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Abstract

When we introduce transaction costs the perfect Black and Scholes hedge, consisting of
the underlying stock and a risk free asset, becomes infinitely expensive. By loosening
the pure arbitrage argument and only considering the expected transaction costs, one
can find an upper bound on the price of an option. In this essay this is done by using
a framework presented by Leland (1985) and Boyle and Vorst (1992), which is based
on rebalancing the hedge at predefined time-steps. However, their model is somewhat
incomplete as they do not include the initial transaction cost of buying the hedge and
the transaction cost of selling the hedge at maturity date. In this essay, an extension to
their model is presented. This extension provides a framework that is consistent with
their underlying model assumptions but incorporates the transaction costs mentioned
above. In addition, we prove that these transaction costs have a significant effect on the
price of an option.
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Chapter 1

Introduction

When Black and Scholes (1973) present their model for option pricing they assume a
perfect frictionless market. This is generally not the case though, since most financial
intermediaries are exposed to transaction costs when they want to trade a certain asset.
What is first seen is that the perfect Black and Scholes hedge, consisting of the under-
lying stock and a risk free asset, will be infinitely expensive if we introduce transaction
costs. There has been done a lot of research on how to find a solution to this prob-
lem. The main difficulties to overcome are how to hedge our derivatives in presence
of transaction costs, and with respect to our hedge, how to price them. Many different
hedging strategies has been presented during the last twenty years and they all have
their advantages and disadvantages.

The main research on the subject starts with an article by Leland (1985), where he
presents a discrete time approach to hedge derivatives in presence of transaction costs.
Leland’s model is further developed by Boyle and Vorst (1992), whose article has been
one of the main sources for this essay. The strategies presented by these authors are
built on rebalancing the hedge at predefined time-steps. The main advantage with this
approach is that the transaction costs will be finite and that we can find an upper bound
to our option price. On the other hand, we are forced to only rebalance our hedge at
certain time-steps, which reduces the flexibility of how we want hedge our derivative.
To make a continuous time approach to the problem, other move-based strategies has
also been presented. Move-based strategies can be formed so that we only rebalance
our hedging portfolio when the delta, gamma, or any other measure we want to use,
reach a certain threshold. The main advantage with this approach is that we get smooth
functions, so that we analytically can find an optimal solution to our trade-off between
risk and cost, given a specific preference function. Although finding optimal solutions
is very appealing, the model has many disadvantages. First, the model requires constant
monitoring of the market. Secondly, the optimal solution postulate that it is optimal
only to rebalance our portfolio so that it precisely get inside the threshold. This is
all well of we only consider proportional transaction costs but if we include a fixed
cost, ever so small, the strategy would be infinitely expensive. This follows since if an
option increases or decreases in value we will get infinitesimal trades when we exceed
our threshold. See Constantinides and Zariphopoulou (1999) for a good presentation
on move-based strategies.

No matter which strategy we choose we are left with the fact that there is no strat-
egy which perfectly replicates an option in presence of transaction costs. The question
that remains is which strategy we want to use? In this essay we have chosen to study
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Introduction

discrete time models, only rebalancing at predefined time-steps. Secondly, only pro-
portional transaction costs are considered. This approach gives us a good basic under-
standing of what happens when we introduce transaction costs. Secondly, this model is
fairly easy to implement practically. In chapter 2 we will define the basics of financial
derivatives and arbitrage pricing models. We will also describe the dynamics of the
Black and Scholes market. All the definitions needed to fully understand the scope of
the next chapters will presented and explained in chapter 2. In chapter 3 we introduce
transaction costs. First we describe the dynamics of the binomial market without trans-
action costs. After that we look on how the binomial model can be used to work with
transaction costs by using the framework presented by Leland (1985) and Boyle and
Vorst (1992). Later we will use the results from the binomial study to try to find an
approximation on how to modify Black and Scholes formula to work with transaction
costs. In the last section of chapter 3 we will try to make an extension to the model
presented by Boyle and Vorst (1992). The purpose with this extension is to include
transaction costs that are not calculated with in their model but which have great im-
portance to the price of an option. These cost are the initial cost of buying the hedge
and the cost of selling the hedge at maturity date. In chapter 4 we will simulate different
scenarios and investigate on how the models defined in the previous chapters perform.
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Chapter 2

Basic Theory

2.1 Financial Derivatives
The value of a derivative is derived from the underlying asset and is a contract between
two parties. The payoff of a derivative is defined by its payoff function which will
be denoted Φ(S). There are a wide variety of derivatives but the most common ones
are the European call and put options and the American call and put options. These
options gives the holder the right to buy or sell a stock for a certain price at a specific
time or during a specific time interval. The price for which the holder is able to buy or
sell a specific stock, denoted S, is called the strike price and will be denoted K. The
difference between European options and American options are that European options
may only be exercised at the maturity date, denoted T , while American options may
be exercised at any time t 6 T . In this essay only European options will be discussed.
(Hull, 2003, chapter 1)

2.2 Arbitrage Pricing
The difficulty with financial derivatives is to find the price at time t with respect to
a certain payoff function. This may be done by arbitrage pricing. We will denote the
price of a derivative at time t as Ft,s. To explain the basics we need a few definitions.
(Björk, 2004, chapter 6 and 7)

Definition 2.2.1 A portfolio, V h with weights hi, consisting of N assets is called self-
financing if

dV h(t)
dt

=
i=N∑
i=1

hi(t)dSi(t). (2.1)

That is if no money is being added or withdrawn externally when the portfolio rebal-
ances.

By looking at equation (2.1) we see that the change in value of a self-financing
portfolio only depends on how much we have in our different assets, the hi, and the
change of value in the different assets, the dSi. If we want to rebalance our portfolio,
change the hi, no money may be added our withdrawn to do so. In case of transaction
costs we realize that if we want to rebalance a self-financing portfolio, the cost of doing
so must be paid by the portfolio itself and not by any external aid.
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2.2. Arbitrage Pricing Basic Theory

Definition 2.2.2 There exists an arbitrage opportunity if the following conditions hold:

i, V h
t = 0

ii, P (V h
T > 0) = 1

iii, P (V h
T > 0) > 0

We see that if the conditions in definition (2.2.2) are true we can buy an arbitrary
amount of portfolio V h at time t, since it will cost us nothing. At time T we know
that the value of the portfolio for sure isn’t worth less than zero, that is we take no
risk. Furthermore we see that we have the possibility that the portfolio is worth more
than zero. Given these conditions we realize that we can invest any amount at zero risk
and eventually we will become tremendously rich, since the chance of profit is more
than zero. In an arbitrage free market these possibilities never appear. In order to price
derivatives we need a model for the stock price and a risk-neutral probability measure,
such that there exists no arbitrage opportunities. We call this risk-neutral probability
measure a martingale measure.

Definition 2.2.3 A process X is called a martingale if

E[X(s)] = X(t), t 6 s.

That is the process X has zero drift.

In other words the expected value of a process at a future time s, given what we know
today, will be exactly the same as the value of the process at time t. (Björk, 2004,
appendix C)

Another very important concept of arbitrage pricing is completeness. If a market
is complete we mean that all derivatives can be replicated by a replicating portfolio.
Since the replication criteria is very central in this essay, we want to show that the
markets in which we act are complete. To show that a market is both free of arbitrage
and complete, two very powerful theorems can be used. These theorems are called the
fundamental theorems of arbitrage pricing.

Theorem 2.2.1 The market model is free of arbitrage if and only if there exists a risk-
neutral martingale measure Q that is equivalent with the observed price measure P.
That is a measure Q ∼ P such that the processes

S0(t)
S0(t)

,
S1(t)
S0(t)

, · · · ,
SN (t)
S0(t)

are martingales under Q. Si denotes the different assets in the current market.

Theorem 2.2.2 Assuming absence of arbitrage, the market is complete if and only if
the martingale measure Q is unique.

Proof: See Björk (2004, chapter 10) for a heuristic proof.

