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Abstract

This thesis gives a contribution to strategy-proof sodmice theory, in which one
investigates to what extent there exist voting procedurasrtever can be manipu-
lated in the sense that some voter by misrepresentatios pféierences can change
the outcome of the voting and obtain an alternative he pdtethat honest voting
would give. When exactly one element should be elected freet af at least three
alternatives, then the fundamental result in strategyfpsocial choice theory, the
Gibbard-Satterthwaite theorem, shows that there in géeersts no satisfactory
non-manipulable voting procedure. However, in many pecattoting situations,
e.g., when the available alternatives can be ordered oniticpbleft—right scale,
individual preferences have a structure which is known aglsipeakedness, and
in this case it is possible to find reasonable strategy-protig procedures.

In this thesis, we analyze the more general voting situatiben the number
of alternatives that should be elected is greater than ohé&xaa, which for in-
stance is the case in elections to national parliamentswanare able to prove re-
sults analogous to the single-valued case: in generak thést no reasonable non-
manipulable voting procedures, but when preferences agéespeaked, voting can
be made strategy-proof. In connection with our analysiefdtrategy-proof so-
cial choice of fixed-sized subsets, we obtain also two amldhtiinteresting results:
firstly, we show that the Gibbard-Satterthwaite theoremardy holds for com-
plete preferences, but also for a large class of domainsrtibppreferences, and
secondly, we are able to make the statement of the origirtzd&sd-Satterthwaite
theorem more precise by proving that every reasonableygtiacedure not only
can be manipulated, but some voter can manipulate it in smaydhat he obtains
at least his second best alternative.

Keywords: Strategy-proofness, Multi-valuedness, Gibbard-Séteite theorem,
Linked domains, Partial preference relations.
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1 Introduction

EVERYONE WHO HAS ever participated in a voting among several alternatives
should recognize the following line of thought: It is truatk is my most preferred
alternative, but | understand that it has no support amohgrototers; instead of
wasting my vote, | should therefore vote farwhich is an acceptable alternative
with a true chance to win, because | do not want to zéeing elected. If you
do not vote according to your true opinion, we will say thatiyeisrepresenyour
preference, and if your misrepresentation indeed chamgesutcome of the voting
in a for you beneficial way, we say that yawanipulatethe voting proceduré.Of
course, whether a voter is able to manipulate a certain gatépends on the way
in which the voting is carried out, and since manipulatioarsse ethically unap-
pealing, one may ask whether there exist asimgitegy-proofvoting procedures, i.e.,
voting procedures that can never be manipulated. Unforélpat turns out that
if a single element should be elected from a set of at leastthlternatives, then
there exists no reasonable strategy-proof voting proeediihis result is known
as theGibbard-Satterthwaite theorenand since it has been established in 1973,
much research has been devoted to investigate whethersgggstic conclusion
still holds in other voting situations with different asspitions, and in some cases it
was indeed possible to find strategy-proof voting procesl(@gamples of this can
be found in Example 2.8, Chapter 3, and Section 5.4 in thisisheTo our know-
ledge, however, there exists still a voting situation the hot yet been considered
in the context of strategy-proofness, namely:

The social choice of fixed-sized subset& group of voters has to
choose a fixed number of elements from a set of alternatives.

This voting situation is common in any democracy, the forsneaample of course
being elections to national parliaments, but it is alsog@més/henever society elects
a fixed number of members to a committee. The purpose of thfglis toinves-
tigate whether there exist any reasonable strategy-protihg procedures for the
social choice of fixed-sized subsels the following, we will propose the specific
questions we thereby have to answer.

By definition, a voting procedure is strategy-proof if noetby misrepresenta-
tion can obtain an outcome that he prefers to the outcoméntrest voting would
give. Thus, to decide whether there exist any strategyfprating procedures for

1This introduction is kept rather informal in order to convebetter first understanding for the
subject of this thesis. Definitions and results will get thpgecise formulations from Chapter 2 on.



the social choice of fixed-sized subsets, we need first to kmloan a voter prefers
one outcome to another. In the context of the original Gibksatterthwaite the-
orem, this is straight forward because there, different@uies of a voting can be
ranked directly by voters’ preferences; by this, we simpbam that if you by mis-
representation can obtaiinstead ofy, then this will make you better off if and
only if you preferxtoy. This is trivial, of course, but when outcomes are subsets
of a fixed size, it is no longer obvious how voters rank différeutcomes. Sup-
pose, for example, that a committee has to choose two of thatives in the set
{a1,a2,83,a4}, and assume that you preferto ap, a to ag, andag to a. If you by
misrepresentation can obtafa;,az} instead of{ay,az}, you should certainly be
better off, because besides the common alternatjyéhe former set containa,
which you prefer tay in the latter set. But suppose now that misrepresentation ca
give you{as,as} instead of{ay,az}. The first set contains your most preferred, but
also your worst alternative, whereas the second set cantiagntwo middle alter-
natives, and it is not clear which set you will prefer. In sorases we will thus be
able to draw conclusions about voters’ preferences ovesetapbut in other cases
we will fail to do so. The first question to answer in this tlsasiust therefore be:

Question 1: When can a voter be assumed to prefer one subset to an-
other, or, more formally, what structure do voters’ prefazes over sub-
sets of a fixed size have?

Once we know the structure of voters’ preferences over ssbae are able to
define what is meant by manipulation of a voting proceduréiersocial choice of
fixed-sized subsets, and we can turn to the next question:

Question 2: Do there exist any reasonable voting procedures for the
social choice of fixed-sized subsets that can never be nateo@

We will show that the answer to this question is negative imegal, precisely as in
the case of the Gibbard-Satterthwaite theorem. Howevemgdémeral impossibility
result of the Gibbard-Satterthwaite theorem can be modifietany real voting sit-
uations because voters’ preferences have often a strubatmmakes strategy-proof
voting possible. This is, for example, the case when papigescipating in a poli-
tical election can be ordered on a traditional left-righalec Then preferences have
a structure which is known asngle-peakednesand it turns out that when soci-
ety has to elect a single alternative and voters have spegded preferences, then
there exist reasonable strategy-proof voting procedu8exe single-peaked pref-
erences appear frequently in applications, our analysishather strategy-proof



social choice of fixed-sized subsets is possible would natdoeplete if we would
not investigate whether we can draw a similar conclusiortiiersocial choice of
fixed-sized subsets; thus, we will have to answer the foligvguestion:

Question 3: Do there exist any strategy-proof voting procedures for
the social choice of fixed-sized subsets if voters’ pretergrover the
available alternatives are single-peaked?

When the three questions above are answered, the purpdss thfdsis is fulfilled.
However, in research one should always be grateful whers@malysis of a prob-
lem not only solves this problem, but also allows to answetlzer question of
interest, which at first glance may seem unrelated to thenaiigpgroblem. In this
thesis, the analysis of the social choice of fixed-sized etisdgads with no extra
effort also to a more informative variant of the GibbardtSdhwaite theorem. In
its original form, the Gibbard-Satterthwaite theorem isiegby qualitative theorem,
because it only states that every voting procedure can béuolated at some in-
stance. But one can imagine that different voting proceslare manipulable to
different extents. For instance, one voting procedure raallows some voter to
obtain his seventh best alternative instead of his eighsh e misrepresentation,
whereas another voting procedure is more vulnerable teemissentation and some
voter can by insincere voting obtain his second best altemastead of his third
best. However, for every voting procedure there must olsholie a highest rank
that can be obtained by manipulation, and therefore one slatha following ques-
tion, the answer of which emerged in connection with ourysialof Question 2:

Question 4:What is the best alternative that can be obtained at every
voting procedure by means of manipulation?

This thesis is organized as follows: Chapter 2 provides #eral background.
We start with a brief survey a$ocial choice theorythe branch of economics to
which this thesis belongs, but then we consider more clabelyssue oktrategy-
proofnessand discuss the Gibbard-Satterthwaite theorem.

Chapter 3 and Chapter 4 contain the general notions andsesmédded to an-
swer the questions proposed in this introduction. More oatety, in Chapter 3,
we considerestricted preference domainse., domains of preferences that arise
when preferences, for some reasons, can be assumed to leat@m structure, and
it will turn out that some of these domains admit strategyepwoting procedure,
whereas others do not. We will need restricted preferenceadts in two ways:
firstly, preferences over subsets have, as indicated alogertain structure, and



they will thus constitute a restricted preference domagacpadly, also the single-
peaked preferences in Question 3 constitute a restricefdnence domain.

In Chapter 4, we introduce appropriate notions to deschbestructure of pre-
ferences over subsets, and we will also show that preferdoc®ins that satisfy
a certain general condition do not admit strategy-prooiingpprocedures, a result
which we will need in order to answer Question 2.

In Chapter 5, we are then sufficiently prepared to analyzdhenstrategy-proof
social choice of fixed-sized subsets is possible, and weangwer the questions
proposed above. Chapter 5 contains also a survey of reitgeatlire.

Chapter 6, finally, summarizes the results of this thesis.

This thesis also contains two appendices: Appendix A erpl#ie mathema-
tical notations and techniques used in the formalizations@oofs in this thesis,
and it is therefore a good starting point for the mathembyigaexperienced reader.
Appendix B contains a complete and elementary proof of thd&id-Satterthwaite
theorem, the main result of strategy-proof social choie®ii

Throughout this thesis, we use a larger number of notatiodsterms with a
very precise meaning, and therefore we found it appropta@fgovide both a list
of notations and an index at the end of the thesis.



2 Social Choice Theory and Strategy-proofness

THIS THESIS GIVESa contribution to strategy-proof social choice theory. tdey
to introduce the reader to this branch of economics and tifhclie theoretical
background of this thesis, we present in this chapter anvaxrover the main
issues and results in social choice theory in general andrategy-proof social
choice theory in particular.

2.1 What s Social Choice Theory?

The founder of social choice theory and Nobel Laureate KénAerow begins
his classical monograp&ocial Choice and Individual Valuesith the fundamen-
tal observation that “in a capitalist democracy there ase®ially two methods by
which social choices can be made: voting, typically used &ken'political’ de-
cisions, and the market mechanism, typically used to mak@n‘@emic’ decisions”
(1963, 1). Political decision making consists of course alsdebate, negotiation,
and compromise, for example, but the final decision is in deedt often made
by voting. While the market mechanism is studied in tradiglomicroeconomics,
the decision making by voting is systematically studiechimfield of social choice
theory. A voting can be carried out in different ways, whishliustrated by the
following two examples, and it is therefore of interest tadst voting procedures
theoretically.

Example 2.1.The probably simplest voting procedure is tfwedinary) majority
rule, where every voter has exactly one vote, which he can castenob the
available alternatives, and the alternative that get mostsvwill be elected. To
be well-defined, this method must be supplemented by an ppate tie-breaking
rule, which for example can be drawing of lots. 0J

Example 2.2.A more sophisticated voting procedure than the majoritg rslthe
Borda count This procedure takes the voters’ entire ranking of thelalbke alter-
natives into account by allowing the voters to assign pdmevery alternative. For
instance, when there are three alternatives, then voterallawed to assign three
points to one alternative, two points to a second, and onet poithe remaining
alternative, and the alternative that get most points ial teill be elected. O

The majority rule and the Borda count are only two thinkaldéng procedures.
In fact, the number of all possible voting procedures is Brows. For example,
when three voters have to choose one of three alternativestityg, then there



are approximately 182 different voting procedures that can be used to carry out
this voting? which should be compared with the number of particles in thie u
verse which sometimes is claimed to béA0Different voting procedures can of
course lead to different social outcomes, which has coresemgs for the members

in the society, and the choice of voting procedure shouldefbee be carried out
with carefulness. In social choice theory, one specifiesdeniterions that a vot-
ing procedure preferably should satisfy, and analyzeswech voting procedures
actually satisfy these criterions.

In the remainder of this section, we present the main resu#tocial choice
theory,Arrow’s theoremwhich shows that the possibility to construct voting pro-
cedures with desirable properties has strong theoretioéitions. But first, we
introduce the basic assumptions and notations used inhtégsstto formalize the
analysis of voting procedures: We will consider a societyststing ofN individu-
als, and we will use the s&t={1,2,...,N} to index these individuals. The society
is facing a set of alternatives, denoteddsy which containsvl elements and from
which one alternative must be choselve will assume that the individuals in the
society havepreference®ver the alternatives in7, which will be denoted by the
letter P, often equipped with an index or primes, and disregardeu @hapter 4,
we will assume that preferences satisfy the following proes:

CompletenessA preferenceP can rank any pair of alternatives, which means that
if aandb are two distinct alternatives i/, thenP either preferatob, orb
toa, and in casa is preferred td by P, we shortly writeaP b

Antisymmetry A preferenceP is strict in the sense that B prefersa to b, then it
cannot prefeib to a. Note that this assumption excludes the possibility of
indifference between two alternativés.

Transitivity. If a preferenceP prefersa to b andb to ¢, then it must also prefea
to c. This assumption makd3s ordering of the alternatives i internally
consistent.

2This number can be derived in the following way: Each voter caoose his top alternative in
three possible ways, after which his second alternative treisne of the two remaining ones, and
the last alternative is then fixed. Hence, each voter can ttamithree alternatives in-2-1=16
ways. Since there are three voters, a voting procedure mustie able to generate an outcome for
6-6-6 = 216 different preference profiles. Choosing one of the thressible alternatives for each

preference profile gives ther$ ~ 1002 different voting procedures.
3Both the number of individuals and the number of alternativé are assumed to be finite.
4If there are infinitely many alternatives available, theis tissumption is too restrictive, but it

seems justifiable in the present context.



A preferenceP satisfying these three properties ranks the alternatives iin a
strict order, and we will use the notatiop(P) to refer to the alternative that is
ranked on thekth place byP. In particular,r1(P) is that alternative ineZ which
is preferred to all other alternatives By and it is also called theop alternative
of P. The set of all preferences over the alternatives/irsatisfying the properties
above will be referred to as theet of unrestricted preferenceser.<# and will be
denoted by the Greek lettér The preference of individualwill be denoted by
R, and we denote further by? = (P, P»,...,Py) the collection of all individual
preferences, and call’ a preference profileWe will frequently investigate how a
social choice is affected when individuathanges his preferences, and thereby, it
will be convenient to denote preference profiles by

(P|,P_i) = (Pl,P2,-~-,P|_]_,P|,P|+1,...,H\|),

whereP_; thus stands for the preference profile of all individualdi@$ociety apart
from individuali. So far, society was somewhat imprecisely supposed to make
its choice using someoting procedure From now on, we will be more specific
and assume that social choice is made usisgaal choice function f3N — &7
that assigns to every preference profile a unique altematinesocial choice If
a € < is the social choice for the preference profie= (P, P, ..., Py), we write
f(P,P,...,PN) =a 0r f(R,P-j) =a, orjustf(¥) =a

The first rigorous analysis of to what extent it is possiblaggregate individual
preferences in a desirable way was carried out by KennethwAir the monograph
Social Choice and Individual Valugghich was published in 1951 and which can
be seen as the starting-point of social choice theory. Femrdtical reasons, Arrow
did not study social choice functions, [®dcial welfare functionghat is, functions
of the formF : =N — > that aggregate preference profiles to a social preference
over the alternatives in7.> By definition, a social welfare function is required to
assign taeverypreference profile aniquesocial preference, and in addition, Arrow
requires a social welfare function to have the followingthpropertie§:

Pareto optimality. A social welfare function should respect unanimity in theisty
in the sense that if all individuals prefarto b, then also the socially chosen

SArrow’s social welfare functions are actually more gendhnah presented here since he allows
individual preferences to beeak i.e., preferences do not need to satisfy antisymmetry. ddew

to keep the exposition simple, we assume throughout thigshieat preferences are antisymmetric.
6Arrow’s conditions for a social welfare function exist irffdrent variants in the literature, and

the exposition here follows closely Mas-Colell et al. (19892—-96). For an extensive discussion of
Arrow’s conditions, we refer to Arrow (1963, 22—33).



preference preferato b. Formally, this means that {P,P,,...,Py) € =N is
such thaeRbfor alli € Z andF (P, P,,...,Ry) = P, then als@aPb.

Independence of irrelevant alternative&.social welfare function should rank any
pair of alternativesa,b € & only depending on how the individuals in the
society ranka andb, but not on how they rank other alternatives. Formally,
this means that i and &’ are two preference profiles that raakandb
equally in the sense thaR b if and only ifaR b for all i € Z, thenaF(Z?)b
if and only ifaF(<2”)b.

No dictatorship.A social welfare function should not kgctatorial, that is, there
should be no individual that alone decides on the socialbseh preference.
Formally, this means there should beir®Z such that (P, P,....Ry) =R
for all preference profileéPy, P, ..., Py) € =N.

These conditions may seem to be weak and uncontroversiateesents, but they
are nevertheless incompatible, which Arrow showed in higagsibility theorem:

Theorem 2.1 (Arrow’s Impossibility Theorem). Suppose thats is a finite set of
at least three alternatives. Then every social welfaretiond= : =N — ¥ that satis-
fies the conditions of Pareto optimality and independencgeelévant alternatives
is dictatorial.

Note that Arrow’s analysis consists both afi@rmativepart, in which he formulates
his conditions for a social welfare function, ang@asitivepart, where he shows the
incompatibility of the required conditions. We will not ment a proof of Theo-
rem 2.17 but we illustrate by an example that even a widely acceptéidyproce-
dure as the majority rule may lead to unsatisfactory out@some

Example 2.3 (The Condorcet Paradoxjonsider a small society consisting of three
individuals that want to order the alternatives in theset {a, b, c} using the ma-
jority rule, i.e., one alternative will be socially prefed to another alternative if and
only if at least two individuals prefer the former to the éttNote that the majority
rule is well-defined for all preference profiles, it is nomtdtorial, and it satis-
fies the conditions of Pareto optimality and independencdeatvant alternatives.
Suppose now that the three individuals have the preferdP¢cés respectivelyPs,
which order the alternatives i according to

aPhbRc, bRcPRa, respectively cRaR;h.

"For a formal proof of Arrow’s impossibility theorem, we rete Arrow (1963, 51-59) or Mas-
Colell et al. (1995, 796—799).
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Applying the majority rule, we find that the society prefats b, b to ¢, but alsoc to
a. Hence, the majority rule leads in this case not to a traresstocial preference, and
is therefore neither able to rank the alternatives7inn an unambiguous order.[]

In many practical voting situations, society is of coursé pramarily interested in
obtaining a social ranking of all available alternativas, Wwants only to choose one
of the alternatives using a social choice function. Thigrse® be a simpler prob-
lem, but it turns out that an analysis similar to that for abwielfare functions also
can be carried out for social choice functions. For exanigbes-Colell et al. (1995,
807-8) formulate the following three conditions for so@hbice functions:

Monotonicity. A social choice functiorf : =N — o7 should react in the right way
when the members in the society change their preferences sense that if
an individual moves an alternative up in his preferencemtten this should
not worsen that alternatives chance to be elected. Forntlakymeans that if
2 andZ’ are two preference profiles such tH&t”?) = aandaR b implies
aP bforalli € Z andb € <7, then we should also havé 27’) = a.

Pareto optimality.A social choice functiorf : =N — .7 should respect unanimity in
the society in the sense that if all members prafterb, then the social choice
should not bé, i.e., ifaRbfor all i € Z, then we should havé(Z?) # b.

No dictatorship.A social choice function should not havedictator, that is, an
individual that alone decides on the social choice. Foyn#lis means that
there should be nbe Z such thatf (P, P,...,Py) =r1(R) for all preference
profiles(Py,P,...,Ry) € =N,

In analogy with Arrow’s theorem, we have the following impdslity result for
social choice function8:

Theorem 2.2. Suppose that? is a finite set of at least three alternatives. Then
every social choice function:EN — &7 that satisfies the conditions of monotonicity
and Pareto optimality is dictatorial.

