

Serious Games

- Integrating games in military training

LTH School of Engineering at Campus Helsingborg

Computer Science

Bachelor thesis:
John Olsson
Robert Michalski

 Copyright John Olsson, Robert Michalski

LTH School of Engineering
Lund University
Box 882
SE-251 08 Helsingborg
Sweden

LTH Ingenjörshögskolan vid Campus Helsingborg
Lunds universitet
Box 882
251 08 Helsingborg

Printed in Sweden
Media-Tryck
Biblioteksdirektionen
Lunds universitet
Lund 2008

Abstract

Serious Games – Integrating games in military training.

Serious games are computer games used for various training in virtual
environments. This can in many cases reduce costs, time and gain better
results over ordinary training. Complex training scenarios which would be
practically infeasible to create in reality can be constructed in a virtual
environment.

Saab Training Systems have developed an integration platform called WISE
(Widely Integrated System Environment). Any application can be integrated
and communicate with other applications using WISE. Computer games are
very attractive in the field of training due to their immersive realism, relatively
low cost and scalability.

The questions discussed in this thesis are; how can computer games be
integrated with military training systems? What information does FPS and
strategy games have in common? How can a scenario in the MSDL-format
(Military Scenario Definition Language) be imported into a game?

Using WISE as an integration platform, computer games can be connected
through the use of a game plug-in and a WISE-driver combined with a
common game information model. Scenarios described using the MSDL
language, can be imported either through translation to game specific script, if
the game supports scripting or through the WISE-driver and game plug-in. A
generic WISE-driver for games, a VBS2 plug-in and a Half-Life 2 Empires
plug-in have been implemented as part of this thesis.

Keywords: Serious Games, Saab Training Systems, Half-Life 2,VBS2, WISE,
MSDL, military training

Sammanfattning

Serious Games – Integrering av datorspel i militär träning

Serious games är datorspel som används för olika typer av träning i virtuella
miljöer. Det kan i många fall leda till reducerade kostnader, sparad tid och ge
bättre resultat än vanlig träning. Komplexa träningsscenarion som inte är
praktiskt genomförbara att skapa i verkligheten kan konstrueras i en virtuell
värld.

Saab Training Systems har utvecklat en integrationsplatform, kallad WISE
(Widely Integrated System Environment). Vilken applikation som helst kan
integreras med andra applikationer genom WISE. Datorspel är väldigt
attraktiva i träningssyfte eftersom de är väldigt verklighetstrogna, relativt
billiga och skalbara.

Frågorna som skall belysas i examensarbetet är; hur kan datorspel integreras
med militära träningssystem? Vilken information är gemensam för första
persons skjut och strategi spel? Hur kan ett scenario i MSDL-format (Military
Scenario Definition Language) importeras i ett spel?

Datorspel kan integreras med andra system genom att använda WISE som
gemensam integrationsplatform. Detta uppnås genom att skapa ett spel plug-in
och en WISE-drivrutin och använda en generisk spelinformationsmodell.

Scenarion i MSDL-format kan importeras i spel genom att översättas till
spelspecifikt skript om spelet stödjer skripting eller genom WISE-drivrutinen
och spelets plug-in. En generisk WISE-drivrutin för spel, ett plug-in för VBS2
och ett plug-in för Half-Life 2 Empires har utvecklats som en del av detta
examensarbete.

Nyckelord: Serious Games, Saab Training Systems, Half-Life 2, VBS2,
WISE, MSDL, militär träning

Foreword

This thesis consists of this document, development of two plug-ins and a
driver for the WISE platform. It is written by John Olsson and Robert
Michalski and is carried out at Lund University, LTH School of engineering.
The work is done for Saab Training Systems at the office in Helsingborg.

We would like to thank the examiner Christin Lindholm and the technical
supervisors, Jakob Blomberg and Niklas Andersson. Thanks go out to
employees at Saab Training Systems in Helsingborg, Per Gustavsson for
feedback and finally to Adam Lundgren and Fredrik Ullner for their
cooperation.

Table of contents

1 Background ...1

1.1 Military training ...1

1.2 Problems with connecting different systems1

1.3 STS’ solution to connecting different systems2

1.4 Why serious games? ..4

1.5 Could consumer games be used for serious gaming?5

2 Problem description..6

2.1 Goals..7

2.1.1 STS serious gaming project goal..7

2.1.2 The goal of this thesis...10

2.2 Scope...10

2.2.1 Information model...11

2.2.2 Driver and server side plug-in...11

2.2.3 Import of MSDL file...12

2.3 Limitations...12

3 Work methods ...13

3.1 Algorithm...13

3.1.1 Phase 1 – Information model..13

3.1.2 Phase 2 – Plug-in & driver..14

3.1.3 Phase 3 – Import MSDL ...14

3.2 Time plan...14

3.3 Proposed solution ..17

3.3.1 What information do different FPS and strategy games have
in common? ..17

3.3.1.1 Small information model that covers essential features17

3.3.1.2 Expanded information model..17

3.3.2 How can a computer game be integrated in military training
using the WISE platform?..18

3.3.2.1 Modification of network traffic.......................................18

3.3.2.2 Creation of a server-side plug-in and driver..................18

3.3.3 How can a scenario in the MSDL format be imported into a
game?...19

3.3.3.1 Import through plug-in and driver19

3.3.3.2 Import through native game script19

3.4 Design..20

3.5 Implementation ...21

3.6 Testing...21

4 Result ...22

4.1 Information model...22

4.1.1 Object...23

4.1.1.1 Static objects ... 23

4.1.2 Equipment.. 24

4.1.3 Unit .. 25

4.1.3.1 Player .. 25

4.1.3.2 Vehicle... 26

4.1.4 Map.. 26

4.1.5 Statistics .. 26

4.1.6 Communication .. 27

4.1.7 Objective.. 27

4.1.8 Game... 28

4.1.9 Scenario... 28

4.1.10 AoE.. 29

4.1.11 Fire event ... 30

4.1.12 Detonation event .. 30

4.2 E/R for FPS game information model.................................... 31

4.3 Implementation of plug-ins and driver.................................. 32

4.3.1 Half-Life 2 Empires plug-in ... 33

4.3.1.1 Future improvements... 34

4.3.2 VBS2 plug-in .. 35

4.3.2.1 Future improvements... 36

4.3.3 Unified game driver .. 36

4.3.3.1 Future improvements... 37

4.4 Limitations of the chosen game platforms........................... 37

4.4.1 HL2 Empires .. 37

4.4.2 VBS2.. 38

5 Results based on the collaboration thesis.................................. 39

5.1 Combined information model .. 39

5.1.1 Entities ... 39

5.1.1.1 Units .. 40

5.1.2 Area ... 41

5.1.3 Events.. 41

5.1.3.1 Fire .. 41

5.1.3.2 Detonation ... 42

5.1.3.3 Communication.. 42

5.1.3.4 Objective ... 42

5.2 E/R for the Unified game information model 43

5.3 Exploration of scripting for games.. 48

5.3.1 VBS2 scripting ... 48

5.3.2 Half-life 2 scripting.. 48

5.3.2.1 SourceMod scripting .. 48

5.3.2.2 EventScripts .. 49

6 Conclusions .. 50

6.1 Comments ...51

6.2 Possible improvements..52

6.2.1 Suggestions for future theses...53

7 References...54

8 Terminology...56

9 Appendix..57

9.1 Comparison of game SDKs..57

9.1.1 VBS2 Virtual Toolkit ...57

9.1.2 Source SDK ...58

9.1.2.1 Empires mod..60

9.1.2.2 Plug-ins..61

1

1 Background

This is a Bachelor thesis written by John Olsson and Robert Michalski for
Saab Training Systems, hereafter referred to as STS, during quarter one and
two of 2008. STS main field of business is military training equipment and the
division in Helsingborg specialises in integrating different types of equipment
and training systems together. The information presented in this chapter comes
from an internal oral presentation by the supervisor of this project (Jakob
Blomberg, 2008).

1.1 Military training

The classic type of field training is hundreds or thousands of soldiers and
vehicles training together in a battlefield. There are other forms of training
such as simulations and serious games, where soldiers and commanders can sit
at a PC or mock-ups of vehicles and train tactics, procedures or visualize
scenarios. Using virtual environments can be as real as being out on the field
and yield similar results at a much lower price. All soldiers and equipment do
not have to be in the same place and thus do not need to be transported, which
would save time and money.

