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1 Introduction

Before presenting and discussing the topic of this paper, we will point out some
problems and ideas in the field of Microeconomics upon which we will base the
text. In an attempt to link the ideas to reality, we will combine them with a
couple of examples.

In general Microeconomics little time is devoted to the problem of indivisibility,
i.e. that all objects can not always be split or divided arbitrarily. We often
get solutions of the form “maximize profits by producing 22

7 units of output”.
However, in some cases we deal with indivisible objects - say cars, houses or
positions in a company. We begin with an example of the mentioned problem.

Example King Solomon and the baby

King Solomon is approached by two quarreling women - both claim-
ing to be the mother of a baby boy. The king soon understands
that he cannot decide who actually is telling the truth and calls on
a guard: “I see no other fair solution than each of you being given
half of the baby. Split the boy in two!”. However, upon hearing this,
one of the women cries out “Please, My Lord, give her the child -
do not kill him!”. The other potential mother agrees, stating “Yes,
give him to me”. But the king deduces that the first woman cares
so much more for the baby, and instantly gives her the baby boy.

One branch of Microeconomics is called Game Theory. In short, it is a way of
looking at “games” - situations where multiple individuals interact and their
part of the outcome is not based solely on their own actions, but also on the
other individuals’ - and try to find solution concepts, which then can be used
to anticipate what would happen once the game was played.

But this idea can also be reversed! In Mechanism Design you instead start
out with an outcome you wish to achieve and then try to create a game and a
mechanism, that, based on some game theoretic solution concept, will give you
the desired outcome once the game is played.

Example Splitting the last of the Cola

The two brothers are yet again fighting for the last drops of Cola.
“I should have it! I’m so much bigger than he is and I need the
extra energy!” screams the older of the two. “That’s not fair! I need
it to grow tall and strong”, the younger replies. The mother, tired
of the screaming, considers pouring it up herself, but is stopped by
her husband, who tells the older brother to do it - and points out
to the younger one that “When he is done, you get to decide which
glass you want to have”. The result? The older brother tries, with
surgical precision, to fill the drinking glasses evenly.

The idea of Mechanism Design is examplified above. The big brother under-
stands, that, if he fills the glasses unevenly, the little brother will take the
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drinking glass containing more Cola. Taking this into account, all other strate-
gies for filling up the glasses are dominated (make him worse off) by the strategy
corresponding to filling the glasses evenly.

But the example also illustrates another aspect frequently overlooked in Microe-
conomics - fairness. Sometimes achieving a fair outcome, in the sense that no
one would be happier by switching his part of the outcome with someone else’s,
can be out of importance. Next is another example of this.

Example The sons of Abraham

Abraham, on his deathbed, decides to draw up a will. His two sons,
Isaac and Ishmael, are to inherit his two estates and giant pile of
gold. However, one of the estates is substantially bigger than the
other one. Abraham wants to distribute his wealth in a fair way -
none of the sons is to be displeased in the sense that he would rather
have what his brother got. Thus, Abraham has to compensate the
son getting the smaller estate with a larger sum of gold. Further-
more, Abraham, as a loving father, wants to give away as much of
the gold as possible to his sons. How is he to construct the will?

Another result that can be achieved by Mechanism Design is making people ”tell
the truth” - i.e. reveal some private information only known to them. This, for
instance, might be their valuation of a painting.

Example The hunt for art

Charles and Alex are walking down a central Stockholm street. Alex,
who recently moved into a new apartment, needs a painting for the
living room wall. They stumble upon a building where an auction is
being held, and enter hoping of finding just what they are looking
for.

The auctioneer rambles on for a couple of minutes, until finally a
beautiful painting is presented. “This painting stands out in oh so
many ways, and it has been decided that it will be auctioned through
something called a Vickrey auction. All of you who are interested are
going to make sealed bids and the winner will be the one submitting
the highest bid. But this type of auction has a twist - the winner
will only have to pay the second highest bid!”. Alex, trying to grasp
what really is supposed to happen here, gives Charles a confused
look. Charles immediately comes to the rescue though, and asks
Alex what the painting is worth to him. “No more than sixty bucks
I’d say”. ”Good, then sixty is your bid”, Charles replies.

Now, how can Charles be so sure? Alex basically has three options:
(i) bidding his true valuation, (ii) bidding less than the valuation or
(iii) bidding more than the valuation.