Arrow’s theorem and Theorem 2.2 are strong theoreticaltéitimns for the pos-
sibility to carry out a voting in a satisfactory way, but it sitbe pointed out, as
Mas-Colell et al. (1995, 799) does, that “it would be too lat¢o conclude from it
that ‘democracy is impossible’. What it shows is somewhsg¢-etthat we should

8In fact, Theorem 2.2 is not an independent result, but MaglCet al. (1995, 809—11) show
that it is an almost immediate consequence of Arrow’s threore
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not expect a collectivity of individuals to behave with thadkof coherence that we
may hope from an individual.”

This section provided only a short introduction to the masues of social
choice theory. For a readable and more general introduttidhe problems of
social choice theory, we refer to the Nobel lecture “The ity of social choice”
by Amartya Sen (1999), which also contains an extensiveeste list over the
immense literature in this branch. A formal and rigoroussyrnof the fundamental
concepts and results in social choice theory can be foundgriifth part of Mas-
Colell et al. (1995), and for an overview over present redeanterest in social
choice theory, see Bossert and Weymark (2006).

2.2 Strategy-proof Social Choice Theory

The demands of monotonicity and Pareto optimality we madsooial choice func-
tions in the previous section are of course somewhat arpitaad one can there-
fore ask whether there exist other desirable propertigsctrabe satisfied by so-
cial choice functions. In the sub-branch of social choiaotly that is known as
strategy-proof social choice theqgrgne investigates under what conditions social
choice functions can b&trategy-proofin the sense that voters never can gain from
misrepresenting their preferences and hence have no imegtd vote tactically.

Below, we explain to what extent strategy-proof social cbkds possible, but
first, we consider some normative motivations for why stpgtproofness can be re-
garded a desirable property of a social choice function.elmegal, tactical voting
appears ethically unappealing to many people because itiragysociety assigns
one vote to every voter, and one can find that a voter who missepts his prefer-
ences in order to gain from this tries to take more influenae tire has a right to.

Moreover, strategy-proofness simplifies voting for theorsl voter since any
kind of misrepresentation can give at most the same outcars@eaere voting. In
particular, in strategy-proof votings, voters need notrw@bout whether honest
voting may be disadvantageous to them.

Strategy-proofness can thus be a normatively desirablgeptyon its own, but
it can also be a means to achieve other goals: Often, therootieh of a specific
voting procedure is based on some normative desires. IEXample, the consti-
tuting assembly in a country is of the opinion that the natlgrarliament should
be a miniature copy of the whole population, then a propodi®oting system, by
which a party’s share of seats in the parliament approxipmaguals the party’s
share of votes in the elections, is a good choice, and it isemented for instance
in Sweden. On the other hand, if it, in order to guarantedipalistability, is desir-

12



able that the winning party in the elections is able to gowsrits own, then some
form of plurality voting, where the country is divided intteetoral districts and the
candidate that receives most votes in a district takes arsda parliament, should
be adopted, and such a voting procedure is for example usthe idnited King-
dom. The realization of such normative goals may, howewgredd on whether the
individuals in the society vote sincerely, and the desigriervoting procedure can
only be sure that it works in the intended way if it is stratgygof.

Example 2.4.To see that the lack of strategy-proofness can have fahi@gcon-
sequences, consider the following situation: Supposethigaelections to the na-
tional parliament in a country are carried out using a propoal voting system
with a threshold of four per cent, which means that parties tceive less than
four per cent of the votes take no seats in the parliament.aAssume now that a
small party is the top alternative of five per cent of the vatérhis information is
of course not available to anyone, so when it comes to elestgupporters of this
party may fell unsure about whether it will clear the thrddhand at least some
voters will therefore vote for another party since they do want to waste their
votes. In the end, this may lead to that the party gets lessftha per cents of
the votes. Hence, the lack of strategy-proofness can caatgeeto vote tactically,
which, as in this case, even can be disadvantageous to timehwenote that the
voting procedure above does not work in the intended wayuseca party with a
support of five per cent should belong to the parliament. O

On the other hand, the importance of strategy-proofnessidmot be overempha-
sized, because one can object as Sen (1970, 195) that iroektindividuals are
guided not so much by maximization of expected utility, butsemething much
simpler, viz., just a desire to record one’s true preferénce

We will now formalize the analysis of strategy-proof sodhabice, starting with
the following definition:

Definition 2.1 (Manipulability and Strategy-proofness). A social choice function
f:IN - & is said to bemanipulableif there for somd € T existP, P € X and
P_; € sN-1 such that

f(R,P) R f(R,P) (2.1)

If fis not manipulable, we say thétis strategy-proof

Note that manipulation not only means that an individualrepsesents his pref-
erence, but that he also changes the social choice and gamsdbing so. We
illustrate by an example.

13



Example 2.5.Suppose that two individuals want to choose one of the alties

in the set” = {a,b,c,d} using the Borda count, i.e., they assign four points to
their first, three points to their second, two points to thkird, and one point to
their fourth alternative, and the alternative with mostry®in total will be elected.
Assume that the two individuals have the prefererigagspectively, defined by

aPbPcPhd and bRcPhRaPRd.

If both individuals vote sincerely, alternativewill be elected with seven points.
However, if individual 1 pretends that his preference iadtef P, is P;, defined
by aP; d P, c P b, then alternativéd gets only five points and alternatigewill be
elected with six points. Thus, by misrepresentation, iitdigl 1 can change the
social choice and obtain his top alternative instead of éc®sd alternative. [

On the other hand, it is also possible to find voting procesltinat are strategy-
proof, which the following three examples show:

Example 2.6.Consider a society with an odd number of individuals and sapp
that the set of alternatives consists of the two alternatn@ndb. In this case, the
majority rule is well-defined and obviously strategy-prbeicause if you prefea
to b, then the only way to misrepresent your preference is toyast vote onb,
but this will never make you better off. O

Example 2.7.Suppose now that the set of alternativessis= {a, b, c}, but that the
social choice functiorf : =N — o7 is such thaff (2?) = afor all preference profiles
2 ¢ 3N, Also this social choice function is obviously strategp@ir because no
individual can ever change the social choice by misreptasen. O

Example 2.8.Consider finally the following voting procedure which inves an
element of chance and works for any number of alternativhs:iiidividuals in the
society are asked to write down their top alternative ondtslland the social choice
is determined by drawing one of the ballots at random. Alsowbting procedure is
strategy-proof because if your ballot is drawn, you are b#st you have reported
your true top alternative, but if your ballot is not drawndites not matter what
alternative you have reportéd. O

The voting procedures in these three examples have of ceamse shortcomings:
The majority rule for two alternatives in Example 2.6 is eerly strategy-proof,
but it is not obvious whether it is strategy-proof when theniber of alternatives

9This example has been taken from Gibbard (1973, 593).
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becomes larger than two. Next, the constant social choitetifun in Example 2.7
is not efficient because even if all individuals have the saopealternative, the
social choice can nevertheless differ from this altermativinally, the voting proce-
dure from Example 2.8 can seem unsatisfactory since it $efmgemuch to chance,
and even alternatives with little support can be electedvéVer, if we go beyond
these limitations and consider voting procedures that ¢tkvior at least three alter-
natives, (2) satisfy unanimity in the society in the sensg iftall individuals agree
on the same top alternative, then this alternative will &sathe social choic¥
and (3) whose outcome only depends on the preferences afidhaduals in the
society, and not, for example, on chance, which means teatdting is carried out
using a social choice function, then we obtain again an irsipdgy result:

Theorem 2.3 (The Gibbard-Satterthwaite Theorem).Let .« be a finite set of at
least three alternatives, and suppose that> — o7 is a social choice function
that satisfies unanimity. Then f is strategy-proof if andyohf is dictatorial.

The Gibbard-Satterthwaite theorem, proved independénti§@ibbard (1973) and
Satterthwaite (1975), is the fundamental result in stsaf@gof social choice the-
ory, and because of its importance, we present a formal pnoAppendix B. In
the following, we will briefly discuss the significance of tB&bard-Satterthwaite
theorem. Note first that the interesting part of the theoremoit that a dictatorial
social choice function is strategy-proof, which is quiteviolis, but it is the other
implication, namely that every non-dictatorial social @&ofunction that satisfies
unanimity is manipulable, which is important. A direct cegaence of this is,
for example, that the ordinary majority rule and the Bordartare manipulable,
provided that the number of alternatives is at least threxte Next that the Gibbard-
Satterthwaite theorem only implies that a non-dictatas@dial choice function is
manipulable asomepreference profile, but it does not tell us at which prefeeenc
profiles this is the case, nor in which way voters have to rpig®ent their prefer-
ences in order to be better off. In practice, most socialahfinctions are actually
non-manipulable at most preference profiles, and in sewgdss, it is in general
impossible for voters to know whether they are in a positemanipulate a voting.
However, when a social choice function is manipulable,dfisn enough for a voter
to have a vague understanding of other voters’ preferemoasier to know how to
use his vote in the most beneficial way. Note also that The@&nonly says that
some individual at some preference profile can be bettef b& misrepresents his
preference, but it contains no information about how mucimdividual can gain

Formally, we say that a social choice functioh: N — .o satisfies unanimity if
f(P,P,,...,Ay) =awheneveri(R) =aforalli € Z.
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from misrepresentation. In Chapter 4, however, we showabhaty non-dictatorial
social choice function that satisfies unanimity can be maatpd in such a way
that some individual obtains at least his second best altigm

Finally, we would like to remark that strategy-proof soahbice theory is not
unrelated to the issues of social choice theory considerdle previous section,
as it might appear at first glance. In fact, the following teminas show that a
strategy-proof social choice function that satisfies umdtyi also satisfies mono-
tonicity and Pareto optimality. The formulation and proofd.emma 2.4 and 2.5
follow closely the exposition in Svensson (1999).

Lemma 2.4 (Monotonicity). If f : >N — o7 is a strategy-proof social choice func-
tion, then f satisfies monotonicity.

Proof. We must show that if” and.%?’ are preference profiles such tHdt?) = a
andaRb impliesaR bfor all i € Z andb € 7, then alsof (') = a. To this end,
suppose first that only individual 1 changes his prefereWwle. argue by contra-
diction and assume thdt(%?’) = & anda # a. If & Pya, then individual 1 can
manipulatef by going fromP; to P;, and hence, we must haeg? a. But then
we must also havaP &, and individual 1 can manipulaté by going fromP]

to P,. Thus, the assumptioal - a must have been wrong, and we conclude that
f(£#') = a. The lemma follows now when we change the preferences omly fo
individual 2, individual 3, and so forth. 0J

Lemma 2.5 (Pareto Optimality). If f : =N — &7 is a strategy-proof social choice
function that satisfies unanimity, then f satisfies Paretinugdity.

Proof. We have to show that i& and b are two distinct alternatives in7 and
(P, Ps,...,Py) € 2N is a preference profile such thal b for all i € Z, then we have
f(P,P,...,PN) #b. We argue by contradiction and assume th&, P, ..., Py) =
b. Replacing(Pi,P,...,Ry) by a preference profiléP;, P, ..., ) with the prop-
erty thatr1(P/) = aandry(P) = b for all i € Z, we get by monotonicity that also
f(P,P;,...,B|) =b. On the other hand, sinag(P’) = afor all i € Z, unanimity
implies f (P, P, ..., ) = a which is a contradiction. HendgP;,P,, ..., Ry) #b,
and the lemma is proved. O

In the light of these two lemmas, the Gibbard-Satterthwiiemrem can be seen
as a direct consequence of Theorem 2.2, but Lemma 2.4 anda¥.%lgo an im-
portant role in the direct proof of the Gibbard-Satterthiedheorem presented in
Appendix B. Lemma 2.4 and 2.5 are presented here with theofprbecause in
Chapter 4 we will need to derive weaker variants of these emumhas.
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3 Restricted Preference Domains

IN THIS CHAPTER we begin to introduce the theoretical tools we will needrithen
to investigate to what extent strategy-proof social chatéxed-sized subsets is
possible. In many voting situations, it is reasonable tamssthat voters’ prefer-
ences have a certain structure, and some structures tuto adinit non-dictatorial
strategy-proof social choice functions, whereas otheraato In this thesis, such
structures, orestricted preference domainsome up in two ways: Firstly, in Chap-
ter 5, we will analyze the structure of preferences over fisiedd subsets, and we
will need a criterion to decide whether this structure adman-dictatorial strategy-
proof social choice functions. Secondly, in many practicdings, e.g., in political
elections, it is reasonable to assume that voters’ prefesehave a structure that
is known assingle-peakednessThese preferences are of special interest because
they admit non-dictatorial strategy-proof social choigedtions when society must
choose one alternative, and therefore, we proposed Quoé&kiiothe introduction
and asked whether the same is true for the social choice of§iized subsets. This
chapter is disposed as follows: Section 3.1 provides a briefduction to the con-
cept of restricted preference domains. In Section 3.2, wednce single-peaked
preferences and demonstrate the existence of non-dietiadtmategy-proof social
choice functions on this kind of preference domains. Ini8ac8.3, finally, we
consider the notion dinked domainswhich in a modified form will be applied to
the structure of preferences over subset of a fixed size.

3.1 Restricted Preferences and Strategy-proof Social Choe

One of the assumptions in the Gibbard-Satterthwaite timeasethat the social
choice function has the forrfi : 3N — o7, which means thaf is defined forall
possible preference profiles, and the individuals in theetp@are thus implicitly
assumed to be capable of having any of the preferenc&sam their true prefer-
ence. Often, however, this may be an unnecessarily geresahgption, because
one can argue as Sen (1970, 165) that “individual prefeseaoe determined not
by turning a roulette wheel over all possible alternatives,by certain specific so-
cial, economic, political and cultural forces”, and “thisyneasily produce patterns
in the set of individual preferences”. As a consequenceief e may in a given
context have reason to classify some preferences as unedds@nd therefore ex-
clude them from the set of admissible preferences. This istefest because it
will allow us to construct non-dictatorial strategy-praaictial choice functions. To
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see this, recall that a social choice functibrby definition is manipulable at the
preference profil¢R, P_;) if

f(P,P-) B f(R,P) (3.1)

for some preferencE'. If we now, for some objective reasons, can assume that no
individual in the society haB as his true preference, thércan only theoretically

be manipulated dR, P_;), but in practice, this will never happen. If we can exclude
sufficiently many of the preferencesanso that there no longer exists a preferences
profile (R, P_;) satisfying (3.1), then we end up with a social choice functizat
obviously is strategy-prodf We illustrate this by a simple example.

Example 3.1.Suppose a society has to choose a macroeconomic policyffibetsa
the rate of inflation and the rate of unemployment (and ordgg#). There are three
policies available, and they are known to lead to the follmpoutcomes:

Inflation Unemployment

Policy A 2% 4%
Policy B 4 % 2%
Policy C 4 % 4 %

Since the number of alternatives is greater than two, thexeaecording to the
Gibbard-Satterthwaite theorem no non-dictatorial styateroof social choice func-
tions that the society can use to make its decision. But takesar look on the three
policies. It seems reasonable that the individuals in tleeepat a given rate of un-
employment will prefer a lower rate of inflation to a higheterd.e., they will prefer

Policy A to Policy C. Similarly, at a given rate of inflation,|J@aver rate of unem-

ployment seems more desirable than a higher rate, so thedodls in the society
can be assumed to prefer Policy B to Policy C. On the other hidm@dmembers
in the society may disagree on whether low inflation or lowrope®yment is more

important, so an individual may prefer Policy A to Policy BMice versa. Consider
now the sek of unrestricted preferences over the three policies, wbictiains the

following six preferences:

PP PP B3 P B B
A B A B C C
B A C C A B
cC C B A B A

UNote, however, that one is not allowed to exclude a preferithout reason, but one needs an
acceptable economic motivation for doing so.
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According to the discussion above, oty andP, will appear as true preferences
among the members in the society. But now we can easily findasegly-proof
social choice function. For instance, the majority rule,ckhchooses Policy A
if most voters reporP; and Policy B if most voters repoR,, is strategy-proof,
non-dictatorial, and satisfies unanimity. O

The set of all preferences that are admissible in a certaitegowill in general be a
strict subsef2 of 2, andQ will then be said to be eestricted (preference) domain
In Example 3.1, for instance, we ha€e= {P,P>}. Precisely as in the case of unre-
stricted preferences, we will say that a social choice fondt : QN — o7 is manip-
ulableif there exist?, P’ € Q andP_; € QN~1 such that (3.1) holds, but note that all
preferences in (3.1) are now assumed to belor@.tdhe restricted preference do-
main in Example 3.1 above allowed us to construct a non-iGéd strategy-proof
social choice function, but we will not be able to do so forralitricted domains;
with other words, a restricted domdheither admits non-dictatorial strategy-proof
social choice functions that satisfy unanimity, or not, anthe latter case, we will
say thatQ is adictatorial domain

In the literature of strategy-proof social choice theoegtricted preference do-
mains are studied from two different perspectives that dempnt each other: On
the one hand, one is interested in to describe the structuestoicted domains that
come up in a given context as a consequence of the nature a¥dilable alterna-
tives in combination with the economic incentives of theiwialials in the society
(see for instance Section 3.2). On the other hand, aftenpalerived the struc-
ture of a certain restricted preference domain, one wartewfse to know whether
this domain admits non-dictatorial strategy-proof sockadice functions, and there-
fore, a number of criteria has been developed to decide whatlgiven domain is
dictatorial or non-dictatorial (see for instance SectioB).3Note that the first two
guestions from the introduction combine these two asp&@tgstion 1 asks us to
derive the structure of preferences over subsets of a fixas] sihile Question 2
then asks whether this structure admits non-dictatoniatexy-proof social choice
functions.

Finally, we would like to remark that a thorough introductiw restricted pref-
erence domains can be found in Sprumont (1995), and for detbturvey of the
most important restricted domains in social choice theasy, refer to the mono-
graph of Gaertner (2001).

19



3.2 Single-peaked Preferences

The most common type of restricted preference domains isldes ofsingle-
peaked preferencesntroduced by Black (1948) in order to model political pre-
ferences. It turns out that when the individuals in a societye single-peaked
preferences, then the method of majority decision will leaéd transitive ordering
of the available alternatives, which thus implies an esdeqra the impossibility
result of Arrow’s theorem. In strategy-proof social chotbeory, single-peaked
preferences are of similar interest because they admitiiatorial strategy-proof
social choice functions, and it is therefore natural to alether the same is true
for the social choice of fixed-sized subsets, whence we @@EgpQuestion 3 in the
introduction. In the following, we illustrate how singlegked preferences come
up in applications, we present an appropriate formalipatibsingle-peaked pref-
erences, and we demonstrate the existence of a non-diatatoategy-proof social
choice function on a domain of single-peaked preferences.

We begin with a political example. Suppose that the partieani election can
be ordered on a traditional left-right scale in the follogvimay:

Strongly left  Modestly left  Center  Modestly right  Strongly right
party (SL) party (ML) party (C) party (MR) party (SR)
If your most preferred party i€, then it seems reasonable that you will pre¥éR
to SR and alsaML to SL Similarly, if your top alternative idiL, then you should
preferC to MRandMRto SR

Consider next, as an economic example, possible prefesenas the rate of
inflation in a country. If you think that the optimal rate oflation is two per cent,
then you will probably prefer three per cent inflation to fquer cent when the
choice is between these two alternatives, and similarlgpsing between one per
cent inflation and zero inflation, you prefer probably therfer to the latter.

