

DHSS Gateway

Building a system for supporting the storage and
retrieval of demographic and health related data

LTH School of Engineering at Campus Helsingborg

Bachelor thesis:
Robert Tublén

 Copyright Robert Tublén

LTH School of Engineering
Lund University
Box 882
SE-251 08 Helsingborg
Sweden

LTH Ingenjörshögskolan vid Campus Helsingborg
Lunds universitet
Box 882
251 08 Helsingborg

Printed in Sweden
Media-Tryck
Biblioteksdirektionen
Lunds universitet
Lund 2008

Abstract
About 80 percent of the earth’s population live in poverty, the majority living
in third world countries. To combat issues related to poverty, such as child
mortality, it is important to have a system in place for continuous monitoring
of demographic, health and socioeconomic events within the population.

A demographic surveillance system (DSS) continuously monitors a subset of a
population within a specific area, registering events such as births, deaths, and
migrations.

Information collected is used for educational purposes and for constructing
public health program aimed at improving the general wellbeing of the
population.

Furthermore, it acts as foundation for sub-studies related to health and
socioeconomic factors such as mapping teenage sexuality and reproduction,
sexual risk behavior, domestic violence and so forth.

There are numerous DSS sites set up today all over the world, most of which
can be found in developing countries throughout Africa and Asia.

One such site is located in Central America, in the municipality of León,
Nicaragua, where a subset of the population living within the municipality is
under continuous surveillance.

The result of this thesis is a prototype for a system intended to be used at the
DSS site in León, supporting the registration and usage of collected
demographic, health and socioeconomic related information.

Keywords: demographic surveillance system, DSS, continuous surveillance

Sammanfattning
Ungefär 80 procent av jordens befolkning lever i fattigdom, majoriteten av
dessa i tredje världen. För att bekämpa problem relaterade till fattigdom, så
som till exempel barnadödlighet, är det viktigt att ha ett system på plats för
kontinuerlig övervakning av demografiska, hälsorelaterade och
socioekonomiska händelser inom populationen.

Ett demografiskt övervakningssystem (DSS) övervakar kontinuerligt en
delmängd av populationen inom ett specifikt område, där händelser så som
födslar, dödsfall och migrationer registreras.

Information som samlas in används i utbildningssyfte och för att konstruera
program med syfte att förbättra populationens allmänna välmående.

Utöver detta används denna som grund för studier relaterade till hälsa och
socioekonomiska faktorer så som kartläggning av tonårssexualitet och
reproduktion, sexuellt riskbeteende, våld i hemmet och så vidare.

Det finns idag ett antal DSS platser uppförda runt om i världen där merparten
av dessa återfinns i utvecklingsländer i Afrika och Asien.

En sådan plats finns i Centralamerika, i Leóns kommun, Nicaragua, där en
delmängd av populationen inom kommunen är under kontinuerlig
övervakning.

Resultatet av detta examensarbete är en prototyp för ett system tänkt att
användas vid DSS-platsen i León för att stödja registrering och användning av
insamlad demografisk, hälsorelaterad och socioekonomisk information.

Nyckelord: demografiskt övervakningssystem, DSS, kontinuerlig övervakning

Foreword and Acknowledgements
I remember the feeling of excitement and adventure I got while listing to the
vivid lecture held by Nils Assarsson and Mattias Pedersen when presenting
their thesis’s [1] [2] at LTH School of Engineering, Helsingborg in the autumn
of 2005.

When I heard that more work needed to be done at CIDS in León, Nicaragua
to set up a new system for registering demographic, health and socioeconomic
data, I didn’t hesitate. Working on this thesis has truly been a life changing
experience.

I extend my deepest gratitude to Nils and his family for their hospitality and
for taking care of me during my stay, and for introducing me to such
wonderful people as Dr Elmer Zelaya Blandón, Maria Teresa Orozco, and
others whom I’ve had the pleasure to meet and work with during my work on
this thesis.

I would also like to extend my thanks to the following people, in no particular
order: Anders Hovén, Johan Augustsson, Jon Lennryd, and to all the people at
CIDS.

I meet a lot of interesting people during my stay in Nicaragua, to many to
mention, but who all had a positive impact in my life and for that I am
grateful.

Finally, I would like to extend a huge thanks to my supervisor Christin
Lindholm for her support and patience as deadline after deadline slipped
away.

Definitions

Socioeconomic The study of the relationship between
economic activity and social life.

Epidemiological studies Study of factors affecting the health and
illness of populations.

Ad hoc Performing something without a detailed
plan.

Web Services Software system designed to support
interoperable machine-to-machine
interaction over a network.

Resource-oriented architecture Specific set of guidelines of an
implementation of REST, a style of
software architecture for distributed
hypermedia systems.

Auditing Tracking the actions of users.

Authorization The concept of allowing access to
resources only to those permitted to use
them.

Authentication The act of establishing or confirming
something (or someone) as authentic; that
claims made by or about the thing are
true.

Functional requirements Specifies functions of a software system
or component. A function is described as
a set of inputs, the behavior, and outputs.

Non-functional requirements Requirements which impose constraints
on the design or implementation, such as
performance engineering, quality
standards, or design constraints.

Table 1. List of definitions

Acronyms and Abbreviations

SAREC Swedish Agency for Research
Cooperation with Developing Countries

CIDS Centro de Investigación en Demografía y
Salud

DSS Demographic surveillance system; The
process of defining risk and
corresponding dynamics in rates of birth,
deaths, and migration in a population over
time.

URI Uniform Resource Identifier

DHSS Demographic and Health Surveillance
System. See DSS.

HTTP Hypertext Transfer Protocol; use for
retrieving inter-linked text documents.

API Application Programming Interface

PDA Personal Digital Assistant

REST Representational state transfer; a style of
software architecture for distributed
hypermedia systems.

ORM Object-Relational Mapping

DRY Don’t Repeat Yourself; defaults alleviate
repetitive code and configuration

Table 2. List of acronyms and abbreviations

Table of contents

1 Introduction ... 1

2 Background.. 2

3 Problem Description .. 3

4 Purpose and goal.. 4

5 Limitations ... 5

6 Development process ... 6
6.1 Development methodology ... 6
6.2 Tools... 6

7 Results .. 7
7.1.1 Deliverables ... 8

7.1.1.1 DHSS Gateway.. 8
7.1.1.2 DHSS Gateway SDD ... 12
7.1.1.3 DHSS Gateway API Documentation...................................... 12
7.1.1.4 DHSS Gateway Client ... 12

8 Further Development .. 15
8.1 Digitalize forms for use by disconnected devices............................. 15
8.2 Enabling checkout of data .. 15
8.3 Implement authorization, authentication, and auditing 15

9 Conclusion.. 16

10 References .. 17

Appendix I: DHSS Gateway DSS
Appendix II: DHSS Gateway API

1

1 Introduction

All over the world numerous demographic surveillance sites (DSS) have been
set up in developing countries to collect demographic, health and
socioeconomic information with the purpose of supplying researchers and
decision makers with information essential for creating effective public health
programs for combating such issues as extreme poverty and child mortality.

Events such as births, deaths, and migrations are collected, together with site
specific information, making out a core set of data which can be used as basis
for performing sub-studies in related matters.

Nicaragua is considered to be a poor country with 80 percent of the population
living in rural areas considered to be poor. Lacking a formal system for
monitoring demographic and health related events, a DSS site was established
in 1993, with the main goal of supplying researchers with data related to
reproductively and child mortality.

However, problems related to data quality diminish the usefulness of the
system.

The goal of this thesis has been to construct a prototype of a three tier system,
consisting of the database, the gateway server and a client for entering and
retrieving data collected by the DSS.