1.2 Problems with connecting different systems

The military is focusing more and more on joint operations and collaboration
across nations. There are several providers of military training equipment,
simulators and serious games, each use their own proprietary technology.
Different military powers or forces acquire their training equipment from
several different vendors. To train joint operations, equipment from different
forces shall be able to communicate with each other. The military industry has
agreed on certain standards. There are many additional standards in
development and vendors create interfaces that implement some of those
standards. However, protocols have limitations and are not well suited for
every application and possible use. Many types of equipment, simulators and
software do not support the same standards and protocols and thus cannot
really communicate with each other.

It would require tremendous amounts of resources and time from every vendor
to modify their products to work with every other vendors’ products. Many
complications, ambiguities and other problems can arise during the process. If
every system would be modified to connect directly to all other systems it
would require n(n-1) modifications, where n is the number of systems
connected [Figure 1].

2

Figure 1 - Systems modified to communicate with each other. Dotted boxes are modifications made to

the systems.

There are several standardized architectures and protocols, for instance DIS
(Distributed Interactive Simulation) (Institute of Electrical and Electronics
Engineers, 1998, IEEE 1278.1A-1998 - Standard for Distributed Interactive
Simulation - Application protocols) and HLA (High Level Architecture)
(Institute of Electrical and Electronics Engineers, 2000, IEEE 1516-2000 -
Standard for Modeling and Simulation High Level Architecture - Framework
and Rules), which are used to connect different systems together. Standardized
architectures and protocols help reduce the number of modifications needed to
connect systems together, to only one modification for each new system that is
added [Figure 2].

Figure 2 - Systems connected using HLA. Dotted boxes are modifications made to the systems.

1.3 STS’ solution to connecting different systems

One solution to the problem of connecting systems that were not designed to
work together is to let all the systems remain as they are and make a platform
that each system can connect to using a native or standard protocol that it
supports. The platform then translates information from each systems’ format
to the other systems’ native formats. This way only the platform that
everybody connects through needs to be modified to support a new system or

3

protocol. STS have developed a platform which can do just that, called WISE.
The WISE platform can be extended to handle any system, such as a hardware
simulator, training equipment from many different manufacturers, software
that use HLA, DIS or its own protocol. Any system can be integrated with
another system using WISE. To integrate a system with WISE an information
model and a driver are required. The information model specifies which
information the system will be able to share and how it will be structured. The
driver enables the system to communicate with WISE using the system’s own
native protocol. If a system does not have built in support for communication
an additional plug-in has to be created. WISE already has support for several
systems and now STS want to add support for serious games and consumer
games [Figure 3].

Figure 3 - Different systems connected to WISE using their own native protocols. The games connect

using one universal computer game driver (UGD) and separate game plug-ins, GPIs. Each vertical

block attached to WISE Connectivity is a WISE driver. The boxes with a T in them symbolize data

transformations.

There are three problems when integrating a computer game; every computer
game supports different features and it is not always possible to retrieve the
same information from different games; the way to retrieve information

4

between different games varies; there are usually no native communication
services that can be used to retrieve information. A plug-in can be used to
retrieve desired information from each game. A driver, which uses an
information model that supports the most common features in FPS type of
games, inserts the information into WISE.

1.4 Why serious games?

Specially designed equipment and software are very expensive. The visual
effects and virtual environments in consumer computer games have become
very realistic and can run on generic PCs that are relatively cheap. This makes
computer games well suited for military simulation and training. The visual
quality is more than good enough already and is only going to improve even
more over time. Costs can be reduced by a factor of ten or even a hundred
compared to buying specially developed equipment and simulators.

Serious gaming is a concept of using computer games and applications for
education and training purposes. Some serious games are specially developed
for the military and contain features requested by the military customers who
purchase them. They are meant to be sold in relatively low volume, a few
hundred to a few thousands copies. Serious games are not available for
purchase by civilian individuals and are about a hundred times more expensive
than traditional consumer games. They are still ten or a hundred times cheaper
than specially developed simulators and other similar training equipment.

There are many advantages using serious games for training, education and
simulation:

• Complex scenarios, which are practically impossible to setup in real life
can be constructed in a virtual environment. For example a forest fire
can be simulated in a virtual environment and used for training, instead
of lighting a part of a real forest on fire.

• Virtual environments are extremely flexible; buildings can be created,
destroyed, altered or set on fire; it is possible to change the location of
the training course to anywhere in the world with a few commands.

• Scalability, add more objects such as vehicles, buildings or nature
elements at no extra expense. It does not matter if one, two or ten
buildings are blown up in a virtual environment. Want larger, more
complex environments, add more computing power.

Serious gaming can not replace conventional training entirely. However,
used properly it can enhance training results.

5

1.5 Could consumer games be used for serious gaming?

Consumer games are relatively cheap per license and meant to be sold in high
volume in the order of ten thousand to millions of copies at a $50-100 price
point. New games are released rapidly; each release makes physics, sound,
environment behaviour and graphics more real and lifelike. There are also
huge communities where fans of the games dedicate their free time creating
new content and modifying the way games behave, essentially creating new
games using the same engine.

The innovation and work by the computer game modification communities are
a huge untapped resource that could be used to enhance military training. If
consumer games could be adapted and used for military training it could bring
down costs by a factor of ten or a hundred from specially developed serious
games and a factor thousand or more from simulators and special training
equipment.

6

2 Problem description

Serious gaming is a relatively new way of military training using computer
games, leveraging the low cost and easy availability of the PC and the fast
technological pace of the computer gaming industry. A lot of the exercises and
training otherwise conducted using classic military field training could be
effectively performed sitting at a computer practicing in a virtual environment.
There are several advantages to training in virtual environments over training
the classical way such as less transportation and equipment, more flexible and
easier to manage.

STS, a leading developer, maker and provider of military training equipment,
has a new platform that is specialized in connecting system together. Now
they want to integrate computer games with other applications. This thesis is
about laying some of the groundwork of WISE future computer game support
through the completion of three assignments, with emphasis on the first two
assignments which also make up the acceptance requirements (Jakob
Blomberg, 2008).

The first assignment is an examination of what information computer games
of FPS type have in common and use it to create an information model that is
well suited for all FPS type of games.
The second assignment is to integrate a FPS type of game using the WISE
platform [Figure 3].
The third and final assignment is to examine the possibilities to load a scripted
scenario based on MSDL into a computer game. This assignment shall be
done in collaboration with the thesis called “Lessons learned from
implementing a MSDL Scenario Editor – A tool for the serious gaming
community”, hereafter referred to as the collaboration thesis (Lundgren &
Ullner, 2008).

The following questions shall be answered in this thesis:

• How can computer games be integrated in military training using the
WISE platform?

• What information does FPS and strategy games have in common?

• How can a scenario script in the MSDL format be imported into a
computer game?

7

2.1 Goals

The goals are divided into two subchapters, subchapter one is about STS goal
with serious gaming. It has been included to provide a better understanding of
design decisions affecting the information model and many of its attributes.
Subchapter 2 describes the goals of this thesis.

2.1.1 STS serious gaming project goal
STS goal is to make their system compatible with as many other systems as
possible. This would enable them to sell their products to a broader customer
base e.g. to customers who use products from other vendors. There are many
different computer game companies who compete with each other. The result
is that the computer game industry keeps a very high pace, there is lots of
innovation and consumer games are cheap compared to software which is
specially developed for military applications. There are computer game
modification communities who put in a lot of voluntary work by creating
maps, changing the functionality of games and providing many new,
innovative ideas.

STS wants to leverage the computer game industry to enhance their own
products by using computer games for military and civilian training. By
making sure that their product works with as many computer games and
simulation systems as possible, they can offer their clients a product that
works with the clients’ equipment and with the future systems their clients
want.

STS ultimate goal in the scope of this thesis is to integrate games to work like
this; Player 1 is playing game A and player 2 is playing game B. Player 1 can
interact with player 2 inside game A and player 2 can interact with player 1
inside game B just like both players would be in the same game.

8

Game A and game B are FPS games and should be able to interact with game
C which is a strategy game.

Figure 5 - Player C can see player A and B inside game C, which is a strategy based game.

It should also be possible to use visualize a real life training session in game
A, B and C and see the units interact in all of the games.