In both examples, the available alternatives can be ordaredine, every indi-
vidual can be assumed to have a most preferred alterndtpetik and the more
we get to the left respectively to the right of the peak, tiss lereferred are the al-
ternatives. This is the structure that defines single-pkpkeferences. We will now
formalize this structure, and thereby, we follow closely &xposition in Mas-Colell
et al. (1995). To begin with, the fact that alternatives carotdered on a line will
be modelled mathematically byliaear order.

Definition 3.1 (Linear Order). A (strict) linear orderon a sete of alternatives is
a binary relation< on .« that is complete, antisymmetric, and transitive.
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If <is alinear order oy anda < b, we say that lies to the left ofb, or equiva-
lently, thatb lies to the right ofa. We will use the notatioma < b to indicate that
eithera < b ora=b. Sometimes, we also wri@:>- b (or a = b) instead ofb < a

(or b < a). Starting with a linear order, a preference is single-péakalternatives
are more desirable the closer they are to the most prefelterdative, or formally:

Definition 3.2 (Single-Peaked Preference)A preferenceP over the alternatives in
</ is said to besingle-peakedvith respect to the linear order if

ri(P)sxa<b = aPb
(3.2)
and ri(P)>=a>-b = aPh
Preferences that satisfy (3.2) are called single-peakealuse if the set of alterna-
tives is a continuous variable, like the rate of inflationlie €xample above, then
a single-peaked preference can be represented by utitittiun that is strictly in-
creasing to the most preferred alternatives and thenlgtdetreasing, i.e., it has a
single peak.

If a set.es is equipped with a linear ordet and the number of individuals in the
society is odd, then it is possible to define a social choicetian that respects the
underlying order of the alternatives. Consider first an eplanwhere a society has
to choose one of four alternatives that are ordered acaptdia; < a; < az < aa,
and suppose that a voting results in:

Alternative ‘al a az au
Numberofvote# 3 1 1 2

Here, alternative@, can be claimed to be the natural outcome of this voting becaus
it has equally many votes to its left as to its right. An altgive with this property
is called amedian alternative

Definition 3.3 (Median Alternative). Suppose that the se¥ of alternatives is
equipped with a linear ordex, and let?? < 3N be a preference profile. An alterna-
tive aiis said to be anedian alternativéor &7 if

t{ReZin®) -a >3
(3.3)
and f{ReZ nP)=<xa}>-.

One can show that every preference profile has a medianatitesnand in addition,
whenN is odd, then the median alternative turns out to be uniquthisncase, one
can thus define a social choice functibrthat assigns to each preference profile
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its median alternative, and this social choice functionnewn as thenedian rule
The median rule is of interest in this thesis because itaexyy-proof if preferences
are single-peaked, a result which for instance can be fou®prumont (1995) or
Barbera (2001):

Theorem 3.1.Let .« be a set of alternatives equipped with a linear orderand
suppose that the number of individuals in the society is di€ is a domain of
preferences ovet/ that are single-peaked with respect+g then the median rule

f(2)=mediarf%) forall ¢ QN
is strategy-proof.

The median rule is of course non-dictatorial and satisfiesumity, so Theorem 3.1
shows that strategy-proofness and non-dictatorship dexubtide each other when
preferences are single-peaked. It is straight forwardgoe@why Theorem 3.1 must
hold: Suppose that the median rule applied to the preferprofde &2 leads to the
social choicea. If your own top alternative equabs then you can obviously not
gain from misrepresentation. Consider therefore the casawour top alternative
a differs froma and is located, say, to the right af and suppose you are think-
ing of your possible gains from voting for some alternati’énstead of your true
preference. If @ also lies to the right o, or equalsa, then none of the cardinali-
ties in (3.3) is affected, and your misrepresentation has tio effect on the social
choice. On the other hand,af lies to the left ofa, then either the median remains
unaffected, or it is moved to the left, i.e., further awaynfrgour top alternative.
Misrepresentation will therefore never be beneficial fou,yand the median rule is
thus strategy-proof.

In Chapter 5, we show that the median rule can be generatizéddcial choice
function for the social choice of fixed-sized subsets, amieferences are single-
peaked, then also this social choice function will turn aubé strategy-proof.

3.3 A Theoretical Tool: Linked Domains

The single-peaked preference domains considered in th@pgesection come up
naturally in specific political or economic contexts, andytlare easily accessible
to economic intuition. On the contrary, the interest in édkdomains, which we
will discuss in this section, is not economicly motivatedt by the fact that linked
domains provide a sufficient theoretical criterion for a émto be dictatorial.
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Linked domains have been introduced in Aswal et al. (20089, @efinition 3.4,
Definition 3.5, and Theorem 3.2 in this section have beemté&kean this paper.

Recall from Section 3.1 that a restricted preference dommaist contain suffi-
ciently many preferences in order to be dictatorial. Theedon of linked domains
shows that a domain is dictatorial if we can find sufficientlsiny inversions of al-
ternatives in the top of the preferences. This will be madeige below, but first,
we illustrate the underlying idea by an example: Odbe a preference domain over
the seteZ = {a, b, c}, and consider the following preferences, which are suppose
to belong toQ:

PP P P
a b b
b a c
C C a

Note thata andb appear in inverted order in the top Bf respectivelyP,, and
we will show that the existence of such preferences imphes évery strategy-
proof social choice function of) is at least partly dictatoridf For simplicity we
consider only the case when there are two individuals indlogety, SO suppose now
that f : Q2 — 7 is a strategy-proof social choice function that satisfiesnimity.
Our first observation is that we because of Pareto optim@liggmma 2.5) either
havef(P,P;) =aor f(P,P) = b, and we assume here thitP;, P,) = a. Simi-
larly, Pareto optimality implies also thdt(P;,P;) € {a,b}, but if f(P;,P}) = b,
then individual 2 would be able to manipulateby representing instead off..
Hence, we havé (P, P;) = a, and monotonicity (Lemma 2.4) implies then that the
social choice must ba whenevera is the top alternative of individual 1, and thus,
individual 1 can be said to be a dictator for alternative

If there exist preferencd®y andP, such that andb are the two top alternatives
in these preferences, but in inverted order, which was #stdor the argument
above, then we say thatandb areconnected

Definition 3.4 (Connectedness of Two Alternatives)Let .7 be a set of alterna-
tives, and suppose th& is a restricted preferences domain ov€r Two alterna-
tivesg;,aj € &/ are said to beonnectedn Q if there exist bothP € Q such that
r1(P) = a andr,(P) = aj, andP’ € Q such tharr(P) = a; andra(P') = &. If &
anda; are connected, this will be denoted &y~ a;.*®

12The following argument has been taken from Svensson (1999).
13| ike the definition of connectedness of two alternativesy ghe notatiom ~ a; has been intro-

duced by Aswal et al. (2003). There is no reason to deviata ftdnere, but we would like to point
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For example, in the s&f of unrestricted preferences, all pairs of alternatives are
connected because every alternative can be ranked firstauedamy other alter-
native on the second rank. In this case, it is easy to extem@ripument above
in order to show that every strategy-proof social choicecfiom f : >N — o that
satisfies unanimity must be dictatorial, and it is actuatlyhis way we prove the
Gibbard-Satterthwaite theorem in Appendix B.

Before we turn to the criterion of linked domains, we show, fedagogical
purposes, how the notion of connectedness can be used tstardksingle-peaked
preferences in a different way than in Section 3.2l a» < ... < ay is an under-
lying linear order of the elements ki, then preferences that are single-peaked with
respect to< have the property that evesy, with the exception o#;, is connected
to exactlyone alternative iqay, ap, ..., a1}, namely to its direct predecess®r 1.

We saw in the previous section that this structure is suffttyeestrictive to allow
non-dictatorial strategy-proof social choice functions.

More generally, single-peaked preferences satisfy theviadg condition: The
alternatives ineZ can be indexed in such way that evexyis connected to at most
one element ifay,ay,...,a_1}. Replacingat most onén this condition withat
least twoleads to much less restricted domains, calileked domains

Definition 3.5 (Linked Domains). A preference domaif over <7 is said to be
linkedif the alternatives inz' can be indexed in a sequerggay, ... ,ay in such a
way that thafy ~ az and everyg; with i > 3 is connected to at least two alternatives
in{ag,az,...,8_1}.

Contrary to domains of single-peaked preferences, link@mdains contain suffi-
ciently many preferences to be dictatorial:

Theorem 3.2 (Theorem 3.1 in Aswal et al. (2003)).et.«7 be a set of at least three
alternatives, and suppose th@tis a linked domain over?. Then a social choice
function f: QN — & that satisfies unanimity is strategy-proof if and only if f is
dictatorial.

Theorem 3.2 should mainly be seen as a theoretical tool. ¥anple, since the
setZ of unrestricted preference is obviously linked, the Gilob&atterthwaite the-
orem can be obtained as a direct consequence of Theorem @&, idwever, that

out that the symbot- is traditionally used in the economic literature to indectitat an individual is
indifferent between two alternatives, see for instance-lakell et al. (1995, 6). However, it should
be clear thatonnectednesandindifferenceare two entirely different concepts.
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the fact that a domain is linked is only a sufficient condition a domain to be
dictatorial, but it is not necessary, see Aswal et al. (2@@8347).

In this thesis, Theorem 3.2 plays the following rolexdfis a set of alternatives,
then the set of all preferences over subsets7obf a fixed size has a structure that
is almost that of linked domains, but it consists of prefeemnthat in general are
not complete. In the following chapter, we will thereforengealize Theorem 3.2 to
partial preference relations, and this result will then a@ter 5 be used to conclude

that non-dictatorial strategy-proof social choice of fbg@zed subsets is impossible
in general.
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4 Partial Preference Relations
and Strategy-proof Social Choice

WE NOTED ALREADY in the introduction that preferences over subsets of a fixed
size can fail to rank some subsets, and we will argue in Ch&ptieat these pref-
erences are best modelled by partial preference relatidmexefore, we present in
Section 4.1 in this chapter a short general introductionadig preferences and
we introduce some notions to describe their structure. bti@e 4.2, we adjust
the notion of linked domains in such a way that it can be appieepreferences
over fixed-sized subsets, and we will generalize Theorent®B& large class of
partial preferences. In Section 4.3, finally, we answer, fistapplication of our
generalization, Question 4 from the introduction.

4.1 Partial Preference Relations

Partial preference relationsre preferences that are antisymmetric and transitive,
but contrary to the preferences considered in the previsoghapters, they are not
necessarily complete, which means that a partial prefereray fail to rank some
pairs of alternatives. Partial preferences are thus manergéthan complete pref-
erences, and every result that holds for partial prefeehoéds also for complete
preferences. In the economic literature, however, the tganial preferences is
quite limited because it seems natural to assume that aridodi that is facing two
alternativesa andb either preferato b, orbto a, or regards them as equally good.
To involve a fourth possible attitude, namely, that thewatlial does not rank and

b at all, seems to be a needless complication. In general \leoytbere are at least
two aspects that can motivate the use of partial prefereziagans.

Firstly, the nature of available alternatives can be suahttiey are not unam-
biguously comparable, for example, because they have aanelependent qual-
ity dimensions that can come into conflict. In essence, tbilict is about how
to compare a comfortable house at an unattractive place aviélss comfortable
house at an attractive place. Confronted with such a chdicat®n, many people
feel uncomfortable and might be unwilling to express anygyence. It might be
tempting, at first glance, to consider this inability or uiwgness to rank two al-
ternatives as being the same as indifference. Howeveraiiddes.1, we will show
that this view leads to a contradiction (see page 50), whiehma that the absence
of explicit preference or indifference as it is modelled kart@l preference rela-
tions differs not only philosophically from complete predaces, but can also lead
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to different, possibly more reasonable, results in the sratitical formalization.

Secondly, facing a number of alternatives people are oftéyéngaged in only
one or two of them and prefer these to any other alternatwethey are not es-
pecially interested in ranking the remaining alternatiw@srnally. This kind of
preference structure, which is particularly likely whee ttumber of alternatives is
large, is conveniently modelled by partial preferences.

Beside these general aspects, there are economic appis#tiat give rise to a
more direct need for partial preference relations becawsavailable information
about individual preferences may be insufficient. Thisaes,ifistance, the case for
the voting problem considered in this thesis because in €h&p we will show
that if voters have complete preferences over the alteremin a sets, then these
preferences can be used to rank some subsetg, afhereas other subsets cannot
be ranked with this information.

In many cases in economics, it may thus be a good choice tolrmuiiégdual
preferences by partial preference relations. Often, hewewwill be convenient
to assume that even incomplete preferences have moreustrtican only antisym-
metry and transitivity, and we introduce now two types oftigapreferences with
additional structure. As pointed out above, it is often oe@ble to assume that an
individual has a special interest in some of the availalikr@tives, and the weak-
est economicly meaningful assumption is that an indivicgideast can point out
one of the alternatives to be his most preferred. Prefesewdé this property will
be callectop-1 preference relations

Definition 4.1 (Top-1 Preference Relation).A partial preference relatioR on a
set of alternatives is said to betap-1 preference relatioon <7, if there exists
an alternative € <7 such that

aPx forall xe .o\ {a}. 4.1)

A set of top-1 preference relations e#i will be called atop-1 domain

If Pis a top-1 preference relation, then the alternative .oz satisfying (4.1) is
uniqueland it will henceforth be denoted bby(P). Note also, that condition (4.1)
is only a minimal requirement on a top-1 preference and do¢xclude thaP
also ranks other alternatives. Starting with the concepafl preference relations

14This follows easily from the antisymmetry property of a elrpreference: Suppose there are
two different alternatives, a’ € < satisfying (4.1). Then we must have b@R & anda’ P a, but as
this contradicts antisymmetry, we conclude that there @aatlmost ona € <7 satisfying (4.1).
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it is straight forward to add more structure by requiring aoly a top alternative,
but also a second best alternative:

Definition 4.2 (Top-2 Preference Relation)A top-1 preference relatioR on a set
<7 1s said to be also top-2 preference relatioon <7, if there exists an alternative
ac o/ \{r1(P)} such that

aPx forall xe .o\ {ri(P),a}. (4.2)

A set of top-2 preference relations a7 will be called atop-2 domain and the
unique elemena satisfying (4.2) will be denoted by (P).

Top-2 preferences are introduced in this thesis becau$erepnees over subsets of
a fixed size turn out to have precisely this structure, whiehwill see in Chapter 5.
But in general, top-2 preferences can also be useful in ett@momic applications,
which the following example illustrates.

Example 4.1.Students at Lund university applying for spring term 2006 tze
possibility to choose among 208 different beginners’ cesirsOn the application
form, the students were allowed to fill in a main alternatind a reserve alternative.
Most students know that this can be a sufficiently demandasg,tand it is not
very reasonable to assume that students have completegmeds over all courses.
Hence, it could be a good idea to model students’ preferemaascourses by top-2
preference relations. O

Remark 4.1 After having defined top-2 preference relations from topefgrence
relations, one can of course continue to add more structupeeference relations

by requiring that an individual is able to report a top of hisfprences consisting

of three, four, or generalllg top alternatives, which would lead us to a definition of
top-k preference relationgHowever, since this more general concept is not needed
in the sequel, we refrain from considering it in detail. 0J

Note finally that a partial preference can be thought of agtegb@omplete prefer-
ence in the following sense: A complete prefereRds said to becompatiblewith
the partial preferencP if any ranking of two alternatives that holds undealso
holds undep, that is, if

aPb = aPb

foralla,b € «7. Given a partial preferend® there exists always a complete prefer-
ence compatible witk, and in general there will actually be several such complete
preferences. This result, which is knownZ&pilrajn’s theoremhas been proved in
Szpilrajn (1930), and it will be used in Chapter 5.
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4.2 Strategy-proof Social Choice on Linked Top-2 Domains

In this section, we generalize Theorem 3.2 to top-2 prefarenlations. To begin
with, we re-formulate in Section 4.2.1 the definitions tha&t ased in Theorem 3.2
for top-2 domains, and we state our generalization of Thed@e. This result is

one of the main contributions of this thesis, and we will #iere prove it in detalil.

Section 4.2.2 introduces some preparatory results thafregeently used in the
proof, and Section 4.2.3 contains the complete proof.

4.2.1 Basic Definitions and Statement of the Main Theorem

All notions used in the formulation of Theorem 3.2 have beefinéd under the
silent assumption that preferences are complete. In th@fmlg, we check there-
fore that these definitions can be transferred to top-2 pFete relations, and we
introduce also a new notion of manipulability, which is mappropriate when pre-
ferences belong to a top-2 domain.

The basic scenario is now as follows: A society consistingNdhdividuals,
indexed by the sef = {1,2,...,N}, must choose one element from a sétthat
containdM alternatives. The individuals are assumed to have topf2nameces over
the alternatives inZ, and the set of all admissible preferences will be denoted by
the Greek letteF .1° The social choice is made using a social choice functionkvhic
now has the fornf : TN — o7,

The definitions of dictatorship, respect of unanimity, amkéd domains can
now be applied almost without modifications, but in order wid any confu-
sions, we will re-formulate these definitions explicitly: $ocial choice function
f: N — o is said to bedictatorial if there exists an individual, the dictator,
such thatf (P, P»,...,Py) =r1(R) for all preferences profile@;, P, ..., Ry) e TN,
Next, we will say thatf : 'N — 7 satisfiesunanimity with respect to alternative
ac .o if (P, Ps,...,P\y) = afor all preference profilegP;, P, ..., Py) € TN such
thatr1(R) = afor everyi € Z, and if f satisfies unanimity with respect to every al-
ternative ine7, we simply say that satisfiesunanimity Note that these definitions
can be transferred to top-2 preferences because the topaditer;(P) is well-
defined for every top-2 preferen& Since top-2 preferences also have a second
best alternative, it is also possible to translate the defmbf linked domains. To
begin with, we will say that two alternatives aj € < areconnectedn a top-2 do-
mainr if there exist bottP € ' such that1(P) = & andr,(P) = a;, andP’ € I" such

15T is not necessarily the set afl top-2 preferences over, butl” can be any top-2 domain.
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thatr1(P’) = aj andr(P’) = &, and ifa; anda; are connected, this will as before
be denoted by ~ aj. A top-2 domain’ is said to bdinked if the alternatives in
</ can be indexed as a sequeRgeny, ..., ay in such a way that; ~ a, and every
a with i > 3 is connected with at least two alternatives{m,ap,...,a_1}. For
later use, we introduce also one more notation: 1§ a linked top-2 domain and
ai,, &, . . ., &, aren alternatives inz7, we will use the short fornfg;, a;,,, . . ., &, to
indicate that

iy ~ 8y, @ip;~8g, ..., i, ~a, g, and &1 ™~ &ip,

and we will say thata;,, a;,, . .., a;,] is achainconnectingg;, with &,. Note that if
a; anda; are two alternatives in/ that are not connected, then it is always possible
to find a chain that connects anda;.1

We turn now to the notions of manipulability and strateggginess for top-2
preferences. Of course, a social choice funcfiofN — o7 can, precisely as in the
case of complete preferences, be defined to be manipulasdenié individual has
incentives to misrepresent his preferences:

Definition 4.3 (Manipulability and Strategy-proofness). A social choice function
f: N — o is said to benanipulablef there exist preferenced, P/ € I' and some
preference profil®_; € 'N~1 such that

f(P,P) R f(R,P). (4.3)
If fis not manipulable, we say thétis strategy-proof

Note that (4.3) is precisely the same condition as beforesimeceP, now only is
assumed to be a partial preference, which in general cerdigtwer rankings than
a complete preference does, it should be more difficult todif such that (4.3)
is satisfied, and therefore, it should a priori be easier w $imategy-proof social
choice functions. For reasons to be explained below we witehin connection
with top-2 preferences not use the definition above, but wiewairk with a more
informative notion of manipulability that only focuses omether some individual
can obtain one of his two top alternatives:

16This can be seen in the following way:df # a;, then there exists an alternative precedinin
ai,ay,...,ay that is connected with;, and this alternative has also a preceding alternative tohwh
it is connected, and so on. Thus, there must be a chain cangectvith a;. Similarly, there exists
also a chain connectirgy with a;, and joining the two chains gives a chain that connactsth a;.
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Definition 4.4 (Top-2 Manipulability and Top-2 Strategy-proofness).If T is a
top-2 domain, we say that a social choice functiai N — . istop-2 manipulable
if there exist preference®, P/ € I and some preference profffe; € TN~1 such that

f(F,P.) B f(R,P,) and f(P,P.)=ri(R) or f(P,P)=r2(P).
If fis nottop-2 manipulable, we say thits top-2 strategy-proof

Definition 4.3 and Definition 4.4 are of course related in tbkofving way: A
strategy-proof social choice function is also top-2 stygtproof, and a top-2 ma-
nipulable social choice function is also manipulable, et tonverse implications
need not be true. The notion of top-2 manipulability is idiioed here for two rea-
sons: Firstly, out generalization of Theorem 3.2 shows #ghlarge class of social
choice functions actually is top-2 manipulable, and it isstimatural to use this no-
tion of manipulability because it is more informative thadiaary manipulability.
Secondly, some steps in the proof of our generalization @ofém 3.2 are only
valid if we assume top-2 manipulability, which forces us torkvwith this notion
of manipulability’

We are now able to state our generalization of Theorem 3.2chmhill be
proved in the remainder of this section:

Theorem 4.1.Letl" be a linked top-2 domain over a finite set, and assume that
f: N — & is a social choice function that satisfies unanimity. Thers fop-2
strategy-proof if and only if f is dictatorial.