The system that interfaces with the database, in which the demographic, health
and socioeconomic information is stored, is called DHSS Gateway.

The DHSS Gateway Client uses the DHSS Gateway to enter, retrieve and
update information stored in the database.

2

2 Background

In 1991 a project called Reproductive and Child health was initiated in León,
Nicaragua, with the purpose of conducting epidemiological research,
collecting information pertaining to patterns of teenage sexuality and
reproduction, and child mortality.

This was a collaboration between the Department of Preventive Medicine,
León University and the Division of Epidemiology, Department of Public
Health and Clinical Medicine, Umeå University, Sweden, with the financial
support of Sida/SAREC.

Through this collaboration the foundation for a demographic and health
surveillance system (DHSS) was set up beginning in 1993, collecting
information such as births, deaths, migrations, and attributes used for
measuring poverty.

The purpose of the DHSS was to

• operate a continuous monitoring system of vital statistics in a defined
population in the León municipality,

• perform studies on fertility and monitoring trends and social
determinants of infant and under five mortality

• generate basic health data, register trends and transitions in diseases and
mortality pattern

• act as a platform for epidemiological studies and research,
• function as a planning instrument for health services such as antenatal

care services for pregnant woman, vaccines for children, etc,
• serve as a sampling frame for research in various studies such as

maternal mortality, teenage sexuality and reproduction, sexual risk
behavior, domestic violence and impact of woman's access and control
over resources on child survival

After several years of collecting demographic and health related information it
was recognizes that the database used for storing it needed to be redesigned
since it was proving difficult extracting good quality data, making it less
valuable.

3

3 Problem Description

Due to the ad hoc way the database schema has evolved since its inception in
1993, and the lack of sufficiently implemented constraints, both in the
database and in the forms used for entering the information, redundant and
faulty data now litters the database.

Besides being a maintenance nightmare, it makes it hard to extract good
quality data, making it less valuable for researchers and public health services.

The system has two major problems:

• Badly implemented database design, leading to abundance of redundant
and faulty data.

• Insufficient implemented constraints, or the complete lack thereof, in
the forms used when entering information into the database, making it
possible to register a man as having given birth to a child, and
registering the date of birth for a newborn to a date before that of the
mother.

To solve these problems a new database design needed to be developed
together with a graphical interface for entering data.

4

4 Purpose and goal

The purpose of this thesis is to construct a prototype for a solution to the
problems outlined in chapter 3.

A middle tier, designated DHSS Gateway, will be developed, safeguarding the
database used for storing the collected core demographic data, providing
access to it only via a specific set of Web Services, making out an API.

A resource centric approach will been taken when creating the system,
focusing on domain objects mapping to tables using ORM, exposing them as
resources via HTTP in a RESTful [4] way. This shifts the focus from the
database to a higher level, leaving the creating of tables and mapping between
them up to the ORM layer.

As such, the design of the database itself has not been of major focus since the
mapping between objects and tables are performed by the ORM layer.

The middle tier should

• acts as gateway to the data stored in a database
• provide a uniform interface to the data via HTTP and HTTPS
• enforce constraints to prevent data from being corruption
• prevent unauthorized access to sensitive data

5

5 Limitations

Since it is a prototype security has not been of main focus. This would of
course be of high importance were it to be developed further, with the purpose
of being used in production.

Instead of focusing on the development of a new database schema for the
system, ORM was used for mapping objects to tables. This means there are no
ER-diagrams depicting the new database design.

If it turned out to be a performance problem in the future, having developed a
fully functional system, the automatic mapping of objects to tables would have
to be reviewed at that point.

However, until such time that it is deemed a problem, the use of ORM for
automatically mapping objects to tables, creating these through software, will
suffice.

6

6 Development process

This chapter explains the development process and tools used throughout the
course of the work.

6.1 Development methodology
No formal development process was used throughout the course of the work,
due to lack of planning at the start. This worked reasonable well due to it
being a one man project. However, the failure to reach deadlines at multiple
occasions can probably be attributed to the lack of a formal development
process and the lack of planning in general.

Documents and code were being worked on simultaneously which worked
reasonable well. It was an iterative process, writing code and updating the
documentation as the vision of the new system crystallized.

No formal milestones existed, besides the occasional hand-ins of the final
report for review by the supervisor and the final hand-in of all documents and
code at the end of the project.

Since there was no actual customer in this case and therefore no one to consult
regarding desired functionality, this unstructured way of working worked
fairly well even though time slippage occurred throughout major part of the
project, leading to extended deadlines and delayed delivery.

6.2 Tools
For the DHSS Gateway, Grails [8], an open source web framework was used
to build the API, partly due to it’s currently popularity, having been used for
such big sites as LinkedIn [14], among others.

The framework is highly suitable for rapid prototyping due to its ORM
capabilities and DRY principles. Also, due to the fact that it runs on the JVM
it can leverage existing, time tested frameworks such as Spring [15] and
Hibernate [16].

Eclipse [10], an open source IDE was used for writing the code making up the
system DHSS Gateway. For the DHSS Gateway Client, Flex Builder was used
since the client is built using the Flex framework [17].

Git [11], an open source version control system, was used to keep track of all
files and documents, using the services provided by github.com [12].

7

Microsoft Word 2003 was used for producing all documents throughout the
project.

Visual Paradigm for UML Community Edition [13] was used for all UML
diagrams. Having tried several alternatives, this generated the best looking
diagrams.

The choice of frameworks and tools were mainly done from a perspective of
wanting to try out some of the latest technologies. Another factor affecting the
choices that were made was the aim of using open source alternatives. Both
Grails and Flex are open source frameworks.

7 Results

The results of this thesis is a prototype for a middle tier acting as a gateway to
a database storing demographic, health, and socioeconomic data. Also, a
prototype for a client using this gateway has been developed.

For the DHSS Gateway and DHSS Gateway Client, support for the following
uses cases has been implemented. However, since it is a prototype, the
security aspects of the system have not been of main concern. See chapter 8
for suggestions on further development.

Use case diagram 1: Displays the use case involving collection and
verification of data.

8

Use case diagram 2: Displays use case involving approval, and registration of
collected data.

Use case diagram 3: Displays use case involving the retrieval of data from the
gateway.

7.1.1 Deliverables

7.1.1.1 DHSS Gateway
The gateway implements a resource-oriented architecture, exposing the data
stored in the in the database as resources in a RESTful [4] way.

REST [5] is an abbreviation which stands for Representational state transfer
and is a style of software architecture for distributed hypermedia systems such
as the World Wide Web.

It outlines principles for how resources are defined and addressed. A resource
is anything that is important enough to be referenced as a thing in itself.

Examples of resources within the DHSS are

9

• individual with an ID of MA101B401,
• list of individuals,
• individuals who died before they reached the age of 5,
• list of households with dirt floors,
• pregnancy episode for individual with an ID of SB101C103.

Every resource can be accessed through at least one unique URI, e.g.
/individual/MA101B401, and they all support the same HTTP methods (GET,
PUT, POST, DELETE), although not all resources will implement all
methods.

This means that by calling GET HTTP for the resource
/individual/MA101B401 we will, by default, get a HTML representation of
that resource.

Similarly, by requesting GET HTTP for the resource /individuals we will get a
list of individuals, and by calling DELETE HTTP /individual/MA101B401 we
are requesting for that resource to be deleted.

Since we are on the Web, implying HTTP is used as protocol, we can access
resources using nothing more than a web browser, if no authentication
methods have been put in place to prevent anonymous access to the data that
is.

A resource can have several different representations depending on which are
supported by the system, i.e. which have been implemented in the gateway.

Figure 1 below shows the response received from the gateway when accessing
the resource /domain/household/MA101B8. By default a HTML
representation of the resource is returned.