Another goal is to simplify the preparations for training sessions, by using a
standard called MSDL which is based on XML. The system should be able to
import a scenario file described using MSDL and create training scenarios in
all games and systems connected. This saves work because then it would no
longer be necessary to create the same scenario in every game and systems
native format.

Figure 4 - Player 1 can see player 2 in game A, to the left, and player 2 can see player 1 in game B,

to the right.

9

Figure 6 - Conversion of a MSDL scenario file to other games native script formats.

It should also be possible to create a scenario in one of the connected games or
systems scenario editor and convert the native game script format to the
MSDL format. Then it would be possible to use any of the connected games’
or systems’ scenario editors to create scenarios for all games and systems. It
would be a very flexible way to create scenarios, because the best suited
scenario editor for each client and situation could be used. It would also be
possible to convert from one game script format to another.

Figure 7 - Conversion from any game script to any other game script or MSDL.

10

For instance, a scenario is created in game As’ editor and is converted to game
B script, then it can be loaded into game B or opened in game Bs’ scenario
editor.

Figure 8 - Conversion from one game script format to another.

2.1.2 The goal of this thesis
The first goal of this thesis, which has the highest priority, is to create a
communication path between a computer game and the WISE platform. It
shall be possible to view in-game events in STS software, for instance, player
movements, who is shooting at who etc. The second goal is to create a generic
information model for FPS type of games. The information model shall be
generic enough to be used with any FPS type of game and it should be
possible to use it with strategy type of games.
The third goal is to load a scripted scenario, created in a visual MSDL editor
described in the collaboration thesis (Lundgren & Ullner, 2008). There is also
a bonus goal which is to become co-writers in a paper about the MSDL
standard that is going to be presented on a military conference in the US. The
most important thing is to fulfil the acceptance requirements and pass this
course.

2.2 Scope

What game is this thesis focused on? There is a serious game that the entire
military training industry is very interested in, it is already widespread and has
many good features. The game is Virtual Battlespace 2, (VBS2) by Bohemia
Interactive (Anon, 2008, Virtual Battle Space). There is one large problem
with VBS2, there did not exists any API in quarter 1 of 2008. However,
Bohemia released an updated version of VBS2 with plug-in support in quarter
2 of 2008. Therefore STS searched for alternatives and found Half-Life 2 by
Valve (Anon, 2008, The Orange Box) which is suitable because it has a good
SDK (Software Development Kit), has a large and very active game
modification community and there is a modification which combines FPS type
of gameplay with aspects from strategy games called Empires (Anon, 2008,
Empiresmod.com). A part of the research in this thesis consists of examining
alternative games that could be used instead of Half-Life 2. Games examined
were Call of Duty 4 (Anon, 2008, CALL OF DUTY) and Battlefield 2 (Anon,
2006, EA ::Battlefield 2). The examination found that Half-Life 2 was the best
choice because it has well documented APIs, a good SDK and huge user
communities; therefore Half-Life 2 shall be integrated.

11

2.2.1 Information model
The information model shall contain data that exists in most FPS type of
games and enough information to be able to interact sufficiently with players
in other games, even strategy based ones. Not all features in every game must
be supported; only the most generic actions and features that exist in most of
the games have to be supported. It shall be optional to implement certain
features that exist in some games but not in others.

Minimal list of actions and features that must be supported by the information
model:

• Movement
o Basic movement: front, back, left, right
o Jump
o Crouch
o Possible to expand with more actions

• Weapon handling
o Fire
o Reload

• Life or health
o Restore health
o Decrease health

• Communication
o Text messages
o Objectives

• Scenario creation, setting start-values for
o Players
o Buildings
o Areas of Effect, minefields, weather, triggers.
o Small objects, crates, barrels etc.

2.2.2 Driver and server side plug-in
Enough functionality shall be implemented in the driver and plug-in to allow
them to do the following [Figure 12 - Overview of plug-in and driver
architecture.]:

• The plug-in shall be able to send information from the computer game
to the driver.

• The driver shall be able to receive information from the plug-in and
insert the information into WISE.

• The driver shall be able to send information from the WISE platform to
the plug-in.

12

• The plug-in shall be able to receive information from the driver and
insert it into the computer game.

The following is going to be implemented in driver and plug-in:

• Player information
o ID
o Name
o Position
o Health

• Detonation event (when an unit is hit in the game)
o Source ID
o Name
o Health

• Fire event (when an unit fires a weapon)
o Source ID
o Name

2.2.3 Import of MSDL file
Import of a MSDL scenario file will be done in conjunction with the
collaboration thesis (Lundgren & Ullner, 2008). The scripting languages of the
chosen computer game shall be explored and a few simple things shall be
scripted, e.g. creating a unit. A simple scenario shall be created using the
visual MSDL editor, which is described in the collaboration thesis (Lundgren
& Ullner, 2008), and exported, to a game script file which shall be loaded by
the integrated computer game and run successfully. This way a scenario could
be created in the game from a MSDL file.

2.3 Limitations

This thesis is not supposed to make any finished product that can be used in a
commercial application or system. All products are on a proof-of-concept
scale and are only intended to provide information and examples that can be
implemented and incorporated into future projects or extended in future
theses. The implementation of driver and plug-in can be used in
demonstrations but shall probably not be sold to customers or used in critical
systems, without additional functionality and before conducting more
thorough testing.

13

3 Work methods

This chapter describes the work methods and procedures used to find solutions
and answer the questions of this thesis.

3.1 Algorithm

This thesis consists of three phases. Phase 1 and 2 are the most important and
must be completed to fulfil the acceptance requirements. Phase 2 and 3 will
overlap to some extent. During phase 1, the information model shall be
developed and used in phase 2. Phase 2 will result in a plug-in and a driver
that shall provide a communication path between a computer game and the
WISE platform. The length and extent of phase 3 is determined by how much
time is left to deadline.

Phase 1

Information model
Phase 2

Plug-in & driver
Phase 3

Import MSDL

Figure 9 - The phases of this bachelor thesis.

3.1.1 Phase 1 – Information model
Information is gathered by playing different FPS type of games, such as
Virtual Battle Space 2, Half-Life 2 with a few different modifications, Call of
Duty 4 and Battlefield 2. While playing a game observations are written down.
All the collected information is structured and a draft of the model is created.

14

The information model is revised several times, restructured and simplified
each time. An E/R-diagram for the entities in the information model is also
created to show how entities relate to each other. Finally the information
model is translated to STS own XML based format using STS proprietary
tools.

3.1.2 Phase 2 – Plug-in & driver
A game engine is chosen, based on if there is a SDK available for the game
and how well documented it is. The SDK of the chosen game is explored and
evaluated to determine if it is possible to do all the things needed to fulfil the
acceptance requirements by trying to implement simple things such as getting
the position of a unit. Then the design process is started. Implementation and
testing is executed in parallel. The design is revised and improved during
implementation and testing. Only the most important functionality is
implemented until deadline. If implementation is finished before deadline, the
next phase is entered earlier.

3.1.3 Phase 3 – Import MSDL
The game scripting languages are explored and simple scripts are created. The
specification of how to script a few simple things, such as creating a unit, is
provided to the group working on the collaboration thesis (Lundgren & Ullner,
2008). Export functionality for the game specific script is incorporated into the
visual MSDL scenario editor application and a simple scenario script is
created and exported to a game script. The game script file is loaded by the
computer game and run. Scripts are tested, revised and adjusted until they
work properly.

3.2 Time plan

The time plan is divided into three phases which overlap. The final report is
written during the entire span of the thesis. Time is displayed in project weeks
at the top of the table and as calendar weeks at the bottom. This thesis spans
over 19 weeks because of shorter workdays and some days off. There are 4
checkpoints that are supposed to simplify keeping track of the project and
presenting results to the supervisor. At each checkpoint the time plan is
revised and a risk analysis is performed.

15

The following is performed at each checkpoint:

• Checkpoint 1:
o Present information model to supervisor

• Checkpoint 2:
o Present to supervisor how far integration has come and what has

been implemented.
o Present to supervisor the comparison of game tools [Appendix

9.1].

• Checkpoint 3:
o Demonstrate how the integration works and the things that have

been implemented so far.

• Checkpoint 4:
o Hand in thesis, code and application.
o Start working on presentation.

Figure 10 - First time plan.

Things did not turn out as expected, there were several delays and the time
plan had to be changed. Phase 1, which is the green bar, was extended by two
weeks because the information model took longer than expected to complete.
Phase 2 was also moved forward by two weeks, because some network ports
that were needed to run the game to be integrated where blocked. A
workaround in the form of a 3G modem was ordered.