4.2.2 Some Preparatory Results

In this subsection, we derive three basic result which welineeded in the formal
proof of Theorem 4.1 in the next subsection. In the proof efdhiginal Gibbard-
Satterthwaite theorem in Appendix B, the properties of nonigity and Pareto
optimality, which we already considered in Chapter 2, playraportant role, and

17Beside these concrete reasons, there are also economiatioots for the use of top-2 strategy-

proofness: As pointed out above, people facing a numbetterfratives are often truly engaged in
only a few of them. Ifitis reasonable to assume that indigldonly are engaged in two alternatives,
preferring these to all other alternatives without ranlkamg other pair of alternatives, then no indi-
vidual will have incentives to misrepresent his preferasngben a top-2 strategy-proof social choice
function is used, which means that top-2 strategy-proafirepractice implies strategy-proofness.
On the other hand, if a social choice function is top-2 malaipke, then some individual can at some
instance by misrepresentation obtain an alternative irclwhie his truly engaged, and therefore
individuals have incentives to think about tactical voting
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they will also be central in our proof of Theorem 4.1. The dabns of mono-

tonicity and Pareto optimality given in Chapter 2 are howewdy applicable to

complete preferences, and therefore, we introduce her&enveariants of these
properties, which then are shown to be valid for top-2 styderoof social choice
functions. We will also prove a reduction lemma, which isdexzkin the proof of
Theorem 4.1.

The monotonicity property of strategy-proof social chofaections will be
weakened in the following way: PP andP’ are two preferences in a top-2 domain
I, we will say that an alternativa € ./ moves to the tofrom P to P’ whenever
r1(P’) = a, that is, even i already is the top alternative 8f and we have then the
following lemma:

Lemma 4.2 (Monotonicity for Top-moving Alternatives). Let I be a top-2 do-
main, and suppose that: TN — < is a top-2 strategy-proof social choice function.
If the preference profiléR,P_;) € I'N gives f(P,P_;) = a, and a moves to the top
from R to the preference/R= ', then we also have(P',P_;) = a.

Proof. We argue by contradiction and assume th@',P_j) = b andb # a. Since
r1(P’) = a, we havea R b, and individual can manipulaté by going from(F/, P_;)
to (R,P-i). As this contradicts the top-2 strategy-proofnesd othe assumption
f(P/,P_i) # amust have been wrong, and the lemma is proved. O

Note that monotonicity for top-moving alternatives of ceelis a special case of
the monotonicity property from Chapter 2. We will frequentise a generalized
monotonicity property of top-2 strategy-proof social defunctions, which easily
follows from Lemma 4.2: Suppose that a preference proRiePs,...,Ry) € I'N
gives f(Py,Ps,....PN) = a. If (P, P,...,P) € N is another preference profile
such that either;(P) =aor P =R for all i € Z, that is, eithera moves to the
top of an individual’s preference, or an individual’s prefiece remains unchanged,
then repeated use of Lemma 4.2 shows that &(&, P, ..., R) = a.

Also in the case of Pareto optimality, we are only able to pravmuch weaker
variant of the Pareto optimality considered in Chapter 2.

Lemma 4.3 (Simple Pareto Optimality). LetI" be a top-2 domain, and suppose
that f: N — o is a top-2 strategy-proof social choice function. Let fenrtia
and b be two distinct alternatives i, and suppose that f satisfies unanimity with
respect to a. 12 € 'N is a preference profile such that every=PZ satisfies either
ri(R)=a,orr(R)=bandr(R)=a,then either {&?)=aor f(¥)=Dh.
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Proof. Note first that if allR € & satisfyri(R) = a, thenf(Z?) = a by unanimity.
Next, consider the case when exactly one individual, sayiahaal 1 for simplicity,
ranksb first, that is,ri(P1) = b, ro(P1) = @, andry(R) =aforalli > 2. If we
would havef (P, P_1) = cfor somec € &7\ {a,b}, then individual 1 would be able
to top-2 manipulatef becausef (P, P_1) = a for everyP] € ' with r1(P}) = a,
and hence, we conclude th&tP;,P_1) € {a,b}. If exactly two individuals, say
individual 1 and individual 2, ranb first and f (P, P,,...,Py) = ¢ for somec €
</ \ {a,b}, then individual 2 is able to top-2 manipulatéecause by the previous
argumentf (P, P5,Ps,...., ) € {a,b} for everyP) € I' with r1(P)) = a, and we
can thus conclude thdt{P;,P,,...,Py) € {a,b}. The lemma follows now when we
successively consider the cases when exactly three, fodrsa forth, individuals
rankb first. O

In the proof of Theorem 4.1, we will repeated times considefgrence profiles
where all but one individual in the society have the sameepegice, and thereby,
we will need the following reduction lemma.

Lemma 4.4 (Reduction Lemma).Letl" be a top-2 domain, and suppose that f
N — o7 is a top-2 strategy-proof social choice function. Constyémr some fixed
i € Z, the social choice function fI'? — < from f by setting all arguments in f
equal to B, except from theth one, where we insert;Pthat is

fi(PLP) = f(Py....,P,PL,P,... . P). (4.4)
i—1i i+1

If fis top-2 strategy-proof, then alsg i top-2 strategy-proof.

Proof. Suppose, for simplicity, that= 1. Sincef is top-2 strategy-proof, it is clear
that f1 is top-2 strategy-proof with respect 8. To show thatf; also is top-2
strategy-proof with respect #, we will argue by contradiction. Suppose therefore
that there exist,b € &7 andPy;,P,, P, € ' such that

fi(P,P2) =b, fi(P,P)=a aRb, and ac{ri(R)r2(R)}. (4.5
By the definition off;, we have

fl(Pl7 PZ) :b @ f(Pl7 P27 P27"'7P2) :b7
and fl(Pl, Pé) =a e f(Pl, Pé, Pé, cee Pé) =a.

Changing the preferences in the argument sticcessively froniPy, P, ..., P) to
(P1,P,...,P) for one individual at a time, that is, first for individual hen for
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individual 2, and so forth, we conclude that there must benatance such that
f(PL,P5,...,P5 PPy ... P) =, (4.6)
for somec € o7\ {a}, but
f(P,P),....P5 PP, ... P) =a (4.7)

We claim thataP.c. This will prove the lemma because (4.6) and (4.7) combined
with aRc anda € {r1(P,),r2(P,)} contradict the top-2 strategy-proofness fof
We have to consider two cases, firstly= ri(P»), and secondlya = ro(P,). If
a=r1(P), itis obvious tha Bc. On the other hand, &= r,(P), we must show
thatc # r1(P2). We argue by contradiction and assume théP,) = c. Applying
monotonicity of top-moving alternatives to (4.6), we ohtdiP,P,,...,P) = c,

and since alsd (Py, P,,...,P) = b, we conclude that = c. Butthenb=c=r1(P)
impliesb B a, which contradicts the assumptia® bin (4.5). Thus#r1(P,), and

we are done. O

4.2.3 The Proof of Theorem 4.1

We turn now to the proof of Theorem 4.1, the interesting pawlach of course
Is to show that top-2 strategy-proofness implies dictdiprs This will be proved
in the following by a chain of lemmas, and in order to avoide&ed formulations,
we assume now that the following assumptions hold througtios subsection:
We assume thdt is a linked top-2 domain over a set, which containdM > 3
alternatives, and we suppose tlaatay,...,ay is an indexing of the alternatives
in o/ that satisfies (13 ~ ap and (2) everyg; with i > 3 is connected to at least
two alternatives ifas, ap,...,8_1}. Further, we consider a social choice function
f: N — o that is assumed to be top-2 strategy-proof.

For a clearer exposition, we will at several places presgnltpreferences in
tables where we indicate the two top alternatives; for exanmpe write

R P
a; ag
a

in order to indicate tha® < I' is a preference such that(P,) = a; andr,(R) = a,
whereas every preferen&in the preference profilE_; satisfies1(P}) = as.

The proof of the fact that top-2 strategy-proofness impliesatorship consists
essentially of two parts. In the first part (Lemma 4.5 to Len?h®y, we investigate
how the preference of a single individual affects the setasfsible social choices,
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that is, we ask what alternatives are left for society whelividuali has reported
his preference. Thereby, the set of all social choices tiilatse available when
individuali has chosen preferenéewill be denoted by

0-i(R,f)={ac«;a=f(R,P)for someP_ ;e "1},

and it is called theoption setwith respect toR and f. When the social choice
function f is obvious from the context, we will shortly writé¢_;(R) instead of
0_i(R, f). The idea behind this approach is that if there exists a ticfar f,
which we want to prove, then there should be som& such that society’s possible
choices are always restricted to individuialtop alternative, that is7_;(R) should
collapse tofr1(R)} for all B € I'. To begin with, we will in two respects restrict
our attention to the first three elementsdn only: firstly, we will only consider
preferences whose top alternative is onafay, oraz, and secondly, we will only
investigate whether the preference of a single individtfatés society’s possibility
to choose among;, ay, or ag. Formally, this means we will analyze the set

O-i(R)N{as,az,a}  for R elUMNUlg,

wherely for k € {1,2,...,M} denotes the set of all preferencedithat haveay
as top alternative. At the end of the first part of the proof wilehave shown that
there exists exactly one individuiasuch thatf, under a weak additional condition,
always chooses individuak top alternative if this is one od4, ap, or az. This
individual should then clearly be regarded as a seed for t@atdicfor f, and in
the second part of the proof, we will show thitstill chooses individuai’s top
alternative when we successively extend the set of adnegsibferences, first for
the other individuals in the society (Lemma 4.10), and tHen &or the presumed
dictator (Lemma 4.11). In a final step, we remove the weakiotisin mentioned
above and show that individuaindeed is a dictator fof.

Throughout the proof, two arguments will be used repeateddi For the sake
of clarity, they are presented here, and when we use thens settipuel, we will only
shortly refer to them a®bservation TrespectivelyObservation 2

Observation 1: If & = (P, P, ...,R) is a preference profile such theat ¢_i(R)
for somei € Z, andr((P;) = afor all P; with j #1i, thenf(P,P,,...,Py) =a. This
can be seen in the following way: Sinee= ¢_;(R,), there must be a preference
profile 2 = (R,P’;) such thatf (R,P’;) = a. Going fromP’; to P_;, alternative

a moves to the top of all preferenceskn;, and sincef is assumed to be strategy-
proof, we can apply Lemma 4.2 in order to conclude th@,P,....Ry) =a. O
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Observation 2: Let a andb be two distinct alternatives in/, and suppose that
Z = (P,P,...,A) is a preference profile such tha{R) = a andry(R) = b for
somei € Z, and for allj € 7\ {i}, we haver1(Pj) = b, that is

Pb -~ B1 B Ry - R
b .- b a b --- b
b

If b¢ 0_i(R) and f satisfies unanimity with respect & then f(%?) = a. This
follows easily once we noted that simple Pareto optimatitplies f (#?) € {a, b},
because theb ¢ ¢_;(R) excludes the casi#?) = b, and hencd () = a. Simi-
larly, if r{(R) =aandry(Pj) =bandr,(P;) = afor everyPj € P_j, thenb ¢ 0_i(R)
implies alsof (£7) = a, provided thatf satisfies unanimity with respectédo O

We enter now the first part of the proof. As indicated before,aitention will here

be restricted t@y, ay, andag, and therefore we will from Lemma 4.5 to Lemma 4.9
only require thatf satisfies unanimity with respect &, a, andag (in the second
part, however, we will require thdt satisfies unanimity with respect to all alterna-
tives in.<?). The first three lemmas in the proof (Lemma 4.5 to Lemma 4af)fg

the structure of the set_;(P) N {a1,az,as}. Thereby, it will turn out that an indi-
viduali either can reduce the set of possible social choices to pialternative, or

his preferencé has no impact on this set. The first lemma shows that for a fixed
top alternative, say for simplicity; (R) = a3, the setv_;(R) N {a1,az, a3} does not
depend on the particular choice®fe I'1.

Lemma 4.5. Assume thatie M, UM ,UTl3. Then

O_i(R)N{as,a, a3} = 0_i(R)N{as,a,az}
for all B with ry(R) =r1(P).

Proof. Assume, without loss of generality, that(P) = rl(FT.) =a;. The lemma
will be proved by a contradiction argument. Assume theeeforther, again without
loss of generality, that, € &_(R) N {a1,az, a3}, butay ¢ ¢_i(R) N{ay,az,as}.
Sincea; ~ ap, we can choose some preference prdfile such thatr1(Pj) = a»
andra(Pj) =a forall j € 7\ {i}. On the one hand, sin@ € ¢_;(R), we have
f(R,P-;j) = ap by Observation 1. On the other han‘c(FT., P_i) = a; according to
Observation 2. But since (P1) = aj, this means that individualcan top-2 ma-
nipulatef by going from(R,P_;) to (P_,, P_i), which contradicts the top-2 strategy-

proofness off. The lemma is proved. O
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Next, we will see that/_;(R) N {a1,a2,a3} either contains the top alternative in
P or all of a1, ap, andasz. Note that the former case implies that individualan
reduce society’s possible choice drastically, whereadatter case means the he
has no such power.

Lemma 4.6. Assume thatiRE M1 U, Ul 3. Then either
O_i(R)N{ay,az,as} = {ra(R)} or O_i(R)N{ay,a,as} = {a1,a,as}.

Proof. Again, we will argue by contradiction. Suppose thereforgheaut loss of
generality, thab, € 1 and0_;(R) N{a1,az,a3} = {a1,a2}. Moreover, in spite of
the previous lemma, we can also assumeityi@ ) = az. Consider now preference
profilesP_; andP’; such that

PI I:)—i P/_i
a a3 @
a3 a ag

By Observation 2, we havi(R,P_;) = a;. On the other hand, from Observation 1
follows f(R,P’;) = ap. But this means that the functidhdefined by (4.4) is top-2
manipulable, which by Lemma 4.4 contradicts the top-2 styafproofness of,
and the lemma is proved. O

An individual that can reduce society’s possible choicethwespect to one top
alternative is in fact able to do this with respect to albgfay, andag:

Lemma 4.7. For every i€ Z, we have either

O_i(R)N{a1,az,a3} = {r1(R)} forall P elulr,urs
or O_i(R)N{a1,ap,a3} = {a1,az,a3} forall P el ulr,urs.

Proof. If 0_ij(R)N{a1,ap,a3} ={a1,ap,as} forall R € MUl Ul3, the lemmais
obviously true. Consider therefore the case when(P) N{as,az,as} = {r1(R)}

for someP, € M1 Ul UTl 3, and we assume without loss of generality tRat I;.
Moreover, due to Lemma 4.5, we can also assumerfiiBt) = az. Note that such

a P exists becausa; ~ az. Suppose now, contrary to the claim of the lemma,
that for some? e Ul Ul3 we haved_i(P/) N{ay,az,a3} = {a1, a2, az}. From
Lemma4.5itis clear th&®' ¢ I'1; we assume without loss of generality tRAE I,
and by Lemma 4.5, we can also assume th@') = a;. Consider now

R R Py
a a ag
a a
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As a consequence of Observation 2, we must Hg\® P_;j) = a;. On the other
hand, Observation 1 implie§(P/,P_;) = a3. But this means that individualcan
manipulatef from (P/,P_;) to (R,P-;). Thus, if 0_ij(R) N{a1,az,a3} = {r1(R)}
for B €My, thend_ij(R)N{a1,az,a3} = {r1(R)} forall R e LU, Ul3, and the
lemma is proved. O

Up to this point, we have shown that an individual either @strict society’s choice
to his favour, or that he has no such power, without havingiesasthe existence of
either of these types. Next, we show that there in deed exmgisndividual whose
choice restricts society’s possible choices, and thisviddal must then of course
be unique.

Lemma 4.8. There is exactly oned 7 such that
O-i(R)n{ay,az,ast = {ra(R)}  forall R el UMNUls. (4.8)

Proof. Note first that there can be at most ane 7 satisfying (4.8). To see this
suppose that (4.8) holds for at least two individuals, arstia® for simplicity that
these are individual 1 and 2. Thus

ﬁ_l(P]_) N {al,az,ag} = {I’l(P]_)} forall PLelMulrours, (4.9)
and ﬁ_z(Pz) N {al,az,ag} = {I’l(Pz)} forall PR elulLulz. (4.10)

Consider now a preference profil? = (P, P,...,Py) wherery(P;) = a; and
ro(Pj) = ap forall j > 3, andP; andP; are such that

PP P R
a a a -+ @
Q ag a - @

Simple Pareto optimality implies(%?) € {a1,az}, and sincex; ¢ 0_1(Py) by (4.9),
we must havef (&7) = a;. But similarly, it follows from (4.10) thaff (2?) = ay.
This contradiction shows that at most dneZ can satisfy (4.8).

The other part of the lemma, namely that there exists at least € 7 for
which (4.8) holds, will be proved by induction over the numioé individuals.
Consider thus first the case whdh= 2, and suppose, contrary to the claim of
the lemma, that neither individual 1 nor 2 satisfies (4.8thmlight of the previous
lemma, this means

O_1(P1)N{ag,ap,a3} = 0_2(P) N{a1,ap,a3} = {a1,az, a3}
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forall PP, € T UM UT 3. Consider a preference profilBy, ) with ri(Pr) = ag
andryi(P) = ap. Sincea; € 0_»(P) anda; = r1(Py), we havef(P,P) = a1
according to Observation 1. But similarly, sinage ¢_1(P1) anday =r1(P»), it
follows also thatf (P, P,) = ay. This, however, contradicts the assumption thist
a well-defined function, and the basis step of the inducsagstablished.
For the induction step, suppose now that the claim is trudlfern, and assume

that f : T™1 — 7 is defined for a society of size+ 1. For individualn+ 1, we
have according to the previous lemma either

O_(ny1)(Prrr) N{an,az,83} = {r1(Pa1)} forall Phia €T UM UM,
o O_pyi1)(Pra) N{ag, a2, 83} = {a1,a,a3} forall Py elulUls.