These theorems may be a little bit hard to understand at first glance but remem-
bering what we know about risk-neutrality from Hull (2003), a simple example can be
made. Given a risky asset S1 and a risk free asset S0, we have the following conditions.
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Basic Theory 2.3. The Black and Scholes Market

In order for the binomial market, see Cox et al. (1979), to be free of arbitrage we
choose our probabilities so that the expected drift of a stock is equal to the risk free
rate, that is

EQ
[
S1(t + 1)
S0(t + 1)

]
=

S1(t)
S0(t)

.

The probability measure which fulfill this condition is our Q measure. Furthermore
we remember that the probabilities given are unique so the binomial market is also
complete. With the price measure P we mean the actual price movement observed in
the market. If our market is free of arbitrage the observed probability measure P is
equivalent with the risk-neutral measure Q, if not we have arbitrage opportunities.

In the Black and Scholes (1973) market, which is time continuous, the processes for
the different assets must also follow the these conditions in order to be free of arbitrage
and complete. These facts will be more thoroughly investigated later in this essay.

2.3 The Black and Scholes Market
When Black and Scholes (1973) derive their famous formula for pricing of european
options they use an arbitrage argument. Furthermore they make a few assumptions
about the market, which are necessary for the formula to hold. These ideal conditions
are:

1. The short-term interest rate is known and is constant through time.

2. The stock price follows a random walk in continuous time with a variance rate
proportional to the square of the stock price. Thus the distribution of possible
stock prices at the end of any finite interval is lognormal. The variance rate of
the return on the stock is constant.

3. The stock pays no dividends or other distributions.

4. The option is European, that is, it can only be exercised at maturity.

5. There are no transaction costs in buying or selling the stock or the option.

6. It is possible to borrow any fraction of the price of a security to buy it or to hold
it, at the short-term interest rate.

7. There are no penalties to short selling. A seller who does not own a security will
simply accept the price of the security from a buyer, and will agree to settle with
the buyer on some future date by paying him an amount equal to the price of the
security on that date.

With these conditions Black and Scholes creates a portfolio consisting of a stock
and a European call option,

V B&S(t) = h1(t)St + h2(t)Ft,s.

By choosing h1 and h2 such that the risk of the portfolio is equal to zero at all times,
the no arbitrage argument stipulates that the drift of the portfolio must be equal to the
risk free rate. With this in hand they derive the price for the European call option. See
Björk (2004, chapter 7) for a comprehensive and good derivation.
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2.3. The Black and Scholes Market Basic Theory

2.3.1 The Dynamics of the Black and Scholes Market
In order to price an option under these market conditions we need a model for the stock
price and the risk free asset. The stock price in Black and Scholes market is based on
a Geometric Brownian Motion where the stochastic element derives from the Wiener
process. (Björk, 2004, chapter 4)

Definition 2.3.1 A stochastic process W is callad a Wiener process if the following
conditions hold:

i, W (0) = 0

ii, The process W has independent increments, i.e. if r < s 6 t < u then W (u) −
W (t) and W (s)−W (r) are independent stochastic variables.

iii, For s < t the stochastic variable W (t) − W (s) has the Gaussian distribution
N [0,

√
t− s].

iv, W has continous trajectories.

To get some basic understanding of a Wiener process we will consider a simple exam-
ple. Assume that we were to simulate a process with an equidistant time-grid so that
∆t = 1. The realization of this process would than be a set of independent increments
so that W (t + 1) −W (t) ∼ N [0, 1]. In figure 2.1 we see a realization of this Wiener
process with 200 time-steps.

Figure 2.1: Simulation of a Wiener process with ∆t = 1.

With definition (2.3.1) in hand Black and Scholes discribes the dynamics of the
stock price and the risk free asset as

dSt = µStdt + σStdW P
t , (2.2)

dBt = rBtdt, (2.3)
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Basic Theory 2.3. The Black and Scholes Market

where µ, σ and r are deterministic constants and W P
t is a Wiener process under the

probability measure P. We see that equation (2.2) is a stochastic differential equation,
a SDE. If we want to solve a SDE, that is writing it in the form St = · · · , we use Itô’s
formula.

Theorem 2.3.1 (Itô’s formula) Assume that the process X has a stochastic differential
given by

dXt = µdt + σdWt,

where µ and σ are deterministic constants. Define the process Z by Zt = f(t,Xt).
Then Z has a stochastic differential given by

df(t,Xt) =
{

∂f

∂t
+ µ

∂f

∂x
+

1
2
σ2 ∂2f

∂x2

}
dt + σ

∂f

∂x
dWt. (2.4)

Proof: See Øksendal (2003, chapter 4)
By expressing a new variable Zt = ln(St) and applying Itô’s formula we arrive at the
following solutions for equations (2.2) and (2.3)

St = S0e
(µ−σ2

2 )t+σW P
t , (2.5)

Bt = B0e
rt. (2.6)

Remembering theorem (2.2.1) we want our P measure to be equivalent with our Q
measure so that St

Bt
is a martingale. If we apply Itô’s formula to St

Bt
we get the following

dynamics under the probability measure P

dSB
t = SB

t (µ− r)dt + σSB
t dW P

t . (2.7)

In order for this process to be a martingale we want it to have zero drift, which gives
us that

EQ[dSB
t ] = EQ[SB

t (µ− r)dt] + EQ[σSB
t dW P

t ]

= EQ[SB
t (µ− r)dt] + 0

= 0
⇒ µ = r.

(2.8)

This leaves us with the fact that if our P measure is equivalent with our Q measure,
the drift of the stock must be equal to the risk free rate. With this answer we see that
equation (2.2) can be written as

dSt = rStdt + σStdW Q
t , (2.9)

which has the solution

St = S0e
(r−σ2

2 )t+σdW Q
t . (2.10)

Furthermore we see that the measure Q is unique, which in accordance to theorem
(2.2.2) gives us that the Black and Scholes market is complete.

�
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2.4. The European Call Option Basic Theory

2.4 The European Call Option
Having defined the Black and Scholes market we are ready to price our European call
option under the risk-neutral measure Q. The payoff function for the European call
function is given below.

Definition 2.4.1 A European call option have the following payoff function

Φ(ST ) = max[ST −K, 0]. (2.11)

To price this derivative we need the risk-neutral valuation formula.

Theorem 2.4.1 (Risk-neutral valuation formula) The arbitrage free price at time t of
the claim Φ(S) is given by

Ft,s = e−r(T−t)EQ
t,s[Φ(ST )]. (2.12)

where EQ is the expected value over probability measure Q.

Proof: See Björk (2004, chapter 5)
If we use equation (2.12) on the European call option we arrive at the following result.
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Figure 2.2: Payoff for a European call option with K = 50, r = 0.05 and σ = 0.2.

Theorem 2.4.2 (The Black and Scholes formula) The price of a European call option
at time t with the strike price K is given by

Ft,s = StN(d1)− e−r(T−t)KN(d2), (2.13)

where

d1 =
1

σ
√

T − t

{
ln(

St

K
) + (r +

σ2

2
)(T − t)

}
, (2.14a)

d2 = d1 − σ
√

T − t. (2.14b)

Proof: This derivation is taken from Rasmus (2005, chapter 6) and Björk (2004, chapter
7). The first thing we see is that we can write ST as

ST = Ste
(r−σ2

2 )τ+σ
√

τz,
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Basic Theory 2.4. The European Call Option

where z ∼ N [0, 1] and τ = T − t. Given equation (2.12) we have that

erτFt,s = EQ
t,s[max(St −K, 0)]

= EQ
t,s[ST 1{ST >K}]−KEQ

t,s[1{ST >K}]

= E1 + KE2.

By using the density function for N [0, 1] we write E1 as

E1 =
1
2π

∫ ∞

z0

Ste
(r−σ2

2 )τ+σ
√

τze−
z2
2 dz

=
serτ

2π

∫ ∞

z0

e−
(z−σ

√
τ)2

2 dz

= Ste
rτN [−z0 + σ

√
τ ].