In the meantime STS requested a comparison of game developer tools, which
resulted in chapter 4.4. The 3G modem finally arrived and provided full and
unrestricted access to the Internet. However, the 3G modem worked less than
optimally and often dropped the connection to the Internet, therefore the
progress was slow. A few weeks later a 3G router was provided which worked
perfectly, work progressed faster. The design of integration and MSDL
scenario import were also extended, because of limited knowledge and
ambiguous documentation of the games, a trial and error approach was

16

preferred. Checkpoint 4 was moved two weeks forward to provide more time
to complete phase 2, 3 and the final report.

Checkpoint 4 was renamed to Finish, because it is the deadline of this thesis.
Phase 2 was extended 5 weeks because it was the top priority and the main
focus of the entire thesis. The time to create a presentation of the thesis was
shortened to provide time to work on the thesis. There was a big unexpected
event that affected the thesis one week prior to checkpoint 3. STS got access
to the VBS2 VTK (Virtual Toolkit) and an integration point to VBS2 and
ordered immediate cease of development of the HL2 (Half-Life 2) Empires
integration and to shift focus to integration with VBS2.

Luckily it was easier to integrate with VBS2 than with HL2 and work
progressed rapidly. STS was supposed to provide a course in driver
development before checkpoint 3, but it was delayed 5 weeks into the middle
between checkpoint 3 and the deadline of the thesis, which means that there
was only a short amount of time for driver development.

Figure 11 - Final time plan.

17

3.3 Proposed solution

There are several possible solutions to the assignments this thesis is meant to
elaborate on. This chapter consist of several possible solutions to each
assignment together with an explanation of why a particular solution was
favoured.

3.3.1 What information do different FPS and strategy games have in
common?
The information required to integrate FPS games with strategy games depends
on what game features shall be supported. FPS games and strategy games both
support basic units, such as players and vehicles. The units shall be able to
move, fire at each other and report what status they are in. There are many
more features that could be supported, such as buildings, small objects, nature
objects, animals, weather and many additional features. The two following
solutions were considered. The expanded information model was chosen
because STS wanted the model to support as much as possible.

3.3.1.1 Small information model that covers essential features
A small model that provides basic features is fast, simple to implement and
can be tested thoroughly in a short amount of time. The small model shall be
possible to use with every FPS game. It shall be possible to specify own types
and own values to be able to use the model with future games that may
support new future features. This makes the model a lot more flexible and
expandable. It is very simple to expand by adding more attributes to the
entities in the model new functionality can be added.

3.3.1.2 Expanded information model
A large model could be developed by extending the small model in the
previous chapter. It shall support a lot of features, and it is especially useful if
different games that are connected together shall be consistent and coherent
e.g. look and feel the same. Some attributes could be required and the rest
optional which would give the model flexibility and scalability. Network load
would increase but features in newer games would not be unused. The
structures used to send information over the network would be the same in all
games and have the same size. Games that do not support certain features
would just enter default value into those attributes in the structure and useful
information into the rest of the attributes. The model could also be used with
other types of computer games than FPS, for instance strategy and flight
simulator games.

18

3.3.2 How can a computer game be integrated in military training using
the WISE platform?
The integration with the WISE platform shall enable the flow of information
from the game to the WISE platform and support information flowing from
the WISE platform into the game. The following solutions were considered
and Solution 2 was chosen because it would be a lot easier and good enough.

3.3.2.1 Modification of network traffic
Most modern games have multiplayer capabilities. Game A and game B are
both in multiplayer mode. The driver could convert multiplayer data from
game B to make it look like multiplayer data from game A. To game A, game
B would look like another copy of game A. It would be like two instances of
game A playing a normal multiplayer game. The same thing could be said
about game B. To use this solution, only the network data being sent from
each game needs to be modified. Nothing in the game has to be changed. This
solution is very difficult to implement, because all network packets must be
intercepted, modified and passed on. Aside from the technical difficulty, lag
times could increase from the extra overhead and render the system practically
useless.

3.3.2.2 Creation of a server-side plug-in and driver
A server-side plug-in collects the necessary information into a data structure
and sends it to the driver that is loaded in WISE. The driver unpacks the
information from the data structure and inserts it into WISE. WISE keeps
track of all the real-time data according to the information model developed as
part of this thesis. Connectivity, which is a part of the WISE platform, lies on
top of WISE, can transform and operate on the data and send it back through
WISE to the driver. The driver puts the data into the proper data structure and
sends it back to the plug-in loaded in the game server. The plug-in extracts the
data from the structure and inserts it into the game. Data can be sent both
directions and between different types of games.

Figure 12 - Overview of plug-in and driver architecture.

19

3.3.3 How can a scenario in the MSDL format be imported into a
game?
MSDL is a standard that is based on XML and it is used to describe a scenario.
It has no concept of time and is only used to initialize a scenario. This part of
the thesis is done based on the collaboration thesis (Lundgren & Ullner, 2008).
Two possible solutions to import a scenario described using MSDL into
computer games were considered. The import through native game script was
chosen because implementation would probably be easier and faster. The two
solutions do not interfere and could potentially complement each other.

3.3.3.1 Import through plug-in and driver
A file containing a scenario described using MSDL is opened through the
driver. The driver parses the MSDL scenario, and sends commands to each
games’ plug-in to load the proper map, insert objects into the game, set the
properties for each object and to start the simulation. Plug-ins can add, move
or remove objects in runtime, while the simulation is running.

Figure 13 - Import of scenario through plug-in and driver. A scenario file is loaded by the driver which

parses it and orders the plug-ins to setup the scenario through each game’s API.

3.3.3.2 Import through native game script
A scenario is created in the visual MSDL scenario editor (Lundgren & Ullner,
2008) and exported to native game script files for different games. The driver
issues commands to the plug-ins, which in turn make the game server load
game scenario scripts. Then clients can run any game that they prefer and that
is supported by the system, connect to a corresponding game server and train.

20

Figure 14 - Import of scenario through native game scripts.

3.4 Design

The information model was designed by playing several different games,
finding similarities and figuring out which information would be required to
make different games behave in the same way and look similar. The HL2
Empires plug-in was designed by trial and error, because of ambiguities in the
documentation and few working code snippets and examples. The VBS2 plug-
in was designed from experiences gained during implementation of the HL2
Empires plug-in and it had less ambiguous documentation.

Figure 15 - Design of game plug-in and unified game driver.

21

3.5 Implementation

The implementation of the information model is done in STS own proprietary
format which is based on XML using their own in-house developed tool,
Code. Game plug-in and driver are implemented in C++ using Microsoft
Visual Studio. Implementation was done piece by piece, during the design
process and tweaked continually until deadline.

3.6 Testing

While coding the plug-in and driver, tests are carried out continuously, to
ensure proper programming. Each feature and function is tested before work
on the next one is commenced. A final test will be carried out with all parts
that are finished at deadline.

22

4 Result

This chapter contains detailed descriptions of how the information model,
plug-ins and drivers are implemented. No actual application code is included
because the implementation contains code provided by STS which is not
freely available.

4.1 Information model

The purpose of the information model is foremost to make it possible to
connect different types of FPS games with each other. This is accomplished by
extracting and structuring certain information that is common to most FPS
type of games. Examples of common information and actions in FPS type of
games are movement, firing, registering hits and communication e.g.
receiving/giving orders and objectives.

The information model consists of entities and events. Entities are persistent
while events are non-persistent; they are just used to send information and
then cease to exist.

Figure 16 - Objects in FPS game information model

Figure 17 - Events in FPS game information model

23

All italic attributes are required; the rest of the attributes can be given a default
value of 0 or null.

4.1.1 Object
These attributes are common to all objects.

4.1.1.1 Static objects
Static objects are inanimate objects or nature that cannot be controlled by the
player. However, they can be affected by the player, for instance a building
can be damaged or destroyed by a player.

Subtype

The types in the table are only examples to illustrate how this attribute could
be used. New types can be specified and added if required.

24

4.1.2 Equipment
The equipment entity is another kind of object. It is not really a static object,
because it can be controlled by the player and it is not a unit either because it
is not an active entity. Each unit can carry several pieces of equipment, such
as armour and several weapons.

Weapon

Weapons are a type of equipment that can be used by players, to affect other
units and static objects.