In the first case, the claim follows at once, and we assumefibrerin the contin-
uation that the second case holds. Fix sdtg with r{(Py.1) = a1, and consider
the functionf : " — & defined by

f(PL,P,....P) = f(PLP,,..., P, Phi).

Sincef is strategy-proof, it is clear that alfomust be strategy-proof. Moreover,
sinceﬁ_(n+1)(F7n+1, f)n{a,az,a3} = {a1,ap, as}, it follows from Observation 1
that f satisfies unanimity with respect &, a, andaz. Thus, we can apply the
induction hypothesis té and conclude that there exists some individugalch that

0-i(R,f)n{ar,ap,as} = {r1(R)}  forall R el UMNUl, (4.11)

Consider now a preference profi® = (P;,P,...,P,) such that;(R) = a; and
ri(P)) =agforall j=1,2,...,nandj #i. By (4.11), we havey ¢ 0_;(R, f), and
hencef(Pl, P, ...,Py) # a;. Butthis means that(Py, P, ..., Py, F7n+1) # a1, and we
conclude thah; ¢ ¢_;(R, f) because otherwise we would obtain a contradiction to
Observation 1. By the previous lemma follows now that

0_i(R,f)n{ay,ap,a3} = {r1(R)}  forall B el uUluUrs,

which completes the induction step, and the lemma is proved O

From now on we will, without loss of generality, assume that anique individual
satisfying (4.8) is individual 1. The previous lemma makeggative statement by
stating that ifr1(Py) = a3, thenf (P, P_1) # ap, a3, but it does not tell us what the
social choice actually will be, sincg Py, P_1) still could belong toer' \ {a1,a2,a2}.
The next lemma shows, however, that the social choice ind@Hok individual 1's
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top alternative, at least when there is complete unanimithe rest of the society.
To simplify the argumentation, we introduce the functian 2 — <, defined by

f1(P,P) = f(PL, Py, ... P2), (4.12)

which means that; reports the social choice dfwhen individual 1 choosdd and
the rest of the society agrees unanimouslyarNote thatf; is top-2 strategy-proof
according to Lemma 4.4 becaubés top-2 strategy-proof.

Lemma 4.9. Suppose that
ﬁ_l(Pl) N {al, ay, akg} = {I’l(Pl)} forall PrelriulroaUrlrs.
ThenforallR,P, e MUl UIl3, we have

f1(P1,P2) =ra(Py).

Proof. Whenry(Py) = r1(P), the claim follows from the assumption thatsatis-
fies unanimity with respect ta;, a andas. Suppose therefore, without loss of
generality, thaty(Py) = a; andr1(P,) = az. If ro(Py) = ap, Observation 2 implies
f1(PL,P) = a1, and from the monotonicity property of top-2 strategy-greacial
choice functions follows then thdt P, P,) = a; for all P, € I';. O

We turn now to the second part of the proof, which is mainly meuction step
where we show that if individual 1's choid® and the unanimous choié® of the
rest of the society have their top alternatives amféaga,, ...,ax} and f chooses
individual 1's top alternative, then the same holds whendéeof possible top
alternatives is extended f@j,ay, ..., a, a.1}. This induction step is carried out
in the next two lemmas, and in the first one we will only allBwto extend its set
of possible top alternatives. From now on we will assume thestisfies unanimity
with respect to ala € <7

Lemma 4.10. Suppose that for allPP € 1 U... Ul we have
f1(P1,P2) = ra(Py). (4.13)
Then(4.13)also holdsforallRe M U...UlNkand B e M uU...UlMNUM.s.

Proof. By assumption, (4.13) holds already f&r, P, € 1 U...UTl, so it suffices
to consider the case wh&a e My, 1 andP e M U...UT k. ForPy, we will consider
one of the set$’; for 1 <i < k at a time, and we will prove the lemma using
induction over the number of connections betweganday 1. Suppose therefore
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first thata; ~ a1. Sincerl is linked there exists soms € {ag,ap,...,a} such
thata; ~ a1 anda; # a;. Consider first the preferences

P P Pé
8 a1 gj
i1 &1

By simple Pareto optimality, we havie(Py,P) € {&,ax.1}. On the other hand,
sinceP, € I'j, we get from (4.13) thaf; (P, P;) = a. Hence, iff{(Py, P2) = a1,
then individual 2 would be able to manipulateby going from(Py, P;) to (P, P2).
Thus, f1(Py,P2) = a;, and by monotonicity we conclude then tHatPy, P,) = & for
allP,eT;.

Suppose next that the lemma already has been proved donnections, and
let [&,ai,,8i,,...,&,,8.s1] be a chain oh+ 1 connections, whera, . a,, ..., a, €
{a1,a,...,a}. Consider first the preferences

PP P P
a; ai]_ ak+1 ai]_
a, 4 a;

By the induction hypothesis, we hag(P;,P,) = a;,. Sincef; is top-2 strategy-
proof we can therefore conclude th&t(Py,P,) € {a,a,}. On the other hand,
by (4.13) we havd(P;,P;) = a&. Thus, if f{(Py, ) = &, then individual 2 would
be able to manipulaté by moving from(Py, P;) to (P1, P,). Hence,f1(P, P2) = a;,
and by monotonicity follows then thd{(Py, P,) = & for all P, € I'j, and the lemma
is proved. O

In the following second lemma of the induction step, alsovigaial 1 is allowed to
pick his top alternative from the extended $ef,ay, ..., ax, ak1}-

Lemma 4.11. Suppose thatforallPc M U...UlNand B e M U...UMNcUlMk
we have

f1(P,P2) = ra(Py). (4.14)
Then(4.14)holds also forall R,Po e T1U... Uk UT k1.

Proof. By assumption (4.14) holds already &, € ', U... Uy, whence it suf-
fices to consider the case whene N, 1 andP, € T for somel with 1 <i <k+1.
Wheni = k+1, thenfy (P, ) = ax, 1 by unanimity, and there is nothing to prove.
Suppose therefore thatdi < k. The lemma will now be proved by separately
considering the two cases whananday, 1 are connected, respectively when they
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are not connected. Suppose therefore firstéhata,, 1. Leta; € {ag,ap,...,ac}
be such thagj ~ a1 anda;j # a;, and consider the preferences

P P P P P P

A&+1 &+l K+l Q) & g
: a; aj &1 i &1

We will use a contradiction argument and assume fh@d®, P,) # ax.1. Then, by
strategy-proofness, we also must hdyg], P,) # ax 1. But by simple Pareto op-
timality f1(P;,P) € {aj,ax+1}, and hence(P;,P2) = a. Applying monotonicity
to (P;,P,), we conclude that then alsia(P;, P;) = &. But then we must also have
f1(Py,P;) = &; this holds sincd1(Py,P;) € {ai,ax.1} by simple Pareto optimality,
but strategy-proofness excludas 1, because otherwise individual 1 would be able
to top-2 manipulatef; at (Pj,P;). However, by (4.14) we havé (P, P;) = aj,
so individual 1 can top-2 manipulate fro(®;’,P;) to (P;”,P), which contradicts
strategy-proofness. Thus, our initial assumption musehaeen wrong, and we
conclude thaffy (P, P) = a1 for all (P, P) € M1 x T with a1 ~ &;.

We turn now to the case whem and &y, are not connected. Choose again
aj € {a1,a,...,a} such thal; ~ a1 anda; # &, and consider the preferences

P P P P P
+1 K+1 Q) & Qi
: aj 1 @

By (4.14) we havefi(P{',P,) = aj. Sincef; is top-2 strategy-proof, we can con-
clude thatf1(P{,P) € {aj, a1}, because otherwise individual 1 would be able to
obtain his second best alternative by going fr@®p P,) to (P{', ). By the previ-
ous paragraph, we havg(P;,P;) = a1, sincea;j ~ ax;1. But then we must also
have f1(P,P.) = ax.1, because iff (P}, ) = aj, then individual 2 would be able
to manipulatef; by going from (P, P;) to (Py,P>). But f1(P},P) = ax.1 implies

by monotonicity thatf1 (P, P) = ax1, and the lemma is proved. O

We can now summarize the preceding chain of lemmas and ptoeerém 4.1.

Proof of Theorem 4.1Let f : I'N — o/ be a social choice function that satisfies
unanimity. If f is dictatorial, thenf is obviously top-2 strategy-proof. Conversely,
suppose that is top-2 strategy-proof and we want to prove thabhen must be dic-
tatorial. Sincef satisfies unanimityf satisfies in particular unanimity with respect
to a;, ap andaz. By Lemma 4.8, we can therefore conclude that there existsthyx
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onei € Z such that (4.8) holds, and for simplicity we assume thatl. According
to Lemma 4.9, the functiofy, : M2 — < defined in (4.12) satisfies

fl(P]_, Pz) = I’l(P]_) for all P,.Peliulyuls.

But then we can use Lemma 4.10 and Lemma 4.11 repeated timmendtude that
f1(P1,P2) =r1(Py) still holds when we successively extend the domaiRandPs.
Noting thatl =T1UlMNU...UlMy, we finally get

fl(P]_, Pz) = I’l(P]_) for all P]_, Perl. (4.15)

It remains to show that (4.15) implies that individual 1 is iatator for f. We
will argue by contradiction and suppose therefore that éone preference profile
(P, Ps,...,Py) € TN we have

f(P,P;...,AN)=a and a#ri(P).

Sincer is linked, there must be a prefererniepe I with r{(P;) = a because is
connected with at least two alternatives. Replacing aligpemces except from the
first one in(Py, P, ..., Py) by P, we obtain by monotonicity that

fl(Pl, Pé) = f(Pl, Pé, ceey Pé) = 8.7é rl(Pl)-

As this contradicts (4.15), we conclude that individual 1sinoe a dictator forf,
and the proof of Theorem 4.1 is fulfilled. O

We finish this subsection with some remarks on the historhefaireceding proof.
The idea to prove the impossibility of strategy-proof sbckeice by an analysis of
option sets has its origin in Barbera and Peleg (1990). Thiggduced the notion
of option sets and used it to prove the Gibbard-Sattertlenhigorem for the case
when the number of alternatives.i is infinite. After that, a similar technique was
used in Aswal et al. (2003) to prove that a strategy-prooisdatioice function on
a linked domain must be dictatorial (see Theorem 3.2 in tiesis). Theorem 4.1
is then a natural generalization of this result to linked 2ogomains, and of course,
our proof of Theorem 4.1 is to a great extent inspired by threesponding proof in
Aswal et al. (2003), whence we will give some details abouwt Hzese two proofs
are related. Aswal et al. (2003) use an induction argumetrtheir proof: first,
they prove their theorem fdl = 2, and second, they show that if their theorem
holds forN = 2, then it actually holds for alN > 2. Concerning the first step, |
am convinced that the proof in Aswal et al. (2003) can, witmhanimodifications,

43



also be applied to linked top-2 domains. The induction shepyever, cannot be
applied to top-2 domains, and since it may be instructivee why, we present
it in Appendix B and explain why it fails for partial preferem relations. Because
we were not able to find an alternative proof for the inducstep for linked top-2
domains, we endeavoured to generalize the proof in Aswéal @G@0D3) forN =2 to

a generaN. In deed, Lemma 4.5 to Lemma 4.7 in the proof above are mosssr |
the same as Lemma 3.1 to Lemma 3.3 in Aswal et al. (2003). afterehowever,
our proof deviates from the proof in Aswal et al. (2003) in adamental way.

4.3 The Gibbard-Satterthwaite Theorem
and Top-2 Manipulability

We will now as a first application of Theorem 4.1 state a mofermative version
of the Gibbard-Satterthwaite theorem.df is a finite set of alternatives, then the
setZ of all complete, antisymmetric and transitive preferermesy <7 is obviously

a linked top-2 domain, and applying Theorem 4.% fave get:

Theorem 4.12 (Strengthening of the Gibbard-SatterthwaiteTheorem). If .7 is
a finite set of at least three alternatives, then every natathrial social choice
function f: =N — & that satisfies unanimity is top-2 manipulable.

Theorem 4.12 tells us that ff: =N — .7 is a non-dictatorial social choice function
that satisfies unanimity, then some individual can at soraéepence profile mani-
pulatef and obtain by this at least his second best alternativentiwsnatural to ask
whether this result can be strengthened further in the dbasevery social choice
function f : =N — 7 that satisfies unanimity is not only top-2 manipulable, bat t
some individual by manipulation at some preference proféitaally can obtain his
top alternative. The answer to this question, however,gatiee in general because
for example the majority rule is such that no voter ever caaialhis top alternative
be manipulatiort® By this, Question 4 from the introduction is answered.

18This can be seen in the following way: If an individual’s tdfeenative gets most votes when the
individual misrepresents his preferences and does notfgotais alternative, then this alternative
gets surely also most votes when the individual votes fotdpsalternative. Thus, if misrepresen-
tation gives an individual his top alternative, then alswsre voting does so, and therefore, a top
alternative can never be obtained by manipulation.
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5 Strategy-proof Social
Choice of Fixed-sized Subsets

WE ARE Now sufficiently prepared to investigate to what extent straegpof so-
cial choice of fixed-sizes subsets is possible by answehaditst three questions
proposed in the introduction. To begin with, we formalizeéSection 5.1 the social
choice of fixed-sized subsets and derive a preference steuthat is reasonable
in this context. After this, we show in Section 5.2 that naockatorial strategy-
proof social choice of fixed-sized subsets in analogy with ¢fassical Gibbard-
Satterthwaite theorem is impossible in general. This tésthen modified in Sec-
tion 5.3, where we show that the social choice of fixed-sizdzbsts can be made
strategy-proof when voters’ preferences are single-pkakeSection 5.4, finally,
we compare the voting model and the results presented ichhister with related
contributions in the literature of strategy-proof sociabice theory.

5.1 Strategy-proof Social Choice of
Subsets Based on Preferences over Alternatives

In this thesis, the social choice of fixed-sized subsetsheiltonsidered in the fol-
lowing formal framework: A society consisting &f individuals has to choose
elements from a set/ that containgV alternatives. The set of all possible social
choices, i.e., the set of all subsets.@f that contain exactlk elements, will be
denoted byerk. We will assume that the individuals in the society have cletep
antisymmetric and transitive preferences over the altme®sin .7, and the set of
all such preferences will be denoted byas before. We assume further that social
choice is based on these preferences by using a social dooict#on of the form

fisN - o (5.1)

Note that even though society is going to choose an elememt.f7, we assume
that the arguments of the social choice functioare the individuals’ preferences
over.o/, but not overe, which is motivated by the fact that in most of the practi-
cally used voting procedures for the social choice of fixeee subsets, voters are
only required to report (a part of) their preferences overatternatives in' on the
ballots, but not over subsets.of. We illustrate by the following two examples how
a social choice function for the social choice of fixed-sigatisets can look like in
practice, and we will return to these examples later in thegpter.
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Example 5.1.A social choice function of the fornii : =N — .44 can easily be ob-
tained by generalizing the majority rule from Example 2.Et bach voter report
his most preferred alternative i, and let the social choice be the subsetaof
that contains th& alternatives that got most votes. Similarly, we can genexdhe
Borda count from Example 2.2: Let each voter assign pointeealternatives in
</, and let the social choice be the subsetthat contains thé& alternatives that
got most points in total. O

Example 5.2.A rather different procedure is used to elect the 659 membedise
British parliament, the House of Commons: The United Kingds divided into
659 electoral districts, and in each of them, voters can sa@mong a number of
candidates. The candidate who receives most votes in é&tlistll take a seat in
the parliament. O

We noted already in the introduction that it is not obviousewta social choice
function of the form (5.1) should be considered manipulabé&cause contrary to
the case of the classical Gibbard-Satterthwaite theorelneravthe social choice
function is of the formf : 2N — 7, the preferences i cannot be used directly
to rank the elements i/, whence it is not clear when an individual that is able to
change the social choice by misrepresentation gains frangdm. In the follow-
ing, we will therefore answer Question 1 from the introdoctand show how the
preferences il can be transferred to preferences awgrwhich then automatically
leads to a notion of manipulability for a social choice fuastof the form (5.1). To
begin with, we illustrate why an individual can find it profita to misrepresent his
preference when the generalized ordinary majority rulexfEExample 5.1 is used.

Example 5.3.Using the generalized ordinary majority rule from Example fhere
might be two reasons for a voter to misrepresent his prefeserOn the one hand,
when the voter realizes that his top alternative has tole kttipport among other
voters to be elected, then he might want to give his vote toltamnative that has
a more reasonable chance to be elected. On the other handl tinéheoter can be
sure that his top alternative has so broad support among wkers that it surely
will be elected, then he might think about voting for anothkernative that he also
would like to see elected. O

The two possible motives for misrepresentation in ExampBeafe based on the
same underlying reasoning: By casting his vote on an altigenather than his most
preferred one, a voter hopes to lift in a desirable alteveatito the socially chosen
subset, thereby pushing out a less desirable alternatiggerieral, we will therefore
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assume that individual preferences satisfy the follonsagarability condition If
A; andA, are two subsets off containing exacthk elements, then an individual
will prefer A; to Ay if A; can be obtained from, by replacing one of the alternatives
in Ao by an alternative that the individual finds more desirablexntally, if Ais a
subset ofe7 containingk— 1 elements, and; = AU {a} andA; = AU{a'}, then

A is preferred toA, = ais preferred ta. (5.2)

In addition to (5.2), we will of course also assume that anviddal prefers a subset
A, € 9 to a subsebl, € 7 if A1 can be obtained from, by successive replace-
ment of several of the elementsAn by better alternatives. On the other hand, if
it is not possible to obtain one @f or A, from the other one in this manner, then
the only way to transfef; to A, is to replace some of the elementsAinby better
and some by worse alternatives, so with available inforomaiti is not possible to
decide unambiguously which subset an individual will pred@d we will therefore
in this case assume that an individual has no explicit peefex betweeA; andA,.

In the described way, we can associate to e®egyX a unique preferende on .,
which we will call thepreference induced by P a#, and the formal definition of
this preference is presented below.

Definition 5.1 (Induced Preference ong). For P € =, thepreferenceP induced
by P ong is defined as follows: 1A, Ay € <, thenA; P A if and only if A; # Ay,
and we can decompogg andA, as

Alzﬂ_\U{ail}U{aiz}U...U{ail}
Az =AU{ay }U{ay}U...U{ay}

whereA = A1 N A2, and we havea;lPayll, a;zPa/z, ..., andg;, Paﬂ/. The set of all
induced preferences ovef will be denoted by (.o%).

Definition 5.1 is our answer to Question 1 from the introdoicti Note that ifP is
induced ong by someP € Z, thenP is antisymmetricand transitive'® and we
can thus apply the notions of partial preferences introdicéhapter 4 td®. We

19Antisymmetry follows directly from the definition d?, and transitivity can be proved as fol-
lows: Suppose thaky, Az, Az € < are such thad; P A, andA, P Ag. ThenA, can be obtained from
As by replacing some of the elementsAg by alternatives that are better accordind?aand simi-
larly, replacing some of the elementsAg by better alternatives, we can get fréato A;. But this
means of course that if all replacements are carried out@asmeep, then we can get frokg to A;
by replacing worse alternatives by better alternatived,temceA; P As.
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illustrate by the following example how Definition 5.1 woiksa concrete situation,
and this example shows also ttais in generahot complet&®

Example 5.4.Let o = {a,b,c,d,e} be a set of alternatives, and suppose that the
preferencé ranks the elements i@ according ta P b P ¢ P d P eand let? be the
preference induced by on o3 according to Definition 5.1. Assume that society
has to elect three of the alternativesdfy and consider the four subsets

A;={ab,c}, Ax={ace}, Az={cd,e}, and A= {b,cd},

which, of course, all belong terz. We note thatA; can be obtained from, by
replacing alternative by b, and sincdo Pe we haveA; PA,. Similarly, replacing
d in As by a, we obtainA,, and thusA, P A, becaus@ P d. We also havey; P Ag,
becausé\; can be obtained frorAg by replacingd by a ande by b, which indicates
thatP is transitive.