First, consider Alex bidding less than 60, say 45. Now, if the highest
other bid, call it bm, is 55, he would have been better off bidding
60, which would have won him the object and “saved” him 5. In all
other cases, that is bm less than 45 or bm above 60, he would achieve
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the same result by bidding his true valuation. Thus, regardless of
bm, he is as least as well off by bidding 60 compared to bidding
something less, making a bid of 60 dominate bids below 60.

On the other hand, say he bids 75, and bm lands at 65. He will win
the object but has to pay five more than what he actually thinks the
painting is worth. Thus he would rather not have won the auction
- which he wouldn’t, had he bid 60. In all other cases, bm > 75
and bm < 60, he is indifferent between bidding 60 and a higher bid.
Again, 60 becomes a strategy dominating, this time, bids above 60.

Combining the two above we see that bidding 60 is as least as good as
something more or less, and in some cases actually better. Of course
there is nothing special with the number 60; a more general approach
would be a valuation of v, but basically the same observations would
still have been made. The conclusion is that the Vickrey auction,
named after and invented by Vickrey (1961), achieves to make (clever
and rational) people tell their true feelings, since anything else is
dominated.

1.1 Problems to engage

As has been proposed in the above examples, the usual Microeconomic models
are not always fully applicable when considering indivisible objects. Further-
more, they mostly neither aim at reaching fair outcomes nor prevent people
from manipulating the result by not telling the truth.

1.2 Purpose

We device an allocation rule that, given preferences reported by the participat-
ing individuals, achieves fair and optimal allocations of the indivisible objects
together with some money. Furthermore, the allocation rule is proven to be
coalitionally strategy-proof, in the sense that no group of individuals can ma-
nipulate the mechanism to their benefit.

1.3 Limitations

The model is limited especially in the areas of (i) the number of individuals and
objects, (ii) the ratio between the number of individuals and objects and (iii)
the utility functions used. Important to note is also that we look at one way of
dealing with the problem, but this is by far not the only way. The rule could
for instance be set up in a different way or we could refrain from using money
as part of the solution entirely.

1.4 Outline

In section 2 a background to foremost set theory but also preferences is provided.
In section 3 the model is discussed together with definitions of the key concepts.
In the fourth section some of the results are both presented and proven. This
continues on into the fifth section, where the proof of coalitionally strategy-
proofness is presented. Section 6 describes how the model can be applied to
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situations like Ebay auctions, whilst related literature is discussed in the seventh
section. Lastly, the text is summarized in section 8.

5



2 Background

This section is meant to provide a background including some useful mathe-
matical methods and notations. It is recommended for everyone, even though it
might be repetition for the more mathematically inclined. If not everything is
crystal clear after you have read it through once, you can always use it as some
kind of a glossary later on.

2.1 Set theory

A set is a collection of items. These items can be of any type, though most
often words or numbers, and are called the set’s elements. They are generally
listed inside curly brackets. An example of a set is the menu at a pizzeria. If
we denote the menu M we could, for instance, have

M = {Vesuvio, Capricciosa, Hawaii, Quattro Stagioni}.

This is an example of a finite set, but there also exist sets with an infinite
number of elements, like the set of all integers.

Count The number of elements in a finite set S will henceforth be referred to
as #S. In the above case we have #M = 4.

Equality The menu would perhaps not look the same, but the customers’ set
of choices would not have changed if we would rearrange the menu alphabetri-
cally. When comparing sets, we do not consider the ordering of the elements -
two sets that contain the same elements (not necessary in the same order) are
said to be equal.

Notation We will introduce a couple of elementary but important set theory
symbols. We assume a set S = {3, 4, 5} which will be used in the examples. A
symbol can often be negated by adding a / to it, just like = is read “equal to”
whilst 6= is read “not equal to”.

First, we have ∈, read “[is an element] in”. We know for instance that 3 ∈ S
but that 7 /∈ S. The colon should be read “such that”, whilst ∃ is read “there
exists”. In our case

∃ x ∈ S : x > 4

is true, since there is an element (5) in S that is greater than 4.

Venn diagrams A graphical way of describing sets is using Venn diagrams.
The diagrams’ main purpose is to describe how different sets relate to each other.
First we define some kind of a “universe” - the biggest possible set containing
all relevant elements. Say we want to view our above menu in a diagram whilst
considering all types of food. We let the universe be food and denote it X.

We start our diagram with a box, representing the set X (Fig. 1). Next, we
mark the set of pizzas, P , in our just drawn box (Fig. 2). The shape of the
figure representing the set is totally irrelevant. However, it is important that
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there be no elements in P that are not in X (otherwise there would be pizzas
that are not regarded as food). When marking our little menu, we know that it
only contains pizza, but by far not all types of pizzas. Thus M must be inside
P (Fig. 3).