WE1 – Weapon Example 1

Weapon 1 in game A inflicts 25 amount of damage and weapon 2 in game B
inflicts 20 amount of damage. Weapon 1 and 2 are roughly the same across
both games, at least of the same type, for instance both are shotguns. The
value “Inflicted damage” can be used to make sure that both weapons inflict
the same amount of damage. “Inflicted damage” values from weapon 1 and 2
are compared and a ratio is calculated, in this example 25 and 20, 25/20 = 5/4
= 1.25. Every shot from weapon 1 and 2 will make a player in game A lose
20*1,25 (25) health and a player in game B will lose 25*0,80 (20) health.
More advanced algorithms could be created by using “Inflicted damage”
values together with “Max health” values from the player entity.

25

4.1.3 Unit
The unit entity is the active entity in the game. Unit has two child entities,
player and vehicle.

UE1 - Unit Example 1

Player 1 in game A shoots player 2 in game B. Player 1 has 400 maximum
health, while player 2 has only 100 maximum health. To make sure that they
both lose equal amounts of life, the value “Max health” can be used. “Max
health” values from player 1 and 2 are compared and a ratio is calculated, in
this example 400 and 100, 400/100 = 4. For every health that player 2 loses,
player 1 loses 4 health.

4.1.3.1 Player
The player entity is the only real active entity. It can be controlled by a human
player or computer AI.

26

4.1.3.2 Vehicle
Vehicles are not really active entities, but they can contain active entities.
Viewed from the outside vehicles will behave just like an active entity.

4.1.4 Map
The map entity keeps track of all static objects and areas of effect that reside
in the current map.

4.1.5 Statistics
The statistics entity keeps track of certain information for each player. By
adding together the statistics from each player, statistics for the entire game
can be calculated. This object is not required.

27

4.1.6 Communication
The communication entity transmits information between units. It can be used
to give players orders and objectives and enables units to communicate with
each other.

4.1.7 Objective
The objective entity is used to tell the player what to do.

28

4.1.8 Game
The game entity keeps track of information about the game; which map is
used, all units that are playing together, overall statistics for the game, keeps
track of all ongoing communication and a few other things. The game entity is
a runtime entity.

4.1.9 Scenario
The scenario entity specifies which scenario shall be loaded and points to a
scenario file containing start values for all units and static objects in the game.

SE1 – Scenario Example 1

When the game is started, the file that the scenario entity points to is parsed
and start values for all objects are assigned. A few examples of what can be
set up using the scenario entity; objectives for all players and teams, areas of
effect on the map like weather and triggers, units can be put in position and
assigned to teams and much more.

29

SE2 – Scenario Example 2

Game A starts a game session and a scenario file is chosen, the plug-in sends
this information to the driver. WISE registers that a game session is started
and what scenario ID it is using. Game B checks what games are available
with WISE and discovers that a game session is started. Then game B loads
the same scenario file or another native scenario file with the same scenario ID
as the scenario in game A. Finally game B joins the game session that game A
is in.

4.1.10 AoE
The area of effect entity is used to create areas with special properties or
effects applied, for instance, weather, minefields and triggers.

Trigger

Areas of effect of trigger type are used to define an area that will trigger
actions. See AE1

AE1 – Area of effect Example 1

An area of effect of type trigger can be used to do many things, for instance a
minefield, an area to restore health and ammo, to receive new orders and
objectives, weather can change and much more. When an entity goes into an
area of type trigger that is a minefield, an explosion animation and sound can
be triggered together with loss of life. The game handles everything, the plug-
in and driver transmits information to the WISE, such as the loss of life or
player death.

30

Weather

The area of effect entity with type weather is used to specify what kind of
weather it shall be.

4.1.11 Fire event
An event that is fired every time a shot in the game is fired.

4.1.12 Detonation event
An event that is fired when a unit or static object is hit by something.

31

4.2 E/R for FPS game information model

Figure 18 – E/R diagram for the FPS game information model.

32

4.3 Implementation of plug-ins and driver

The game plug-in is a software extension in the form of a dynamic link library
file (DLL). It uses the game framework to access information about objects in
the computer game and is written using each game’s API.
This thesis incorporates the implementation of plug-ins for HL2 with the
Empires modification and VBS2. Both plug-ins follow the same concept
[Figure 15 - Design of game plug-in and unified game driver.] but are
implemented differently because of the difference between the games’ APIs
and the features that they support. The driver does the same things as the plug-
in, in terms of communication; the difference is that the driver has to handle
communication between several games.

Figure 19 - Overview of implemented architecture. UGD (Unified Game Driver), GPI (Game plug-in).

The WISE UGD is the driver which all the game plug-ins uses to
communicate with WISE. Each plug-in load with a game server and then
clients connect to their respective server.

33

4.3.1 Half-Life 2 Empires plug-in
The Source engine SDK contains C++ classes and functions that can be
accessed directly by a plug-in. There is a limited amount of functions and
classes included in the SDK, which are accessible by plug-ins, as the diagram
to the left shows in figure 20. However, it is possible to access more functions
through the use of hacks created by the modification communities. The hacks
scan the main memory for signatures of virtual functions in the game,
effectively exposing more of the games functionality, as is shown in the
diagram to the right in figure 20.

The implementation of the HL2 Empires plug-in requires Source Metamod
(Anon, 2008, Metamod:Source for Half-Life 2), which provides access to
functions needed to retrieve a lot of data from the game, which is not
accessible otherwise.

Figure 20 - Overview of HL2 and Source Metamod architectures.

When the plug-in loads, certain functions in the Source API are hooked using
Source Metamod API and the plug-in subscribes to the desired game events,
such as player death, hit, connect etc, represented by the INIT box in figure
21. When a client connects to the server the OnGameFrame-function is
entered. The OnGameFrame-function is run on every game frame of the
server, which usually runs at 33 frames per second. A timer makes sure that
information about entities; such as position and current health for all players,
is collected and sent once every second. All data is sent through a socket
interface to a simple socket server, using TCP. When events are fired by the
game engine, the FireEvent-function is called, the type of event is determined
and related data is sent instantly. There is also a utility-class serving as a
placeholder which is supposed to contain helper functions.

34

Figure 21 - Diagram of the HL2 Empires plug-in implementation.

4.3.1.1 Future improvements
There is a lot to improve on the plug-in because development was halted and
focus was shifted to the VBS2 plug-in. A very simple socket server was
created to test the plug-in. The socket part of the plug-in is designed to work
with the simple socket server. More advanced socket classes, which are
threaded, were provided by STS and turned into a static library. This new
library can be used in all future game plug-ins. The socket part of the HL2
Empires plug-in has to be rewritten to take advantage of the new socket
library. FireEvents and PeriodicFunction need to be rewritten and expanded to
comply with the new unified game information model [Chapter 5.1].
Functions to inject data into the game have not been implemented at all; they
are required to use other games together with HL2.

35

4.3.2 VBS2 plug-in
There was no SDK available for VBS2 at the time of writing this thesis,
although there was extensive scripting support. Entire scenarios can be
scripted, objects in the game can be manipulated in runtime and information
can be retrieved by executing script commands. Late in the process of writing
this thesis Bohemia released support for VBS2 plug-ins that could execute
script commands which opened up possibilities to get information in and out
of the game. STS requested to put the HL2 integration on hold, document it
for future use and begin work on integrating VBS2 instead.

When the plug-in loads, the game engine passes a pointer to a function, which
can execute script commands in the game, represented by the “DLL init
function” box in figure 22. The game calls a function, OnSimulationStep, in
the plug-in on every game frame. OnSimulationStep contains a timer that
makes sure that information about units is sent every second. It adds event
handlers for all units, according to figure 24. When events are fired the
PluginFunction is called. Game events and entity state data is compliant with
the unified game information model [Chapter 5.1]. However, not all data in
the information model is retrieved.

The unit positions sent to the driver are converted to a geodetic coordinate
system containing longitude, latitude and altitude to be able to map the game
coordinates to any place on earth.

Figure 22 - Diagram the VBS2 plug-in implementation.

36

Figure 23 - Overview of the VBS2 plug-in architecture. The dashed arrow is a pointer passed to the

plug-in.

Figure 24 - Overview of VBS2 plug-in event-handlers.

4.3.2.1 Future improvements
Extracting more data according to the information model [Chapter 5.1],
injection of information into the game and import of scenarios described using
MSDL.