But consider nowA, andA4. On the one hand, containsa, which is preferred
to all elements if\4, but on the other hand,, also containg, to which all elements
in A4 are preferred. Hencé, andA4 are not comparable b‘? which shows that
the preferenc® induced byP on .2 will not be complete in general. O

Remark 5.1.It must be pointed out that even if the equivalence in (5.8)which
Definition 5.1 is based, seems very reasonable, it is neslegh arassumption
Verbally, (5.2) means that a voter’s opinion on which of titematives should be
included in a subset is independent of which other alteraatare contained in the
subset. This separability assumption, however, can fadffteast two reasons.

Firstly, there might be dynamic effects between the alt@res, which can af-
fect an individual's ranking of different subsets.@f. Suppose, for example, that
you as a head of an institute have to appoint a research gangisting of five
members, of which four already are elected, and to fill theaiaig place, you
can choose between doctor Jekyll and professor Hyde. If imk tthat doctor
Jekyll is a much more skilled researcher than professor Hydeprofessor Hyde
is able to co-operate much more efficiently with the other tpers in the research
group, and you will therefore appoint professor Hyde, thearypreferences do not
satisfy (5.2).

Secondly, an individual might form his opinion of a subsetz6fnot only de-
pending on which alternatives are included in the subséglbo on the structure of
the subset as a whole. This is the case, for instance, whendivedual considers

20There are actually three instances wiiis complete, namely whelequals 1M — 1, or M.
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that a balanced distribution of sex or age among the memhesiscommittee is
important, and then the individual's preferences over stshsf.<7 will in general
not satisfy (5.2). O

Via Definition 5.1, preferences over can be transferred to preferences owgr
and it is now straight forward to define a notion of manipui&bior a social choice
function of the formf : =N — .

Definition 5.2 (Manipulation of the Social Choice of Fixed-zed Subsets).A
social choice functiori : =N — . is said to bemanipulablef there exist?, Pex
andP_; € ZN-1 such that

f(R,P-) R f(R,P),
whereP is the preference induced I8y on 2.

Having a notion of manipulability, it makes now sense to aslether there exist
any strategy-proof social choice functions of the fofm=N — 4, and we will
turn to this question in Section 5.2 and Section 5.3.

Before leaving this section, we would like to remark that Digifon 5.1 is not
the only way to define preferences ovef based on preferences ovef, and we
will therefore briefly consider how one can proceed altevedt. In order to define
a preferenceFT on % based on a preferend®on <7, we think that it is almost
imperative to require that &, Ay € .o are such tha; can be obtained from, by
replacing some of the elementsAa by more desirable alternatives, then we must
haveA; P Ay, or with other wordsP should in any case be compatible wih If
none ofA; andA, can be obtained from the other by replacing worse alterasity
better alternatives, then we abstained in our approachifegarding one of; or Ay
to be preferred to the other, because we have no additicimaimation that allows
us to do so. This approach, however, is not unproblemateguse the preference
P defined in this way is in general not complete, which makesntaghematical
analysis of whether a social choice functién =N — .7 can be strategy-proof
more complicated, and since there to our knowledge exisesuolts for strategy-
proof social choice functions with incomplete preferenogbe literature, we were
forced to derive the notions and results in Chapter 4 in aérlfil the purpose of
this thesis. To avoid the problems caused by the incompésten, one could thus
have thought of extendinig to a complete preferend%over,gz%k, which according
to Szpilrajn’s theorem always is possible, and we presdoibisvo thinkable ways
to do so. Note, however, that the approach chosen in thisstisethe more general
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one, because we can show that a non-dictatorial social efieictionf : =N — o7
must be manipulable with respect to the preferences defmBefinition 5.1, and
thereforef must of course also be manipulable with respect to preferetiat are
compatible with the preferences from Definition 5.1, but ¢beverse need not be
true.

Firstly, the possibly most natural approach to solve thdleros caused by the
incompleteness d? is to interpret the absence of strict preference betweesessib
that are not ranked bl asindifference To be precise, based & we would like
to define a complete, but weak preferefcen .« by

i) if Ar, A2 € @ andA1P A, thenA;R A, and
i) if A = Ay or A; andA; are not ranked b, then bothA; R A andAy R A

The preferenc® defined in this way is certainly complete and compatible it
preference®. However,R has also a severe weakness because it is not transitive
in general. To see this, set = {a;1,ap,a3,a4}, and suppose that the prefererite
orders the alternatives ¥’ according toay PaxPagPayPas. Let furtherP be the
preference induced By on <%, and suppose th&tis defined as above. According
to the definition ofR, the following two implications must hold:

{a1,as} and{ap, a3} are notranked by — {a;,as} R{ay,az},

. . (5.3)
{ap,a3} and{a;,a4} are notranked bl? — {ap,a3} R{a1,a4}.

If Rwould have been transitive, then (5.3) would impa, a5} R{as, a4}, but this
cannot be the case becausa,as} I5{a1,a5}. This lack of transitivity indicates
that the absence of strict preference is not equivalentdidfémence, and therefore
we reject this approach.

Secondly, a more successful approach is to assume thatdivédinals in the
society base their preferences ovgron cardinal preferencesver.e/. By this, we
mean that the individuals assign to each alternativwe’ia real number, atility, in
such a way that the more desirable an alternative is, theshights utility, and an
individual prefers a subséy € .« to Ay € @ if and only if the sum of the utilities
of the elements i\ is larger than the corresponding sum fgr. Interpretating
equality of two sums as indifference between the correspgrelibsets, we obtain
preferences over that are complete, transitive, and compatible Wthecause re-
placing an element in a subset with a more desirable alieenacreases of course
the sum of utilities. Furthermore, with almost the same amguts which will be
applied toP in the next section, it is possible to show that the set of @fevences
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over g that are constructed in this way is a linked domain, and wéddcerefore
apply Theorem 3.2 t6 : N — .21 However, one can object against this approach
that it is more unrealistic than that chosen in this thesisalise real people do not
likely form their opinions of subsets @¥ by summing up utilities. On the contrary,
Definition 5.1 seems to be a good approximation of the memtadgss by which
people actually compare subsetsasf

5.2 The Case of Unrestricted Preferences

After having derived a notion of manipulability for a socéoice function of the
form f : 2N — o7 in the previous section, we turn now to Question 2 from thint
duction and investigate whether there exist any non-aigtdtstrategy-proof social
choice functions for the social choice of fixed-sized subsdien the domain of
preferences is assumed to be unrestricted. Like in the dake original Gibbard-
Satterthwaite theorem, it turns out that strategy-prosgrend non-dictatorship do
not exclude each other in general, but under an additiofialexfcy requirement,
strategy-proofness implies dictatorship. To begin with,slkiow by an example how
one can construct a non-dictatorial strategy-proof satialce function for the so-
cial choice of fixed-sized subsets when some degree of ireflig is accepted.

Example 5.5.Consider a simplified variant of the voting procedure usdterelec-
tions to the House of Commons presented in Example 5.2: Sethat society has
to choose two of the alternatives in the sét= {a;,ap,a3,a4}, and to achieve this,
voters are divided into two groups, of which the first one desoone of the ele-
ments in{ay, a2}, and the second one chooses one of the elemer&iay}. If
voters’ preferences satisfy (5.2), then this voting praceds obviously strategy-
proof because a voter belonging to the first group, for exapmpust take the second
group’s choice as given, and the best thing he can do whersaigpbetweer; and
ay is therefore to vote sincerely. However, this procedureamanappealing lack
of efficiency. Suppose, for instance, that all voters unanisty agree on that both
ai anday are better than boths andas. Then society’s natural choice should be
{a1,a2}, but this can never be the outcome of this procedure. O

Consequently, strategy-proofness without an efficienquirement does not imply

21Actually, even with this approach, Theorem 3.2 must be aejlibecause preferences ovar
that are based on cardinal preferences are not necesgddty slowever, they turn out to have a
unique first and a unique second alternativesn and an investigation of the proof of Theorem 3.2
in Aswal et al. (2003) shows that this theorem actually alsld$ifor weak preferences of this type.
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dictatorship. Recall that in the original Gibbard-Satterite theorem, the social
choice functionf : 3N — &7 is assumed to be efficient in the sense that it satis-
fiesunanimity which simply means that if;(R) = aforalli € {1,2,...,N}, then
f(PL,P,,...,Py) =a. It seems natural to assume a corresponding condition for a s
cial choice function of the fornf : =N — o7, but this is not entirely straightforward
because there are two plausible ways to generalize themeotiananimity: Sup-
posed that society has to chodsef the alternatives iz, we will say that there is
complete unanimitin the society when all individuals agree exactly on the nagk
of thek best alternatives, that is, all individuals have the sarpeatternative, the
same second best alternative, and so on, up tattheanked alternativé? and we
will say that there isveak unanimityn the society whenever all individuals agree
on thatk of the alternatives ir7 are preferred to all other alternatives, but they may
disagree on the internal order of thdsalternatives$® A social choice function
f: =N — 4 is of course said to satisfy complete respectively weak imigy if

the value off equals that subset @ that contains th& alternatives that are unan-
imously preferred to all other alternatives whenever themplete respectively
weak unanimity in the society. Complete unanimity is obglgwa special case of
weak unanimity, and therefore, a social choice function shéisfies weak unanim-
ity satisfies also complete unanimity, but the converse me¢dbe true in general.
However, it turns out that if the social choice function isagtgy-proof, then also
the converse implication hold4. Hence, it makes no difference which notion of
unanimity we use, and we will therefore use the apparentgkeeassumption that
the social choice function satisfies complete unanimity.d&frthis condition, it
turns out that strategy-proofness implies dictatorship:

Theorem 5.1 (The Gibbard-Satterthwaite theorem for the sorl choice of fixed-
sized subsets)Suppose that/ is a set of M> 3 alternatives, and let f =N — .o,
wherel < k<M — 1, be a social choice function that satisfies complete undpimi
Then f is strategy-proof if and only if f is dictatorial.

22Formally, there issomplete unanimitin the society ifr1(P) = a, r2(P) = a, ..., rk(R) = ax
foralli € {1,2,...,N} and somey,ay,...,a € «.

23Formally, there isweak unanimityin the society if there exists a subs&te o7 such that
{ri(R),r2(R),...,rk(R)} =Aforalli € {1,2,...,N}.

24To see this, suppose that =N — . is strategy-proof, and for allc {1,2,...,N} we have
{r1(R),r2(R),...,rk(R)} = Afor someA € 4, but f(P1,P,,...,Ry) # A. However, we must have
f(Py,Pi,...,P1) = A, which means that if we first repla¢® by Py, nextPs by P;, and so on up to
Py, then there must be some individual that changes the valdig@f\, and hence manipulatds
Thus, a strategy-proof social choice function that saisfi@mplete unanimity satisfies also weak
unanimity.
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The rest of this section is devoted to a formal proof of Theofel. As mentioned
before, Theorem 5.1 will be proved using Theorem 4.1 fromp@drad, but it is
not possible to apply Theorem 4.1 directly because the lsok@ce function in
Theorem 4.1 is such that its arguments are preferences lwveet of all possible
social outcomes, and a social choice function of the féraN — <% does not have
this property. Therefore, we need to adjust the argumerftsdrbe preferences over
. Note that the preferences :handl (<) are in a one-to-one correspondence
in the sense that not only evelPye = induces a unique I (2%), but that also for
everyP (%) exists a uniqud € X that induces, becausé® can via (5.2) be
entirely re-constructed frorR. To every social choice functioh: N — 4, we
can thus uniquely associate a social choice funcfioﬁ(,;sz)’\‘ — @ by

f(PLPs,....BN) E 1 (PLP,... . ), (5.4)
whereR foralli € {1,2,...,N} is that preference i that induce$’. It is obvious
that f is dictatorial if and only iff is dictatorial, andf is manipulable (in the sense
of Definition 4.3) if and only iff is manipulable (in the sense of Definition 5.2),
and moreoverf is of a form to which Theorem 4.1 can be applied. To do so, we
must show thaf (.«) is a linked top-2 domain, i.e., firstly, we must prove that
the preferences ih(.<) are top-2 preference relations, and secondly, knowing that
[ (2%) thus is a top-2 domain, we must prove thét#) is linked. Before we turn
to the general proof, we will in an example, which then wilhgeas guideline for
the general case, consider the instance wiea 4 andk = 2.

Example 5.6.Suppose that two of the alternatives in the sét= {a1,ap,a3,a4}
have to be chosen, which means that one of the following €mehts ines is
going to be elected:

{as, a2}, {an,as), {an, a4}, {azas}, {a,au}, {as,as} (5.5)

First, we want to analyze the structure of preferences agethat are induced by
preferences ovew/. Consider therefore the two preferenéeB’ € 3 defined by

ri(P)=a1, ra(P)=ap, r3(P)=as and ry(P)=ay
and rn(P)=ay, rx(P)=ag r3(P)=ay and r4P)=ay,

and letP and P’ be the partial preferences induced ByespectivelyP’ on .
Clearly, the most preferred alternative in .«%» must be the subset consisting of

A

P's two first alternatives, that is (P) = {a;,a2}. But a moment of thought should
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convince the reader that the det, a3} is a second best of alternative Brie.,
apart from{ay,ay}, the set{a;,az} is preferred to any other element.izh. Thus,
we haver,(P) = {a;,as}. Hence,P is a top-2 preference relation, and since the
consideration above applies to all preferenceiS(iw), we conclude thaft (.272) is
a top-2 domain.

Next, we can argue th&it( <2) is linked. The two top alternatives i#> accord-
ing to P respectively®’ are

ri(P) = {as,a}, ro(P) ={ay,azl,
and ri(P)={ap,as}, r2P)={ara)},

which means thafa;, ay} and{a;,as} are connected ifi(.2%). This indicates that

two subsets inz%, are connected whenever they have exactly one element in com-
mon. Consider now the elementsdf in the order in which they are listed in (5.5).
The first two subsets are connected, and beginning with treeghbset, every sub-

set has one element in common with at least two of the pregesilibsets and is
hence connected to them. Thug,e%) is a linked top-2 domain, and therefore,

all strategy-proof social choice functions biez2) that respect unanimity must by
Theorem 4.1 be dictatorial. 0J

We formalize now the steps in the example above for genetaésafk andM,
namely, we will show thalt (<) is a top-2 domain (Lemma 5.2), that two elements
in <% are connected if and only if they have exadtly 1 elements in common
(Lemma 5.3), and finally, thdt(.«%) is linked (Lemma 5.4).

Lemma 5.2. The partial preferenc® on.# that is induced by the preferencesFz
is a top-2 preference relation fdr< k<M —1, and

rl(lﬁ) = {rl(P)7r2(P)7"'7rk—1(P)7rk(P)} (56)
and  n(P)={ri(P),ra(P),...,rk-1(P),rkr1(P) }. (5.7)

Proof. Firstly, in order to prove (5.6), sé; = {r1(P),r2(P),...,re_1(P),r(P)}.
We have to show thad; PA for all A€ #\ {A1}. But once we have noted that
if Ae o4\ {A1} anda € A\ Ay, thena must be ranked below(P) by P, this is
almost obvious, because every alternativéin A is preferred to every alternative
in A\ A1, and thereforé\; I3Aaccording to Definition 5.1.

Secondly, for (5.7), we sé = {r1(P),r2(P),...,r_1(P),rk+1(P) }, and must
show thatA, PAfor all A € o \ {A1,A}. Fix therefore somé € o \ {A1, A2},
and suppose first thag(P) ¢ A. Then alla € A\ Ay are ranked below1(P) by
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P, and the same argument as above showsABBA. Next, if r(P) € A, then
there must be somesuch that 1< j <k—1 andr(P) ¢ A, becausé\ # A;. If A
denotes the set obtained by replacipgP) in A by rj(P), then clearlyA’ PA But
sincery(P) ¢ A, we haveA, P A, and by transitivity therefore alsi, P A O

Lemma5.3. For 1 <k <M — 1, two subsets AA; € @ are connected if and only
if they have exactly k 1 elements in common.

Proof. Suppose first tha#; and A, have exacthk — 1 elements in common, that
is, Ay = {by,by,...,b_1,bx} andAy = {by, by, ..., b_1,bj} for some alternatives
by, b, ..., bk_1,by, by € . LetP, P € X be some preferences with

ri(P1) = by, ra(Py) =by,..., re_1(Pr) = b1, r«(P1) = by, rer1(Pr) = by
and ry(P) =by, ra(P) = by, ..., ree1(Po) = b, re(P) = by, rie1(Po) = by,

Let P, and P> be the preferences awi that are induced by, respectivelyP,.
According to Lemma 5.2, we have

>

r(P)=A;, rP)=~A

and  ri(P) =Ay, r2(P) =Ag,

=

which means tha&; andA, are connected.
Conversely, ifA; andA; are connected, then there exists a partial preferBnce
induced byP € 5, such that1(P) = A; andr,(P) = A,. By Lemma 5.2, we have

A1 = {r1(P),ra(P),...,r1(P),r(P)}
and Ay = {ri(P),r2(P),...,r1(P),res1(P) }.

Obviously,A; andA; have exacthk — 1 elements in common. O
Lemma 5.4. For 1 <k <M —1, the domairT (.«%) is a linked top-2 domain.

Proof. According to the definition of linked top-2 domains, we havshow that the
elements ing can be ordered in a finite sequerfeg Ay, As, ... in such a way that

A; andA, are connected, and froAg on, every subsel; is connected to at least two
of the preceding subsets. We claim that this requiremeneisvhen the sets iny

are ordered lexicographically with respect to adistay, . .., ay of the alternatives

in <7, by this, we mean that a subdgtis ordered beford\; if and only if the first
alternative inag,ay, ..., ay that belongs to only one of the two subsets belongs to
A;.2° Ordered in this way, the fird¥l —k + 1 subsets (and only these) contain the

25For instance, the subsets in (5.5) are ordered lexicografivith respect tay, ay, az, as.
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common subsefa;,ay,...,a_1}. By Lemma 5.3, any two of these subsets are
connected, which in particular means that~ Ay, and if 3<i <M —k+ 1, then

A is connected with at least two of the preceding subsets.,Ne&t is such that

i >M —k+ 1, then there must be a first alternatayen {aj,a,...,ax_1} that does
not belong toA;, and sincefAj = k, there must be at least two alternatagand

aj that belong toA;, but not to{ay,ap,...,a_1}. Replacinga; respectivelya;:

by a, we obtain two sets iy that are ordered befor® and which according to
Lemma 5.3 are connected wi. Thus,I" (%) is linked. O

It is now straightforward to see why Theorem 5.1 must be tfe:the one hand,
if a social choice functiorf : N — & is dictatorial, thenf is clearly strategy-
proof because a dictator will definitely be worse off by mpesentation, while
the other individuals in the society have no influence on tieat choice and can
therefore not manipulate. On the other hand, if : =N — .2 is strategy-proof and
satisfies complete unanimity, then the corresponding fonct : M(A)N — o
defined by (5.4) is strategy-proof and satisfies (ordinangnimity. Sincel (o)
according to Lemma 5.4 is a linked top-2 domain, we can applgofem 4.1 and
conclude thaf, and therefore als®, must be dictatorial. By this, Question 2 from
the introduction is answered.