X

Fig. 1

P

X

Fig. 2

M
P

X

Fig. 3

Subsets The fact that all elements in M are in P (and also in X) makes M a
subset of P . We denote this M ⊆ P and it is read “M is a subset of P”. If the
two compared sets are not the same, which is the case here, we have a proper
subset, M ⊂ P . Furthermore, if there are elements in a set S that are not in T
and vice versa, we have S 6⊂ T .

Union The union of two sets S and T , S ∪ T , contains all elements that are
in at least one of S and T .

Intersection The intersection of two sets S and T , S∩T , contains all elements
that are in both S and T .

S

T

S 6⊂ T

S

T

Union

S

T

Intersection

Subtraction Subtracting a set T from a set S, S − T , creates a new set
containing all elements that are in S but not in T .

Complement The complement of a set S, SC , contains all elements in the
regarded universe that are not in S.

Empty set A special set is the empty set, symbolized ∅, which contains no
elements. Thus, if #S = 0 then S = ∅. How can an empty set be out of any
relevance? Consider the intersection of the sets of hamburgers and pizza - this
is empty and shows that no pizzas are hamburgers and vice versa! Sets that do
not share any elements are said to be disjoint.
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S

T

Subtraction

S

Complement

S

T

Disjoint sets

Convex sets A set S is said to be convex if we can take any two points in S
and connect them with a line such that all points along the line also are in S.
If this can not be done, the set is said to be non-convex. Mathematically, given
elements x and y in S and 0 ≤ λ ≤ 1,

λx+ (1− λ)y ∈ S if S is convex.

Open sets A set S is said to be open if we, at a point in S, can move a
small distance in any direction and still be within the set. Consider the set
S = {x ∈ R : x > 0}, i.e. the set of positive real numbers. We know that
0.01 ∈ S and we can move in any direction (to 0.001 or 0.1) and still be within
S. The fact that, regardless of what value in S we pick, we always are able to
find both a larger and a smaller value still in S, makes S an open set.

Closed sets If the complement of a set U is open, then U is said to be closed.
In the Venn diagrams we mark closed set with solid lines, whilst using dashed
ones for open sets.

S

Convex set

T

Non-convex set

U

UC

Closed set

2.2 Vectors

A vector is, just like a set, a collection of items. The main difference is that
the ordering of the items is of importance when it comes to vectors. Say we
have a vector of burgers, B = (Small, Medium, Large), and another vector for
the burgers’ prices, P = (20, 30, 35), such that Pi, the i-th element in P , is the
price of Bi. If we would shuffle the P -vector we would have a quite different
situation, since it is connected to B.

Addition Assume a vector x = (x1, x2, x3). If we construct another vector,
say x′ = x+ (a, b, c), we have x′ = (x1 + a, x2 + b, x3 + c). If we would add the
same value to every component of the vector, we can use a shorter form:

x′ = x+ (t, t, t) = x+ t = (x1 + t, x2 + t, x3 + t).
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Comparing vectors We will use three symbols when comparing vectors in
this text. Given vectors x and x̄, we have x = x̄ if every element xi in x is equal
to x̄i. For x < x̄ to hold, every element xi in x must be less than x̄i. Lastly,
x ≤ x̄ holds if there is some xi = x̄i and some xj < x̄j . For x̄ = (6, 8, 9),

if x = (6, 8, 9) then x = x̄

if x = (4, 7, 8) then x < x̄

if x = (6, 4, 8) then x ≤ x̄.

2.3 Preferences and utility

For non-microeconomists the concept of utility, and in particular the idea of
measuring a person’s well-being with a mathematical function, might seem quite
fictional. One way of getting around the confusion is by looking at the utility
function as an ordinal function. That is, its only purpose is to represent prefer-
ences in the sense that, if I enjoy Cola more than Fanta, then my utility of Cola
should be higher than that of Fanta.

However, some observations become quite meaningless when viewing the utility
function in this way. For instance, u(A) = 10 and u(B) = 5 does not mean
that I am twice as happy with A as with B - only that I am happier with A
than with B. The fact that u(A) = 10 is totally irrelevant when doing anything
else than comparing it to another object. The only objective for an ordinal
utility function is to represent the person’s preferences by ordering and ranking
objects after his liking. The functions are not commonly known, they are private
information - if I prefer listening to Jimi Hendrix or Westlife is not known to
anyone other than myself, until I, in some way, reveal it.
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3 Model and definitions

3.1 Basics

The model consists of three individuals gathered in the set N = {1, 2, 3}. These
persons are all to be assigned both an object from the set M = {1, 2, 3} and a
sum of money. The objects in M are indivisible, whilst the money can be split
in any way thinkable.