4.3.3 Unified game driver
The driver is designed to work with all types of games that make use of the
unified game information model. The WISE platform is only required to load
one instance of the unified driver to communicate with all connected computer
games. The driver receives information from several games through the
OnReceiveSocketData-function. It creates and updates objects in the unified
game information model database. Updated data from the information model
database are sent to the connected games by the SendInfoToGame-function.

37

Figure 25 - Diagram of Unified Game Driver implementation.

The data according to the unified game information model is split up into
several structures and sent to the driver. For example, the structure containing
information about a unit looks like this:

Example 1 - EntityState structure in the unified game information model, implemented in C++.

4.3.3.1 Future improvements
The communication protocol UDP allows each game to belong to a multicast
group. Using this technique, the driver can send information to each game
individually, multiple selected groups or to all connected games using
broadcast, however it is not used.

4.4 Limitations of the chosen game platforms

The chosen platforms have certain limitations which affect development and
which applications the platforms are suited for.

4.4.1 HL2 Empires
The game chosen in at the beginning of this thesis was Half-Life 2 from
Valve. Valve has a platform called Steam which is used to install, start,
authenticate and update its games. Steam provides some interesting
possibilities and a few major drawbacks. It makes it easy to organize games,

struct EntityState

{

 HeaderStruct header;

 wchar_t id[50];

 wchar_t name[80];

 float current_health;

 Coordinate position;

 ...

};

38

modifications, developer tools and to keep everything updated. There is one
huge downside, if Steam fails to start, then it is not possible to play the games
that depend on it. Steam also needs an Internet connection to authenticate the
game licenses every time a game is started, thus making it impossible to play
without an Internet connection. It is possible to reverse engineer Steam and
circumvent the protection, but it is illegal and unpractical. A possible solution
could be to make a deal with Valve, they could make a special military plug-
in, license or Steam version that would not require authentication or an
Internet connection to run. There is another limitation with the Source engine;
Half-Life 2 Multiplayer, Counter-Strike: Source, Day of Defeat and Team
Fortress all have different player classes and slightly different code-bases.
Therefore it is difficult to write a plug-in that can work with all the Source
based games without writing custom code for each game.

4.4.2 VBS2
The only way to communicate with VBS2 via plug-ins is using scripting
commands; therefore the limitation is the extent of the scripting language.
Results returned from the script commands return strings; this is a great
inconvenience because the strings have to be parsed to extract the information
requested.

39

5 Results based on the collaboration thesis

Parts of this project are made using work from a collaboration thesis
(Lundgren & Ullner, 2008) also written at STS. The collaboration thesis goals
are to create an information model for strategy type of games and a scenario
editor that can export scenarios to MSDL format. The collaboration will target
importation and exploring the scripting languages of VBS2 and HL2. The
information models from each project shall merge into one generic
information model that works with both FPS and strategy type of games.

5.1 Combined information model

This is the combined information model that is targeted at FPS and strategy
type of games.

5.1.1 Entities
The FPS model consists of the following entities:

Figure 26 - Entities in unified game information model.

40

5.1.1.1 Units
The unit entity is the active entity in the game. There are two types of units,
player and vehicle.

41

5.1.2 Area
The area entity is used to create areas with special properties or effects
applied, for instance, weather, minefields and triggers.

5.1.3 Events
Events are used to transmit information that does not have to be persistent.

Figure 27 - Events in unified game information model.

5.1.3.1 Fire
An event that is fired every time a shot in the game is fired.

42

5.1.3.2 Detonation
Event that is fired when a unit or static object is hit by something.

5.1.3.3 Communication
The communication event transmits information between units and can be
used to give players orders.

5.1.3.4 Objective
The objective event is used to tell the player what to do and specify triggers
that determine when the objective has been completed. The event can trigger
the creation of an object of type objective and copy the information from the
objective event to the objective object.

43

5.2 E/R for the Unified game information model

This chapter explains the relationships between the objects in the unified game
information model.

The dynamic object block contains units and vehicles. The static objects block
contains GameObjects which can be nature elements, props and buildings.

Figure 28 – E/R diagram for the Unified game information model

44

Figure 29 - Relation between dynamic objects block and objectives.

45

Figure 30 – Relation between dynamic objects block and static objects block.

46

Figure 31 – Relations between the dynamic objects block, the static objects block and triggers.

Figure 32 - Relation between scenario and the objects block. The object block is the big block in figure

28.

47

Figure 33 - Relation between units and vehicles.

48

5.3 Exploration of scripting for games

The exploration and documentation scripting languages in VBS2 and HL2 are
meant to aid the collaboration thesis (Lundgren & Ullner, 2008) in
implementing exportation to each scripting language in their scenario editor.

5.3.1 VBS2 scripting
VBS2 has built in support for scripting and the scripting language is extensive.
With VBS2 1.19, plug-ins can execute any command supported by the
scripting language in run-time to extract or inject information.

Script command:

Example 2 - Get the position of a unit using VBS2 script.

Script command:

Example 3 - Add a killed-event to a unit and display a message when the event is triggered using VBS2

script.

5.3.2 Half-life 2 scripting
There is currently no official scripting support for HL2. However, there are 3rd
party plug-ins/modifications which enable bidirectional communication with
the game through the plug-in/modifications specific scripting language.

5.3.2.1 SourceMod scripting
SourceMod is a Half-Life 2 modification enabling creation of plug-ins for
server modification and administration. Plug-ins are scripted in the
SourcePawn language, enable scripting actions on game servers and access a
lot of the restricted functionality in the Source engine.

(allunits select 0) addEventHandler [“KILLED”,

hint{format [“%1 killed by %2”, _this select 0, _this

select 1]}]

getPos (allunits select 0)

49

Example 4 - Hooking the player_death-event using SourceMod scripting.

5.3.2.2 EventScripts
EventScripts provide an easy-to-use scripting interface to code add-ons that
change gameplay or add new functionality to gameservers.

Example 5 - Hooking the player_spawn-event using EventScripts.

block load

{

 es_msg My hello script has been loaded.

}

block unload

{

 es_msg My hello script has been unloaded.

}

event player_spawn

{

 es_msg Hello World! event_var(es_username) has spawned!

}

public OnPluginStart()

{

 HookEvent("player_death", Event_PlayerDeath)

}

public Event_PlayerDeath(Handle:event, const String:name[],

bool:dontBroadcast)

{

 new victim_id = GetEventInt(event, "userid")

 new attacker_id = GetEventInt(event, "attacker")

 new victim = GetClientOfUserId(victim_id)

 new attacker = GetClientOfUserId(attacker_id)

 /* Do something with the event… */

}

50

6 Conclusions

The questions this thesis is meant to answer where:

• How can a computer game be integrated in military training using the
WISE platform?

• What information does FPS and strategy games have in common?

• How can a scenario script in the MSDL format be imported into a
computer game?

A game can be integrated in military training using the WISE platform by
developing a server-side game plug-in for the game and a driver for WISE.
Together the plug-in and driver provide a communication path to the game.
The information most FPS games have in common is fire and detonation types
of events and a periodic update of entity data such as position and status.

There are several answers for the third question; one solution is to translate the
MSDL file to native game script and load it either through the game or
through the driver. All three questions are answered in this thesis and the first
two questions are implemented at a proof-of-concept level.

The goals of this thesis were to make an implementation of the answers, which
means that two out of three goals have been fulfilled. The third goal, which
was to create a way to import MSDL scripts was not implemented because the
implementation of the plug-in and driver took longer than expected, the game
that was going to be integrated was changed at half way to deadline and it was
not one of STS’ top priorities. The acceptance requirements were fulfilled and
STS are content with the product that was delivered.

The algorithm used during this thesis consists of three phases corresponding to
the assignments requested by STS. The FPS information model was completed
during phase 1 as well as the first draft of the Unified Game Information
model. Phase 1 was extended a few weeks because of restricted Internet
access. Some work could have been done from home, for example HL2 could
have been tested and examined at home.

Phase 2 consisted of developing a WISE-driver and a plug-in for HL2 and
lasted until deadline, a few weeks before deadline the focus of integration was
shifted to from HL2 to VBS2. Driver development started three weeks before
deadline and finished a week after deadline. While waiting for the driver
development course that was promised by STS, focus was on plug-in
development.