To get the value for z0 we do the following

Ste
(r−σ2

2 )τ+σ
√

τz0 = K ⇔ z0 =
ln( K

St
)− (r − σ2

2 )τ

σ
√

τ
.

This gives us the desired result

E1 = Ste
rτN [d1],

where

d1 =
1

σ
√

τ

{
ln(

St

K
) + (r +

σ2

2
)(τ)

}
.

The term E2 is much easier to solve

E2 = P Q[ST > K]

= P Q[Ste
(r−σ2

2 )τ+σ
√

τZ > K]
= N [d2],

where
d2 = d1 − σ

√
τ .

�
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Chapter 3

Transaction Costs

3.1 The Bank Point of View

To get a basic understanding of the effects of introducing transaction costs, we will
start with a little example. Imagine that you were the CFO of large bank and that you
would like to sell European call options. Now by selling these options the bank will get
some initial income but it will at same time be exposed to a tremendous risk, since the
underlying stock of the derivative can rise all time high. As a CFO you would like to
reduce this risk by hedging the derivative. In the Black and Scholes market the optimal
thing to do would be to create a self-financing replicating portfolio consisting of the
underlying stock and the risk free asset. This portfolio would then be rebalanced every
time the stock price changed and at maturity date the portfolio would give exactly the
same payoff as the derivative. (Leland, 1985)

Now assume that there would be a transaction cost involved every time you needed
to rebalance your portfolio. Then the dynamic replication strategy described would re-
sult in infinitely high transaction cost no matter how small the transaction costs would
be or how short the time to maturity would be. This follows since the Brownian motion
which drives the stock price has infinite variation. We conclude that there doesn’t exist
a continuous-time strategy that perfectly hedges the European call option. Clearly we
realize that an other strategy must be engaged. Furthermore we realize that although the
payoff of an option doesn’t change when we introduce transaction costs, the price will.
This naturally follows since the bank has to increase the price to cover for the trans-
action cost of the replicating portfolio. Furthermore we can no longer use Black and
Scholes formula to calculate the price of an option since this formula doesn’t include
the expected transaction costs. (Leland, 1985)

Theoretically the transaction costs can be modulated in numerous different ways
but mostly the transaction costs may be assumed to be fixed, proportional or a combi-
nation of both fixed and proportional. In this essay only proportional transaction costs
will be used since this, in the bank point of view, is most realistic. As a private person
we are used to pay a fixed cost when buying or selling a share but the banks which
trade in much larger volumes are mainly exposed to proportional transaction costs. If a
fixed cost is also included it would be so small in comparison to the proportional costs
that we say it is insignificant. Furthermore almost every research that is done on the
subject uses proportional transaction costs. This may also be explained by with using
proportional transaction costs, we get continuous expressions, which are much easier

11



3.2. A Discrete Time Approach Transaction Costs

to optimize analytically. (Constantinides and Zariphopoulou, 1999)
In this essay only the stock is exposed to proportional transaction costs. Including

transaction costs on the risk free asset as well makes the model much more compli-
cated, which is noted by Boyle and Vorst (1992). Not including transaction costs on the
risk free asset doesn’t have to make the model more unrealistic, since the risk free asset
is usually interpreted as the bank account. Further, we assume that banks don’t pay any
transaction costs when moving money to their own accounts. Moreover, we will pay
the same proportional transaction cost rate when we buy a stock as when we sell one.

3.2 A Discrete Time Approach

We have realized that we cannot rebalance our portfolio every time the stock price
moves so we lessen our demand on creating a perfect replicating portfolio at all times
by rebalancing only at certain time-steps. This leaves us with the choice of how often
we want to rebalance. If we only rebalance our portfolio a few times our transaction
costs will be low but our risk exposure will be high. Clearly we have to make a trade-
of between risk and cost. Furthermore if we use a true arbitrage argument to bound
our option prices it will be necessary to consider the maximum possible transaction
cost rather than the average transaction costs. This follows since if we were to use an
arbitrage argument, we would have to create a portfolio consisting of the stock and
the derivative and eliminate all risk. Since the transaction costs also will be stochastic
we have that eliminating all risk in this case includes eliminating the possibility of
maximum transaction costs. This will in term give us that the upper bound on the option
price would be extremely high. To get around this problem we will only consider the
expected transaction costs of our replicating portfolio. An argument to support this
approach of only calculating the expected transaction costs rather than the maximum
transaction costs can be made by a simple example. (Leland, 1985)

Imagine that we would rebalance our portfolio twice every week for a derivative
with one year to maturity. The maximum transaction cost would occur if the rebalanc-
ing between the stock and the risk free asset would be 100% at every time step. This
would result in a turnover of 5200%1, which is highly unlikely.

Even though both Leland and Boyle and Vorst only calculate with expected trans-
action cost, we still have the fact that if we let our time-step go to zero, the cost of
creating a replicating portfolio will be infinite. Once again this leaves us with the result
that there doesn’t exist a strategy that perfectly replicates an option at all times. If we
were let our time step go to zero we would soon see that the best strategy would be to
dominate our call option by having a long position in the underlying stock at all times.
The fact that this really is the optimal strategy when we let our time-step go to zero is
proven by Soner et al. (1995). Now having the actual stock price as an upper bound for
our option price isn’t very interesting in the economic point of view. One can note that
there are other theories which provide tighter upper bounds than the actual stock price
when the time-step goes to zero. These theories include finding a martingale measure
for a market with transaction costs and with this measure one can use a true arbitrage
argument to price options in a viable price system. If the reader is interested, see Reis-
man (2001).

10.5 ∗ 2 ∗ 52 ∗ 100% = 5200%

12
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3.3 A Modified Binomial Model
First we will create a model for proportional transaction costs within the binomial
model by using the framework presented by Leland (1985) and Boyle and Vorst (1992).
We will later use the results found in the binomial model to try creating a modified
Black and Scholes formula, which include the expected transaction costs, by modifying
the input volatility. We start by examining the dynamics of the binomial market without
transaction costs.

3.3.1 The Dynamics of the Binomial Market
In the binomial model we have a time grid, t0, t1, t2, · · · , tn = T , with equivalent time
distances, ∆ = ti − ti−1. For every time step the stock may either go up, with a factor
u and probability pu, or down, with a factor d and probability pd.

Definition 3.3.1 The stock dynamics in an n period binomial model under the proba-
bility measure P is given by

Sti = Sti−nZn
P =



Sti−nun with probability pn
u

...
Sti−n

un−kdk with probability
(
n
k

)
pn−k

u pk
d

...
Sti−ndn with probability pn

d

, (3.1)

where ZP is a stochastic variable with the distribution

ZP =
{

u with probability pu

d with probability pd
. (3.2)

Su2

↗
Su

↗ ↘
S Sud

↘ ↗
Sd

↘
Sd2

Remembering once again theorem (2.2.1), we want to find the probability distribution
under the risk-neutral measure Q so that

EQ
[

Sti+1

Bti+i

]
=

Sti

Bti

.

Given the risk free asset B, which has the dynamics Bti+1 = Btie
r∆, we have the

following distribution under the measure Q.

Theorem 3.3.1 Under the risk neutral measure Q, the stochastic variable Z has the
following distribution

ZQ =
{

u with probability qu

d with probability qd
, (3.3)

13



3.3. A Modified Binomial Model Transaction Costs

where

qu =
er∆ − d

u− d
, (3.4a)

qd =
u− er∆

u− d
. (3.4b)

Proof: See Cox, Ross, and Rubinstein (1979)
We also realize that d 6 er∆ 6 u, to avoid arbitrage. Given this and the fact that
our measure Q is unique, we have, in accordance to theorem (2.2.2), that the binomial
model is both complete and free of arbitrage.

�

In our case we are going from a continuous time model to a discrete time model.
To express the stock S in an n-period model with grid spacing ∆, we need a definition
for u and d.

Definition 3.3.2 Going from a continuous time model to a n-period discrete time model,
the following values are used for u and d

un = eσ
√

∆, (3.5)

dn = e−σ
√

∆, (3.6)

where σ is the volatility of the stock.

