, for instance, that all voters unanimously agree on that both

a1 anda2 are better than botha3 anda4. Then society’s natural choice should be

{a1,a2}, but this can never be the outcome of this procedure.

Consequently, strategy-proofness without an efficiency requirement does not imply

21Actually, even with this approach, Theorem 3.2 must be adjusted because preferences overAk

that are based on cardinal preferences are not necessarily strict. However, they turn out to have a

unique first and a unique second alternative inAk, and an investigation of the proof of Theorem 3.2

in Aswal et al. (2003) shows that this theorem actually also holds for weak preferences of this type.
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dictatorship. Recall that in the original Gibbard-Satterthwaite theorem, the social

choice functionf : ΣN → A is assumed to be efficient in the sense that it satis-

fiesunanimity, which simply means that ifr1(Pi) = a for all i ∈ {1,2, . . . ,N}, then

f (P1,P2, . . . ,PN) = a. It seems natural to assume a corresponding condition for a so-

cial choice function of the formf : ΣN →Ak, but this is not entirely straightforward

because there are two plausible ways to generalize the notion of unanimity: Sup-

posed that society has to choosek of the alternatives inA , we will say that there is

complete unanimityin the society when all individuals agree exactly on the ranking

of the k best alternatives, that is, all individuals have the same top alternative, the

same second best alternative, and so on, up to thekth ranked alternative,22 and we

will say that there isweak unanimityin the society whenever all individuals agree

on thatk of the alternatives inA are preferred to all other alternatives, but they may

disagree on the internal order of thesek alternatives.23 A social choice function

f : ΣN → Ak is of course said to satisfy complete respectively weak unanimity if

the value off equals that subset ofA that contains thek alternatives that are unan-

imously preferred to all other alternatives whenever thereis complete respectively

weak unanimity in the society. Complete unanimity is obviously a special case of

weak unanimity, and therefore, a social choice function that satisfies weak unanim-

ity satisfies also complete unanimity, but the converse neednot be true in general.

However, it turns out that if the social choice function is strategy-proof, then also

the converse implication holds.24 Hence, it makes no difference which notion of

unanimity we use, and we will therefore use the apparently weaker assumption that

the social choice function satisfies complete unanimity. Under this condition, it

turns out that strategy-proofness implies dictatorship:

Theorem 5.1 (The Gibbard-Satterthwaite theorem for the social choice of fixed-

sized subsets).Suppose thatA is a set of M≥ 3 alternatives, and let f: ΣN →Ak,

where1≤ k≤ M−1, be a social choice function that satisfies complete unanimity.

Then f is strategy-proof if and only if f is dictatorial.

22Formally, there iscomplete unanimityin the society ifr1(Pi) = a1, r2(Pi) = a2, . . . , rk(Pi) = ak

for all i ∈ {1,2, . . . ,N} and somea1,a2, . . . ,ak ∈ A .
23Formally, there isweak unanimityin the society if there exists a subsetA ∈ Ak such that

{r1(Pi), r2(Pi), . . . , rk(Pi)} = A for all i ∈ {1,2, . . . ,N}.
24To see this, suppose thatf : ΣN → Ak is strategy-proof, and for alli ∈ {1,2, . . . ,N} we have

{r1(Pi), r2(Pi), . . . , rk(Pi)} = A for someA∈ Ak, but f (P1,P2, . . . ,PN) 6= A. However, we must have

f (P1,P1, . . . ,P1) = A, which means that if we first replaceP2 by P1, nextP3 by P1, and so on up to

PN, then there must be some individual that changes the value off to A, and hence manipulatesf .

Thus, a strategy-proof social choice function that satisfies complete unanimity satisfies also weak

unanimity.
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The rest of this section is devoted to a formal proof of Theorem 5.1. As mentioned

before, Theorem 5.1 will be proved using Theorem 4.1 from Chapter 4, but it is

not possible to apply Theorem 4.1 directly because the social choice function in

Theorem 4.1 is such that its arguments are preferences over the set of all possible

social outcomes, and a social choice function of the formf : ΣN →Ak does not have

this property. Therefore, we need to adjust the arguments inf to be preferences over

Ak. Note that the preferences inΣ andΓ(Ak) are in a one-to-one correspondence

in the sense that not only everyP∈ Σ induces a uniquêP∈ Γ(Ak), but that also for

everyP̂ ∈ Γ(Ak) exists a uniqueP ∈ Σ that inducesP̂, becauseP can via (5.2) be

entirely re-constructed from̂P. To every social choice functionf : ΣN → Ak, we

can thus uniquely associate a social choice functionf̂ : Γ(Ak)
N → Ak by

f̂ (P̂1, P̂2, . . . , P̂N)
def
= f (P1,P2, . . . ,PN), (5.4)

wherePi for all i ∈ {1,2, . . . ,N} is that preference inΣ that induceŝPi . It is obvious

that f̂ is dictatorial if and only iff is dictatorial, andf̂ is manipulable (in the sense

of Definition 4.3) if and only if f is manipulable (in the sense of Definition 5.2),

and moreover,̂f is of a form to which Theorem 4.1 can be applied. To do so, we

must show thatΓ(Ak) is a linked top-2 domain, i.e., firstly, we must prove that

the preferences inΓ(Ak) are top-2 preference relations, and secondly, knowing that

Γ(Ak) thus is a top-2 domain, we must prove thatΓ(Ak) is linked. Before we turn

to the general proof, we will in an example, which then will serve as guideline for

the general case, consider the instance whenM = 4 andk = 2.

Example 5.6.Suppose that two of the alternatives in the setA = {a1,a2,a3,a4}

have to be chosen, which means that one of the following six elements inA2 is

going to be elected:

{a1,a2}, {a1,a3}, {a1,a4}, {a2,a3}, {a2,a4}, {a3,a4} (5.5)

First, we want to analyze the structure of preferences overA2 that are induced by

preferences overA . Consider therefore the two preferencesP,P′ ∈ Σ defined by

r1(P) = a1, r2(P) = a2, r3(P) = a3, and r4(P) = a4

and r1(P
′) = a1, r2(P

′) = a3, r3(P
′) = a2, and r4(P

′) = a4,

and letP̂ and P̂′ be the partial preferences induced byP respectivelyP′ on A2.

Clearly, the most preferred alternative forP̂ in A2 must be the subset consisting of

P’s two first alternatives, that isr1(P̂) = {a1,a2}. But a moment of thought should
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convince the reader that the set{a1,a3} is a second best of alternative forP̂, i.e.,

apart from{a1,a2}, the set{a1,a3} is preferred to any other element inA2. Thus,

we haver2(P̂) = {a1,a3}. Hence,P̂ is a top-2 preference relation, and since the

consideration above applies to all preferences inΓ(Ak), we conclude thatΓ(A2) is

a top-2 domain.