10

Figure 1: Requesting an HTML representation of the resource
/domain/household/MA101B8.

In this case HTML was received from the gateway since that is the default
representation. By appending .xml to the resource an XML representation is
received instead, as can been seen in figure 2 below.

11

Figure 2: Requesting an XML representation of the resource
/domain/household/MA101B8.

As long as the gateway has implemented the format, it can return the
requested resource in the requested representation, for example PDF.

This is what representational means when referring to representational state
transfer.

By following the principles of REST [5] and implementing the gateway in a
RESTful [4] way, a unified interface for obtaining the data stored in the
database is obtained, using only the HTTP verbs GET, PUT, POST, and
DELETE to specify the requested action.

12

7.1.1.2 DHSS Gateway SDD
A SDD (Software Design Description) [7] document is an IEEE standard that
specifies the form of the document used to specify system architecture and
application design in a software related projects.

This document contains, among other things, class diagrams depicting the
domain objects implemented in the gateway. It describes the chosen
architecture and lists the components making out the system.

The document describes the advantages of constructing the system in a
RESTful [4] way, exposing the data guarded by the gateway via a unified
HTTP-based API.

See Appendix I for more information.

7.1.1.3 DHSS Gateway API Documentation
This document specifies the available resources exposed by the gateway,
together with their HTTP verbs used for manipulating or acquiring a
representation of each resource.

This is only a draft intended to be further developed.

See Appendix II for more information.

7.1.1.4 DHSS Gateway Client
The client runs in a standard web browser and is built using the Flex
framework, which means that the application is Flash-based. This in turn
makes it possible to build slick user interfaces which are user friendly and
responsive.

Figure 3 below displays an image depicting the registration of an observation.
An observation is connected to a household and is performed within a census.
It’s performed on a specific date and by a specific person deemed as the
observer.

13

Figure 3: Starting a new observation.

There are two main parts to an observation: the observation of attributes
pertaining to the household, and details pertaining to residents therein.

Figure 4 below depicts the registration of household attributes and figure 5
shows a form used for registering residents and related information.

Figure 4: Registering information pertaining to household.

14

Figure 5: Registering information pertaining to residents.

15

8 Further Development

This chapter lists suggestions for further development.

8.1 Digitalize forms for use by disconnected devices
In order to use disconnected devices, such as laptops or PDAs, for collecting
demographic and health related information, replacing the paper forms
currently being used, digitalized versions of the forms needs to be developed.

This would make it possible to implement constraints in the forms used when
collecting the information, preventing simple errors from being entered and
thereby increasing the quality of the data.

In order to support the use of digitalized forms one would also need to
implement the ability to check out a subset of data for use in the field, as
suggested by section 8.2.

8.2 Enabling checkout of data
To enable the use of disconnected devices, such as laptops and PDAs, for use
in the field when collecting information one would need the ability to check
out a subset of data.

This would allow the digitalized forms described in section 8.1 to implement
constraints that can only be implemented when having access to historical
data.

8.3 Implement authorization, authentication, and auditing
In order to prevent unauthorized users from accessing sensitive information,
and performing actions they are not allowed to perform, authorization and
authentication features would need to be implemented.

Also, in order to track who does what, auditing features would need to be
added to the system.

16

9 Conclusion

The project started out two years ago with the purpose of implementing a
simple web-based front-end to a database storing demographic, health, and
socioeconomic information.

The database had been created by previous students working on their thesis at
CIDS and the purpose of the web front-end was to supply the data entry
department with simple forms for entering and updating information stored in
said database, and for researchers to more easily access information therein.

However, as developers often do when scrutinizing work done by others,
feeling unsatisfied with the new database design, additional time was spent
working on it, delaying the work that was originally planned.

After having struggled for a couple of months, redoing much of the work that
had previously been done, including the requirements elicitation, the new
improved database design was complete and a good understanding of the
domain had been acquired in the process.

After working with several prototypes, both web-based and Microsoft Access
2002 based, time finally ran out and I had to return back home.

Once back, the work was put on hiatus, having started my career as a system
developer, finding it hard to set aside time to continue the work that had been
done.

After a number of failed attempts to get the project back on track, it finally got
revamped with a new solution and a new goal.

Thanks to the patients of my supervisor who approved numerous extended
deadlines, the project was finally completed.

The intention is to continue the development of the DHSS Gateway and DHSS
Gateway Client until a fully functional system is available for use by
organizations all over the world running DSS sites.

17

10 References

[1] Demographic Surveillance System Database

Nils Assarsson, Tommy Ljunggren, Lund University, 2003

[2] A Conceptual Description of the Database version 1.0

M.Pedersen, A.Mårtensson

[3] CIDS, “Centre for Demographic and Health Research in Leon,
Nicaragua (informative folder), CIDS, 2003

[4] RESTful Web Services

Leonard Richardson & Sam Ruby, 2007

ISBN: 978-0-596-52926-0

[5] Architectural Styles and the Design of Network-based Software
Architectures, Roy Thomas Fielding, 2000

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[6] IEEE Standard for Software Requirements Specifications

IEEE Std 830-1993

[7] IEEE Standard for Software Design Description

IEEE 1016-1998

[8] Grails

http://grails.org/

[9] Groovy

http://groovy.codehaus.org/

[10] Eclipse

http://www.eclipse.org/

[11] Git

http://git.or.cz/

18

[12] Github

http://github.com/

[13] Visual Paradigm for UML Community Edition

http://www.visual-paradigm.com/product/vpuml/communityedition.jsp

[14] http://www.linkedin.com/

[15] http://www.springframework.org/

[16] http://www.hibernate.org/

[17] http://www.adobe.com/products/flex/

DHSS Gateway

Software Design Description

LTH School of Engineering at Campus Helsingborg

Revisions

Date Name Version Description

2008-11-18 Robert T. 1.0 Baseline set.

Definitions

Census The procedure of systematically acquiring
and recording information about the
members of a given population.

Longitudinal data Pertaining to changes in data over time.

Episode A period in time delimited by a start and
an end date.

Event Indicates an action; that something has
happened.

Web services Software system designed to support
interoperable machine-to-machine
interaction over a network.

Resource-oriented architecture Specific set of guidelines of an
implementation of the REST architecture.

RESTful Systems which follow Fielding’s REST
[1] principles are often referred to as
RESTful.

HTTP method HTTP defines eight methods indicating
the desired action to be performed on the
identified resource.

Table 1. List of definitions

Acronyms and abbreviations

API Application Programming Interface; the
public interface to a component or sub-
system

CIDS Centro de Investigación en Demografía y
Salud

DSS Demographic surveillance system; The
process of defining risk and
corresponding dynamics in rates of birth,
deaths, and migration in a population over
time.

DHSS Demographic and Health Surveillance
System; see DSS.

HTTP Hypertext Transfer Protocol; use for
retrieving inter-linked text documents.

XML Extensible Markup Language

HTML Hypertext Markup Language

XHTML Extensible Hypertext Markup Language;
the same as HTML but conforms to XML
syntax.

REST Representational state transfer; a style of
software architecture for distributed
hypermedia systems.