Given the fact that the binomial market is complete, we know that we can create a self-
financing replicating portfolio for all derivatives in this market. We let the pair (ti, k)
denote each node in the binomial tree, where k is the number of up-steps. The stock
price at time ti can then be written as

Sti = St0u
kdi−k, (3.7)

and the replicating portfolio can be written as

V h
ti

(k) = xti
(k) + yti

(k)Sti
, (3.8)

where xti is the number of money units in the risk free asset and yti is the position in
the stock. With this we are ready to formulate a binomial algorithm that gives us the
xti

and yti
of our replicating portfolio at each node (ti, k) in the binomial tree.

Theorem 3.3.2 A self-financing replicating portfolio, V h, in the binomial market un-
der the probability measure Q can be computed recursively using the scheme

V h
ti

(k) =
quV h

ti+1
(k + 1) + qdVti+1(k)

er∆
,

V h
T (k) = Φ(Sto

ukdi−k).
(3.9)

The weights in the replicating portfolio is then given by

xti
(k) =

uV h
ti

(k)− dV h
ti

(k + 1)
(u− d)er∆

, (3.10a)

yti(k) =
V h

ti
(k + 1)− V h

ti
(k)

(u− d)Sti

. (3.10b)

14
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xt2(2), yt2(2)
↗

xt1(1), yt1(1)
↗ ↘

xt0(0), yt0(0) xt2(1), yt2(1)
↘ ↗

xt1(0), yt1(0)
↘

xt2(0), yt2(0)

Proof: See Cox, Ross, and Rubinstein (1979)
If we want to price European options in the binomial market, we use the risk-

neutral valuation formula (2.12). Applying this formula we end up with the following
expression.

Theorem 3.3.3 The arbitrage free price at time ti of a European option with payoff
function Φ(S) is given by

Fti,s =
1

er∆(n−i)

n−i∑
k=0

(
n− i

k

)
qk
uq

(n−i)−k
d Φ(Sti

ukd(n−i)−k). (3.11)

Proof: See Cox, Ross, and Rubinstein (1979)
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Figure 3.1: Price of a European call option with St0 = 40, K = 50, r = 0.05 and
σ = 0.2.

As seen in figure (3.1), the binomial option price converge to the Black and Scholes
price when the number of steps get large. This is not a surprising fact, given the law of
large numbers and the central limit theorem, which yields that the stock in the binomial
model has a log-normal distribution just like in the Black and Scholes model. However
it is an important fact in our model, since we will use the binomial model to try to find
an alternative Black and Scholes formula. (Cox et al., 1979)

3.3.2 Dynamics with Transaction Costs
We start by introducing the proportional transaction cost rate for the stock, which will
be denoted λ. In order to keep our replicating portfolio self-financing, we must at time

15



3.3. A Modified Binomial Model Transaction Costs

ti calculate our xti
and yti

so that the cost of rebalancing at time ti+1 is included in
the portfolio.

Definition 3.3.3 In order for our replicating portfolio to be self-financing when pro-
portional transaction costs are present, the following conditions must hold:

xti(k)er∆ + yti(k)Stiu = xti+1(k + 1) + yti+1(k + 1)Stiu

+ λ|yti(k)− yti+1(k + 1)|Stiu (3.12)

xti
(k)er∆ + yti

(k)Sti
d = xti+1(k) + yti+1(k)Sti

d

+ λ|yti
(k)− yti+1(k)|Sti

d (3.13)

We see that equation (3.12) expresses that the value of the portfolio if the stock goes
up is exactly enough to buy the replicating portfolio and cover the transaction costs,
whereas equation (3.13) has similar interpretation if the stock goes down. (Boyle and
Vorst, 1992)

In case of the European call option we realize that

yti+1(k) 6 yti
(k) 6 yti+1(k + 1). (3.14)

This follows since if our stock price goes up, our call option will be worth more because
the chance that it will be in the money at time T will increase. To match this situation
with our replicating portfolio we take a larger position in the underlying stock. For the
European put option the equalities are reversed so that

yti+1(k) > yti
(k) > yti+1(k + 1). (3.15)

We will continue our calculations on the European call option and we see that we can
rewrite equations (3.12) and (3.13) as

xti(k)er∆ + yti(k)Stiu = xti+1(k + 1) + yti+1(k + 1)Stiu, (3.16)

xti
(k)er∆ + yti

(k)Sti
d = xti+1(k) + yti+1(k)Sti

d, (3.17)

where

u = u(1 + λ),

d = d(1− λ).

Equations (3.16) and (3.17) are both linear and can easily be solved. Another very
important fact in the model presented by Leland (1985) and Boyle and Vorst (1992)
is that they assume that buying the initial replicating portfolio as well as selling the
replicating portfolio at maturity date is free in terms of transaction costs. That is we
only calculate the transaction costs necessary to maintain the replicating portfolio until
maturity date. In section 3.5 a framework to include these costs will be presented but
until then we follow the model presented by Leland and Boyle and Vorst.

We are now ready to formulate a simple algorithm for calculating the weights of
the replicating portfolio throughout our binomial tree.

1. Look at all the nodes at time tn. For every node in which Φ(Stn) > 0 we take
a long position in the underlying stock and a short position in the risk free asset
equal to the strike price. That is ytn

= 1 and xtn
= −K if Φ(Stn

) > 0, else
ytn

= 0 and xtn
= 0.
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2. Go one time-step back. Use equations (3.16) and (3.17) to calculate yti
and xti

for every node in this time step.

3. If i > 0, goto 2, else quit.

After finishing the algorithm, we can easily calculate the value of a self-financing repli-
cating portfolio at any node (ti, k) by the following formula

V h
ti

(k) = xti
(k) + yti

(k)Sti
. (3.18)

Given equation (3.1), we see that the price of at European call option without trans-
action costs is given by the discounted expectation of the maturity value of the option.
We will now use this approach in the case of proportional transaction costs. We have
that

V h
t0(0) = xt0(0) + yt0(0)St0

=
[
pu{xt1(1) + yt1(1)St0u(1 + λ)}

+ pd{xt1(0) + yt1(0)St0d(1− λ)}
]
/er∆.

(3.19)

If we extend to two steps we get

V h
t0(0) = xt0(0) + yt0(0)St0

=
[
pupuu{xt2(2) + yt2(2)St0u

2(1 + λ)}
+ pupud{xt2(1) + yt2(1)St0ud(1− λ)}
+ pdpdu{xt2(1) + yt2(1)St0ud(1 + λ)}
+ pdpdd{xt2(0) + yt2(0)St0d

2(1− λ)
]
/er2∆.

(3.20)

In particular we have that

xt1(1) + yt1(1)St0u =
[
puu{xt2(2) + yt2(2)St0uu}

+ pud{xt2(1) + yt2(1)St0ud}
]
/er∆,

(3.21)

and

xt1(0) + yt1(0)St0d =
[
pdu{xt2(1) + yt2(1)St0ud}

+ pdd{xt2(0) + yt2(0)St0dd}
]
/er∆,

(3.22)

which in after some reshuffling yields that

puu =
er∆(1 + λ)− d

(u− d)
and pud = (1− puu), (3.23)

pdu =
er∆(1− λ)− d

(u− d)
and pdd = (1− pdu). (3.24)

With puu, we mean the probability that the stock should go up if the last step also was
an up-step, and with pdu, we mean the probability that the stock should go up if the
last step was a down-step. By looking at equations (3.23) and (3.24), we immediately
realize that 0 < pdu < puu < 1 if λ > 0. In other words we say that our process has a
“memory” of one step. This is an interesting fact since it results in a totally new process
that differs from the binomial process both under the probability measure P and under
the probability measure Q. We will call this new probability measure O and denote the
initial probabilities with (ou, od), and the probabilities with “memory” with (ouu, odu).
Another way of interpreting the process O is by saying that it has two states, e1 and e2.
We do the following definition. (Boyle and Vorst, 1992)
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3.4. A Modified Black and Scholes formula Transaction Costs

Definition 3.3.4 Our stochastic variable Z under the probability measure O is given
by

ZO(e1) =
{

u with probability ouu

d with probability oud
,

ZO(e2) =
{

u with probability odu

d with probability odd
.