51

Phase 3 was supposed to focus on MSDL scenario import and exploration of
game scripting languages, but due to the changes in phase 2 and a limited
amount of time, only the exploration of game scripting was carried out. The
exploration of game scripting was carried out in parallel with phase 2 and
essential to access data in HL2 and the only way to create plug-ins for VBS2.

Risk analysis was performed and re-evaluated at checkpoint 1 and 2, it was
supposed to be done at every checkpoint but was forgotten due to heavy
workload. During phase 1 the greatest risks were; too large scope of project
because the scope of the project was uncertain, bad time planning because the
scope of the project could prove to be larger than expected. At checkpoint 1
the risk analysis was updated and the greatest risks were; lack of tools, new
requirements and demands from STS late in the project. There was a lack of
tools and STS did come with new requirements. While waiting for tools other
parts of the project, not dependant on the tools, were completed for instance
authoring this thesis. New demands from STS were prioritized and some were
implemented and some discarded.

6.1 Comments

This thesis provided many different experiences. We got to use and expand
our knowledge in technical fields such as C++ programming, network
technology and system design. We also got some business insights of the
military industry and what STS’ business is.

There were several occurrences which caused delays and some frustration on
our part. The game to be integrated was Empires. All Source engine based
games need a program called Steam which is used to manage games. Steam
checks game licenses over the Internet using certain ports, which were
blocked by firewalls outside the reach of STS. Saabs IT department that
handles all computer resources refused to open up the ports. Therefore the
game to be integrated could not be started, plug-in and driver development
was delayed. The computers connected to STS’ network had restrictions on
the size of files that could be downloaded, refusing to download the Empires
modification and other large files that were needed. It was not possible to
share a folder with a non STS’ configured computer connected to the
protected network; there was no DVD-burner and USB memory sticks were
disabled on the computer connected to STS’ network. It was not possible to
move large files through the network or through physical media.

STS provided unrestricted Internet access using a 3G modem and service;
however, the connection was slow and unstable. Finally a 3G router was
provided which provided satisfactory access to the Internet. Work on the game

52

plug-in progressed slowly because examples and documentation found on the
Internet was ambiguous and often did not work. Later we found out that
games based on the Source engine do not use the same code base for entities,
which explains the ambiguous documentation found on the Internet.

A one and a half month from deadline the game to be integrated was changed
by STS to VBS2 by Bohemia Interactive, because a new version of the game
which supports plug-ins was released. Luckily, VBS2 was easier to develop
for because there is only one codebase and the experience gained developing
the Empires plug-in allowed us to create a plug-in very quickly.

Driver development did not start until a few weeks from deadline because we
did not receive the driver development course that was promised. Our
supervisors at STS had a high workload and could not provide us with the
course earlier, although it worked out because of the change of game to be
integrated. There was no time left for developing support for importation of
scenarios described using MSDL.

All these experiences where good because this is how things work in reality,
there are often delays, requirement changes and other things that do not
happen optimally. Because we got to experience this type of events we will be
better equipped to handle them when they happen in the future.

We came up with a few tips for future theses:

• Divide the work into as many independent parts as possible, that way if
a part cannot be carried out until a certain condition is met; it is possible
to work on other parts in the meantime.

• In school you learn the how things should be done. However,
oftentimes it is necessary to temporarily deviate from the proper ways
and use less optimal solutions to have a working product on time.

6.2 Possible improvements

Some improvement suggestions to STS are to create an open laboratory
environment without firewall or to use a configurable firewall and clean
Windows XP installations with full administrative privileges for future theses.

The work methods used in this thesis could be improved in several ways:

• Requesting the supervisor to check the progress more often.

• Dividing the work labour differently between the authors, allowing an
equal part of programming and authoring the thesis.

• Follow time schedule more strictly, working strictly from 09.00 to
17.00 o’clock.

53

6.2.1 Suggestions for future theses
This chapter contains suggestions for future theses which can be based upon
this thesis.

• Extend the functionality of the VBS2 and HL2 Empires plug-ins and
drivers to make it possible to play together using totally different game
engines. The plug-in and drivers could be refined from proof-of-concept
to production quality by implementing the entire information model and
testing driver and plug-in thoroughly.

• Extend the information model further to support more features and
games for instance flight simulators.

• Develop new information models for civilian purposes for instance
police and law enforcement, rescue missions involving fire-,
ambulance- and other rescue personnel.

54

7 References

Jakob Blomberg (2008) [Presentation about Serious Gaming] (Personal
communication)

Adam Lundgren & Fredrik Ullner, 2008. Lessons learned from implementing
a MSDL Scenario Editor – A tool for the serious gaming community. LTH
School of Engineering.

Anon, 2008, Virtual Battle Space. [Online].
http://virtualbattlespace.vbs2.com/
[2008-05-27]

Anon, 2008, The Orange Box. [Online].
http://orange.half-life2.com/
[2008-05-27]

Anon, 2008, Empiresmod.com. [Online].
http://www.empiresmod.com/
[2008-05-27]

Anon, 2008, CALL OF DUTY. [Online].
http://www.callofduty.com/
[2008-05-27]

Anon, 2006, EA ::Battlefield 2. [Online].
http://www.battlefield.ea.com/battlefield/bf2/
[2008-05-27]

Anon, 2008, Metamod:Source for Half-Life 2. [Online].
http://www.sourcemm.net/
[2008-05-27]

Anon, 2008, Virtual Battle Space. [Online].
http://virtualbattlespace.vbs2.com/index.php?option=com_content&task=view
&id=82&Itemid=79
[2008-05-27]

Anon, 2008, GLOBAL MAPPER. [Online].
http://www.globalmapper.com/
[2008-05-27]

55

Adam Lundgren & Saša Perak & Robert Michalski & Fredrik Ullner, 2007.
Final Report – Virtual Battlespace 2. November 2007 ed. [pdf] Lund
University, LTH School of Engineering.

Anon, 2008, SDK Docs – Valve Developer Community. [Online].
http://developer.valvesoftware.com/wiki/SDK_Docs
[2008-05-27]

Anon, 2008, Category: Third Party Tools – Valve Developer Community.
[Online].
http://developer.valvesoftware.com/wiki/Category:Third_Party_Tools
[2008-05-27]

Anon, 2008, Maya to HL2 integration – Facepuch Studios. [Online].
http://forums.facepunchstudios.com/showthread.php?t=477891
[2008-05-27]

Anon, 2008, SourceMod – Half-Life 2 Scripting. [Online].
http://www.sourcemod.net/
[2008-05-27]

Mattie Casper, 2007, Mattie{info}. [Online].
http://mattie.info/cs/
[2008-05-27]

Institute of Electrical and Electronics Engineers, 1998, IEEE 1278.1A-1998 -
Standard for Distributed Interactive Simulation - Application protocols, [pdf]
Institute of Electrical and Electronics Engineers.

Institute of Electrical and Electronics Engineers, 2000, IEEE 1516-2000 -
Standard for Modeling and Simulation High Level Architecture - Framework
and Rules, [pdf] Institute of Electrical and Electronics Engineers.

56

8 Terminology

FPS First Person Shooter

SDK Software Development Kit
API Application Programming Interface
DIS Distributed Interactive Simulation

HLA High-level Architecture
STS Saab Training Systems
HL2 Half-Life 2
HL2 DM Half-Life 2 Deathmatch

CoD4 Call of Duty 4
VBS2 Virtual Battle Space 2
VTK Virtual Toolkit

C-BML Coalition-Battle
TCP Transmission Control Protocol
UDP User Datagram Protocol

GPI Game Plug-in
UGD Unified Game Driver
UGIM Unified Game Information Model, the

information model created as a part of this
thesis.

WISE Widely Integrated System Environment

57

9 Appendix

9.1 Comparison of game SDKs

During development and writing this thesis there where some delays. Internet
access was somewhat restricted. Some ports needed to use Steam were
blocked by STS firewall. Steam is required to run Half-Life 2 in multiplayer.
While waiting for a 3G modem that was going to provide less restricted access
to the Internet, STS requested a comparison of SDKs for Half-Life 2, VBS2
and what third party tools are available. This chapter is a comparison between
the Valve Source SDK and VBS2 Virtual Toolkit.