5.3 The Case of Single-peaked Preferences

After having shown in the previous section that non-digiatstrategy-proof social
choice of fixed-sized subsets is impossible in general, we now to Question 3
from the introduction and investigate whether a possibik#sult can be obtained
when voters’ preferences are single-peaked. Assume trertffroughout this sec-
tion that the set of alternativeg is equipped with a linear ordet, and letQ C % be
a set of preferences that are single-peaked with respectltds our purpose in the
following to generalize the median rule from Section 3.2 swaial choice function
for the social choice of fixed-sized subsets and to provetiastrategy-proof. To
this end, we will first show that the linear orderon .<# and the single-peakedness
of the preferences i at least partly can be transferreddq, namely when we re-
strict attention to those subsets that emanectedby this, we mean subsets= .
with the property that whenever two alternatiggsinda; belong toA, then also all
alternatives betwees anda; belong toA, or more formally:

Definition 5.3 (Connected Subset)A subsetA C 7 is said to beconnectedf
gj,a; € Aanda < a< aj impliesac A.
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The set of all connected subsets.@f containing exactlhjk elements is a proper
subset ofe4 and will be denoted byz’. The linear order< on .7 induces in a
natural way a linear ordegy on «7’. To see this, consider first the following six
linearly ordered alternatives, where we have marked thecbmmected subsets that
contain exactly two of the alternatives:

A2 Aq
— —
Qg < a < a3 <y < a < a.
N—— N—— ——
A1 Ag As

Here, it seems appropriate to say thaties to the left ofA; if the left alternative
in A lies to the left of the left alternative iA;. For the general case, we formulate
therefore the following definition.

Definition 5.4 (Induced Linear Order). If < is a linear order or7, we define the
induced linear order< on ¢z in the following way: ForA;, A, € .2, we will say
thatA; lies to the left ofAz, denoted byA; <k A, if the leftmost alternative i\
lies to the left of the leftmost alternative Ap.2°

Our interest in connected subsets and the induced linear aranotivated by the
following lemma, which states that if a voter has singlekaegpreferences over the
alternatives ineZ, then his most preferred subsetdf will be connected.

Lemma 5.5.1f P € Q andP is the preference induced by P o#, then r(P) € 7.

Proof. Suppose that;,aj € rq( ) anday < a<aj, buta ¢ rl(P). Obviously,
r1(P) € r1(P), and thus eithea; < a<r1(P) orry(P) <a<aj. If & < a<ry(P),
thenaP g, becausd is single-peaked. But then we can obtain a set which is pre-
ferred tory(P) by P if we replacea; in r1(P) by a, which is absurd. A similar
contradiction occurs if1(P) < a < aj. Hence, we conclude thatc r1(P). O

As a consequence of Lemma 5.5, the most preferred subséte ebters in the
society can be ordered linearly by, and this enables us to transfer the concept of
the median alternative t@;’: In analogy with the definition of the median alterna-
tive in Section 3.2, we will say that a N a7 is amedian sefor the preference
profile 2 € QN if

Vv

t{ReZin®) A =Y
N
} N

and 4{ReZ; ri(R

26More formally, the induced linear ordety can be defined as follows: First, denote by (A
theminimal alternativen A, which is that alternativa € A that satisfies < afor all a€ A, and then
we defineA; <k A to hold if and only if mi{A;) < min(Ay).
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In order to generalize the median rule from Section 3.2, watwaw to define

a social choice functiorf : QN — o that assigns to each preference profile its
median set, but this function is well-defined only if we cas@e that a median set
always exists and is unique, which is possible at least vihenodd:

Lemma 5.6. If N is odd, every preference profi# ¢ QN has a unique median set.

Proof. Let Aj,Ap, ..., Anm—k+1 be a list of theM — k+ 1 sets in#’, and define for
j=1,2...,M —k+1 the cardinalityn; =  {R € &; r1(R) = A;}. Note thatn; +

A

Np+...+Ny_k+1 =N, and moreovet; {R € Z; r1(R) <k A} =n1+n2+...+n

andg {R € Z; rl(lf‘.) =kA}=n+n,1+...+ny_k1. To prove the existence

of a median set for a preference profife ¢ QN, let| be theleastindex such that

Nnt+np+...+n >N/2. Thenng+nz+...+n_1 < N/2, and hence
N+myr+. .+ kra=N—(ng+na+...+n_1) > %

Thus,A is a median set fo”Z. To see that the median set f&f is unique when

N is odd, suppose th# andA,, are two different median sets fg¥, and assume

thatl < I’. Note first that ifN is odd, then a natural number that is larger thei2

is larger than or equal tON + 1) /2. SinceA; and A, are median sets, we have

therefore both

N+1 N+1

and n|/—|—n|/+1+...+nM_k+12—.

n+mp+...4+n > >

But then we obtain the contradiction
N=ni+nm+...4+Ny_kr1>M+n+...4+m+ny+nyg+..4+HnNy_ke1 > N+ 1,

and hence, the median set must be unique. O

For oddN, we define now thenedian set ruldo be that social choice function
f : QN — o4 that assigns to a preference profite € QN the median set of?.
Obviously, the median set rule is non-dictatorial and S§asscomplete unanimity.
Moreover, the median set rule is also strategy-proof. Thea for this is that iP

is the preference induced o by a preferenc® € Q, then ongr’, which is the set
of all possible outcomes of the median set riddias essentially the same structure
as a single-peaked preference; this is made precise anddinwvthe following
lemma?’

2IWhen claiming thaP has essentially the same structure as a single-peakederege we mean
that P satisfies the two conditions in (5.8) and (5.9), by which Ergeakedness was defined in
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Lemma 5.7.1f P € Q andP is the preference induced by P of}, then

ri(P) kAL <Ay = APA (5.8)
and n(P) =k AL kA = APA (5.9)

holds for all A, A> € 2.

A

Proof. In order to prove (5.8), lef,A; € @’ be such thaty(P) <k A1 <k Az,
and consider first two alternatives, a; € &7 with a; € A\ A andaj € Ay \ A;.
Obviously, as a direct consequence of (5.8), we fmve a;. If now & < rq(P),
theng € rl(lf’), and the rank o§; according tcP is therefore at most, whereas;,
by (5.8), must have a rank higher thisrand we conclude tha P a;. On the other
hand, ifr1(P) < &, then we also hava; P a;, which in this case follows from the
assumption thaP is single-peaked with respect to. Hence, every alternative in
A1\ Az is preferred to every alternative & \ A1, which by Definition 5.1 means
thatA; P Ay. This proves (5.8), and (5.9) can be proved in the same way. [

Lemma 5.7 allows us to use the same arguments by which wegtbeestrategy-
proofness of the median rule in Section 3.2 in order to prbe¢ that the median
set rule is strategy-proof:

Theorem 5.8. The median set rule is strategy-proof.

Proof. Let 2 € QN be a preference profile, and latbe its median set. Consider
an individuali. If r1(R) = A, then individuali gets his top alternative and can
therefore clearly not gain from misrepresentation. Cagrdliderefore the case when
ri(R) # A, and assume, without loss of generality, thel®) > A. Suppose now
that individuali reportsP’ instead of his true preferenég If r1(P/) > A, then both

t{Re2in@) A} and {{Pe2inP) <A}
are unaffected, and thereforkjs also the median set ¢/, P_;). If, on the other
handr1(P) < A then
${P € (R,P-)i ra(Py) = A} <2 {Py € (R.P): ra(P)) = A}
and £ {P; € (F,Pi); ri(Py) < A} > £ {P; € (R,P-i); 11(P)) < A},

Section 3.2. It is, however, worth noting thatis still incomplete ong’. To see this, let, for
example,a; < a» < ag < a4 be a linearly ordered set of alternatives, and define theepgrteP

by a,PagPasPa;. ThenP is single-peaked with respect to, but the preference induced byP

on <% cannot rank the two connected subsgds,a;} and{az,a4}. Thus,P has in general less
structure than a complete single-peaked preferencePaaah, for instance, not be represented by a
single-peaked utility function.
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and hence, ifV' is the median set o, P_;), thenA’ < A. But sinceA < r1(P), we
conclude by Lemma 5.7 that eithar= A’ or AR A, and hence, individualis not
able to manipulate the median rule. The theorem is proved. O

Recall that the median set rule is defined only wheis odd, but it is now straight
forward to construct strategy-proof social choice funusid : QN — % also for
evenN. Consider, for instance, that social choice function tisatgns to the prefer-
ence profileg(P, P, ..., Ry) the median of P, P, ..., Ry, Pv), where preferencBy
has been doubled; N is even, then this social choice function is well-defined| an
using arguments similar to those in the proof of Theorem @@, can show that it
also is strategy-proof. Summarizing, we have thus showtifthiaters’ preferences
are single-peaked, then there exist non-dictatorialesysaproof social choice func-
tions f : QN — % that satisfy complete unanimity, and by this, Question 3nfro
the introduction is answered.

5.4 Related Literature

In this section, we discuss finally how the social choice addisized subsets stud-
ied in this thesis is related to other contributions in theréture of strategy-proof
social choice theory. We mentioned already in the intradadhat there, at least
to our knowledge, exist no previous investigations of whettrategy-proof social
choice of fixed-sized subsets is possible. However, theeerismber of papers
that study strategy-proof social choice of subsetsasfable size, and they have
their common starting point in the paper “Voting by commeaté by Barbera et
al. (1991). The original voting model in Barbera et al. (1p&lthe following: A
society consisting dfl individuals has to choose a subset from agdhat contains
M alternatives. Contrary to the social choice of fixed-siadosets, however, there
exist no restrictions on the number of alternatives thatmachosen, but any subset
of o7 can be obtained as outcome, and the individuals are theragsumed to have
complete, antisymmetric and transitive preferences deeseét of all subsets of .

In practice, voting situations of this type arise, for imste, in clubs that have
to choose among candidates considered for membership. ératenexample is
a choir to which a number of students apply, and a jury decidegach of the
applicants after an admission test whether he or she is iguifig talented to be
accepted. Another instance where voting has the strucegeritbed in the model
of Barbera et al. (1991) are decision-making committegs, Bational parliaments,
that consider a number of proposals and decide for each ehtetltaccept it or to
reject it.
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In such voting situations, there is no direct conflict betwé#®e alternatives in
the sense that the election of one alternative does not sexdgsaffect another
alternative’s possibility to be elected. This trait shobhé&lreflected in voters’ pref-
erences, and Barbera et al. (1991) assume therefore tleais @t able to consider
the alternatives inz' one at a time and classify them eithergmod meaning el-
igible, desirable, etc., dsad, then of course meaning ineligible, undesirable, etc.
Formally, the set of voters good alternatives is denoted I8, and Barbera et
al. (1991) assume that voters’ preferencessagarablen the sense that if\ is a
strict subset of7 anda € <7 is an alternative that does not belongdhen adding
ato A makes voter better off if and only if he classifiesas good, or more formally

(Au{a}) R A — acG;. (5.10)

Note that condition (5.10) is similar to condition (5.2) dsa Section 5.1 in that
both require preferences over subsets to be consistenpvatrences over alter-
natives2®

Barbera et al. (1991) show that if voters’ preferences oubissts ofe/ are
separable, then the social choice of subsets70bf variable size can be made
strategy-proof, that s, 2 denotes the set of all separable preferences dVetten
it is possible to find strategy-proof social choice functi@fithe formf : QN — 2
and in addition, Barbera et al. (1991) are able to charaetaall strategy-proof
social choice functions of the ford: QN — 2. The possibility result in Barbera et
al. (1991) should not come as a surprise: Recall from Exaghpléhat when society
has to choose one of two alternatives, then one can find gyrat®@of social choice
functions, e.g., the majority rule. The voting problem inriBera et al. (1991) can
be considered as repeated binary choice where societydbrofaheN alternatives
in <7 must decide whether to include this alternative in the findlset or not, and
since preferences are assumed to be separable, we shoaiid alstrategy-proof
social choice function when we apply the majority rule torealkternative to decide
whether to include it.

Comparing the voting model in Barbera et al. (1991) with tbeia choice of
fixed-sized subsets, the following can be noted: In bothngpothodels, society is
going to choose a subset from a s£f which, contrary to the single-valued choice
in the Gibbard-Satterthwaite theorem, means that altegsaare not considered to
be mutually exclusive. The fundamental difference betwertwo voting models
is that in Barbera et al. (1991), society can choose any nuoflaternatives from

28|n particular, this means that condition (5.10) also cahtéahold for reasons similar to those
we discussed in Remark 5.1.
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</, whereas society in the voting model considered in thigsireast choose a fixed
number of alternatives. This means that in Barbera et a@{},9here is no conflict
between the alternatives i in the sense that the election of one alternative does
not affect other alternatives’ possibility to be electetheneas in our approach, the
alternatives are competing for tkeplaces in the final subset. This difference leads
to entirely different structures of individual preferescén Barbera et al. (1991),
the alternatives in7 are evaluatedbsolutelyin the sense that an alternative either
is good or bad, disregarded from the qualities of other @étives. This preference
structure makes it possible to rank subsetslifferentsizes, which is formalized
in (5.10). Note, however, that the condition in (5.10) hasmplications on how
subsets of the same size are rank&@n the contrary, in the voting model in this
thesis, we assume that voters have complete preferencethewaternatives in7,
which means that alternatives are evaluagativelyto each other in the sense that
if aandb are two alternatives in7, then eithel is better tharb, or b is better than

a, but we have no information on whetheeor b are desirable in an absolute sense.
These preferences are then used to rank subsets séthesize via (5.2), whereas
subsets of different sizes cannot be ranked by (5.2), whaither is necessary in
our approach. Finally, it is important to note that the twdivg models lead to
fundamentally different results: while the social choinghe model of Barbera et
al. (1991) can be made strategy-proof, this is not the casthéosocial choice of
fixed-sized subsets.

The voting model in Barbera et al. (1991) has been modifiedexiehded in
different ways in a number of papers, e.g., in Serizawa (1988 Breton and
Sen (1999), Aswal et al. (2003), Barbera et al. (2005), arehSson and Torstens-
son (2005). Among these papers, Aswal et al. (2003) is ofigpeterest for a
comparison with the approach in this thesis. The basic gatiedel in this paper
is of the same type as in Barbera et al. (1991), and votergaeces are also as-
sumed to be separable in the sense of (5.10), but in add&isnal et al. (2003)
assume external restrictions on the number of elementsisubset ofer which
society is going to choose, which makes some element¢’inngeasible. More

290ne can of course object that the assumption in Barbera t9#11) that voters have complete
preferences over the elements il fnplies that ifa,b € <7, then{a} and{b} are comparable, and
therefore it would not be unreasonable to assume also, iti@utb the separability in (5.10), that
if for instance{a} P{b} andA C 7 \ {a,b}, then(Au{a})P(AuU{b}). However, the separability
restriction in (5.10) is already sufficient for the existeraf non-dictatorial strategy-proof social
choice functions, and additional restrictions will thenef not affect the possibility result in Barbera
etal. (1991).
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concretely, they consider restrictions that require thesstichosen by society to
contain betweeR; andk, elements, where @ k; < ko < M. An example of a situ-
ation that naturally gives rise to such restrictions is thioving: An institute is in
need of additional researchers for a new project, and adegsrtherefore a post. If
there will be several very skilled applicants, the insétigt willing to employ more
than one researcher, but on the other hand, due to budgettiest the institute
will not be able to able to employ more than three researchiénss, we havé; =1
andk, = 3 in this case.

Given the restriction &< k; < ko < M, Aswal et al. (2003) prove that any
strategy-proof social choice function has to be dictatpaaresult which thus is
in sharp contrast to the result in Barbera et al. (1991). When k, = k, we ob-
tain as a special case of course the situation when socistiplenoose an element
from o, which seems to be quite similar to the social choice of figzed subsets.
Note, however, that the elementsdfy are not affected by the separability condition
in (5.10) since they are all of the same size, which meanshimaspecial case of
the result of Aswal et al. (2003) is based on the assumptianitidividual prefer-
ences overy are complete and unrestricted. In this light, the dictalaesult of
Aswal et al. (2003) for the case wh&n= ks is not surprising because it is a direct
consequence of the original Gibbard-Satterthwaite theof@n the other hand, con-
dition (5.2) used in this thesis puts restrictions on votersferences over subsets
of the same size, and therefore, our result on the non-existef non-dictatorial
strategy-proof social choice function choosing an elerfremt .« cannotbe seen
as a special chase of the result in Aswal et al. (2003).
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6 Conclusions

IT IS NOW time to summarize the results of our study of the strategpfsocial
choice of fixed-sized subsets and to link up with the questmoposed in the in-
troduction. We started our analysis with the observatia ithis not obvious when
a social choice function of the for: =N — 2% should be said to be manipulable,
but one needs to know how preferences over the alternativesshould be trans-
lated to preferences over, which led us to Question 1. We answered this question
by arguing that an individual prefers one subset to anofteerd only if the former
can be obtained from the latter by successive replacemembisie alternatives by
better alternatives.

Knowing the structure of preference ovegf, we could then turn to the question
whether strategy-proof social choice of fixed-sized sugisgbossible, and first, we
considered the case when the set of preferencesavsunrestricted. It turned out
that this set of preferences induced a set of preferenceg timat has a complicated
structure, and in order to analyze this structure, we ddravgeneral theoretical
result, Theorem 4.1. This theorem serves thus as a toolsrthbsis, but it is also
of interest on its own: Firstly, it shows that a large classedtricted preference
domains is dictatorial, and it can thus also be applied ieotontexts. Secondly,
it shows that the assumption of complete preferences in thieaEdl-Satterthwaite
theorem can be relaxed considerably because it sufficestongsthat preferences
belong to a linked top-2 domain in order to conclude thatesaategy-proof social
choice function that satisfies unanimity must be dictatofirdly, and finally, it
allows us to obtain a strengthening of the Gibbard-Satuexitie theorem, which
states that every non-dictatorial social choice functi@t satisfies unanimity is not
only manipulable, but it can be manipulated in such a way $leate individual
obtains at least his second best alternative. This is owvemnsf Question 4, which
of course is unrelated with the purpose of this thesis, bsihievertheless of interest.

Applying Theorem 4.1 to the set of all preferences that adeiced onc, we
could conclude that the social choice of fixed-sized subpetsisely as the single-
valued social choice in the original Gibbard-Satterthevttieorem, cannot be made
strategy-proof, which answers Question 2.

Finally, we considered also the case when voters’ prefesenger the alterna-
tives in.«Z are single-peaked since this is a reasonable assumptioang woting
situations. As answer to Question 3, we found, again in @yalath the single-
valued case, that single-peaked preferences admit nbetati@l strategy-proof so-
cial choice functions for the social choice of fixed-sizedsets.
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A Mathematical Appendix

IN THIS APPENDIX, we provide a short overview over the mathematical concepts
used in the formalizations and proofs throughout this theBven though the re-
sults in this thesis must be regarded non-trivial, theirofgado not require any
advanced techniques from higher mathematics, but the nghgdients needed are
the language of set theory and some fundamental methodsatblematical deduc-
tion. The parts of set theory needed for our purposes aremesin Section A.1.
Among the methods for mathematical deduction used in ousfpyadhere are two
that can be confusing to the reader unfamiliar with them,eleene will explain
them here in some detail. These are proof by contradictionsidered in Sec-
tion A.2, and the principle of mathematical induction, eipéd in Section A.3.
The material presented here can, for instance, also be fouygldsaseter and Ham-
mond (2006), or in the first part in Grimaldi (1998).