(3.25)

With ei we define the state in a Markov chain given by

O =
(

ouu oud

odu odd

)
, (3.26)

where the initial distribution is given by(
ou od

)
Note that theorems (2.2.1) and (2.2.2) are not applicable to our new process ZO.

This follows since this process only describes the movement of our replicating portfolio
with transaction costs and not the actual process of any market asset.

3.4 A Modified Black and Scholes formula
We will now use the results from the previous section to develop a modified Black and
Scholes formula, which take in count the expected transaction costs. To start with we
introduce a new stochastic variable X , which has the same probability distribution as
ZO but with the following corresponding values (Boyle and Vorst, 1992)

Definition 3.4.1 Our stochastic variable X under the probability measure O is given
by

X(e1) =
{

ln(u) with probability ouu

ln(d) with probability oud
,

X(e2) =
{

ln(u) with probability odu

ln(d) with probability odd
.

(3.27)

Our initial distribution is still given by (ou od). By following equations (3.19) and
(3.20), we receive the following result if we let the number of periods increase.

Theorem 3.4.1 The value of a replicating portfolio at time t0 is given by

V h
t0 =

E
[
{(1 + X̂nλ)St0e

Y −K}I{St0eY >K}
]

er∆n
, (3.28)

where

Y =
n∑

k=1

Xk, (3.29a)

X̂n = 1 if Xn = ln(u), (3.29b)

X̂n = −1 if Xn = ln(d). (3.29c)
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Transaction Costs 3.4. A Modified Black and Scholes formula

Proof: Look at equations (3.19) and (3.20). Extend the number of periods and use an
induction argument.
It is easily seen that if we set λ = 0 the above theorem will transform into the risk-
neutral valuation formula, (2.12), for the European call option. This follows since if we
set our transaction costs to zero we get that

ouu = odu = qu,

oud = odd = qd,

and we’re back to the probability measure Q.
We will continue our calculations by examining the variable Y . The values used for

u and d will be given by definition (3.3.2). By simple reasoning we immediately realize
that the higher the transaction costs are the higher the volatility will be. This follows
since if our first step is an up-step the probability for another up-step and a high value
of Y will be higher. The contrary will occur if our first step is a down-step. The result
of this leads to a higher volatility for Y . We continue be giving two helpful results.

Lemma 1 The variance and expected value of Y has the following behavior for large
n and small λ

V (Y ) = σ2

[
1 + O(λ2) +

{
2λ

σ
+ O(λ3)

}√
n

T

]
+O

(√
T

n

)
, (3.30)

E(Y ) = r − 1
2
{V (Y )}+ O

(√
T

n

)
+ O(λ2). (3.31)

Lemma 2 The covariance of (X̂nλ, Y ) and the expected value of X̂nλ has the follow-
ing behavior for large n and small λ

C(X̂nλ, Y ) = 4λ2 + O

(√
T

n

)
, (3.32)

E(X̂nλ) = −λ

{
λ + O

(√
T

n

)}
. (3.33)

Proof: See Boyle and Vorst (1992)2

The function O(·) is called ordo and can be treated as zero when its arguments get
small. Given this we do the following approximation for large n and small λ

V (Y ) ≈ σ2

(
1 +

2λ

σ

√
n

T

)
= σ̂2,

E(Y ) ≈ r − 1
2
σ̂2,

C(X̂nλ, Y ) ≈ 0,

E(X̂nλ) ≈ 0.

(3.34)

Finally we are ready to give the modified Black and Scholes formula.

2Note that Boyle and Vorst (1992) has set T = 1 in their derivation.
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Theorem 3.4.2 For large n and small λ the initial value, t = 0, of a self-financing
replicating portfolio is approximately equal to the Black and Scholes formula, (2.13),
with a modified variance given by

σ2

(
1 +

2λ

σ

√
n

T

)
. (3.35)

Proof: First we remind us that given the law of large numbers and the central limit
theorem, the process eY has a lognormal distribution for large n. This gives us that ST

can be written as
ST = St0e

(r− 1
2 bσ2)T+bσ√Tz,

where z ∼ N [0, 1]. With this in hand the proof is analogues with that of the Black and
Scholes formula on page 8 with t = 0.

�

3.5 An Extension to the Boyle and Vorst Model
In the models presented by Leland (1985) and Boyle and Vorst (1992) no transaction
costs are calculated with for buying the initial hedge at time t0, as well as selling it
at time tn. However an extension to their model that includes these transaction costs
will be presented in this section. The reason for including these transaction costs is that
they do have great importance for the price of an option as well as they make the model
more realistic. If we want to price an option it naturally follows that we have to include
all transaction costs, not only the inter-temporal transaction costs. All the theory in this
section will be my own derivations.

We will start by looking on how we could modify the binomial model to include
the initial transaction cost at time t0 and transaction cost of selling the hedge at time
tn. To include the initial transaction cost is easy and it is given by λyt0St0 . Including
the transaction cost of selling the hedge is a little bit more tricky. If we were to use a
pure arbitrage argument we would need to calculate with the maximum possible trans-
action cost at maturity date, but we want our extension to be consistent with the models
presented by Leland and Boyle and Vorst. Therefor only the expected transaction cost
of selling will be considered. To get an adequate pricing formula we need to add the
discounted expected transaction cost of selling to the value of the replicating portfolio
at time t0. The discounted expected transaction cost of selling is given by∑

k∈I

(
n
k

)
qk
uqn−k

n St0u
kdn−kλ

erT
, (3.36)

where I denotes the set of k so that Φ(St0u
kdn−k) > 0. That is if our European call

option is in the money. Having included these transaction costs an upper bound for the
price of the European call option can be given.

Theorem 3.5.1 The price of a European call option in a binomial market with propor-
tional transaction costs can be given by

Ft0,s = xt0 + yt0St0 + λyt0St0 +
∑

k∈I

(
n
k

)
qk
uqn−k

n St0u
kdn−kλ

erT
, (3.37)

where I is the set of k so that Φ(St0u
kdn−k) > 0.
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Proof: Add the initial transaction cost and the discounted expected transaction cost of
selling to the value of the replicating portfolio provided by the Boyle and Vorst (1992)
framework.

�

To provide a method to include the initial transaction cost and the transaction of selling
in the Black and Scholes approximation we will look at the delta at time t0 and the the
discounted expected cost of selling in accordance to the Black and Scholes market.

Theorem 3.5.2 The delta of a European call option is given by

∆ =
∂Ft,s

∂s
= N [d1] (3.38)

Proof: See Björk (2004, chapter 9).

Figure 3.2: Delta of european options. K = 100, r = 0.05, σ = 0.2 and T = 1.

The expected cost of selling in the Black and Scholes market is given by (compare with
the derivation on page 8)

E[λST 1{ST >K}] =
λ

2π

∫ ∞

z0

St0e
(r−σ2

2 )T+σ
√

Tze−
z2
2 dz

=
λSt0e

rT

2π

∫ ∞

z0

e−
(z−σ

√
T )2

2 dz

= λSt0e
rT N [−z0 + σ

√
T ]

= λSt0e
rT N [d1].

(3.39)

With this we have a method to extend the modified Black and Scholes model to work
with the initial transaction cost and the transaction cost of selling.

Theorem 3.5.3 The price of a European call option in a Black and Scholes market
with proportional transaction costs can be given by

Ft0,s = St0N [d1(σ̂)]− e−rT KN [d2(σ̂)] + 2λSt0N [d1(σ)], (3.40)

where σ̂ is the modified input volatility given by equation (3.35).

Proof: Add the initial transaction cost and the discounted expected transaction cost to
the modified Black and Scholes formula.

�
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Chapter 4

Simulation and Results

4.1 Method

All the simulations are programmed and executed with Matlab. Furthermore all the
graphic is created with Matlab. With the finished code we simulated and compared the
process with a number of different input variables. The result and conclusions of these
simulations will be covered in the next two sections.