Consumption bundles A combination (j, α), consisting of both an object j
and an amount α ∈ R of money, is called a consumption bundle.

Allocations If we list all individuals’ consumption bundles we get an alloca-
tion (a, x). It consists of two parts: (i) the assignment a = (a1, a2, a3) describing
who gets what object in such a way that a2 is the object individual 2 gets, and
(ii) the distribution x = (x1, x2, x3), connected to the monetary compensations.
Here, however, x3 is the compensation that is bundled with object 3, thus is
given the person that receives object 3. At an allocation (a, x) object j and
monetary compensation xj is given individual i if ai = j.

Compensation limits We introduce maximum limits on each compensation
in the distribution, using the vector x̄ = {x̄1, x̄2, x̄3}. This means that we can
not compensate object j with more than x̄j , i.e. xj ≤ x̄j .

3.2 Preferences

We assume that the individuals have (quasilinear) preferences over the con-
sumption bundles, known only to themselves, represented by a utility function
ui(j, α) = vij + α. What this means, is that the utility for individual i of a
consumption bundle (j, α) is the sum of his valuation vij of the object and the
monetary compensation α that he gets. One way of interpreting the valuation is
that it is a monetary measurement of how much the individual would be willing
to pay for the object. Furthermore, we put a quite reasonable restriction on the
valuations - no object is infinitely better than another object. In other words,
we can always alter the compensations in such a way that the individual’s util-
ities of the objects are the same. This state we call indifference. Individual 1
is, for instance, indifferent between objects 2 and 3 at an allocation (a, x) if

u1(2, x2) = v12 + x2 = v13 + x3 = u1(3, x3).

If we make a list of all individuals’ preferences we get a preference profile u =
(u1, u2, u3), which is a vector of utility functions.

3.3 Definitions

Fair distributions A distribution is said to be fair if we can combine it with
an assignment in such a way that every individual gets what he prefers. The
combination is then called a fair allocation. A more technical way of describing
this is the following. For (a, x) to be a fair allocation, we must have

ui(ai, xai) = viai + xai ≥ vik + xk = ui(k, xk)
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for all individuals i ∈ N and objects k ∈M . This might look rather complicated,
but it is just a way of expressing that everyone gets the consumption bundle
that gives them the highest utility.

Allowed distributions All distributions satisfying the restrictions in x̄ are
the so called allowed ones. This set is quite simple - it is something of a box
including its borders, along which xj = x̄j . This set is both closed and convex.

Optimal distributions A distribution that is fair, considering the preference
profile u, and allowed with respect to x̄ is said to be optimal if the sum of
compensations, x1 + x2 + x3, is maximized.

Let us shortly interrupt the listing of definitions, and try to apply what we have
learned on a simple numerical version of the “The sons of Abraham” example.
Say Isaac is individual 1 and Ishmael individual 2. Suppose Isaac’s valuations of
the two estates are v1 = (8, 4), whilst Ishamel values them at v2 = (5, 3). Fur-
thermore, let us assume that no more than ten barrels of gold can be distributed
together with an estate.

At what distributions x = (x1, x2) is
Isaac indifferent between the estates?
Assuming preferences of the type de-
scribed above, he will be indifferent if
8 + x1 = 4 + x2. For Ishmael, we must
have 5 + x1 = 3 + x2. If we solve these
equations for x2, we get x2 = 4 + x1

and x2 = 2 + x1. Parts of these lines
have been plotted in the graph to the
right.

x2

x1

2
4

Along an indifference curve the individual is indifferent. If we increase x2 we
move upwards away from the curve. At such a point the individual must prefer
estate 2. Thus, if we are at a point above both indifference curves, both Isaac
and Ishmael prefer estate 2. For the distribution to be fair however, we require
that everyone is assigned what they prefer - but since the estates are indivisible
we can not assign estate 2 to both of the individuals. Thus a distribution either
above or below both of the indifference curves can not be fair. The only ones
remaining are the ones along or in between the indifference curves, which are
all in the set of fair distributions.

x2

x1

2
4

10

10

What distributions are allowed then?
Well, this is simply the set of all distri-
butions x such that x ≤ x̄ = (10, 10).
To the left we have plotted both the
set of fair distributions and, the dashed
box, the set of allowed distributions.
Furthermore, the dot at (8, 10) is our
optimal distribution; it is both fair and
allowed, and it maximizes x1+x2. The
optimal assignment will be a = (1, 2).
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Allocation rule The assignments and distributions will be handled using
an allocation rule that selects the set of optimal allocations (a, x) given the
preference profile u and x̄. It is a correspondence rather than a function, since
there may exist multiple optimal allocations for a single u. For instance, if
all individuals report the same preferences, every possible assignment would be
fair.