Next, we can argue thatΓ(A2) is linked. The two top alternatives inA2 accord-

ing to P̂ respectivelyP̂′ are

r1(P̂) = {a1,a2}, r2(P̂) = {a1,a3},

and r1(P̂
′) = {a1,a3}, r2(P̂

′) = {a1,a2},

which means that{a1,a2} and{a1,a3} are connected inΓ(A2). This indicates that

two subsets inA2 are connected whenever they have exactly one element in com-

mon. Consider now the elements inA2 in the order in which they are listed in (5.5).

The first two subsets are connected, and beginning with the third subset, every sub-

set has one element in common with at least two of the preceding subsets and is

hence connected to them. Thus,Γ(A2) is a linked top-2 domain, and therefore,

all strategy-proof social choice functions onΓ(A2) that respect unanimity must by

Theorem 4.1 be dictatorial.

We formalize now the steps in the example above for general values ofk andM,

namely, we will show thatΓ(Ak) is a top-2 domain (Lemma 5.2), that two elements

in Ak are connected if and only if they have exactlyk− 1 elements in common

(Lemma 5.3), and finally, thatΓ(Ak) is linked (Lemma 5.4).

Lemma 5.2.The partial preferencêP onAk that is induced by the preference P∈ Σ
is a top-2 preference relation for1≤ k≤ M−1, and

r1(P̂) =
{

r1(P), r2(P), . . . , rk−1(P), rk(P)
}

(5.6)

and r2(P̂) =
{

r1(P), r2(P), . . . , rk−1(P), rk+1(P)
}
. (5.7)

Proof. Firstly, in order to prove (5.6), setA1 =
{

r1(P), r2(P), . . . , rk−1(P), rk(P)
}

.

We have to show thatA1 P̂A for all A ∈ Ak \ {A1}. But once we have noted that

if A ∈ Ak \ {A1} anda ∈ A\A1, thena must be ranked belowrk(P) by P, this is

almost obvious, because every alternative inA1\A is preferred to every alternative

in A\A1, and thereforeA1 P̂A according to Definition 5.1.

Secondly, for (5.7), we setA2 =
{

r1(P), r2(P), . . . , rk−1(P), rk+1(P)
}

, and must

show thatA2 P̂A for all A ∈ Ak \ {A1,A2}. Fix therefore someA ∈ Ak \ {A1,A2},

and suppose first thatrk(P) /∈ A. Then alla∈ A\A2 are ranked belowrk+1(P) by
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P, and the same argument as above shows thatA2 P̂A. Next, if rk(P) ∈ A, then

there must be somej such that 1≤ j ≤ k−1 andr j(P) /∈ A, becauseA 6= A1. If A′

denotes the set obtained by replacingrk(P) in A by r j(P), then clearlyA′ P̂A. But

sincerk(P) /∈ A′, we haveA2 P̂A′, and by transitivity therefore alsoA2 P̂A.

Lemma 5.3. For 1≤ k≤ M−1, two subsets A1,A2 ∈Ak are connected if and only

if they have exactly k−1 elements in common.

Proof. Suppose first thatA1 andA2 have exactlyk−1 elements in common, that

is, A1 =
{

b1,b2, . . . ,bk−1,bk
}

andA2 =
{

b1,b2, . . . ,bk−1,b′k
}

for some alternatives

b1,b2, . . . ,bk−1,bk,b′k ∈ A . Let P1,P2 ∈ Σ be some preferences with

r1(P1) = b1, r2(P1) = b2, . . . , rk−1(P1) = bk−1, rk(P1) = bk, rk+1(P1) = b′k

and r1(P2) = b1, r2(P2) = b2, . . . , rk−1(P2) = bk−1, rk(P2) = b′k, rk+1(P2) = bk,

Let P̂1 and P̂2 be the preferences onAk that are induced byP1 respectivelyP2.

According to Lemma 5.2, we have

r1(P̂1) = A1, r2(P̂1) = A2

and r1(P̂2) = A2, r2(P̂2) = A1,

which means thatA1 andA2 are connected.

Conversely, ifA1 andA2 are connected, then there exists a partial preferenceP̂,

induced byP∈ Σ, such thatr1(P̂) = A1 andr2(P̂) = A2. By Lemma 5.2, we have

A1 =
{

r1(P), r2(P), . . . , rk−1(P), rk(P)
}

and A2 =
{

r1(P), r2(P), . . . , rk−1(P), rk+1(P)
}
.

Obviously,A1 andA2 have exactlyk−1 elements in common.

Lemma 5.4. For 1≤ k≤ M−1, the domainΓ(Ak) is a linked top-2 domain.

Proof. According to the definition of linked top-2 domains, we have to show that the

elements inAk can be ordered in a finite sequenceA1,A2,A3, . . . in such a way that

A1 andA2 are connected, and fromA3 on, every subsetAi is connected to at least two

of the preceding subsets. We claim that this requirement is met when the sets inAk

are ordered lexicographically with respect to a lista1,a2, . . . ,aM of the alternatives

in A ; by this, we mean that a subsetAi is ordered beforeA j if and only if the first

alternative ina1,a2, . . . ,aM that belongs to only one of the two subsets belongs to

Ai .25 Ordered in this way, the firstM − k+ 1 subsets (and only these) contain the

25For instance, the subsets in (5.5) are ordered lexicographically with respect toa1,a2,a3,a4.
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common subset{a1,a2, . . . ,ak−1}. By Lemma 5.3, any two of these subsets are

connected, which in particular means thatA1 ∼ A2, and if 3≤ i ≤ M−k+1, then

Ai is connected with at least two of the preceding subsets. Next, if Ai is such that

i > M−k+1, then there must be a first alternativeal in {a1,a2, . . . ,ak−1} that does

not belong toAi , and since♯Ai = k, there must be at least two alternativea j and

a j ′ that belong toAi , but not to{a1,a2, . . . ,ak−1}. Replacinga j respectivelya j ′

by al , we obtain two sets inAk that are ordered beforeAi and which according to

Lemma 5.3 are connected withAi . Thus,Γ(Ak) is linked.

It is now straightforward to see why Theorem 5.1 must be true:On the one hand,

if a social choice functionf : ΣN → Ak is dictatorial, thenf is clearly strategy-

proof because a dictator will definitely be worse off by misrepresentation, while

the other individuals in the society have no influence on the social choice and can

therefore not manipulatef . On the other hand, iff : ΣN →Ak is strategy-proof and

satisfies complete unanimity, then the corresponding function f̂ : Γ(Ak)
N → Ak

defined by (5.4) is strategy-proof and satisfies (ordinary) unanimity. SinceΓ(Ak)

according to Lemma 5.4 is a linked top-2 domain, we can apply Theorem 4.1 and

conclude thatf̂ , and therefore alsof , must be dictatorial. By this, Question 2 from

the introduction is answered.