4.2 Results

To get a good view of how the binomial algorithm works we look at table 4.1. We see,
if we look at the last column of the last two matrixes, that the values are equal and
that we exactly replicate the payoff of a European call option. When we start mov-
ing backwards through the matrixes though, the value of the replicating portfolio with
transaction costs gets higher and higher in comparison to the one without. This is well
expected and shows us that the algorithm presented on page 16 does indeed give us the
value for a self-financing replicating portfolio.

We will now test the modified binomial presented by Leland (1985) and Boyle and
Vorst (1992) with a number of different input values. The result is shown in table 4.2.
We have chosen to rebalance our portfolio once a month, once a week or once every
trading day1. We notice that the number of times we rebalance our portfolio has great
impact on the transaction cost. The result of hedging every day instead of every month
is a 4-5 times higher transaction costs. Furthermore we see that the further out of the
money we write our call option the higher the relative transaction costs will be. The
difference between an option that is written 20% under the current stock price to one
that is written 20% over the current stock price is a 18-20 times higher cost increase due
to transaction costs. This follows since an option that is written far out of the money
starts with a small yt0 compared to one that is written in the money. And if our option
that is written out of the money gets in the money we will have to buy much larger
proportions of the stock at a higher stock price. These cases must be taken into account
in the model and results in a higher difference of price on options written out of the
money.

1The number of trading days of OMX is equal to 253 during 2005.
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4.2. Results Simulation and Results

t0 t1 t2 t3 t4 t5
Sti

100.0000 109.3565 119.5884 130.7776 143.0138 156.3948
0 91.4441 100.0000 109.3565 119.5884 130.7776
0 0 83.6202 91.4441 100.0000 109.3565
0 0 0 76.4657 83.6202 91.4441
0 0 0 0 69.9233 76.4657
0 0 0 0 0 63.9407

xti

-50.3645 -66.2051 -83.0079 -98.0199 -99.0050 -100.0000
0 -33.7235 -49.8053 -71.0066 -99.0050 -100.0000
0 0 -15.3208 -26.8395 -47.0183 -100.0000
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

yti

0.6202 0.7591 0.8927 1.0000 1.0000 1.0000
0 0.4308 0.5867 0.7741 1.0000 1.0000
0 0 0.2044 0.3275 0.5246 1.0000
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

V h
ti

(λ = 0)
10.8059 16.1248 23.3853 32.7578 44.0088 56.3948

0 4.9497 8.1603 13.1596 20.5834 30.7776
0 0 1.3808 2.6129 4.9444 9.3565
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

V h
ti

(λ 6= 0)
11.6576 16.8027 23.7441 32.7578 44.0088 56.3948

0 5.6717 8.8629 13.6466 20.5834 30.7776
0 0 1.7728 3.1057 5.4406 9.3565
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Table 4.1: Output result with St0 = 100, K = 100, r = 0.05, σ = 0.2, λ = 0.01,
∆ = 0.2 and T = 1
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Simulation and Results 4.2. Results

To price a European call option we have to include the transaction cost of buying the
initial hedge and the transaction cost of selling the hedge at maturity date. In table 4.3
we see a simulation on the modified Boyle and Vorst binomial model that includes these
cost. Not surprisingly including these cost makes the difference to the no transaction
cost case even higher. What is interesting is that the discrepancy between an option that
is written in the money to one that is written out of the money decreases drastically. The
difference between an option that is written 20% under the current stock price to one
that is written 20% over the current stock price is now only a 9-11 times higher relative
cost increase due to transaction costs. This follows since if an option that is written in
the money it starts with a larger proportion in yt0 and has a higher probability to be in
the money at maturity date. When we include transaction costs for buying and selling
the hedge, the options that are written in the money will naturally be effected the most.
Finally in table 4.4 we see a comparison between Boyle and Vorst’s binomial model
and the modified Boyle and Vorst binomial model. We see that the difference between
rebalancing once a week to once a day is very small, which is well expected. The only
reason for why we see a small difference is that the expected cost of selling changes
(and converges due to the Law of Large Numbers) when the number rebalancing times
increases. Either way we see that including the transaction cost of buying the hedge
and the transaction cost of selling the hedge has a significant importance.

We will now take a look on the performance of our Black and Scholes approxima-
tion presented at page 20. In table 4.5 we see a comparison between Boyle and Vorst’s
binomial model and Boyle and Vorst’s Black and Scholes approximation. We notice
that the difference between these models is very small and gets even smaller as the
number of time-steps increase, which is well expected given the law of large numbers
and the central limit theorem. Generally we can conclude that Boyle and Vorst’s bino-
mial model gives us slightly larger values on our replicating portfolio. We also notice
that the difference between these models increase greatly when our λ increases. Still
the maximum difference between the models in our simulation isn’t more than about
0.5%. The reason for these differences can be explained by that in Boyle and Vorst’s
approximation they set a few terms to zero that might have had some small effect on
results. Especially those terms that included λ would have had a larger impact when
we increase the transaction cost. In figures 4.1 and 4.2, we see a graphical comparison
between the original Black and Scholes formula and the Boyle and Vorst’s Black and
Scholes approximation.

To price an option with the Black and Scholes approximation we need to add the
transaction costs of buying the hedge and selling the hedge at maturity date. This is
done by using our extension to the Boyle and Vorst approximation, see equation (3.40)
on page 21. In table 4.6 we see a comparison between the modified Boyle and Vorts
binomial model and the modified Boyle and Vorst Black and Scholes approximation.
We see that the difference between these two models decreases when the number of
time-steps increases, which is well expected. The difference between our two models
increases a little bit more when we increase the transaction cost than it does with Boyle
and Vorst’s models. Still the differences between our modified Boyle and Vorst models
are very small and are seldom over 0.5%. In figure 4.3 we see a plot on our Boyle
and Vorst extension together with Boyle and Vorst’s Black and Scholes approximation.
We see that the spread between these to models only depends on the transaction cost,
which is well expected. The only thing that happens when we increase the number of
rebalancing times is that the relative price increase, for including the transaction costs
of buying the hedge and selling the hedge, gets smaller. Clearly figure 4.3 gives us
another proof of that that including these transaction costs has significant importance.
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4.2. Results Simulation and Results

T/∆
12 52 253 12 52 253

K V h
t0 ∆[V h

t0(λ 6= 0), V h
t0(λ = 0)] in %

λ = 0%
80 24.5507 24.5739 24.5903 0 0 0
90 16.6601 16.6915 16.7030 0 0 0

100 10.2858 10.4122 10.4575 0 0 0
110 6.0333 6.0558 6.0434 0 0 0
120 3.3200 3.2508 3.2477 0 0 0

λ = 0.125%
80 24.6120 24.6988 24.8714 0.2497 0.5082 1.1429
90 16.7832 16.9368 17.2330 0.7388 1.4694 3.1732

100 10.4565 10.7483 11.1723 1.6591 3.2275 6.8348
110 6.2090 6.4071 6.7967 2.9129 5.8003 12.4657
120 3.4671 3.5543 3.9069 4.4317 9.3375 20.2993

λ = 0.25%
80 24.6745 24.8277 25.1658 0.5044 1.0327 2.3405
90 16.9053 17.1776 17.7414 1.4718 2.9121 6.2167

100 10.6238 11.0713 11.8323 3.2860 6.3303 13.1462
110 6.3815 6.7449 7.4918 5.7713 11.3779 23.9680
120 3.6128 3.8506 4.5320 8.8198 18.4526 39.5472

λ = 0.5%
80 24.8027 25.0940 25.7721 1.0266 2.1166 4.8058
90 17.1466 17.6461 18.6984 2.9202 5.7188 11.9461

100 10.9494 11.6839 13.0282 6.4507 12.2137 24.5819
110 6.7173 7.3855 8.7504 11.3373 21.9569 44.7928
120 3.8999 4.4230 5.6952 17.4677 36.0597 75.3631

λ = 1%
80 25.0690 25.6454 26.9821 2.1111 4.3602 9.7264
90 17.6177 18.5337 20.4164 5.7480 11.0370 22.2319