Manipulability An allocation rule is said to be manipulable by a single indi-
vidual or a coalition of individuals, if they, by reporting other preferences than
their true ones, are all made strictly better off. Described in a mathematical
fashion: let C ⊆ N be the set of individuals in the coalition. They all report
preferences that differ from their true ones and we end up with an optimal allo-
cation (b, y) instead of “the true” optimal allocation (a, x). The allocation rule
is then manipulable if ui(bi, ybi

) > ui(ai, xai
) for all individuals in the coalition.

Strategy-proof An allocation rule that is not manipulable by any single in-
dividual on his own, according to the definition above, is said to be individually
strategy-proof. Furthermore, if it is not manipulable by any group of individu-
als (including groups of only one individual), the allocation rule is coalitionally
strategy-proof.

Consider again the Vickrey auction. We know from before that no individual
can be made better off by single-handedly bidding something else than his true
valuation of the object. Thus the auction must be individually strategy-proof.
Furthermore, we only have one object that is auctioned. If a group of individuals
try to manipulate the auction together, still only one of the individuals will get
the object, and the others will leave the auction empty handed. This would
contradict them being made better off opposed to telling the truth, which, in its
worst case, would yield the same result. Thus the one-object Vickrey auction
must be coalitionally strategy-proof.

Observe that we do not take side payments into consideration. The case of one
of the individuals bribing his friends in order to win the object cheaper and
then distribute some of his saved money among his friends is outside the scope
of this paper.

3.4 Procedure

The model’s course of events can be varied in a few ways, but the inheritance
example gives it a reasonably intuitive and realistic background. The example
could continue with the father asking his sons what they feel about the objects,
making them reveal their preferences. Of course, they could lie and report any
preferences whatsoever, but, as will be proven later, this would not be to their
benefit. Furthermore, no individual can gain by basing his decisions on the
others’ decisions. Thus, we do not need it to be “sealed bids” - the family could
just as well get together in the living room and discuss it openly.
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4 Results

Proposition 1 The intersection of two joint convex sets is convex.

Proof Assume joint convex sets S and T , i.e. S ∩ T 6= ∅. For two points
x, x′ ∈ S ∩ T we also, by the definition, have x, x′ ∈ S and T . Since S and
T are convex, we must also have λx + (1 − λ)x′ ∈ S and T for 0 ≤ λ ≤ 1 or
equivalently λx+ (1− λ)x′ ∈ S ∩ T , proving that the intersection is convex.

4.1 Set of fair distributions

Individual i is indifferent between all objects at a distribution where ui(1, x1) =
ui(2, x2) = ui(3, x3), or more specifically vi1 + x1 = vi2 + x2 = vi3 + x3. An
example of such a distribution is x = (−vi1,−vi2,−vi3). If the same amount
is added to every compensation he will still be indifferent, thus, for any t ∈ R,
he will also be indfferent at x′ = (t − vi1, t − vi2, t − vi3). In particular, the
distribution at t = vi3, i.e., ẋ′ = (vi3 − vi1, vi3 − vi2, 0) is also one where he is
indifferent. We can plot this point in an x1/x2-plane.

Since the individual is indifferent be-
tween all objects at the dot, he will still
be indifferent between objects 2 and 3
if we decrease x1. This, indifference
between 2 and 3, is represented by the
line (i). If we increase both x1 and x2

with the same amount, the individual
will still be indifferent between the ob-
jects 1 and 2. This corresponds to the
line (ii). Lastly, line (iii) is for objects
1 and 3.

x2

x1

vi3 − vi2

vi3 − vi1

(i)

(ii)

(iii)

x2

x1

A

B

C

(i)

(ii)

(iii)

Consider the line (i) to the left. Along
it the individual is indifferent between
objects 2 and 3. Above it, with x3 kept
constant, he must prefer object 2. The
same can be said about the area above
(ii). Thus, in the combined area, here
marked A, object 2 will be preferred. If
we include the borders, we get a closed
set with distributions such that no ob-
ject is better than object 2.