5.3 The Case of Single-peaked Preferences

After having shown in the previous section that non-dictatorial strategy-proof social

choice of fixed-sized subsets is impossible in general, we turn now to Question 3

from the introduction and investigate whether a possibility result can be obtained

when voters’ preferences are single-peaked. Assume therefore throughout this sec-

tion that the set of alternativesA is equipped with a linear order≺, and letΩ⊂Σ be

a set of preferences that are single-peaked with respect to≺. It is our purpose in the

following to generalize the median rule from Section 3.2 to asocial choice function

for the social choice of fixed-sized subsets and to prove thatit is strategy-proof. To

this end, we will first show that the linear order≺ onA and the single-peakedness

of the preferences inΩ at least partly can be transferred toAk, namely when we re-

strict attention to those subsets that areconnected; by this, we mean subsetsA∈Ak

with the property that whenever two alternativesai anda j belong toA, then also all

alternatives betweenai anda j belong toA, or more formally:

Definition 5.3 (Connected Subset).A subsetA ⊂ A is said to beconnectedif

ai ,a j ∈ A andai ≺ a≺ a j impliesa∈ A.
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The set of all connected subsets ofA containing exactlyk elements is a proper

subset ofAk and will be denoted byA ◦

k . The linear order≺ on A induces in a

natural way a linear order≺k on A ◦

k . To see this, consider first the following six

linearly ordered alternatives, where we have marked the fiveconnected subsets that

contain exactly two of the alternatives:

a1 ≺ a2
︸ ︷︷ ︸

A1

a1 ≺

A2
︷ ︸︸ ︷
a2 ≺ a3a2 ≺ a3 ≺ a4

︸ ︷︷ ︸

A3

a3 ≺

A4
︷ ︸︸ ︷
a4 ≺ a5a4 ≺ a5 ≺ a6

︸ ︷︷ ︸

A5

a5 ≺ a6.

Here, it seems appropriate to say thatAi lies to the left ofA j if the left alternative

in Ai lies to the left of the left alternative inA j . For the general case, we formulate

therefore the following definition.

Definition 5.4 (Induced Linear Order). If ≺ is a linear order onA , we define the

induced linear order≺k onA ◦

k in the following way: ForA1,A2 ∈A ◦

k , we will say

thatA1 lies to the left ofA2, denoted byA1 ≺k A2, if the leftmost alternative inA1

lies to the left of the leftmost alternative inA2.26

Our interest in connected subsets and the induced linear order is motivated by the

following lemma, which states that if a voter has single-peaked preferences over the

alternatives inA , then his most preferred subset inAk will be connected.

Lemma 5.5. If P∈Ω andP̂ is the preference induced by P onAk, then r1(P̂)∈A
◦

k .

Proof. Suppose thatai ,a j ∈ r1(P̂) and ai ≺ a ≺ a j , but a /∈ r1(P̂). Obviously,

r1(P) ∈ r1(P̂), and thus eitherai ≺ a≺ r1(P) or r1(P) ≺ a≺ a j . If ai ≺ a≺ r1(P),

thenaPai , becauseP is single-peaked. But then we can obtain a set which is pre-

ferred tor1(P̂) by P̂ if we replaceai in r1(P̂) by a, which is absurd. A similar

contradiction occurs ifr1(P) ≺ a≺ a j . Hence, we conclude thata∈ r1(P̂).

As a consequence of Lemma 5.5, the most preferred subsets of the voters in the

society can be ordered linearly by≺k, and this enables us to transfer the concept of

the median alternative toA ◦

k : In analogy with the definition of the median alterna-

tive in Section 3.2, we will say that a set̄A∈ A ◦

k is amedian setfor the preference

profileP ∈ ΩN if

♯
{

Pi ∈ P; r1(P̂i) < Ā
}
≥ N

2

and ♯
{

Pi ∈ P; r1(P̂i) 4 Ā
}
≥ N

2
.

26More formally, the induced linear order≺k can be defined as follows: First, denote by min(A)

theminimal alternativein A, which is that alternative ¯a∈ A that satisfies ¯a4 a for all a∈ A, and then

we defineA1 ≺k A2 to hold if and only if min(A1) ≺ min(A2).
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In order to generalize the median rule from Section 3.2, we want now to define

a social choice functionf : ΩN → Ak that assigns to each preference profile its

median set, but this function is well-defined only if we can ensure that a median set

always exists and is unique, which is possible at least whenN is odd:

Lemma 5.6. If N is odd, every preference profileP ∈ ΩN has a unique median set.

Proof. Let A1,A2, . . . ,AM−k+1 be a list of theM−k+1 sets inA ◦

k , and define for

j = 1,2, . . . ,M−k+1 the cardinalityn j = ♯ {Pi ∈ P; r1(P̂i) = A j}. Note thatn1+

n2+ . . .+nM−k+1 = N, and moreover,♯ {Pi ∈P; r1(P̂i) 4k Al}= n1+n2+ . . .+nl

and♯ {Pi ∈ P; r1(P̂i) <k Al} = nl + nl+1 + . . .+ nM−k+1. To prove the existence

of a median set for a preference profileP ∈ ΩN, let l be theleast index such that

n1+n2+ . . .+nl ≥ N/2. Thenn1 +n2+ . . .+nl−1 < N/2, and hence

nl +nl+1+ . . .+nM−k+1 = N− (n1+n2+ . . .+nl−1) ≥
N
2

.

Thus,Al is a median set forP. To see that the median set forP is unique when

N is odd, suppose thatAl andAl ′ are two different median sets forP, and assume

that l < l ′. Note first that ifN is odd, then a natural number that is larger thanN/2

is larger than or equal to(N + 1)/2. SinceAl andAl ′ are median sets, we have

therefore both

n1+n2+ . . .+nl ≥
N+1

2
and nl ′ +nl ′+1+ . . .+nM−k+1 ≥

N+1
2

.

But then we obtain the contradiction

N = n1+n2+ . . .+nM−k+1 ≥ n1+n2+ . . .+nl +nl ′ +nl ′+1+ . . .+nM−k+1 ≥N+1,

and hence, the median set must be unique.

For oddN, we define now themedian set ruleto be that social choice function

f : ΩN → Ak that assigns to a preference profileP ∈ ΩN the median set ofP.

Obviously, the median set rule is non-dictatorial and satisfies complete unanimity.

Moreover, the median set rule is also strategy-proof. The reason for this is that if̂P

is the preference induced onAk by a preferenceP∈ Ω, then onA ◦

k , which is the set

of all possible outcomes of the median set rule,P̂ has essentially the same structure

as a single-peaked preference; this is made precise and proved in the following

lemma.27

27When claiming that̂P has essentially the same structure as a single-peaked preference, we mean

that P̂ satisfies the two conditions in (5.8) and (5.9), by which single-peakedness was defined in
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Lemma 5.7. If P ∈ Ω andP̂ is the preference induced by P onAk, then

r1(P̂) 4k A1 ≺k A2 =⇒ A1 P̂ A2 (5.8)

and r1(P̂) <k A1 ≻k A2 =⇒ A1 P̂ A2 (5.9)

holds for all A1,A2 ∈ A ◦

k .

Proof. In order to prove (5.8), letA1,A2 ∈ A ◦

k be such thatr1(P̂) 4k A1 ≺k A2,

and consider first two alternativesai ,a j ∈ A with ai ∈ A1 \A2 anda j ∈ A2 \A1.