100 11.5683 12.8020 15.0801 12.4683 22.9514 44.2032
110 7.3568 8.5551 10.9077 21.9371 41.2712 80.4902
120 4.4579 5.4964 7.7548 34.2746 69.0783 138.7831

λ = 2%
80 25.6253 26.7590 29.2396 4.3773 8.8917 18.9070
90 18.5168 20.1444 23.3149 11.1446 20.6865 39.5847

100 12.7046 14.7399 18.3955 23.5155 41.5638 75.9072
110 8.5331 10.5832 14.3904 41.4342 74.7611 138.1183
120 5.5157 7.4195 11.1842 66.1352 128.2358 244.3791

Table 4.2: Simulation with the Boyle and Vorst’s binomial model. St0 = 100, r = 0.05
and T = 1.
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Simulation and Results 4.2. Results

T/∆
12 52 253 12 52 253

K Ft0,s ∆[Ft0,s(λ 6= 0), Ft0,s(λ = 0)] in %
λ = 0%

80 24.5507 24.5739 24.5903 0 0 0
90 16.6601 16.6915 16.7030 0 0 0

100 10.2858 10.4122 10.4575 0 0 0
110 6.0333 6.0558 6.0434 0 0 0
120 3.3200 3.2508 3.2477 0 0 0

λ = 0.125%
80 24.8391 24.9322 25.1018 1.1749 1.4581 2.0799
90 16.9766 17.1343 17.4326 1.8996 2.6529 4.3680

100 10.6017 10.9006 11.3309 3.0704 4.6901 8.3516
110 6.3306 6.5231 6.9093 4.9279 7.7166 14.3281
120 3.5412 3.6249 3.9829 6.6638 11.5086 22.6401

λ = 0.25%
80 25.1278 25.2927 25.6232 2.3509 2.9250 4.2002
90 17.2911 17.5709 18.1374 3.7875 5.2687 8.5875

100 10.9139 11.3755 12.1488 6.1062 9.2510 16.1726
110 6.6253 6.9782 7.7193 9.8132 15.2318 27.7323
120 3.7624 3.9944 4.6888 13.3245 22.8734 44.3760

λ = 0.5%
80 25.7057 26.0175 26.6752 4.7046 5.8743 8.4786
90 17.9147 18.4267 19.4810 7.5302 10.3958 16.6318

100 11.5287 12.2907 13.6594 12.0831 18.0411 30.6183
110 7.2077 7.8568 9.2130 19.4652 29.7392 52.4481
120 4.2041 4.7194 6.0239 26.6293 45.1775 85.4844

λ = 1%
80 26.8616 27.4702 28.7563 9.4127 11.7859 16.9415
90 19.1416 20.0770 21.9595 14.8948 20.2828 31.4701

100 12.7245 14.0120 16.3410 23.7088 34.5731 56.2605
110 8.3469 9.5123 11.8551 38.3474 57.0766 96.1665
120 5.0841 6.1179 8.4541 53.1352 88.1975 160.3140

λ = 2%
80 29.1655 30.3452 32.7174 18.7972 23.4853 33.0501
90 21.5279 23.1863 26.3616 29.2181 38.9106 57.8257

100 15.0112 17.1560 20.9252 45.9404 64.7679 100.0969
110 10.5431 12.5401 16.3437 74.7494 107.0745 170.4398
120 6.8255 8.7438 12.6856 105.5888 168.9736 290.6075

Table 4.3: Simulation with the modified Boyle and Vorst binomial model. St0 = 100,
r = 0.05 and T = 1.
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4.2. Results Simulation and Results

T/∆
52 52 52 253 253 253

K M Bin MM Bin ∆ in % M Bin MM Bin ∆ in %
λ = 0.125%

80 24.6988 24.9322 0.9450 24.8714 25.1018 0.9264
90 16.9368 17.1343 1.1664 17.2330 17.4326 1.1581

100 10.7483 10.9006 1.4169 11.1723 11.3309 1.4198
110 6.4071 6.5231 1.8113 6.7967 6.9093 1.6559
120 3.5543 3.6249 1.9857 3.9069 3.9829 1.9458

λ = 0.25%
80 24.8277 25.2927 1.8730 25.1658 25.6232 1.8172
90 17.1776 17.5709 2.2899 17.7414 18.1374 2.2320

100 11.0713 11.3755 2.7468 11.8323 12.1488 2.6748
110 6.7449 6.9782 3.4602 7.4918 7.7193 3.0365
120 3.8506 3.9944 3.7322 4.5320 4.6888 3.4603

λ = 0.5%
80 25.0940 26.0175 3.6799 25.7721 26.6752 3.5043
90 17.6461 18.4267 4.4240 18.6984 19.4810 4.1857

100 11.6839 12.2907 5.1931 13.0282 13.6594 4.8453
110 7.3855 7.8568 6.3812 8.7504 9.2130 5.2870
120 4.4230 4.7194 6.7014 5.6952 6.0239 5.7716

λ = 1%
80 25.6454 27.4702 7.1155 26.9821 28.7563 6.5755
90 18.5337 20.0770 8.3268 20.4164 21.9595 7.5579

100 12.8020 14.0120 9.4523 15.0801 16.3410 8.3613
110 8.5551 9.5123 11.1880 10.9077 11.8551 8.6854
120 5.4964 6.1179 11.3079 7.7548 8.4541 9.0169

λ = 2%
80 26.7590 30.3452 13.4019 29.2396 32.7174 11.8943
90 20.1444 23.1863 15.1004 23.3149 26.3616 13.0680

100 14.7399 17.1560 16.3912 18.3955 20.9252 13.7514
110 10.5832 12.5401 18.4900 14.3904 16.3437 13.5737
120 7.4195 8.7438 17.8490 11.1842 12.6856 13.4237

Table 4.4: Simulation with Boyle and Vorst’s binomial model, M Bin, and our modified
Boyle and Vorst binomial model, MM Bin. St0 = 100, r = 0.05 and T = 1.
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Simulation and Results 4.2. Results

T/∆
52 52 52 253 253 253

K M Bin M B&S ∆ in % M Bin M B&S ∆ in %
λ = 0%

80 24.5739 24.5888 -0.0606 24.5903 24.5888 0.0060
90 16.6915 16.6994 -0.0475 16.7030 16.6994 0.0213

100 10.4122 10.4506 -0.3671 10.4575 10.4506 0.0663
110 6.0558 6.0401 0.2606 6.0434 6.0401 0.0544
120 3.2508 3.2475 0.1019 3.2477 3.2475 0.0054

λ = 0.125%
80 24.6988 24.7139 -0.0608 24.8714 24.8694 0.0078
90 16.9368 16.9420 -0.0310 17.2330 17.2285 0.0263

100 10.7483 10.7819 -0.3118 11.1723 11.1644 0.0701
110 6.4071 6.3894 0.2764 6.7967 6.7926 0.0605
120 3.5543 3.5507 0.1017 3.9069 3.9064 0.0140

λ = 0.25%
80 24.8277 24.8426 -0.0598 25.1658 25.1633 0.0100
90 17.1776 17.1801 -0.0145 17.7414 17.7358 0.0315

100 11.0713 11.1004 -0.2614 11.8323 11.8234 0.0751
110 6.7449 6.7251 0.2937 7.4918 7.4867 0.0683
120 3.8506 3.8464 0.1099 4.5320 4.5308 0.0259

λ = 0.5%
80 25.0940 25.1078 -0.0548 25.7721 25.7681 0.0154
90 17.6461 17.6428 0.0188 18.6984 18.6904 0.0429

100 11.6839 11.7041 -0.1720 13.0282 13.0168 0.0872
110 7.3855 7.3611 0.3318 8.7504 8.7428 0.0863
120 4.4230 4.4168 0.1417 5.6952 5.6922 0.0525

λ = 1%
80 25.6454 25.6546 -0.0358 26.9821 26.9740 0.0299
90 18.5337 18.5179 0.0855 20.4164 20.4025 0.0681