Analogous, in the area B object 1 will be preferred and in the area C he will go
for object 3, since x3 is kept constant whilst both x1 and x2 are decreased. All
of these sets (the area A and its borders, B and its borders ..) are closed and
convex. We can do this for all three individuals, giving us three points in the
x1/x2-plane - all only dependent on the individuals’ reported valuations.
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Here we have plotted points from each
of the individuals’ indifference curves
such that x3 = 0. The shaded area (in-
cluding its borders) is, given the pref-
erences and the restriction on x3, the
set of fair distributions. For all distri-
butions outside this area there are at
least two individuals strictly preferring
the same object, which would contra-
dict the distribution being fair.

x2

x1

This set is closed, since it is bounded by the indifference curves. The individuals
have to get their preferred object - if they favour multiple objects they can be
assigned any object amongst the preferred ones. Furthermore, the set, which is
the intersection of convex sets, is convex according to Proposition 1.

It is quite obvious that we can construct a new fair distribution out of an old
one by adding the same amount to each of the compensations - this would not
change the individuals’ internal ranking of the objects. For different values on
x3 we will get different values on x1 and x2 as well, but the shape of the area
corresponding to the fair distributions will remain the same - it will however be
moved further away or closer to the origin along the line x1 = x2. If we try to
think of this in a cubic graph, we get some sort of edgy pipe with slope 1 in all
three directions.

4.2 Properties

For every value on x3 we will get the same shape - and it will always be a closed
set. Since the borders always will be included, we can safely say that the entire
set of fair distributions is closed.

Let us instead turn the attention to convexity. Take two fair distributions x
and x′. Combine them into a third,

x′′ = λx+ (1− λ)x′ for 0 ≤ λ ≤ 1.

If we expand this, we have

x′′ = λ(x1, x2, x3) + (1− λ)(x′
1, x

′
2, x

′
3).

From this we remove λx3 + (1− λ)x′
3 and we get

ẋ′′ = x′′ −
(
λx3 + (1− λ)x′

3

)
= λ(x1 − x3, x2 − x3, 0) + (1− λ)(x′

1 − x′
3, x

′
2 − x′

3, 0).

Thus, to prove that the entire set is convex, we only have to show that the set,
given x3 = 0, is convex. But this we know from above and Proposition 1 to be
true, thus the set of fair distributions must be convex.

4.3 Optimal distributions

A reminder: at an allocation (a, x), xi is the compensation bundled with object
i, whilst xai is the compensation distributed to individual i.
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Lemma 1 If x̄ is fair, then x̄ is the unique optimal distribution.

Proof Assume x̄ is fair but that the optimal distribution is x = (x1, x2, x3)
requiring that x1 + x2 + x3 > x̄1 + x̄2 + x̄3. This would make some xj > x̄j ,
contradicting x being allowed and, as a consequence, contradicting x being
optimal.

Lemma 2A If x̄ is not fair, then an optimal distribution x must lie on at least
one indifference curve.

Proof Assume that x̄ is not fair and that the optimal distribution consequently
is x ≤ x̄. We must then have some xj < x̄j , meaning that object j is not
maximally compensated. Say this is object 1. Furthermore, assume x is located
in the inner of the set of fair distributions, in the sense that it is not on the
sets’ borders (the indifference curves). At such a distribution everyone strictly
prefers what they are assigned in comparison to the other objects. In this
case we would be able to add a sufficiently small positive amount ε to x1 and
arrive at a new fair and allowed distribution x′. But the sums of distributions in
x′, x1+ε+x2+x3 would be greater than the ones in x, x1+x2+x3, contradicting
x being optimal. Thus we can not have x in the inner of the set, and it must
be on at least one indifference curve.

Lemma 2B If x̄ is not fair, there must be someone who is indifferent between
the object he is assigned and the object that is not maximally compensated.

Proof In the case that the optimal distribution x is positioned on multiple
individuals’ indifference curves, at least one of them is not assigned the object,
and the statement is trivially true. Let us instead assume that x is on only
one of the individuals’ indifference curves. Assume object j is not maximally
compensated and individual i is the person being indifferent. Consider assigning
object j to i. Since x is optimal it must be fair, and furthermore, since x is
not on any of the others’ indifference curves, they must strictly be preferring
the object they are assigned in comparison to j. But since xj < x̄j we could
just as well increase xj a little and still have a fair and allowed distribution.
However, this contradicts x being optimal, since the new distribution would
sum up to more than the original one. Thus we can not assign the object to
the single individual being indifferent, and therefore there must be someone
who is indifferent between the object he is assigned and the object that is not
maximally compensated.

Theorem 1 The optimal distribution is unique for each preference profile u
and x̄.