ROA Resource-oriented architecture

URI Uniform resource identifier

RPC Remote procedure call

CRUD Create, read, update, delete
Table 2. List of acronyms and abbreviations

Table of contents

1 Introduction ..1
1.1 Design Overview ..2
1.2 Requirements Traceability Matrix ...6

2 System Architectural Design..6
2.1 Chosen System Architecture ...6
2.2 Discussion of Alternative Designs ...6
2.3 System Interface Description ..7

3 Detail Description of Components ...7
3.1 DHSS Gateway...7

3.1.1 Resources..7
3.1.1.1 Census..7
3.1.1.2 Observation..7
3.1.1.3 Observer ..8
3.1.1.4 Household ..8
3.1.1.5 Individual ...9
3.1.1.6 Pregnancy episode ...9
3.1.1.7 Resident episode...10
3.1.1.8 Death event ..10
3.1.1.9 Birth event..10
3.1.1.10 Abortion event ..10
3.1.1.11 In-migration event ..10
3.1.1.12 Out-migration event ...11
3.1.1.13 Territory...11
3.1.1.14 District ...11

3.1.2 Use cases ..11
3.1.3 Class diagrams ..13

4 User Interface Design ...15
4.1 Description of the User Interface ..15

4.1.1 Screen Image ..15
4.1.2 Objects and Actions ..15

5 Additional Material ..15

6 References ...15

1

1 Introduction

This document describes the software architecture for DHSS Gateway, a
middle tier server application acting as a gateway to a database storing
demographic and health surveillance (DHSS) data.

The gateway exposes an API consisting of a number of web services, used for
retrieving and manipulating demographic, health, and socioeconomic data.

These services have been implemented using a resource-oriented architecture,
in accordance with the principles of REST [1], exposing data as resources,
each accessible via at least one unique URI, through a uniformed interface.

By using the HTTP methods for manipulating resource we gain the advantage
of a uniform interface which simplifies the system and makes it easier to learn
and use.

The system is modelled according to current procedures at CIDS [3], in the
city of León, Nicaragua, where a continuous monitoring system has been in
place since 1993, tracking demographic, health and socioeconomic events for
a select number of households throughout the municipality.

The primary goal and purpose of the new system is to be able to replace the
one currently being used, with the aim of increasing the quality of the data that
is being collected and stored in the database, as well as simplifying the
extraction of data used for research and for creating public health planning
programs.

The secondary goal is to ease the work load for those involved in collecting,
validating, entering and using the data.

However, being a prototype it is not a fully functioning system and further
development is needed before it can be put into production.

This document is the result of a thesis at LTH School of Engineering, Campus
Helsingborg.

2

1.1 Design Overview
The system is a server application, acting as a gateway to a database storing
demographic, health and socioeconomic data. The gateway exposes a number
of resources as web services, making up an API which can be used to retrieve
and manipulate data stored in the database.

Image 1: System overview showing the flow of communication between
components.

Communications with the API is done via HTTP, making it possible to access
data exposed by the server, via RESTful web services, using nothing more
than a simple web browser.

By default the server will serve XHTML when a client asks for a
representation of a resource.

A resource is anything that is important enough to be referenced as a thing in
it self. Examples of resources within the DHSS are

• individual with an ID of MA101B401,
• list of individuals,
• individuals who died before they reached the age of 5,
• list of households with wood used as material for the walls,
• pregnancy episode for individual with an ID of SB101C103.

XHTML
XML

XML

3

A resource can have several different representations depending on which are
supported by the server, for the specific resource. The DHSS Gateway will by
default serve a XHTML representation of the requested resource if the desired
representation isn’t specified.

For example, by requesting the URI http://domain/household/MA101B8 a
XHTML representation of that resource will be returned to the client. To get a
XML representation of the same resource, append .xml to the URI, e.g.
http://domain/ household/MA101B8.xml.

Image 1 below shows the response received from the gateway when accessing
the resource located at URI http://domain/household/MA101B8. By default a
XHTML representation of the resource is returned.

Image 2: Requesting an XHTML representation of the resource
/domain/household/MA101B8.

In this case XHTML was received from the gateway since that is the default
representation. By appending .xml to the resource an XML representation is
received instead, as can been seen in image 2 below.

4

Image 3: Requesting an XML representation of the resource
/domain/household/MA101B8.

As long as the gateway has implemented the ability, it can return the requested
resource in the requested representation.

This is what representational means when referring to representational state
transfer.

Instead of appending .xml to the URI, the entity type Content-Type located in
the header of the request can be set to xml/text, which will indicate to the
server that a XML representation is desired.

Clients acting as front-end applications will most probably want to
communicate with the server using XML.

5

Exposing the data stored in the database in a RESTful way implies that the
HTTP methods be used for retrieving and manipulating the data. HTTP has a
total of 7 methods, of which 4 are used for retrieving, inserting, updating and
deleting data: GET, PUT, POST, and DELETE

The gateway does not implement any logic for the rest of the HTTP methods.

By using these to specify the desired action, instead of specifying it in the
URI, which is a common practice, the interface becomes more intuitive and
easier to use.

Instead of http://domain/individual/MA104B401?action=delete we get HTTP
DELETE http://domain/individual/MA104B401.

The URI http://domain/individual/MA104B401, when requested using a web
browser, i.e. HTTP GET is used, will retrieve a XHTML representation of the
individual with the ID MA104B401. Similarly, by requesting
http://domain/household/MA104B4, again using HTTP GET, we get a
XHTML representation for the household with the ID MA104B4.

By implementing the web services in this way, users of the API can easily
discern how to get a representation for a household resource as well as any
other resources exposed by the system.

By following the principles of REST [5] and implementing the gateway in a
RESTful [4] way, a unified interface for obtaining the data stored in the
database is obtained, using the HTTP verbs GET, PUT, POST, and DELETE
to signal the requested action.

This simplifies the use of the API but adds the necessity for developers to
think differently when designing the classes that make out the resources that
expose underlying data.

class Household {

 public void select() { // … } HTTP GET

 public void insert() { // … } HTTP POST

 public void update() { // … } HTTP PUT

 public void delete() { // … } HTTP DELETE

}

6

Code example 1: By following the principles of REST we get a simplified
interface.

1.2 Requirements Traceability Matrix
Not applicable since it is only a prototype, a proof of concept, without any
actual customer.

2 System Architectural Design

This chapter outline the architectural design decisions for the DHSS Gateway.

2.1 Chosen System Architecture
A resource-oriented architecture (ROA) was chosen for they DHSS Gateway
implying the implementation of the principles laid out by REST [1], a style of
software architecture for distributed hypermedia systems such as the World
Wide Web.

By constructing the system in a RESTful [2] way focus is on exposing data as
a set of uniquely identifiable resources which all share the same interface, that
of the HTTP methods.

By building the API in this way it becomes more intuitive and easier to use,
instead of using a RPC approach.

A complete system consists of three parts:

• Database
• Gateway (middle tier server)
• Client (front-end or other)

Any of the major databases in existence today can be used, such as Oracle,
MySQL and SQLServer.

The implementation of a client is outside the scope of this project.

2.2 Discussion of Alternative Designs
No alternative designs have been contemplated. The chosen architecture is
considered suitable enough for the problems it was constructed to solve.

7

2.3 System Interface Description
The system interface is made up of a number of unique URIs accessed over
HTTP and HTTPS, which implement some or all of the HTTP methods for
retrieving, inserting, updating, and deleting data from the underlying database.

Together they form a simple to use API to the system. This API specified in
the document DHSS Gateway API.

3 Detail Description of Components

3.1 DHSS Gateway
3.1.1 Resources
This section lists the available resources in the DHSS Gateway and gives a
short description of each. This list is not a complete list of all resources in the
system. Some resources would normally be declared as actions in other
resources, such as the creating of a death event, signalling the end of a resident
episode.

However, since this is a prototype only the resources of main interest are
listed.

3.1.1.1 Census
Every three months a census is performed involving all households included in
the DHSS operated by CIDS, collecting information such as pregnancies,
births, deaths, cause of death, and migrations.

The census is performed by field workers, called observers in the system (see
3.1.1.3), who are assigned households with which to conduct interviews with
the head of the family.

A census has a start and an end date, and a description.

The gateway implements full CRUD support for census.