Obviously, as a direct consequence of (5.8), we haveai ≺ a j . If now ai 4 r1(P),

thenai ∈ r1(P̂), and the rank ofai according toP is therefore at mostk, whereasa j ,

by (5.8), must have a rank higher thank, and we conclude thatai Paj . On the other

hand, if r1(P) ≺ ai , then we also haveai Paj , which in this case follows from the

assumption thatP is single-peaked with respect to≺. Hence, every alternative in

A1 \A2 is preferred to every alternative inA2 \A1, which by Definition 5.1 means

thatA1 P̂A2. This proves (5.8), and (5.9) can be proved in the same way.

Lemma 5.7 allows us to use the same arguments by which we proved the strategy-

proofness of the median rule in Section 3.2 in order to prove that that the median

set rule is strategy-proof:

Theorem 5.8.The median set rule is strategy-proof.

Proof. Let P ∈ ΩN be a preference profile, and let̄A be its median set. Consider

an individual i. If r1(P̂i) = Ā, then individuali gets his top alternative and can

therefore clearly not gain from misrepresentation. Consider therefore the case when

r1(P̂i) 6= Ā, and assume, without loss of generality, thatr1(P̂i) ≻ Ā. Suppose now

that individuali reportsP′

i instead of his true preferencePi . If r1(P̂′

i ) ≻ Ā, then both

♯
{

Pj ∈ P; r1(P̂j) < Ā
}

and ♯
{

Pj ∈ P; r1(P̂j) 4 Ā
}

are unaffected, and therefore,Ā is also the median set of(P′

i ,P−i). If, on the other

hand,r1(P̂′

i ) 4 Ā, then

♯
{

Pj ∈ (P′

i ,P−i); r1(P̂j) < Ā
}
≤ ♯

{
Pj ∈ (Pi,P−i); r1(P̂j) < Ā

}

and ♯
{

Pj ∈ (P′

i ,P−i); r1(P̂j) 4 Ā
}
≥ ♯

{
Pj ∈ (Pi,P−i); r1(P̂j) 4 Ā

}
,

Section 3.2. It is, however, worth noting thatP̂ is still incomplete onA ◦

k . To see this, let, for

example,a1 ≺ a2 ≺ a3 ≺ a4 be a linearly ordered set of alternatives, and define the preferenceP

by a2Pa3Pa4Pa1. ThenP is single-peaked with respect to≺, but the preferencêP induced byP

on A2 cannot rank the two connected subsets{a1,a2} and{a3,a4}. Thus,P̂ has in general less

structure than a complete single-peaked preference, andP̂ can, for instance, not be represented by a

single-peaked utility function.
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and hence, if̄A′ is the median set of(P′

i ,P−i), thenĀ′ 4 Ā. But sinceĀ≺ r1(P̂i), we

conclude by Lemma 5.7 that either̄A = Ā′ or ĀP̂i Ā′, and hence, individuali is not

able to manipulate the median rule. The theorem is proved.

Recall that the median set rule is defined only whenN is odd, but it is now straight

forward to construct strategy-proof social choice functions f : ΩN → Ak also for

evenN. Consider, for instance, that social choice function that assigns to the prefer-

ence profile(P1,P2, . . . ,PN) the median of(P1,P2, . . . ,PN,PN), where preferencePN

has been doubled; ifN is even, then this social choice function is well-defined, and

using arguments similar to those in the proof of Theorem 5.8,one can show that it

also is strategy-proof. Summarizing, we have thus shown that if voters’ preferences

are single-peaked, then there exist non-dictatorial strategy-proof social choice func-

tions f : ΩN → Ak that satisfy complete unanimity, and by this, Question 3 from

the introduction is answered.

5.4 Related Literature

In this section, we discuss finally how the social choice of fixed-sized subsets stud-

ied in this thesis is related to other contributions in the literature of strategy-proof

social choice theory. We mentioned already in the introduction that there, at least

to our knowledge, exist no previous investigations of whether strategy-proof social

choice of fixed-sized subsets is possible. However, there isa number of papers

that study strategy-proof social choice of subsets ofvariable size, and they have

their common starting point in the paper “Voting by committees” by Barberà et

al. (1991). The original voting model in Barberà et al. (1991) is the following: A

society consisting ofN individuals has to choose a subset from a setA that contains

M alternatives. Contrary to the social choice of fixed-sized subsets, however, there

exist no restrictions on the number of alternatives that canbe chosen, but any subset

of A can be obtained as outcome, and the individuals are therefore assumed to have

complete, antisymmetric and transitive preferences over the set of all subsets ofA .

In practice, voting situations of this type arise, for instance, in clubs that have

to choose among candidates considered for membership. A concrete example is

a choir to which a number of students apply, and a jury decidesfor each of the

applicants after an admission test whether he or she is sufficiently talented to be

accepted. Another instance where voting has the structure described in the model

of Barberà et al. (1991) are decision-making committees, e.g., national parliaments,

that consider a number of proposals and decide for each whether to accept it or to

reject it.
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In such voting situations, there is no direct conflict between the alternatives in

the sense that the election of one alternative does not necessarily affect another

alternative’s possibility to be elected. This trait shouldbe reflected in voters’ pref-

erences, and Barberà et al. (1991) assume therefore that voters are able to consider

the alternatives inA one at a time and classify them either asgood, meaning el-

igible, desirable, etc., orbad, then of course meaning ineligible, undesirable, etc.

Formally, the set of voteri’s good alternatives is denoted byGi , and Barberà et

al. (1991) assume that voters’ preferences areseparablein the sense that ifA is a

strict subset ofA anda∈A is an alternative that does not belong toA, then adding

a to A makes voteri better off if and only if he classifiesa as good, or more formally

(A∪{a}) Pi A ⇐⇒ a∈ Gi . (5.10)

Note that condition (5.10) is similar to condition (5.2) used in Section 5.1 in that

both require preferences over subsets to be consistent withpreferences over alter-

natives.28

Barberà et al. (1991) show that if voters’ preferences over subsets ofA are

separable, then the social choice of subsets ofA of variable size can be made

strategy-proof, that is, ifΩ denotes the set of all separable preferences over 2A , then

it is possible to find strategy-proof social choice functions of the formf : ΩN → 2A ,

and in addition, Barberà et al. (1991) are able to characterize all strategy-proof

social choice functions of the formf : ΩN →2A . The possibility result in Barberà et

al. (1991) should not come as a surprise: Recall from Example2.6 that when society

has to choose one of two alternatives, then one can find strategy-proof social choice

functions, e.g., the majority rule. The voting problem in Barberà et al. (1991) can

be considered as repeated binary choice where society for each of theN alternatives

in A must decide whether to include this alternative in the final subset or not, and

since preferences are assumed to be separable, we should obtain a strategy-proof

social choice function when we apply the majority rule to each alternative to decide

whether to include it.