100 12.8020 12.8048 -0.0223 15.0801 15.0626 0.1163
110 8.5551 8.5198 0.4152 10.9077 10.8940 0.1260
120 5.4964 5.4835 0.2354 7.7548 7.7466 0.1070

λ = 2%
80 26.7590 26.7521 0.0256 29.2396 29.2196 0.0684
90 20.1444 20.1001 0.2205 23.3149 23.2858 0.1249

100 14.7399 14.7076 0.2201 18.3955 18.3619 0.1831
110 10.5832 10.5208 0.5932 14.3904 14.3602 0.2099
120 7.4195 7.3856 0.4580 11.1842 11.1606 0.2116

Table 4.5: Simulation with Boyle and Vorst’s binomial model, M Bin, and Boyle and
Vorst’s Black and Scholes approximation, M B&S. St0 = 100, r = 0.05 and T = 1.
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4.2. Results Simulation and Results

T/∆
52 52 52 253 253 253

K MM Bin MM B&S ∆ in % MM Bin MM B&S ∆ in %
λ = 0%

80 24.5739 24.5888 -0.0606 24.5903 24.5888 0.0060
90 16.6915 16.6994 -0.0475 16.7030 16.6994 0.0213

100 10.4122 10.4506 -0.3671 10.4575 10.4506 0.0663
110 6.0558 6.0401 0.2606 6.0434 6.0401 0.0544
120 3.2508 3.2475 0.1019 3.2477 3.2475 0.0054

λ = 0.125%
80 24.9322 24.9460 -0.0552 25.1018 25.1016 0.0008
90 17.1343 17.1445 -0.0591 17.4326 17.4309 0.0096

100 10.9006 10.9411 -0.3704 11.3309 11.3236 0.0640
110 6.5231 6.5018 0.3275 6.9093 6.9050 0.0615
120 3.6249 3.6225 0.0661 3.9829 3.9782 0.1199

λ = 0.25%
80 25.2927 25.3069 -0.0560 25.6232 25.6276 -0.0175
90 17.5709 17.5849 -0.0796 18.1374 18.1406 -0.0180

100 11.3755 11.4188 -0.3794 12.1488 12.1418 0.0572
110 6.9782 6.9499 0.4074 7.7193 7.7116 0.1009
120 3.9944 3.9900 0.1089 4.6888 4.6744 0.3080

λ = 0.5%
80 26.0175 26.0365 -0.0729 26.6752 26.6968 -0.0806
90 18.4267 18.4525 -0.1394 19.4810 19.5001 -0.0976

100 12.2907 12.3409 -0.4068 13.6594 13.6537 0.0423
110 7.8568 7.8107 0.5897 9.2130 9.1925 0.2233
120 4.7194 4.7039 0.3289 6.0239 5.9794 0.7442

λ = 1%
80 27.4702 27.5118 -0.1514 28.7563 28.8313 -0.2602
90 20.0770 20.1373 -0.2994 21.9595 22.0219 -0.2836

100 14.0120 14.0785 -0.4719 16.3410 16.3362 0.0291
110 9.5123 9.4191 0.9897 11.8551 11.7933 0.5241
120 6.1179 6.0579 0.9912 8.4541 8.3209 1.6002

λ = 2%
80 30.3452 30.4667 -0.3987 32.7174 32.9342 -0.6580
90 23.1863 23.3389 -0.6539 26.3616 26.5246 -0.6143

100 17.1560 17.2549 -0.5731 20.9252 20.9092 0.0763
110 12.5401 12.3194 1.7912 16.3437 16.1588 1.1440
120 8.7438 8.5344 2.4531 12.6856 12.3094 3.0561

Table 4.6: Simulation with the modified Boyle and Vorst binomial model, MM Bin, and
the modified Boyle and Vorst Black and Scholes approximation, MM B&S. St0 = 100,
r = 0.05 and T = 1.
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Figure 4.1: Difference between the original B&S formula and Boyle and Vorst’s B&S
approximation. St0 = 100, K = 100, r = 0.05, σ = 0.2 and T = 1.
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Figure 4.3: Boyle and Vorst’s Black and Scholes approximation and the modified Boyle
and Vorst Black and Scholes approximation. St0 = 100, r = 0.05, σ = 0.2 and T = 1.
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4.3 Conclusions
The effect of introducing transaction costs is that the perfect Black and Scholes hedge
becomes infinitely expensive. The problem is than to find a model that entails an upper
bound on the price of an option. By using the framework presented in the articles by
Leland (1985) and Boyle and Vorst (1992) an upper bound for the price of an option can
be found. However, as we have seen, their models are somewhat incomplete as they do
not include the initial transaction cost of buying the hedge and the transaction cost of
selling the hedge at maturity date. Further, a motivation for not including these costs is
not mentioned in any of the articles. Modifications to make their model more complete
are however easily done as we have shown in section 3.5. The main conclusions from
the results of our simulations are:

• When we introduce transaction costs options that are written out of the money
will face the greatest relative price increase.

• Including transaction costs for buying the hedge and selling the hedge at maturity
date has great importance if we want to price an option.

• Including transaction costs for buying the initial hedge and selling the hedge at
maturity date decreases the spread in the relative price increase by a factor ≈ 2.

Even with our modification at hand, it is still important that we realize that several
simplifications have been made. The most important ones are:

• Only proportional transaction costs are considered.

• The transaction cost factor of the risk free asset is zero.

• The transaction cost factor for buying an asset is the same as the transaction cost
factor for selling an asset.

• We only rebalance our portfolio at predefined time-steps.

• We only rebalance our portfolio with respect to the delta factor.

• We do not use a pure arbitrage argument to price our options.

• The model does not include any aspects of optimality.

Not including any fixed transaction cost is motivated by the assumptions that the fixed
cost is insignificant in comparison to the proportional transaction cost. In real life,
however, there is almost always a fixed cost involved even though it is small. Therefore
including a fixed cost as well could make the model a little bit more realistic. By letting
the transaction cost of the risk free asset equal zero, we assume that intermediaries can
transfer funds between accounts for free. Even though this transaction cost is likely
to be very small, including it could help to improve the model. Assuming that we are
exposed to the same proportional transaction cost when we want to sell an asset as
when we want to buy an asset is also very unlikely since there is almost always a
spread between the bid price and the ask price. Incorporating this fact in the model
could also make it more realistic.

Our hedge is only rebalanced at predefined time-steps and with respect to the delta
factor. This is a fact that drastically reduces the flexibility of the model since it could
be more effective to hedge against an other factor, i.e. gamma. Furthermore, it could
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be better to use a move-based strategy by only rebalancing when our hedging factor
reaches a certain threshold. However testing these other strategies requires the presen-
tation of a totally new framework and is therefore beyond the scope of this essay.

Not using a pure arbitrage argument is a very important simplification, which is
needed to get lower upper bounds on our option prices. However, it is important to
realize that only calculating with expected transaction costs results in a risk exposure.
The smaller we let our time-step be, the smaller the risk of the replicating portfolio
will be. On the other hand, we are still constrained by the fact that If we want to use
a pure arbitrage argument in continuous time the upper bound would be equal to the
underlying stock. Regardless we are stuck with the fact that we have to make a trade-off
between cost and risk.

Finally, it is important to remember that the model presented in this essay is not
tested against any preference function of any kind. We do not investigate what would be
the optimal trade-off between cost and risk for a certain individual or for some financial
intermediary. In this essay we simply investigate some of the effects when transaction
costs are involved. As we mentioned in chapter 1 there are examples of move-based
strategies that provide a framework for finding optimal solutions for hedging deriva-
tives under proportional transaction costs. Still, finding these optimal solutions also
requires a lot of simplifications and only work for a specific set of functions.

Even though we are aware of the weaknesses of the types of models presented in
this essay, they provide a framework that works fairly well and is popular in industry,
see Martellini (2000). The problem of pricing options under transaction costs is still an
active field of research in the literature but as this study shows there is no nontrivial
hedging portfolio for option pricing under transaction costs.
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