3.1.1.2 Observation
An observation is the act of collecting demographic, health, and
socioeconomic data within the time period of a census, and is performed by an
observer (see 3.1.1.3).

The observation has a start and an end date which must be within the time
period of the census.

8

If approved by the supervisor, the data collected during the observation is sent
to the data department for entry into the DHSS database, by using a front-end
application communicating with the DHSS gateway through the API.

However, if the supervisor finds inconsistencies in the data collected, it is sent
back to the observer which visits the household in question to acquire the
missing information.

Every piece of data collected and stored in the DHSS system is done in the
context of an observation. That way, it’s possible to trace any changes in the
information making out the longitudinal data.

The gateway implements full CRUD support for observation.

3.1.1.3 Observer
An observer is a person who performs an observation (see 3.1.1.2) at a
specific household included in the DHSS, collecting information such as
pregnancies, births, deaths, cause of death, and migrations.

The collected information is then handed to the supervisor for inspection and
approval.

The term used at CIDS for an observer is field worker.

The gateway implements full CRUD support for observer.

3.1.1.4 Household
A household is a place inhabited by a group of people making up a family,
each household having a person who is considered to be the head of family,
with whom the observer performs the interview.

A household is located within a block which in turn is located within a district
(see [3.1.1.13].), and is given an ID that is unique within that block. The id is
made up of a letter between A to Z followed by a number ranging from 1 to 9,
e.g. A1.

Further more, each household is assigned a unique ID within the system itself,
a global ID composed of the territory id, followed by the district id, then the
block id and finally the house id, e.g. MA104B4.

By using this ID we can give each household a unique URI, such as
http://domain/household/MA104B4.

9

Information related to household attributes such as the materials used for the
floors, walls and ceiling, availability of hygienic factors such as access to
running water and lavatory facilities, and the availability of electricity, is
collected when the household is registered for the first time in the system.

This is normally only collected once, or has been the case so far for the DHSS
currently operated by CIDS, meaning that longitudinal data is not generated
for this information.

Since it is used for assessing the level of poverty for the household and the
inhabitants living therein, and since it would be of interest to see how this
changes over time, the DHSS Gateway has built in support for the tracking of
longitudinal information for these attributes.

The gateway implements full CRUD support for household.

3.1.1.5 Individual
An individual is a person registered in the DHSS, having been so as part of an
observation at a specific household. Information such as first name, last name,
sex and date of birth is collected, together with current and historic pregnancy
history if the individual is a woman between the age of 15 and 55.

Also registered is the current occupation, if at least 7 years old, and the current
level of education, if at least 15 years old.

Each individual registered in the DHSS is assigned a unique ID by composing
the global ID for the household with a number ranging from 01 to 99, e.g.
MA104B401.

This is a global ID used for tracking the individual throughout the DHSS
system.

The gateway implements full CRUD support for individual.

3.1.1.6 Pregnancy episode
A pregnancy episode is initiated when it is observed that a woman residing
within the household being visited is pregnant. The date of conception is
estimated as the start date of the pregnancy.

The end date consists of the date the woman gave birth or when the pregnancy
was terminated, by giving birth or by abortion, either provoked or
spontaneous, meaning she had a miscarriage.

10

Previous pregnancy history is also recorded the first time a woman is
registered in the system, estimating the start and end dates and specifying the
outcome of the pregnancy.

In the case of birth, two possible outcomes exist: live birth or still born
Method of delivery, caesarean or vaginal, is also stored for each birth.

The gateway implements full CRUD support for pregnancy episode.

3.1.1.7 Resident episode
A resident episode is the period of time an individual resides within a specific
household, and can start by the individual being born into the household, or by
moving in, which is referred to as in-migration in the current DHSS system.

A resident episode can end by the individual moving out of the household,
referred to as out-migration in the current DHSS, or by death.

A special case exists for when setting up the baseline for the DHSS, i.e. when
registering all households that are to make up the foundation for the
construction of longitudinal data. In this case, a resident episode is started by a
baseline setup event.

The gateway implements full CRUD support for resident episode.

3.1.1.8 Death event
A death event occurs when an individual dies. It contains a date of death and
cause of it.

The gateway implements full CRUD support for death event.

3.1.1.9 Birth event
A birth event occurs when a woman has given birth to a child. It contains date
of birth, outcome (live born, stillborn) and type of delivery (caesarean or
vaginal).

The gateway implements full CRUD support for birth event.

3.1.1.10 Abortion event
An abortion event occurs when a pregnancy terminates through abortion and
has a date of abortion and type (provoked or spontaneous).

The gateway implements full CRUD support for abortion event.

3.1.1.11 In-migration event
An in-migration event occurs when a new individual is registered as a resident
in a household.

11

The gateway implements full CRUD support for in-migration event.

3.1.1.12 Out-migration event
An out-migration event occurs when an individual is registered as having
moved out of a household.

The gateway implements full CRUD support for in-migration event.

3.1.1.13 Territory
A territory is a large area containing several districts and can span both urban
and rural areas. The convention at CIDS is to use the first letter in the name of
the territory to act as an id for it.

Currently there are only three territories included in the DHSS operated by
CIDS in León: Mantica, Subtiava, and Perla Maria

The gateway implements full CRUD support for territory.

3.1.1.14 District
A district is an area contained within a territory (see 3.1.1.4) and can be
regarded as either urban or rural. The convention at CIDS is to assign each
district an id made up of a letter followed by a number between 1-9, e.g. A1.

Besides being given a unique ID (unique in the territory in which the district is
located), each district also has a name.

A district contains a number of blocks, numbered between 01-99, in which a
number of households are located, numbered between [A-Z][1-9], e.g. A1.

The gateway implements full CRUD support for district.

3.1.2 Use cases
This section specifies a number of use cases for the system.

12

Use case 1: Use case depicting the actions and interactions performed by
fieldworkers (observers) and supervisors.

Use case 2: Use case depicting the actions and interactions performed by
supervisors, data entry and the gateway.

13

Use case 3: Use case depicting the actions and interactions performed by
researchers and the gateway.

3.1.3 Class diagrams
This section lists the class diagrams that were created during the construction
of the system.

Class diagram 1: Displaying classes involved when dealing with a resident
episode.

14

Class diagram 2: Displaying classes involved when dealing with a pregnancy
episode.

Class diagram 3: Displaying classes involved when dealing with occupation
and education level history.

15

Class diagram 4: Displaying classes involved when dealing with household
attributes history.

4 User Interface Design

Not applicable since the DHSS Gateway has not graphical components except
for the simple XHTML once. However, these are mostly for demonstration
purposes and are not intended to be used in production and will therefore not
be listed here. In a production system most of these will be inaccessible.

4.1 Description of the User Interface
Not applicable.

4.1.1 Screen Image
Not applicable.

4.1.2 Objects and Actions
Not applicable.

5 Additional Material

No additional material.

6 References

[1] Architectural Styles and the Design of Network-based Software
Architectures, Roy Thomas Fielding, 2000

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[2] RESTful Web Services

Leonard Richardson & Sam Ruby, 2007

16

ISBN: 978-0-596-52926-0

[3] CIDS, “Centre for Demographic and Health Research in Leon,
Nicaragua (informative folder), CIDS, 2003

DHSS Gateway

Application Programming Interface

LTH School of Engineering at Campus Helsingborg

Revisions

Date Name Version Description
2008-11-19 Robert T. 1.0 Baseline set.

 Acronyms and Abbreviations

API Application Programming Interface; the
public interface to a component or sub-
system

CRUD Create, read, update, delete

XML Extensible markup language

XHTML Extensible hipertexto markup language

HTTP methods HTTP has a total of seven methods; GET,
POST, PUT, DELETE, HEAD, TRACE,
and OPTIONS.