Comparing the voting model in Barberà et al. (1991) with the social choice of

fixed-sized subsets, the following can be noted: In both voting models, society is

going to choose a subset from a setA , which, contrary to the single-valued choice

in the Gibbard-Satterthwaite theorem, means that alternatives are not considered to

be mutually exclusive. The fundamental difference betweenthe two voting models

is that in Barberà et al. (1991), society can choose any number of alternatives from

28In particular, this means that condition (5.10) also can fail to hold for reasons similar to those

we discussed in Remark 5.1.
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A , whereas society in the voting model considered in this thesis must choose a fixed

number of alternatives. This means that in Barberà et al. (1991), there is no conflict

between the alternatives inA in the sense that the election of one alternative does

not affect other alternatives’ possibility to be elected, whereas in our approach, the

alternatives are competing for thek places in the final subset. This difference leads

to entirely different structures of individual preferences: In Barberà et al. (1991),

the alternatives inA are evaluatedabsolutelyin the sense that an alternative either

is good or bad, disregarded from the qualities of other alternatives. This preference

structure makes it possible to rank subsets ofdifferentsizes, which is formalized

in (5.10). Note, however, that the condition in (5.10) has noimplications on how

subsets of the same size are ranked.29 On the contrary, in the voting model in this

thesis, we assume that voters have complete preferences over the alternatives inA ,

which means that alternatives are evaluatedrelativelyto each other in the sense that

if a andb are two alternatives inA , then eithera is better thanb, or b is better than

a, but we have no information on whethera or b are desirable in an absolute sense.

These preferences are then used to rank subsets of thesamesize via (5.2), whereas

subsets of different sizes cannot be ranked by (5.2), which neither is necessary in

our approach. Finally, it is important to note that the two voting models lead to

fundamentally different results: while the social choice in the model of Barberà et

al. (1991) can be made strategy-proof, this is not the case for the social choice of

fixed-sized subsets.

The voting model in Barberà et al. (1991) has been modified andextended in

different ways in a number of papers, e.g., in Serizawa (1995), Le Breton and

Sen (1999), Aswal et al. (2003), Barberà et al. (2005), and Svensson and Torstens-

son (2005). Among these papers, Aswal et al. (2003) is of special interest for a

comparison with the approach in this thesis. The basic voting model in this paper

is of the same type as in Barberà et al. (1991), and voters’ preferences are also as-

sumed to be separable in the sense of (5.10), but in addition,Aswal et al. (2003)

assume external restrictions on the number of elements in the subset ofA which

society is going to choose, which makes some elements in 2A infeasible. More

29One can of course object that the assumption in Barberà et al.(1991) that voters have complete

preferences over the elements in 2A implies that ifa,b∈ A , then{a} and{b} are comparable, and

therefore it would not be unreasonable to assume also, in addition to the separability in (5.10), that

if for instance{a}P{b} andA⊂ A \ {a,b}, then(A∪{a})P(A∪{b}). However, the separability

restriction in (5.10) is already sufficient for the existence of non-dictatorial strategy-proof social

choice functions, and additional restrictions will therefore not affect the possibility result in Barberà

et al. (1991).
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concretely, they consider restrictions that require the subset chosen by society to

contain betweenk1 andk2 elements, where 0< k1 ≤ k2 < M. An example of a situ-

ation that naturally gives rise to such restrictions is the following: An institute is in

need of additional researchers for a new project, and advertises therefore a post. If

there will be several very skilled applicants, the institute is willing to employ more

than one researcher, but on the other hand, due to budget restrictions the institute

will not be able to able to employ more than three researchers. Thus, we havek1 = 1

andk2 = 3 in this case.

Given the restriction 0< k1 ≤ k2 < M, Aswal et al. (2003) prove that any

strategy-proof social choice function has to be dictatorial, a result which thus is

in sharp contrast to the result in Barberà et al. (1991). Whenk1 = k2 = k, we ob-

tain as a special case of course the situation when society has to choose an element

from Ak, which seems to be quite similar to the social choice of fixed-sized subsets.

Note, however, that the elements inAk are not affected by the separability condition

in (5.10) since they are all of the same size, which means thatthis special case of

the result of Aswal et al. (2003) is based on the assumption that individual prefer-

ences overAk are complete and unrestricted. In this light, the dictatorial result of

Aswal et al. (2003) for the case whenk1 = k2 is not surprising because it is a direct

consequence of the original Gibbard-Satterthwaite theorem. On the other hand, con-

dition (5.2) used in this thesis puts restrictions on voters’ preferences over subsets

of the same size, and therefore, our result on the non-existence of non-dictatorial

strategy-proof social choice function choosing an elementfrom Ak cannot be seen

as a special chase of the result in Aswal et al. (2003).
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6 Conclusions

IT IS NOW time to summarize the results of our study of the strategy-proof social

choice of fixed-sized subsets and to link up with the questions proposed in the in-

troduction. We started our analysis with the observation that it is not obvious when

a social choice function of the formf : ΣN → Ak should be said to be manipulable,

but one needs to know how preferences over the alternatives in A should be trans-

lated to preferences overAk, which led us to Question 1. We answered this question

by arguing that an individual prefers one subset to another if and only if the former

can be obtained from the latter by successive replacement ofworse alternatives by

better alternatives.

Knowing the structure of preference overAk, we could then turn to the question

whether strategy-proof social choice of fixed-sized subsets is possible, and first, we

considered the case when the set of preferences overA is unrestricted. It turned out

that this set of preferences induced a set of preferences onAk that has a complicated

structure, and in order to analyze this structure, we derived a general theoretical

result, Theorem 4.1. This theorem serves thus as a tool in this thesis, but it is also

of interest on its own: Firstly, it shows that a large class ofrestricted preference

domains is dictatorial, and it can thus also be applied in other contexts. Secondly,

it shows that the assumption of complete preferences in the Gibbard-Satterthwaite

theorem can be relaxed considerably because it suffices to assume that preferences

belong to a linked top-2 domain in order to conclude that every strategy-proof social

choice function that satisfies unanimity must be dictatorial. Thirdly, and finally, it

allows us to obtain a strengthening of the Gibbard-Satterthwaite theorem, which

states that every non-dictatorial social choice function that satisfies unanimity is not

only manipulable, but it can be manipulated in such a way thatsome individual

obtains at least his second best alternative. This is our answer of Question 4, which

of course is unrelated with the purpose of this thesis, but itis nevertheless of interest.

Applying Theorem 4.1 to the set of all preferences that are induced onAk, we

could conclude that the social choice of fixed-sized subsets, precisely as the single-

valued social choice in the original Gibbard-Satterthwaite theorem, cannot be made

strategy-proof, which answers Question 2.

Finally, we considered also the case when voters’ preferences over the alterna-

tives inA are single-peaked since this is a reasonable assumption in many voting

situations. As answer to Question 3, we found, again in analogy with the single-

valued case, that single-peaked preferences admit non-dictatorial strategy-proof so-

cial choice functions for the social choice of fixed-sized subsets.
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A Mathematical Appendix

IN THIS APPENDIX, we provide a short overview over the mathematical concepts

used in the formalizations and proofs throughout this thesis. Even though the re-

sults in this thesis must be regarded non-trivial, their proofs do not require any

advanced techniques from higher mathematics, but the only ingredients needed are

the language of set theory and some fundamental methods for mathematical deduc-

tion. The parts of set theory needed for our purposes are presented in Section A.1.