9.1.1 VBS2 Virtual Toolkit
VBS2 VTK consists of the following tools (Anon, 2008, Virtual Battle Space):

• Simulation centre – Modify content (weapon, unit etc.), terrain
development (deformable terrain) and scenarios

• Oxygen 2 – Model configurations and creation. Can import 3DS and
FBX support is currently being developed

• Visitor 4 (includes LandBuilder) – Lightweight GIS application.
Import and modify terrain data. (needs Global Mapper 9 to process raw
terrain data)

There are also some significant editor improvements and additions:

• Configuration editor

• Content management

• Team editor

• Weapon editor

• AI force editor

• VBS2 API

• Import 2D topography map to overlay VBS2 map

Some tools needed for VBS2 development are made by third parties:

• FileBank/PBOBuilder – Pack VBS2 content into map-files

• Global Mapper 9 (Anon, 2008, GLOBAL MAPPER) – Process raw
terrain (converts DTED/VMAP data to XYZ ASCII Grid format. (cost
$229-$299 USD)

The Tools have been modified to make generating terrain easier and this is
with the MapConfigEditor tool, which helps compile the terrain and sort out
shape data. The tools haven't changed much in their application but have been
fine tuned to make the process easier.

58

Virtual Tool Kit is an upgrade to VBS2 in terms of functionality and editor
improvements. The updates to the terrain generation are through the VBS2
Development Suite. Visitor 4 allows an easier development path for terrain
into VBS2. Oxygen 2 will still be used for creating models; in addition the AI
Editor (FSM Editor) will allow AI behavior to be created.

Currently, OpenFlight databases are not natively supported by the VBS2
Virtual Toolkit. Only terrain development from base data (VMAP, satellite
imagery, DTED) is currently supported but not natively. Global Mapper 9 is
needed to process the raw terrain data. Bohemia is working with Terrex on a
VBS2 TerraVista plugin that will support OpenFlight. OpenFlight support for
Visitor4 is in development but will not be finished until at least Q2 08. It is
possible to import individual OpenFlight models through 3D Studio Max.

The VBS2 tool suite includes the proprietary modeling tool Oxygen 2. It can
import 3DS and Maya models (as long as they are optimized for the VBS2
engine).

The largest terrain area so far is a 200km by 200km Afghan AO and is
currently limited to approx 2 million objects on the map but Bohemia is
working on expanding this limit.

The script engine has been improved and provides a good way to get
information in and out of VBS2. The problem with this is that it returns result
as strings that need to be parsed. A real API is in development but not
available during the writing of this thesis.

Rapid Mapping in VBS2

It is difficult and very time consuming to create maps for VBS2. There are
courses led by Bohemia Interactive where one can learn to create maps and
scenarios, they are several days long and cost thousands of dollars (Lundgren
& Perak & Michalski & Ullner, 2007).

9.1.2 Source SDK
The Source SDK is free to everyone who owns a copy of the game.
The following tools are provided by Valve (Anon, 2008, SDK Docs – Valve
Developer Community):

• Hammer World Editor:
o Creating level architecture, geometry, texturing, and lighting.
o Placing models (props) created in 3D modelling packages, such

as SoftImage XSI.

59

o Placing entities for gameplay.
o Scripting gameplay entities with Inputs and Outputs.
o Adding AI navigation nodes for non-player characters.
o Compiling and running game levels.

• Face Poster - SDK tool used to produce choreographed sequences for
the Source engine. It creates and manages facial expressions, lip-sync
movements, gestures (body animations), the position of actors in the
world, and any map triggers that need to be fired during the scene.

• Model Viewer - program used to preview 3D models created for
Source. Can preview and, in some cases, edit many aspects of a 3D
model from within Model Viewer.

There are many free third party tools available on the Internet (Anon, 2008,
Category: Third Party Tools – Valve Developer Community):

• GCFScape – tool that enables you to browse through the GCF files

• Source Compile Analyzer – a tool which detects errors in compile logs
for maps

• The Adobe Photoshop VTF Plug-In –adds the possibility to open and
save single-frame/single-face 2D textures directly from Photoshop
without the need to convert them to an intermittent format such as a
TGA file.

• The 3DSMax VTF Texture plug-in - allows the use VTF format
textures in 3DS Max versions 6 to 9 without the need to convert them to
another format, such as TGA.

• MapFool – a program that helps with porting HL1 maps to the Source
engine

• MDLDecompiler – a tool for decompiling Source models

• StudioCompiler – a tool for compiling models and materials

Hammer World Editor

• Import formats:
o VMF (Valve Map File),
o RMF (Worldcraft RMFs)
o MAP (Worldcraft Map Files).

• Export formats:
o VFM (Valve Map File)
o DXF (AutoCAD File)

Creating textures:

• Paint.NET – Freeware, for Windows

• Adobe Photoshop – Professional application for Windows and Mac

• The GIMP – Freeware, for Windows, Mac and Linux

60

• Pixelmator – Capable Mac application

• any image editor, capable of saving files in the TGA format

Rapid mapping in Half-Life 2

It is possible to create models or even entire levels in several 3D modeling
software titles and import them to Hammer.

Here are some examples:

CAD:

• Do the work in CAD and save to .DWG

• Import to SketchUp, convert planes into 3D masses and make sure there
is no convex geometry. Save to .OBJ (SketchUp Pro)

• See .OBJ to .VMF

Maya (Anon, 2008, Maya to HL2 integration – Facepuch Studios):

• Do your work in Maya and export to .OBJ

• See .OBJ to .VMF

.OBJ to .VMF:

• Import to Blender and export as quake .MAP

• Import to Crafty and export to .VMF

• Open .VMF in Hammer

Valve support model creation with the free modification tool Softimage XSI,
it is probably possible to make large parts of the maps in it to.

Softimage XSI

• Softimage XSI can import/export to .VMF

• Open .VMF in Hammer

HL2 to CoD4 (and vise versa) map conversion

• It is possible to convert CoD maps to HL2 maps manually using
notepad.

9.1.2.1 Empires mod
This modification of HL2 is interesting to STS because it combines first
person shooter and strategy based game elements. The game is based on two
teams that play against each other. Before the game begins the players of each

61

team vote for one person who will become their commander. The commander
has a strategy game type of overview and can create buildings and give orders
to the other players in the team. It is the concept of a commander that has a
higher overview of the battlefield and gives orders to the soldiers that is the
interesting part, because this is the concept of many military trainings systems.
Because of this similarity, Empires could be used for certain training.

9.1.2.2 Plug-ins
HL2 can make use of plug-ins to do certain things. When creating a
modification a very large part of the API and classes are available. It is
possible to do anything that the Source engine can handle, but a lot must be
built from scratch. When creating a plug-in only a small subset of the classes
and API is available, but nothing in the game has to be created. There is not
very much information which can be extracted from the game using the
official API provided by the Source SDK and even less information can be put
in than can be taken out.

People in the communities that are using Source based games, have found
ways to get access to functions that are not supposed to be accessible from
plug-ins. Essentially they are hacks that find offsets to functions in objects that
are only accessible when creating a modification. They work by scanning the
memory for virtual function signatures in runtime and provide a way to access
both members and functions.

Sourcemm - Source MetaMod

MetaMod (Anon, 2008, Metamod:Source for Half-Life 2) is a very
lightweight plug-in environment written in C++ that sits between the game
and Source engine. It intercepts virtual function calls between them and passes
C++ pointers to plug-ins [Figure 20 - Overview of HL2 and Source Metamod
architectures.]. To use it properly one would have to know what a particular
function is used for. There is not very much documentation on the subject,
some information can be found asking questions on forums about Source
modding. Often things do not work and there is no support from Valve.

Source Mod

Source mod (Anon, 2008, SourceMod – Half-Life 2 Scripting) is a scripting
plug-in for the Source engine that can be used to write plug-ins without any
knowledge of C++. It uses its own scripting language called SourcePawn,
although plug-ins can still be written in C++. There is also support for
abstracted database access. All plug-ins are loaded into memory and converted
into machine code which makes it very fast. Source Mod is open source under
the GNU license.

62

Mattie’s EventScripts

Mattie’s EventScripts (Mattie Casper, 2007, Mattie{info}) are server-side
plug-ins that provides an easy to use script interface. There is a list of over a
thousand scripts that are officially supported. For more advanced scripting the
Python language can be used, and everything that is possible within python
can be used. It also supports SQLite database access. There are some
problems, most plug-ins seem to be made for Counter-Strike: Source. Half-
Life 2 Deathmatch, Empires and Counter-Strike: Source all use different code
bases and player classes. Because of this many scripts do not work in Empires
and HL2 DM.