Table 2. List of acronyms and abbreviations

Table of contents

1 Purpose... 1

2 Open Issues .. 1

3 Resources.. 2
3.1 Census.. 2

3.1.1 Retrieve census .. 2
3.1.2 Retrieve list of censuses ... 2
3.1.3 Create census ... 3
3.1.4 Update census .. 3
3.1.5 Delete census ... 3

3.2 Observation ... 4
3.2.1 Retrieve observation... 4
3.2.2 Retrieve list of observations ... 5
3.2.3 Create observation.. 5
3.2.4 Update observation .. 5
3.2.5 Delete observation.. 5

3.3 Observer .. 5
3.3.1 Retrieve observer ... 5
3.3.2 Retrieve list of observers.. 6
3.3.3 Create observer .. 6
3.3.4 Update observer ... 7
3.3.5 Delete observer .. 7

3.4 Household .. 7
3.4.1 Retrieve household... 7
3.4.2 Retrieve list of households ... 8
3.4.3 Create household.. 9
3.4.4 Update household... 9
3.4.5 Delete household.. 9

3.5 Individual .. 9
3.5.1 Retrieve individual ... 10
3.5.2 Retrieve list of individuals ... 10
3.5.3 Create individual .. 11
3.5.4 Update individual... 11
3.5.5 Delete individual .. 11

3.6 Territory.. 11
3.6.1 Retrieve territory .. 12
3.6.2 Retrieve list of territories.. 12
3.6.3 Create territory... 13
3.6.4 Update territory.. 13
3.6.5 Delete territory... 13

3.7 District ... 13

3.7.1 Retrieve district...13
3.7.2 Retrieve list of districts ...14
3.7.3 Create district..14
3.7.4 Update district...15
3.7.5 Delete district..15

3.8 In-migration event ...15
3.8.1 Create in-migration event..15
3.8.2 Update in-migration event...15
3.8.3 Delete in-migration event..16

3.9 Out-migration event ..16
3.9.1 Create out-migration event..16
3.9.2 Update out-migration event...16
3.9.3 Delete out-migration event..16

3.10 Death event...17
3.10.1 Create death event...17
3.10.2 Update death event..17
3.10.3 Delete death event...17

3.11 Pregnancy event ...17
3.11.1 Create pregnancy event ...18
3.11.2 Update pregnancy event ..18
3.11.3 Delete pregnancy event ...18

3.12 Birth event..18
3.12.1 Create birth event..18
3.12.2 Update birth event...19
3.12.3 Delete birth event..19

3.13 Abortion event..19
3.13.1 Create abortion event ..19
3.13.2 Update abortion event ...19
3.13.3 Delete abortion event ..20

1

7 Purpose

This document specifies the application programming interface (API) for
DHSS Gateway, a server based solution used for retrieving and manipulating
demographic, health, and socioeconomic data stored in a database.

The API consists of a number of web services exposing data in the underlying
database as resources, each implementing methods responding to at least one
of the HTTP methods GET, PUT, POST, or DELETE, corresponding to what
is designated CRUD.

This document is the result of a thesis at LTH School of Engineering, Campus
Helsingborg.

8 Open Issues

Being a prototype, the API for the DHSS Gateway has not been fully
implemented. The purpose of this document is, at this stage, to give the reader
an overview over the resources and available methods exposed by these.

2

9 Resources

This section lists the available resources in DHSS Gateway, each one
containing the following information:

• URI
• HTTP Method
• Parameters
• Representations
• Error codes
• Example usage

9.1 Census
A census is the procedure of systematically acquiring and recording
information about the members of a given population, and it has a description,
start date and end date.

9.1.1 Retrieve census
HTTP Method GET
URI /census/<census id>
Representations XHTML, XML

Parameter Description
census id Census id

Error code Description
200 OK Specified census found.
404 Not Found Specified census not found.

Example 1
Invocation HTTP GET /somedomain/census/1.xml
Explanation Retrieve XML representation of census with an ID of 1.
Head return 200 OK
Body return <Census id=”1”>

 <Description>Census period 1</Description>
 <StartDate>2008-01-01</StartDate>
 <EndDate>2008-03-01</ EndDate >
</Census>

9.1.2 Retrieve list of censuses
HTTP Method GET
URI /censuses
Representations XHTML, XML

3

Parameter Description
N/A

Error code Description
N/A

Example 1
Invocation HTTP GET /somedomain/census/1.xml
Explanation Retrieve XML representation of list of censuses.
Head return 200 OK
Body return <Censuses>

 <Census id=”1”>
 <Description>Census period 1</Description>
 <StartDate>2008-01-01</StartDate>
 <EndDate>2008-03-01</ EndDate >
 </Census>
</Censuses>

9.1.3 Create census
HTTP Method POST
URI /census
Representations N/A

Error code Description
201 OK The new census was successfully created.
400 Bad Request The server was unable to create the census.

9.1.4 Update census
HTTP Method PUT
URI /census/<census ID>
Representations N/A

Error code Description
200 OK The specified census was successfully updated.
400 Bad Request The server was unable to update the specified census.

9.1.5 Delete census
HTTP Method DELETE
URI /census/<census ID>
Representations N/A

Error code Description
201 OK The specified census was successfully deleted.
400 Bad Request The server was unable to delete the specified census.

4

9.2 Observation
An observation is performed by an observer. An observation can belong to a
census, but can also be performed outside of a census, for instance when
setting up a baseline.

Whether it is setting up a baseline or performing census, everything is
performed within the context of an observation.

9.2.1 Retrieve observation
HTTP Method GET
URI /observation/<id>
Representations XHTML, XML

Parameter Description
observation id Observation id

Error code Description
200 OK Specified observation found.
404 Not Found Specified observation not found.

Example 1
Invocation HTTP GET /somedomain/observation/1.xml
Explanation Retrieve XML representation of observation with an ID

of 1.
Head return 200 OK
Body return <Observation id=”1”>

 <CensusID>3</CensusID>
 <ObserverID>2</ObserverID>
 <StartDate>2008-01-01</StartDate>
 <EndDate>2008-03-01</ EndDate >
 <Approved>True</Approved>
</Observation>

5

9.2.2 Retrieve list of observations
Invokation HTTP GET /somedomain/observations.xml
Explaination Retrieve XML representation of list of observations.
Head return 200 OK
Body return N/A

9.2.3 Create observation
HTTP Method POST
URI /observer/<observer ID>/observation
Representations N/A

Error code Description
201 OK The observation was successfully created.
400 Bad Request The server failed to create the observation.

9.2.4 Update observation
HTTP Method PUT
URI /observer/<observer ID>/observation/<observation ID>
Representations N/A

Error code Description
201 OK The specified observation was successfully updated.
400 Bad Request The server failed to update the specified observation.

9.2.5 Delete observation
HTTP Method DELETE
URI /observer/<observer ID>/observation/<observation ID>
Representations N/A

Error code Description
201 OK The specified observation was successfully deleted.
400 Bad Request The server failed to delete the specified observation.

9.3 Observer
An observer is a person who performs the census, visiting selected households
to gather information. An observer has a first and a last name.

9.3.1 Retrieve observer
HTTP Method GET
URI /observer/<observer id>
Representations XHTML, XML

Parameter Description
observer id Observer id

6

Error code Description
200 OK Specified observer found.
404 Not Found Specified observer not found.

Example 1
Invocation HTTP GET /somedomain/observation/1.xml
Explanation Retrieve XML representation of observation with an ID

of 1.
Head return 200 OK
Body return <Observer id=”1”>

 <FirstName>Gilberto</FirstName >
 <LastName>Gano</LastName >
</Observer >

9.3.2 Retrieve list of observers
HTTP Method GET
URI /observers
Representations XHTML, XML

Parameter Description
N/A

Error code Description
200 OK List of observers found.
404 Not Found No observers found.