Proof Assume that there are multiple different optimal distributions, of which
x and y are two of them. These distributions are connected to optimal alloca-
tions (a, x) and (b, y) respectively. For them both to be optimal, we must have
x1 + x2 + x3 = y1 + y2 + y3. Moreover, for them to be allowed, we must have
x ≤ x̄ and y ≤ x̄, and lastly, for them to be different, we must have x 6= y.
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Using these three observations, we see that there must be some object i with

xi < yi ≤ x̄i

since they are different, and some other object j with

yj < xj ≤ x̄j

since they are both optimal - otherwise they would not be able to sum up to
the same amount.

Since the allocations are optimal they must be fair, and ui(ai, xai
), the utility of

the bundle that individual i is allocated at the allocation (a, x), must be greater
than ui(j, xj) for all other objects j. This we will refer to as fairness.

By our assumptions about the utility function, in specific the requirement that
it is increasing in money, we know that ui(j, xj) > ui(j, yj) if and only if xj > yj .
This is rather intuitive; if he is assigned the same object but compensated with
more money, he will be better off. This we will refer to as monotonicity.

Let us assume that xai
< yai

≤ x̄ai
(since there had to be some xi < yi) and

investigate the situation for individual i. We construct a list of inequalities:

ui(bi, ybi
) ≥

↑
fairness

ui(ai, yai
) >

↑
monotonicity

ui(ai, xai
) ≥

↑
fairness

ui(bi, xbi
).

If we shorten this list, we see that

ui(bi, ybi
) > ui(bi, xbi

)⇔
↑

monotonicity

ybi
> xbi

.

By Lemma 2B, we know that, whenever an object is not maximally compen-
sated, there must be someone who is indifferent between this object (here: object
bi) and what he is assigned. Let us call him individual j. Again we set up a list
of inequalities and equalities:

uj(bj , ybj ) ≥
↑

fairness

uj(bi, ybi) >
↑

monotonicity

uj(bi, xbi) =
↑

indifference

uj(aj , xaj ) ≥
↑

fairness

uj(bj , xbj ).

Just like before, we can crop the list into a single interesting inequality: uj(bj , ybj ) >
yj(bj , xbj ) making ybj > xbj .

Now we have ybi > xbi and ybj > xbj . Remember that x and y both are said to
be optimal, requiring that x1 + x2 + x3 be equal to y1 + y2 + y3. Thus, for the
object assigned the remaining individual k, we must have ybk

< xbk
≤ x̄bk

.
If we rewrite the list of inequalities for individual i, we get the following:

ui(bi, ybi
) ≥

↑
fairness

ui(ai, yai
) >

↑
monotonicity

ui(ai, xai
) ≥

↑
fairness

ui(bk, xbk
) >

↑
monotonicity

ui(bk, ybk
),

where ui(bi, ybi) > ui(bk, ybk
) is particularly worth observing. In a similar fash-

ion for individual j we can establish that uj(bj , ybj
) > uj(bk, ybk

). However,
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this contradicts y being optimal! Both individuals i and j strictly prefer what
they are assigned, thus we could increase ybk

with a sufficiently small positive ε
and still have a fair distribution. Moreover, since ybk

< ybk
+ ε ≤ x̄bk

, the new
distribution would still be allowed, but sum up to more than the original one.

The contradiction of y being optimal comes from the assumption that there are
multiple optimal distributions, thus this can not be the case, and the optimal
distribution, for each u and x̄, must be unique.
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5 Proof of coalitionally strategy-proofness

We will assume that the allocation (a, x) is the optimal allocation given that
every individual reports his true preferences. Furthermore, we have another op-
timal allocation, (b, y), which is connected to the case when some coalition C of
at least one individual tries to manipulate the allocation rule. Both distributions
x and y are optimal with respect to the same x̄.

An individual i is said to favour an object j if ui(j, xj) ≥ ui(k, xk) for all objects
k. If he is indifferent between two objects, he will be favouring them both.
We will also adopt the linguistic simplification of abbreviating “not maximally
compensated” as NMC ; if xj < x̄j , then object j is said to be NMC.

Let us first consider the case of x̄ being fair. We end up with an optimal
allocation (a, x̄) where everyone gets what they want, by fairness, and everyone is
maximally compensated. No one can be made better off by trying to manipulate
the outcome. Thus we will henceforth only have to consider distributions x such
that x ≤ x̄, where some object is NMC.

Proposition 2 A distribution x < x̄ can not be optimal.

Proof If x < x̄ then no object is maximally compensated, and we could in-
crease every compensation with the same small enough amount and reach a new
fair and allowed distribution, contradicting x being optimal.