Among the methods for mathematical deduction used in our proofs, there are two

that can be confusing to the reader unfamiliar with them, whence we will explain

them here in some detail. These are proof by contradiction, considered in Sec-

tion A.2, and the principle of mathematical induction, explained in Section A.3.

The material presented here can, for instance, also be foundin Sydsæter and Ham-

mond (2006), or in the first part in Grimaldi (1998).

A.1 Elementary Set Theory

At several places in this thesis, we encounter a number of objects that are suitably

considered as a whole. These may be the individuals that formsociety, the available

alternatives among which society is going to choose, or the preferences that are

reasonable in some context. Such a collection of objects is called aset, and is

usually denoted by capitals asA, A , I, or Σ. The objects itself are usually denoted

by lower-case letters, and if an objecta belongs to a setA, we say thata is an

elementin A, and writea∈ A. If a does not belong toA, we writea /∈ A.

Sets can be described explicitly by listing their elements,enclosed by braces.

For example, if a setA1 consists of the four alternativesa1, a2, a3, anda4, we write

A1 = {a1,a2,a3,a4}. (A.1)

Alternatively, a set can be described indirectly by declaring a property that is distin-

guishing for its elements. E.g., suppose that the preferenceP orders the alternatives

in the setA1 according toa1 P a2 P a3 P a4. Then we can define a new setA2 by

requiring, for instance, thatA2 should contain precisely those alternatives inA1

that are preferred toa3 by P. For this, we will use the notation

A2 = {a∈ A1; aPa3}, (A.2)

which should be read as “A2 is the set of alla∈A1 such thataPa3”. Of course, the

setA2 consists of the two elementsa1 anda2, so instead of the more complicated
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expression in (A.2) we could simpler writeA2 = {a1,a2}. Often, however, it is

more convenient to describe sets as in (A.2) because this waycan reveal more of

the structure of a set than a simple list can do. Also, sometimes it is not even

possible to list the elements in a set, which, for instance, is the case when the set

contains infinitely many elements.

Throughout this thesis, we will only consider sets that contain finitely many

elements, and the number of elements in a setA will be denoted by♯A; for example,

for the setA1 in (A.1), we have♯A1 = 4.

Given two setsA andB, we say thatA is a subsetof B, denoted byA ⊂ B, if

every element inA also is an element inB. For instance, the setA2 in (A.2) is a

subset of the setA1 in (A.1). For a setA, the set of all subsets ofA is called the

power setof A and is denoted by 2A. For example, ifA3 = {a1,a2,a3}, then

2A3 =
{

∅,{a1},{a2},{a3},{a1,a2},{a1,a3},{a2,a3},{a1,a2,a3}
}

,

where∅ denotes theempty set, i.e., the set that does not contain any elements at all.

Starting with two setsA andB, we can construct a number of new sets by com-

bining the elements inA andB in different ways, and in this thesis, we need the

following concepts:

1. Theunionof A andB, denoted byA∪B, contains those elements that either

belong toA, to B, or to both, i.e.,A∪B = {a; a∈ A or a∈ B}.

2. Theintersectionof A andB, denoted byA∩B, contains those elements that

belong to bothA andB, i.e.,A∩B = {a; a∈ A anda∈ B}.

3. Thedifferenceof A andB, denoted byA\B, contains those elements that

belong toA, but not toB, i.e.,A\B = {a; a∈ A anda /∈ B}.

4. TheCartesian productof A andB, denoted byA×B, consists of all ordered

pairs whose first element belongs toA and whose second element belongs to

B, i.e.,A×B = {(a,b); a∈ A andb∈ B}.

5. Thenth powerof the setA, denoted byAn, contains alln-tuples of elements

in A, i.e.,An = {(a1,a2, . . . ,an); a1,a2, . . . ,an ∈ A}.

Often, one does not study sets on their own, but is interestedin how the elements in

two sets are related. A special case of a relation between theelements in two sets

A andB is a function, which is a rule that assigns to every elementa∈ A one, and

only one, elementb∈ B. When f is a function fromA to B, this will be indicated

by f : A→ B, and ifb is the element assigned toa by f , we write f (a) = b and we

will also say thata is theargumentof f .
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A.2 Proof by Contradiction

In many of the proofs in this thesis, we use formulations like“the statement will

be proved by a contradiction argument” or “we will argue by contradiction”. By

this, we indicate that the following procedure for mathematical deduction, known

asproof by contradiction, will be used: Suppose thatS is a statement we want to

prove, and letS ′ be its logical contrary, that is,S ′ is true if and only ifS is false.30 In

order to proveS, which might be hard to do directly, we suppose for a while that S ′

would be true, and analyze the consequences of this assumption. More concretely,

assuming thatS ′ is true, we derive other statements that then also must be true.

This will finally lead to a statement that is definitely false,from which we then can

conclude that the initial assumption thatS ′ holds was erroneous. But since exactly

one ofS andS ′ must be true, we have thus proved thatS must hold.

We illustrate the method of proof by contradiction by a classical example. Recall

first that a natural number greater than 1 is called aprime numberif it is divisible

only by 1 and itself. A natural number greater than 1 that is not a prime number

can be written as a product of prime numbers, and is thereforesaid to becomposite.

Suppose now we want to prove the following statement:

There are infinitely many primes. (A.3)

It seems difficult to prove this statement directly, whence proof by contradiction is

an appropriate method. Consider therefore the logical contrary of (A.3):

There is a finite number of primes. (A.4)

We need to show that (A.4) is not logically tenable. If (A.4) is true and the number

of primes isN, say, then we can list all primes in a finite sequence as

p1, p2, . . . , pN. (A.5)

Consider now the numberp obtained by multiplying all primes and adding 1, i.e.,

p = p1 · p2 · . . . · pN +1.

Obviously,p cannot be equal to any of the prime numbersp1, p2, . . . , pN, and there-

fore, p must be composite. On the other hand,p cannot be divisible byp1, because

dividing p by p1 leaves a remainder of 1. For the same reason,p cannot be divisible

30For instance, ifS denotes the statement “all swans are white”, thenS′ stands for “there is at

least one swan that is not white”.
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by p2, by p3, or by any other of the prime numbers in (A.5). But then,p cannot

be composite, because a composite number can be factored as aproduct of primes

numbers. We are thus forced to conclude thatp must be composite at the same time

as p cannot be composite, which is obviously a contradiction; therefore, the state-

ment in (A.4), from which this contradiction was derived, must be wrong, which

implies that (A.3) must be true, and the proof is fulfilled.

A.3 The Principle of Mathematical Induction

Many theorems in social choice theory contain one or more parameters. Consider,

for instance, the fundamental result in strategy-proof social choice theory:

The Gibbard-Satterthwaite theorem:LetA be a set containing M≥ 3

elements, and denote byΣ the set of all strict preferences overA . Let

further f : ΣN →A be a social choice function that satisfies unanimity.

Then f is strategy-proof if and only if f is dictatorial.