Example 1
Invocation HTTP GET /somedomain/observers
Explanation Retrieve XML representation of list of observers.
Head return 200 OK
Body return <Observers>

 <Observer id=”1”>
 <FirstName>Gilberto</FirstName >
 <LastName>Gano</LastName >
 </Observer>
 <Observer id=”2”>
 <FirstName>Maria</FirstName >
 <LastName>Teresa</LastName >
 </Observer>
</Observers>

9.3.3 Create observer
HTTP Method POST
URI /observer

7

Representations N/A

Error code Description
201 OK The observer was successfully created.
400 Bad Request The server failed to create the observer.

9.3.4 Update observer
HTTP Method PUT
URI /observer
Representations N/A

Error code Description
201 OK The specified observer was successfully updated.
400 Bad Request The server failed to update the specified observer.

9.3.5 Delete observer
HTTP Method DELETE
URI /observer
Representations N/A

Error code Description
201 OK The specified observer was successfully deleted.
400 Bad Request The server failed to delete the specified observer.

9.4 Household
A household is a place inhabited by a group of individuals making up a
family, each household having a person who is considered to be the head of
the family.

When first registered each household is assigned a globally unique ID, using
the following algorithm:

Territory ID + District ID + Block code + Household code

Example: MA101B4

9.4.1 Retrieve household
HTTP Method GET
URI /household/<household id>
Representations XHTML, XML

Parameter Description
household id Household id

Error code Description

8

200 OK Specified household found.
404 Not Found Specified household not found.

Example 1
Invocation HTTP GET /somedomain/household/ MA101B4.xml
Explanation Retrieve XML representation of household with an ID of

MA101B4.
Head return 200 OK
Body return <Household>

 <ID>MA101B4</ID>
 <Head>MA101B401</Head>
 <Location>
 <Territory>Mantica</Territory>
 <District>Cococobana</District>
 <Block>01</Block>
 </Location>
 <Residents>
 <Resident>
 <IndividualID>MA101B401</IndividualID>
 </Resident>
 <Resident>
 <IndividualID>MA101B402</IndividualID>
 </Resident>
 <Resident>
 <IndividualID>MA101B403</IndividualID>
 </Resident>
 </Residents>
</Household>

9.4.2 Retrieve list of households
HTTP Method GET
URI /households
Representations XHTML, XML

Parameter Description
district id District id
territory id Territory id

Error code Description
200 OK Specified household found.
404 Not Found Specified household not found.

Example 1
Invocation HTTP GET /somedomain/households

9

Explanation Retrieve XML representation of list of households.
Head return 200 OK
Body return <Households>

 <Household>
 (See 2.4.1, example 1)
 </Household>
</Households>

9.4.3 Create household
HTTP Method POST
URI /household
Representations N/A

Error code Description
201 OK The household was successfully created.
400 Bad Request The server failed to create the household.

9.4.4 Update household
HTTP Method PUT
URI /household/<ID>
Representations N/A

Error code Description
201 OK The specified household was successfully updated.
400 Bad Request The server failed to update the specified household.

9.4.5 Delete household
HTTP Method DELETE
URI /household/<ID>
Representations N/A

Error code Description
201 OK The specified household was successfully deleted.
400 Bad Request The server failed to delete the specified household.

9.5 Individual
An individual is a person that has been registered in the system as part of
being a member of a previously registered household and has a first name, last
name, sex and a date of birth.

When registered for the first time an individual is assigned a globally unique
ID, meaning it is global within the system.

The following algorithm is used for generating the global ID:

10

Territory ID + District ID + Block ID + Household ID + [01-99]

The block code is a serial number between the ranges 01-99.

Example of an id is MA104B401.

9.5.1 Retrieve individual
HTTP Method GET
URI /individual/<individual id>
Representations XHTML, XML

Parameter Description
individual id Individual id

Error code Description
200 OK Specified individual found.
404 Not Found Specified individual not found.

Example 1
Invocation HTTP GET /somedomain/individual/MA101B401.xml
Explanation Retrieve XML representation of individual with an ID of

MA101B401.
Head return 200 OK
Body return <Individual>

 <ID>MA101B4</ID>
 <FirstName>Juan</ FirstName >
 <LastName>Domingo</LastName>
 <Sex>Male</Sex>
 <BirthDate>1968-06-01</BirthDate>
</ Individual >

9.5.2 Retrieve list of individuals
HTTP Method GET
URI /individuals
Representations XHTML, XML

Parameter Description
N/A

Error code Description
200 OK List of individuals found.
404 Not Found No individuals found.

Example 1

11

Invocation HTTP GET /somedomain/individuals
Explanation Retrieve XML representation of list of individual.
Head return 200 OK
Body return <individuals>

 <Individual>
 (See 2.5.1, example 1)
 </ Individual >
</individuals>

9.5.3 Create individual
HTTP Method POST
URI /individual
Representations N/A

Error code Description
201 OK The individual was successfully created.
400 Bad Request The server failed to create the individual.

9.5.4 Update individual
HTTP Method PUT
URI /individual/<ID>
Representations N/A

Error code Description
201 OK The specified individual was successfully updated.
400 Bad Request The server failed to update the specified individual.

9.5.5 Delete individual
HTTP Method DELETE
URI /individual/<ID>
Representations N/A

Error code Description
201 OK The specified individual was successfully deleted.
400 Bad Request The server failed to delete the specified individual.

9.6 Territory
A territory is a large area covering several districts, each one considered as
being part of the territory. A territory can span both urban and rural areas, has
a name and an ID which consist of the first letter of the name of the territory,
e.g. “T”.

An area residing within a territory and is considered to be either urban or rural.
Each district has an ID made up of a composition of a letter between A-Z and
a number ranging from 1-9, e.g. “A1”.

12

9.6.1 Retrieve territory
HTTP Method GET
URI /territory/<territory id>
Representations XHTML, XML

Parameter Description
territory id Territory id

Error code Description
200 OK Specified territory found.
404 Not Found Specified territory not found.

Example 1
Invocation HTTP GET /somedomain/territory/S.xml
Explanation Retrieve XML representation of territory with an ID of

S.
Head return 200 OK
Body return <Territory>

 <ID>MA101B4</ID>
 <Name>Subtiava</Name>
</Territory >

9.6.2 Retrieve list of territories
HTTP Method GET
URI /territories
Representations XHTML, XML

Parameter Description
N/A

Error code Description
200 OK List of territories found.
404 Not Found No territories found.

Example 1
Invocation HTTP GET /somedomain/territories
Explanation Retrieve XML representation of a list of territories.
Head return 200 OK
Body return <Territories>

 <Territory>
 (See 2.6.1, example 1)
 </Territory >
</Territories>

13

9.6.3 Create territory
HTTP Method POST
URI /territory
Representations N/A

Error code Description
201 OK The territory was successfully created.
400 Bad Request The server failed to create the territory.

9.6.4 Update territory
HTTP Method PUT
URI /territory/<ID>
Representations N/A

Error code Description
201 OK The specified territory was successfully updated.
400 Bad Request The specified server failed to update the territory.

9.6.5 Delete territory
HTTP Method DELETE
URI /territory/<ID>
Representations N/A

Error code Description
201 OK The specified territory was successfully deleted.
400 Bad Request The specified server failed to delete the territory.

9.7 District
A district is an area residing within a territory and is considered to be either
urban or rural. Each district has an ID made up of a composition of a letter
between A-Z and a number ranging from 1-9, e.g. A1.

The ID is unique only within the territory to which the district belongs. A
district also has a name.

9.7.1 Retrieve district
HTTP Method GET
URI /territory/<territory ID>/district/<district id>
Representations XHTML, XML

Parameter Description
district id District id

Error code Description
200 OK Specified district found.