A.1 Elementary Set Theory

At several places in this thesis, we encounter a number efctdbihat are suitably
considered as a whole. These may be the individuals that$omety, the available
alternatives among which society is going to choose, or tieéepences that are
reasonable in some context. Such a collection of objectsllsdcaset and is
usually denoted by capitals &s.«7, Z, or Z. The objects itself are usually denoted
by lower-case letters, and if an objextbelongs to a sef, we say that is an
elemenin A, and writea € A. If adoes not belong té, we writea ¢ A.

Sets can be described explicitly by listing their elemeats;losed by braces.
For example, if a set7; consists of the four alternatives, ap, az, andag, we write

Ml = {a17a27a37a4}' (Al)

Alternatively, a set can be described indirectly by deolga property that is distin-
guishing for its elements. E.g., suppose that the prefer@émrders the alternatives
in the sete7; according toa; P a P agP a;. Then we can define a new seb by
requiring, for instance, that/, should contain precisely those alternativescif
that are preferred tag by P. For this, we will use the notation

o ={ac o; aPag}, (A.2)

which should be read as» is the set of alh € &} such tha P a;”. Of course, the
set.e, consists of the two elemenés anday, so instead of the more complicated
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expression in (A.2) we could simpler write, = {a;,a2}. Often, however, it is
more convenient to describe sets as in (A.2) because thicamayeveal more of
the structure of a set than a simple list can do. Also, sonetiinis not even
possible to list the elements in a set, which, for instane¢hé case when the set
contains infinitely many elements.

Throughout this thesis, we will only consider sets that aonfinitely many
elements, and the number of elements in a\setll be denoted by A; for example,
for the set#; in (A.1), we havet .o, = 4.

Given two setsA and B, we say thaf is asubsetof B, denoted byA C B, if
every element irA also is an element iB. For instance, the set, in (A.2) is a
subset of the set; in (A.1). For a setA, the set of all subsets & is called the
power sebf A and is denoted by”2 For example, ife/z = {ay,a,, as}, then

2% = {0, {au}. {20} {as} {an, %}, {2, 86}, {a0. s}, {a, 22, 86} |,

where() denotes thempty seti.e., the set that does not contain any elements at all.

Starting with two seté&\ andB, we can construct a number of new sets by com-
bining the elements ik and B in different ways, and in this thesis, we need the
following concepts:

1. Theunionof A andB, denoted byAU B, contains those elements that either
belong toA, to B, or to both, i.e. AUB = {a; ac Aorac B}.

2. Theintersectionof A andB, denoted byAN B, contains those elements that
belong to bottA andB, i.e., ANB = {a; ac Aandac B}.

3. Thedifferenceof A andB, denoted byA\ B, contains those elements that
belong toA, but not toB, i.e.,A\ B= {a; a€ Aanda ¢ B}.

4. TheCartesian producbf A andB, denoted byA x B, consists of all ordered
pairs whose first element belongsA@nd whose second element belongs to
B,i.e.,AxB={(ab); ac Aandb € B}.

5. Thenth powerof the setA, denoted byA", contains alh-tuples of elements
inA i.e,A"={(a1,ay,...,an); a1,a2,...,a, € A}.

Often, one does not study sets on their own, but is interesteolw the elements in
two sets are related. A special case of a relation betweeeld¢neents in two sets
A andB is afunction which is a rule that assigns to every elemamrt A one, and
only one, elemenb € B. Whenf is a function fromA to B, this will be indicated
by f : A— B, and ifb is the element assigned adby f, we write f (a) = b and we
will also say that is theargumentof f.
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A.2 Proof by Contradiction

In many of the proofs in this thesis, we use formulations fitkee statement will
be proved by a contradiction argument” or “we will argue bytradiction”. By
this, we indicate that the following procedure for mathen@tdeduction, known
asproof by contradictionwill be used: Suppose tha&tis a statement we want to
prove, and leS’ be its logical contrary, that is’ is true if and only ifS is false3° In
order to proveS, which might be hard to do directly, we suppose for a while &#ia
would be true, and analyze the consequences of this assaamrmMbore concretely,
assuming thatS’ is true, we derive other statements that then also must lee tru
This will finally lead to a statement that is definitely falf®m which we then can
conclude that the initial assumption thg{tholds was erroneous. But since exactly
one ofS andS’ must be true, we have thus proved tisainust hold.

We illustrate the method of proof by contradiction by a dieslsexample. Recall
first that a natural number greater than 1 is callgg@ime numbeiif it is divisible
only by 1 and itself. A natural number greater than 1 that isanprime number
can be written as a product of prime numbers, and is thereBideto becomposite
Suppose now we want to prove the following statement:

There are infinitely many primes. (A.3)

It seems difficult to prove this statement directly, whenomopby contradiction is
an appropriate method. Consider therefore the logicarapnof (A.3):

There is a finite number of primes. (A.4)

We need to show that (A.4) is not logically tenable. If (A.4}iue and the number
of primes isN, say, then we can list all primes in a finite sequence as

P1, P2; .-, PN. (A5)
Consider now the numbegrobtained by multiplying all primes and adding 1, i.e.,
P=pi-p2-...-pPN+ 1

Obviously,p cannot be equal to any of the prime numbersps, . .., pn, and there-
fore, p must be composite. On the other hapaiannot be divisible by, because
dividing p by p1 leaves a remainder of 1. For the same reap@aannot be divisible

30For instance, ifS denotes the statement “all swans are white”, ti§éstands for “there is at
least one swan that is not white”.

67



by p», by p3, or by any other of the prime numbers in (A.5). But th@ncannot
be composite, because a composite number can be factorgoreduet of primes
numbers. We are thus forced to conclude hatust be composite at the same time
as p cannot be composite, which is obviously a contradictiorrefore, the state-
ment in (A.4), from which this contradiction was derived, shbe wrong, which
implies that (A.3) must be true, and the proof is fulfilled.

A.3 The Principle of Mathematical Induction

Many theorems in social choice theory contain one or moramaters. Consider,
for instance, the fundamental result in strategy-proofad@toice theory:

The Gibbard-Satterthwaite theoreni:et.< be a set containing N> 3
elements, and denote Rythe set of all strict preferences over. Let
further f: >N — & be a social choice function that satisfies unanimity.
Then f is strategy-proof if and only if f is dictatorial.

This statement contains two parameters—firdly,the number of alternatives in
</, and secondlyN, the number of arguments ii—and the theorem is claimed
to be true for allM € {3,4,5,...} and allN € {2,3,4,...}.3! There exist differ-
ent strategies to prove statements involving parametensie8mes, one is able to
construct an argument that is independent of the actuaéaflthe parameter; for
instance, in Appendix B we prove the Gibbard-Satterthwiiemrem for the case
N = 2 in a way which does not depend dh provided thatM > 3, which means
that we actually prove the theorem for Bll€ {3,4,5,...}.

Often, however, it is not possible to succeed in such a sinvple but one is in
need of more sophisticated strategies. A standard tecéraryproving theorems
that contain parameters that are natural nunmBéssknown asproof by induction
Thereby, one splits the proof of a certain statement tha¢nidpon a parametér
that is a natural number into the following two steps:

1. Show that the statement holds fér= 1.

2. Show that if the statement is true for a particular natoushber, saN, then
it is also true for the proceeding natural number, that isNe- 1.33

31This theorem is of course also true fdr= 1, but it is interesting only foN > 2.
32By natural numberswe refer here to the sdtl,2,3,...}, which is also the convention used

in Sydsaeter and Hammond (2006). In many mathematical cntbawever, the term “natural

numbers” is reserved for the sg,1,2,3,...}.
33This step is sometimes called th@luction stepand its premise that the theorem is true for a

particularN is called thénduction hypothesis
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In combination, these two steps imply that the statemermdhiar all natural num-
bersN € {1,2,3,...}.34

In this thesis, induction proofs are used at several pldoesnstance, when
we show that the Gibbard-Satterthwaite theorem holds foat 2. In order to
make the reader familiar with the structure of a proof by ctthn, we illustrate this
technique here by an elementary example. Suppose we waoi®the summation

formula
N(N+1)

2 )
which is claimed to be true for aNl > 1. For a clearer argumentation, we denote
the left hand side by (N) and the right hand side lg(N), i.e.,

1+243+--+N= (A.6)

f(N)=1+2+3+---+N  and g(N):M.
With this notation, we have to show that
f(N) =g(N) (A7)

holds for allN > 1, which will be done by carrying out the two steps required fo
an induction proof.

First,ifN=1, thenf(1) =1andg(1) =1-(1+1)/2= 1, which shows that (A.7)
is true forN = 1.

Second, we have to carry out the induction step by showirtgftHdN) = g(N)
for a particulaN, then alsof (N+1) = g(N +1). But if f(N) = g(N) for someN,
then straightforward calculations give

fIN+1) =1+24...+N+(N+1) = f(N)+(N+1) =g(N) + (N+1) =

_ |\_1(|\_12+1) (1) = N_(I\_l+1)22(l\_l+1) _ (l\_l+1)2('\_1+2) —g(N+1),

which is exactly what we needed to show. Note that we at thid #tqual sign use

the induction hypothesis th&tN) = g(N).

34This principle works like a domino effect: If dominos haveebeplaced standing in an infinite
ray, the first domino is knocked over, and every domino th&niscked over also knocks the fol-
lowing domino over, then the principle of mathematical iotilon says that every domino sooner or
later is knocked over.
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B A Proof of the Gibbard-Satterthwaite Theorem

THE PURPOSE ORhis appendix is twofold: firstly, we present a complete proo
of the Gibbard-Satterthwaite theorem (Theorem 2.3 in thesis), the main result
in strategy-proof social choice theory, and secondly, waastvhy the proof of
Theorem 3.2 given in Aswal et al. (2003) cannot be appliedanigl preference
relations, thereby motivating our proof of Theorem 4.1 giueSection 4.2.

We will prove the Gibbard-Satterthwaite theorem using ctotun over the num-
ber of individuals: First, we show in Lemma B.1 that the tlworholds folN = 2
individuals, and then, we prove in Lemma B.2 that if the tleeoholds forN indi-
viduals, then it is also true fdd + 1 individuals. In combination, these two steps
provide a complete proof of the Gibbard-Satterthwaite teen

Lemma B.1. Suppose that/ is a set containing at least three alternatives, and let
f : 22 — o/ be a social choice function that satisfies unanimity. Themstriategy-
proof if and only if f is dictatorial.

The following proof follows closely a corresponding pronf$vensson (1999).

Proof. On the one hand, if is dictatorial, the dictator is of course best off if he
presents his preference truly, whereas the other indiVioluthe society cannot
affect the social choice and hence is neither able to gaim frasrepresentation.
Thus, f is strategy-proof in this case.

On the other hand, suppose now thiat strategy-proof, and recall from Sec-
tion 2.2 that a strategy-proof social choice function $iggsnonotonicity and Pareto
optimality. Leta; anday be two alternatives in7, and consider the following pref-

erences:
P PP

d dx A
P

ai

Due to Pareto optimality we must have eitif¢P;,P,) = a; or f(P,P) = ap, and
suppose for simplicity that (P, ) = a;. Consider now preferend& wherea is
ranked last, and note that Pareto optimality also here esfliP;,P;) € {a1,a,}.
However, if f(Py,P;) = ap, then individual 2 would be able to manipulateby
going from(P;, P,) to (P;,P;), and hencd (P;, P)) = a;. But monotonicity implies
then thatf (P, ) = aj whenever(Py) = aj, that is, individual 1 is a dictator for
alternativea;.
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In order to show that individual 1 now must be a dictator atscall other alter-
natives, suppose thatc <7 \ {a1,a}, and consider the following two preference
profiles

P P P P
a a a
% and 2

a a a a

Applying the same arguments as in the first paragraph to therkference profile,
we conclude that either individual 1 is a dictator #oor individual 2 is a dictator
for ap, but the first paragraph shows also that the latter case isassible. Hence,
individual 1 is a dictator for all alternatives ¥, possibly with the exception of
ap. But if individual 1 is not a dictator foay, then the right preference profile and
an argument as in the first paragraph show that individual &tiin& a dictator for
a, which is not possible becauBg P € %, r1(Py) = a; andr1(P») = a would then
imply both f(P,P) = a; and f(P,P) = a. Thus, individual 1 must be a dictator
for f. O

Lemma B.2 below provides the induction step not only for thiginal Gibbard-
Satterthwaite theorem, where the domain of preferencesssnaed to be unre-
stricted, but for a large class of restricted domains, ngra#ldomains that are
minimally rich®®, and it is therefore of interest on its own. It has also beerdus
by Aswal et al. (2003) as part of their proof of Theorem 3.2.e Tbrmulation of
Lemma B.2 given below is essentially the same as in Aswal.€2@0D3), but the
proof follows closely that given in Svensson (1999), beeats$s simpler than in
Aswal et al. (2003). We would also like to remark that ressiltsilar to Lemma B.2
can be found, e.g., in Kalai and Muller (1977) (with anothetion of manipula-
bility than in this thesis), and Barbera and Peleg (1990§i¢urthe assumption of
unrestricted preferences).

Lemma B.2. Suppose tha@ C % is a minimally rich domain over the se¥ of
alternatives. If the implication

a social choice function fQ" — o7 is

- - —> fis dictatorial (B.1)
strategy-proof and satisfies unanimit

holds for all n such tha? < n < N, then it also holds for B= N + 1.

35A domainQ is said to beminimally rich if for every a € <7 there exists som@ € Q such
thatr1(P) = a. Note, for example, that single-peaked domains, linkedalomand the domain of
unrestricted preferences are minimally rich.

71



Proof. Suppose thaf : QN+1 — ¢/ is a strategy-proof social choice function that
satisfies unanimity, and define the social choice funajio®? — o7 by

g(P]_, Pz) = f(P]_, Pz, R Pz).
NG
N copies
The aim in the first part of this proof is to show tligs dictatorial. We note first that
g satisfies unanimity becausesatisfies unanimity. Next, we claim thais strategy-
proof. Itis clear thag is strategy-proof in its first argument because if individua
can manipulatey at P;, then individual 1 can of course also manipuldtat P;.
To show thag is strategy-proof in its second argument, we argue by cdiatian.
Suppose therefore that

g(P,P2) =a, g(P,P)=b, and bRa (B.2)
for some preferencd?d, P, Pé € Q. Define

/ /
Ck = f(Pl,Pz,...,Pz,Pz,...,Pz),
v N~
k copies N —kcopies

and note thaty = a andcy = b. Comparingek with ¢, 1, we observe that if

C1 P2 Gk, (B.3)

then individualk + 2 can manipulaté by representing instead of®. Since the
preferences if2 are complete and is strategy-proof, we conclude therefore that

Ckr1=Ck OF CkP>Cki1. (B.4)

Considering (B.4) for alk = 0,1,...,N and using transitivity, we obtain either
a= Ccgp = cy = b, which is absurd sinca # b, or aRb, which contradicts the
assumptions in (B.2). Thug must be strategy-proof. Now, we can apply the
implication in (B.1) tog, and conclude thag must be dictatorial. This means that
either individual 1 or individual 2 is a dictator fgr and in the rest of this proof we
show that both cases imply that alsds dictatorial.

First, if individual 1 is the dictator fog, then we can use the monotonicity
property of strategy-proof social choice functions (Lem2x) and an argument
similar to that in the second part of the proof of Theorem fYage 43, in order
to conclude that individual 1 also is a dictator fr

Second, consider the case when individual 2 is the dictatay.fLet P, € Q be
some fixed preference, and define the social choice funbti@N — .7 by

h(P27P37~--7PN+1) = f(FT].7P27P37"',PN+1)-
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We note thah must be strategy-proof becaukés strategy-proof. Moreover, since

h(Po,Py,...,Po) = g(Pr, P2) = r1(P2),

we conclude, using monotonicity, thasatisfies unanimity. Thus, we can apply the
implication in (B.1) in order to conclude thhtis dictatorial. Assume, without loss
of generality, that individual 2 is the dictator fbythat is

h(P2,Ps,...,RAus1) =r1(P).

Next, Iet|53, ey F?\Hl € Q beN — 1 fixed preferences, and consider the social choice
functionq: Q% — 7 defined by

q(P17 P2> = f(PL P27 FT37 LR} FTNJrl)-

Observe that) is strategy-proof, becaudeis strategy-proof, and since

q(PLP2) = h(P, Ps,....,Pt1) = 1 (P2) (B.5)

we can apply monotonicity t8;, and conclude that satisfies unanimity. Applying
then the implicationin (B.1) tq, we conclude thaj is dictatorial, and (B.5) implies
that individual 2 must be the dictator fqr Therefore, we have

f(Py,Po,Ps,...,Pht1) = Q(P, P2) = r(P). (B.6)

Since equation (B.6) holds independently of the particciexice of the preferences
Ps,...,Pus1, We conclude that individual 2 in fact is a dictator farThe lemma is
proved. O

We can now explain the complication that came up when we toddansfer the
proof of Theorem 3.2 to linked top-2 domains. As mentioneovabLemma B.2
provides the induction step in the proof of Theorem 3.2 gimekswal et al. (2003),
which works because linked domains are minimally rich. Hesvethe proof of
Lemma B.2 contains an implication that does not hold foripbpreference rela-
tions, namely, the passage from (B.3) to (B.4)Pifis a strict partial preference
relation and we know that ., 1 P>cx does not hold, then there are three possibilities
left (and not only two as in (B.4)), namely, either we haye; = ¢k, orcx P>y 1, Or

Ck andcg . 1 are not ranked by, and in the latter case we are not able to derive the
contradiction needed to show tlais strategy-proof. There seems to be no simple
way to solve this complication, and therefore, we were fdrnmemodify the proof

of Theorem 3.2 in a more fundamental way. Whether Lemma Buaéyg holds for
minimally rich partial preference domains remains an ogsearch question.
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List of Notations

The page number indicates the page where the notation @slinted.

Basic Notations

o the set of alternatives8

T the set of individuals,8

o the set of all subsets af that contain exactlk elements, 45

. the set of all connected subsetsafthat contain exactlk elements, 57

Preference Relations

aPb alternativea is preferred td according to preferende, 8
re(P) thekth ranked alternative of preferenBg 9

P the preference of individua] 9

P a preference profile, i.e?? = (P1,P,,...,Py), 9

P_; the preference profile of all individuals apart from indiwadi, 9
O_i(R, ) the option set with respect ®andf, 35

P the preference induced Won 7, 47

Preference Domains

> the domain of unrestricted preferences,

Q a restricted preference domaii9

r a top-2 domain, 29

Mk the set of allP € I' such that1(P) = a, 35

(o) the set of all induced preferences ovd, 47
<and< anunderlying linear order20

Linked Domains
aj ~ a; the alternatives; anda; are connected 23, 29
[&,,4,,...,aj, achainconnecting;, with &,, 30

Set-theoretical Notations

achA alternativea belongs to the set/, 65

ag¢A alternativea does not belong to the set, 65
tA the number of elements in the sgt 66
AUB the union of the setd andB, 66

ANB the intersection of the sefsandB, 66

A\B the difference of the sesandB, 66

AxB the Cartesian product #fandB, 66

27 the power set of7, 66
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Condorcet paradox: 10
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Gibbard-Satterthwaite theorem: 3, 5, 1spcial welfare function: 9
17,44,52,68, 70 strategy-proofness: 3, 12, 13, 30
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topk preference relation: 28
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