This statement contains two parameters—firstly,M, the number of alternatives in

A , and secondly,N, the number of arguments inf —and the theorem is claimed

to be true for allM ∈ {3,4,5, . . .} and allN ∈ {2,3,4, . . .}.31 There exist differ-

ent strategies to prove statements involving parameters. Sometimes, one is able to

construct an argument that is independent of the actual value of the parameter; for

instance, in Appendix B we prove the Gibbard-Satterthwaitetheorem for the case

N = 2 in a way which does not depend onM, provided thatM ≥ 3, which means

that we actually prove the theorem for allM ∈ {3,4,5, . . .}.

Often, however, it is not possible to succeed in such a simpleway, but one is in

need of more sophisticated strategies. A standard technique for proving theorems

that contain parameters that are natural numbers32 is known asproof by induction.

Thereby, one splits the proof of a certain statement that depends on a parameterN

that is a natural number into the following two steps:

1. Show that the statement holds forN = 1.

2. Show that if the statement is true for a particular naturalnumber, saȳN, then

it is also true for the proceeding natural number, that is, for N̄+1.33

31This theorem is of course also true forN = 1, but it is interesting only forN ≥ 2.
32By natural numbers, we refer here to the set{1,2,3, . . .}, which is also the convention used

in Sydsæter and Hammond (2006). In many mathematical contexts, however, the term “natural

numbers” is reserved for the set{0,1,2,3, . . .}.
33This step is sometimes called theinduction step, and its premise that the theorem is true for a

particularN̄ is called theinduction hypothesis.

68



In combination, these two steps imply that the statement holds for all natural num-

bersN ∈ {1,2,3, . . .}.34

In this thesis, induction proofs are used at several places,for instance, when

we show that the Gibbard-Satterthwaite theorem holds for all N ≥ 2. In order to

make the reader familiar with the structure of a proof by induction, we illustrate this

technique here by an elementary example. Suppose we want to prove the summation

formula

1+2+3+ · · ·+N =
N(N+1)

2
, (A.6)

which is claimed to be true for allN ≥ 1. For a clearer argumentation, we denote

the left hand side byf (N) and the right hand side byg(N), i.e.,

f (N) = 1+2+3+ · · ·+N and g(N) =
N(N+1)

2
.

With this notation, we have to show that

f (N) = g(N) (A.7)

holds for allN ≥ 1, which will be done by carrying out the two steps required for

an induction proof.

First, if N = 1, thenf (1) = 1 andg(1) = 1·(1+1)/2= 1, which shows that (A.7)

is true forN = 1.

Second, we have to carry out the induction step by showing that if f (N̄) = g(N̄)

for a particularN̄, then alsof (N̄+1) = g(N̄+1). But if f (N̄) = g(N̄) for someN̄,

then straightforward calculations give

f (N̄+1) = 1+2+ . . .+ N̄+(N̄+1) = f (N̄)+(N̄+1) = g(N̄)+(N̄+1) =

=
N̄(N̄+1)

2
+(N̄+1) =

N̄(N̄+1)+2(N̄+1)

2
=

(N̄+1)(N̄+2)

2
= g(N̄+1),

which is exactly what we needed to show. Note that we at the third equal sign use

the induction hypothesis thatf (N̄) = g(N̄).

34This principle works like a domino effect: If dominos have been placed standing in an infinite

ray, the first domino is knocked over, and every domino that isknocked over also knocks the fol-

lowing domino over, then the principle of mathematical induction says that every domino sooner or

later is knocked over.
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B A Proof of the Gibbard-Satterthwaite Theorem

THE PURPOSE OFthis appendix is twofold: firstly, we present a complete proof

of the Gibbard-Satterthwaite theorem (Theorem 2.3 in this thesis), the main result

in strategy-proof social choice theory, and secondly, we show why the proof of

Theorem 3.2 given in Aswal et al. (2003) cannot be applied to partial preference

relations, thereby motivating our proof of Theorem 4.1 given in Section 4.2.

We will prove the Gibbard-Satterthwaite theorem using induction over the num-

ber of individuals: First, we show in Lemma B.1 that the theorem holds forN = 2

individuals, and then, we prove in Lemma B.2 that if the theorem holds forN indi-

viduals, then it is also true forN + 1 individuals. In combination, these two steps

provide a complete proof of the Gibbard-Satterthwaite theorem.

Lemma B.1. Suppose thatA is a set containing at least three alternatives, and let

f : Σ2 → A be a social choice function that satisfies unanimity. Then f is strategy-

proof if and only if f is dictatorial.

The following proof follows closely a corresponding proof in Svensson (1999).

Proof. On the one hand, iff is dictatorial, the dictator is of course best off if he

presents his preference truly, whereas the other individual in the society cannot

affect the social choice and hence is neither able to gain from misrepresentation.

Thus, f is strategy-proof in this case.

On the other hand, suppose now thatf is strategy-proof, and recall from Sec-

tion 2.2 that a strategy-proof social choice function satisfies monotonicity and Pareto

optimality. Leta1 anda2 be two alternatives inA , and consider the following pref-

erences:
P1 P2 P′

2

a1 a2 a2

a2 a1
...

...
...

...
...

... a1

Due to Pareto optimality we must have eitherf (P1,P2) = a1 or f (P1,P2) = a2, and

suppose for simplicity thatf (P1,P2) = a1. Consider now preferenceP′

2 wherea1 is

ranked last, and note that Pareto optimality also here implies f (P1,P′

2) ∈ {a1,a2}.

However, if f (P1,P′

2) = a2, then individual 2 would be able to manipulatef by

going from(P1,P2) to (P1,P′

2), and hencef (P1,P′

2) = a1. But monotonicity implies

then thatf (P1,P2) = a1 wheneverr1(P1) = a1, that is, individual 1 is a dictator for

alternativea1.
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In order to show that individual 1 now must be a dictator also for all other alter-

natives, suppose thata ∈ A \ {a1,a2}, and consider the following two preference

profiles
P1 P2

a a2

a2 a
...

...

and

P1 P2

a2 a

a a2
...

...

Applying the same arguments as in the first paragraph to the left preference profile,

we conclude that either individual 1 is a dictator fora or individual 2 is a dictator

for a2, but the first paragraph shows also that the latter case is notpossible. Hence,

individual 1 is a dictator for all alternatives inA , possibly with the exception of

a2. But if individual 1 is not a dictator fora2, then the right preference profile and

an argument as in the first paragraph show that individual 2 must be a dictator for

a, which is not possible becauseP1,P2 ∈ Σ, r1(P1) = a1 andr1(P2) = a would then

imply both f (P1,P2) = a1 and f (P1,P2) = a. Thus, individual 1 must be a dictator

for f .

Lemma B.2 below provides the induction step not only for the original Gibbard-

Satterthwaite theorem, where the domain of preferences is assumed to be unre-

stricted, but for a large class of restricted domains, namely all domains that are

minimally rich35, and it is therefore of interest on its own. It has also been used

by Aswal et al. (2003) as part of their proof of Theorem 3.2. The formulation of

Lemma B.2 given below is essentially the same as in Aswal et al. (2003), but the

proof follows closely that given in Svensson (1999), because it is simpler than in

Aswal et al. (2003). We would also like to remark that resultssimilar to Lemma B.2

can be found, e.g., in Kalai and Muller (1977) (with another notion of manipula-

bility than in this thesis), and Barberà and Peleg (1990) (under the assumption of

unrestricted preferences).