14

404 Not Found Specified district not found.

Example 1
Invocation HTTP GET /somedomain/territory/S/district/A1.xml
Explanation Retrieve XML representation of a district with an ID of

A1, residing within the territory S.
Head return 200 OK
Body return <District>

 <ID>A1</ID>
 <Name>Santa Maria</Name>
 <TerritoryID>T</TerritoryID>
</ District>

9.7.2 Retrieve list of districts
HTTP Method GET
URI /territory/<territory ID>/districts
Representations XHTML, XML

Parameter Description
N/A

Error code Description
200 OK At least one district found.
404 Not Found No districts found.

Example 1
Invocation HTTP GET /somedomain/territory/S/districts
Explanation Retrieve XML representation of a list of district,

residing within the territory S.
Head return 200 OK
Body return <Districts>

 <District>
 (See 2.7.1, example 1)
 </ District>
<Districts>

9.7.3 Create district
HTTP Method POST
URI /territory/<territory ID>/district
Representations N/A

Error code Description
201 OK The district was successfully created.
400 Bad Request The server failed to create the district.

15

9.7.4 Update district
HTTP Method PUT
URI /territory/<territory ID>/district/<district ID>
Representations N/A

Error code Description
201 OK The specified district was successfully updated.
400 Bad Request The server failed to update the specified district.

9.7.5 Delete district
HTTP Method DELETE
URI /territory/<territory ID>/district/<district ID>
Representations N/A

Error code Description
201 OK The specified district was successfully deleted.
400 Bad Request The server failed to delete the specified district.

9.8 In-migration event
An in-migration event represents the moving in to a household for an
individual and is the trigger for the start of a resident episode for the said
individual. The event contains the ID for the individual moving in and the date
when he or she moved in.

9.8.1 Create in-migration event
HTTP Method POST
URI /individual/<individual ID>/in_migration_event
Representations N/A

Error code Description
201 OK The n-migration event was successfully created.
400 Bad Request The server failed to create the in-migration event.

9.8.2 Update in-migration event
HTTP Method PUT
URI /individual/<individual

ID>/in_migration_event/<in_migration_event_id>
Representations N/A

Error code Description
201 OK The specified in-migration event was successfully

updated.
400 Bad Request The server failed to update the specified in-migration

event.

16

9.8.3 Delete in-migration event
HTTP Method DELETE
URI /individual/<individual

ID>/in_migration_event/<in_migration_event_id>
Representations N/A

Error code Description
201 OK The specified in-migration event was successfully

deleted.
400 Bad Request The server failed to deleted the specified in-migration

event.

9.9 Out-migration event
An out-migration event represents the moving out of a household for an
individual and is the trigger for the end of a resident episode for the individual
in question. The event contains the ID for the individual who moved and the
date he or she moved.

9.9.1 Create out-migration event
HTTP Method POST
URI /individual/<ID>/out_migration_event
Representations N/A

Error code Description
201 OK The out-migration event was successfully created.
400 Bad Request The server failed to create the out-migration event.

9.9.2 Update out-migration event
HTTP Method PUT
URI /individual/<individual

ID>/out_migration_event/<out_migration_event_id>
Representations N/A

Error code Description
201 OK The specified out-migration event was successfully

updated.
400 Bad Request The server failed to update the specified out -migration

event.

9.9.3 Delete out-migration event
HTTP Method DELETE
URI /individual/<individual ID>/out_migration_event/<out

_migration_event_id>
Representations N/A

17

Error code Description
201 OK The specified out -migration event was successfully

deleted.
400 Bad Request The server failed to delete the specified out -migration

event.

9.10 Death event
A death event represents the decease of an individual and is the trigger for the
end of a resident episode for the individual in question. The event contains the
ID for the deceased individual and the cause of death.

9.10.1 Create death event
HTTP Method POST
URI /individual/<ID>/death_event
Representations N/A

Error code Description
201 OK The death event was successfully created.
400 Bad Request The server failed to create the death event.

9.10.2 Update death event
HTTP Method PUT
URI /individual/<individual ID>/death_event/<death event

ID>
Representations N/A

Error code Description
201 OK The specified death event was successfully updated.
400 Bad Request The server failed to update the specified death event.

9.10.3 Delete death event
HTTP Method DELETE
URI /individual/<individual ID>/death_event/<death event

ID>
Representations N/A

Error code Description
201 OK The specified death event was successfully deleted.
400 Bad Request The server failed to delete the specified death event.

9.11 Pregnancy event
A pregnancy event represents a pregnancy and is the trigger for the start of a
pregnancy episode. The event contains the ID for the woman being pregnant
and an approximate conception date. It is only possible to create pregnancy
events for women who have reached a minimum of 15 years of age.

18

9.11.1 Create pregnancy event
HTTP Method POST
URI /individual/<ID>/pregnancy_event
Representations N/A

Error code Description
201 OK The pregnancy event was successfully created.
400 Bad Request The server failed to create the death pregnancy.

9.11.2 Update pregnancy event
HTTP Method PUT
URI /individual/<individual

ID>/pregnancy_event/<pregnancy event ID>
Representations N/A

Error code Description
201 OK The specified pregnancy event was successfully update.
400 Bad Request The server failed to update the specified pregnancy

event.

9.11.3 Delete pregnancy event
HTTP Method DELETE
URI /individual/<individual

ID>/pregnancy_event/<pregnancy event ID>
Representations N/A

Error code Description
201 OK The specified pregnancy event was successfully deleted.
400 Bad Request The server failed to delete the specified pregnancy

event.

9.12 Birth event
A birth event represents a birth and is a trigger for the end of a pregnancy
episode for the individual in question. It also acts as a trigger for the start of a
resident episode for the baby which is registered as an individual in the
system.
The event contains the ID for the woman who gave birth, the date of birth, the
type of delivery which can be either vaginal or caesarean, and the outcome of
the birth, which can be either a live birth or a still birth.

9.12.1 Create birth event
HTTP Method POST
URI /individual/<ID>/birth_event
Representations N/A

19

Error code Description
201 OK The birth event was successfully created.
400 Bad Request The server failed to create the birth event.

9.12.2 Update birth event
HTTP Method PUT
URI /individual/<individual ID>/birth_event/<birth event

ID>
Representations N/A

Error code Description
201 OK The specified birth event was successfully updated.
400 Bad Request The server failed to update the specified birth event.

9.12.3 Delete birth event
HTTP Method DELETE
URI /individual/<individual ID>/birth_event/<birth event

ID>
Representations N/A

Error code Description
201 OK The specified birth event was successfully deleted.
400 Bad Request The server failed to delete the specified birth event.

9.13 Abortion event
An abortion event represents an abortion and is a trigger for the end of a
pregnancy episode for the in individual in question. The event contains the ID
for the woman who had the abortion, the date of abortion, the type which can
be either spontaneous or provoked.

9.13.1 Create abortion event
HTTP Method POST
URI /individual/<individual ID>/abortion_event/<abortion

event ID>
Representations N/A

Error code Description
201 OK The abortion event was successfully created.
400 Bad Request The server failed to create the specified abortion event.

9.13.2 Update abortion event
HTTP Method PUT
URI /individual/<individual ID>/abortion_event/<abortion

event ID>
Representations N/A

20

Error code Description
201 OK The specified abortion event was successfully updated.
400 Bad Request The server failed to update the specified abortion event.

9.13.3 Delete abortion event
HTTP Method DELETE
URI /individual/<individual ID>/abortion_event/<abortion

event ID>
Representations N/A

Error code Description
201 OK The specified abortion event was successfully deleted.
400 Bad Request The server failed to delete the specified abortion event.