Lemma B.2. Suppose thatΩ ⊂ Σ is a minimally rich domain over the setA of

alternatives. If the implication

a social choice function f: Ωn →A is

strategy-proof and satisfies unanimity

}

=⇒ f is dictatorial (B.1)

holds for all n such that2≤ n≤ N, then it also holds for n= N+1.

35A domainΩ is said to beminimally rich if for every a ∈ A there exists someP ∈ Ω such

that r1(P) = a. Note, for example, that single-peaked domains, linked domains and the domain of

unrestricted preferences are minimally rich.
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Proof. Suppose thatf : ΩN+1 → A is a strategy-proof social choice function that

satisfies unanimity, and define the social choice functiong : Ω2 → A by

g(P1,P2) = f (P1,P2, . . . ,P2
︸ ︷︷ ︸

N copies

).

The aim in the first part of this proof is to show thatg is dictatorial. We note first that

gsatisfies unanimity becausef satisfies unanimity. Next, we claim thatg is strategy-

proof. It is clear thatg is strategy-proof in its first argument because if individual 1

can manipulateg at P1, then individual 1 can of course also manipulatef at P1.

To show thatg is strategy-proof in its second argument, we argue by contradiction.

Suppose therefore that

g(P1,P2) = a, g(P1,P
′

2) = b, and b P2 a (B.2)

for some preferencesP1,P2,P′

2 ∈ Ω. Define

ck = f (P1,P
′

2, . . . ,P
′

2
︸ ︷︷ ︸

k copies

,P2, . . . ,P2
︸ ︷︷ ︸

N− k copies

),

and note thatc0 = a andcN = b. Comparingck with ck+1, we observe that if

ck+1 P2 ck , (B.3)

then individualk+2 can manipulatef by representingP′

2 instead ofP2. Since the

preferences inΩ are complete andf is strategy-proof, we conclude therefore that

ck+1 = ck or ck P2 ck+1 . (B.4)

Considering (B.4) for allk = 0,1, . . . ,N and using transitivity, we obtain either

a = c0 = cN = b, which is absurd sincea 6= b, or aP2b, which contradicts the

assumptions in (B.2). Thus,g must be strategy-proof. Now, we can apply the

implication in (B.1) tog, and conclude thatg must be dictatorial. This means that

either individual 1 or individual 2 is a dictator forg, and in the rest of this proof we

show that both cases imply that alsof is dictatorial.

First, if individual 1 is the dictator forg, then we can use the monotonicity

property of strategy-proof social choice functions (Lemma2.4) and an argument

similar to that in the second part of the proof of Theorem 4.1 on page 43, in order

to conclude that individual 1 also is a dictator forf .

Second, consider the case when individual 2 is the dictator for g. Let P̄1 ∈ Ω be

some fixed preference, and define the social choice functionh : ΩN → A by

h(P2,P3, . . . ,PN+1) = f (P̄1,P2,P3, . . . ,PN+1).
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We note thath must be strategy-proof becausef is strategy-proof. Moreover, since

h(P2,P2, . . . ,P2) = g(P̄1,P2) = r1(P2),

we conclude, using monotonicity, thath satisfies unanimity. Thus, we can apply the

implication in (B.1) in order to conclude thath is dictatorial. Assume, without loss

of generality, that individual 2 is the dictator forh, that is

h(P2,P3, . . . ,PN+1) = r1(P2).

Next, letP̄3, . . . , P̄N+1∈Ω beN−1 fixed preferences, and consider the social choice

functionq : Ω2 → A defined by

q(P1,P2) = f (P1,P2, P̄3, . . . , P̄N+1).

Observe thatq is strategy-proof, becausef is strategy-proof, and since

q(P̄1,P2) = h(P2, P̄3, . . . , P̄N+1) = r1(P2) (B.5)

we can apply monotonicity tōP1, and conclude thatq satisfies unanimity. Applying

then the implication in (B.1) toq, we conclude thatq is dictatorial, and (B.5) implies

that individual 2 must be the dictator forq. Therefore, we have

f (P1,P2, P̄3, . . . , P̄N+1) = q(P1,P2) = r1(P2). (B.6)

Since equation (B.6) holds independently of the particularchoice of the preferences

P̄3, . . . , P̄N+1, we conclude that individual 2 in fact is a dictator forf . The lemma is

proved.

We can now explain the complication that came up when we triedto transfer the

proof of Theorem 3.2 to linked top-2 domains. As mentioned above, Lemma B.2

provides the induction step in the proof of Theorem 3.2 givenin Aswal et al. (2003),

which works because linked domains are minimally rich. However, the proof of

Lemma B.2 contains an implication that does not hold for partial preference rela-

tions, namely, the passage from (B.3) to (B.4): ifP2 is a strict partial preference

relation and we know thatck+1P2ck does not hold, then there are three possibilities

left (and not only two as in (B.4)), namely, either we haveck+1 = ck, orck P2ck+1, or

ck andck+1 are not ranked byP2, and in the latter case we are not able to derive the

contradiction needed to show thatg is strategy-proof. There seems to be no simple

way to solve this complication, and therefore, we were forced to modify the proof

of Theorem 3.2 in a more fundamental way. Whether Lemma B.2 actually holds for

minimally rich partial preference domains remains an open research question.
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List of Notations

The page number indicates the page where the notation is introduced.

Basic Notations

A the set of alternatives,8

I the set of individuals,8

Ak the set of all subsets ofA that contain exactlyk elements,45

A ◦

k the set of all connected subsets ofA that contain exactlyk elements,57

Preference Relations

aPb alternativea is preferred tob according to preferenceP, 8

rk(P) thekth ranked alternative of preferenceP, 9

Pi the preference of individuali, 9

P a preference profile, i.e.,P = (P1,P2, . . . ,PN), 9

P−i the preference profile of all individuals apart from individual i, 9

O−i(Pi, f ) the option set with respect toPi and f , 35

P̂ the preference induced byP onAk, 47

Preference Domains

Σ the domain of unrestricted preferences,9

Ω a restricted preference domain,19

Γ a top-2 domain,29

Γk the set of allP∈ Γ such thatr1(P) = ak, 35

Γ(Ak) the set of all induced preferences overAk, 47

≺ and4 an underlying linear order,20

Linked Domains

ai ∼ a j the alternativesai anda j are connected,23, 29

[ai1,ai2, . . . ,ain] a chain connectingai1 with ain, 30

Set-theoretical Notations

a∈ A alternativea belongs to the setA , 65

a /∈ A alternativea does not belong to the setA , 65

♯A the number of elements in the setA , 66

A∪B the union of the setsA andB, 66

A∩B the intersection of the setsA andB, 66

A\B the difference of the setsA andB, 66

A×B the Cartesian product ofA andB, 66

2A the power set ofA , 66
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