Lemma 3A If an object j is NMC, then there must be at least two individuals
favouring it.

Proof Assume xj < x̄j and that only individual i favours object j. Then, by
fairness, everyone else must strictly prefer what they are assigned in comparison
to object j. But then we could increase xj with a small enough amount and
still have both a fair and allowed distribution, contradicting x being optimal.

Lemma 3B If two objects are NMC, then every individual must favour at
least one of the two objects.

Proof Assume xi < x̄i and xj < x̄j . From Lemma 3A, we know that there
must be at least two persons favouring object i and the same goes for j. Assume
some individual k does not favour any of the objects, i.e., he strictly prefers the
remaining object. This would imply that we could increase xi and xj with the
same small enough amount and still be at a fair and allowed distribution, which
contradicts x being optimal.

Observation 1 Assuming that the allocation rule is manipulable, for all in-
dividuals i in the coalition C, we must have

ui(bi, ybi
) >

↑
manipulability

ui(ai, xai
) ≥

↑
fairness

ui(bi, xbi
)

or simply ui(bi, ybi) > ui(bi, xbi). By monotonicity, this implies x̄bi ≥ ybi > xbi .
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Observation 2 If an individual i favours the object j at allocation (a, x) with
yj > xj , we have

ui(bi, ybi
) ≥

↑
fairness

ui(j, yj) >
↑

monotonicity

ui(j, xj) =
↑

indifference

ui(ai, xai
) ≥

↑
fairness

ui(bi, xbi
)

or simply ui(bi, ybi) > ui(bi, xbi) and, by monotonicity, x̄bi ≥ ybi > xbi .

Proposition 3 If every individual is in the manipulating coalition, no object
is maximally compensated and the distribution can not be optimal.

Proof From Observation 1 we know that object bi is NMC for every individual
i in C. If we assume that every individual is in the coalition, then no object is
maximally compensated, which, by Lemma 1, contradicts x being optimal.

Theorem 2 The allocation rule is coalitionally strategy-proof.

Proof Assume that the allocation rule is manipulable by a coalition C 6= ∅
and thus not strategy-proof.

1. By Observation 1 we know that, for an individual i in C, we have an
object bi with ybi

> xbi
.

2. By Lemma 3A we know that there must be at least one other individual
j favouring object bi.

3. By Observation 2 we see that this leads to ybj
> xbj

.

4. By Lemma 3B we know that the last individual k must favour at least one
of bi and bj .

5. By Observation 2 we see that this leads to ybk
> xbk

.

6. By Proposition 2 we know that x̄ ≥ y > x contradicts x being optimal.

Thus, the assumption that the allocation rule is manipulable must be wrong,
and it must be coalitionally strategy-proof.
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6 Applications

It is important to point out that the model can be interpreted in other ways
than only distributing compensations and objects - for instance, if we make the
compensations negative, they will in some sense act as prices instead.

As has been proven in Andersson & Svensson (2008), the results hold for any re-
lation between the number of individuals and objects, in particular for the case of
there being more objects than individuals. If we add a so called “no-object” for
every individual, we can impose something called individual rationality. These
no-objects can for instance be seen as the opportunity to not participate in an
auction - once the prices are too high, you would rather refrain from buying
the object than buying it, and instead favour the no-object. But now, with
objects corresponding to the idea of not getting an object and compensations
interpreted as prices, we can use our model to stage an auction instead.

An example of the model being used in reality is the auction procedure at sites
like Ebay.com and its swedish branch Tradera.com. Generally a single object is
auctioned out and everyone who has interest in it gets to bid on it. This can
be seen as a special case of our model with n individuals, one object and n− 1
no-objects. The allocation rule tries to find the lowest prices possible which
make the outcome fair.

Not too long ago, a problem was that intense bidding started in the last minute of
the auction, giving the casual, laid-back Ebayers a slight disadvantage compared
to the more fanatic ones. The main problem was fairness - the bidder with the
highest valuation of the object was perhaps not the one with the fastest browser
or the most spare time, which could result in someone else winning the auction.

This has however now been dealt with! The auction sites have added the possi-
bility of making a maximum bid rather than a single bid. The idea is presented
in the following example.

Example The colourful t-shirt

Tom has the current highest bid, $6, on a colourful t-shirt on an Ebay
auction, when Mark posts a maximum bid of $16. The minimum
increment is set to $1, and Mark gets the current highest bid with $7.
A third participant, Travis, sees his chance to get his favourite t-shirt
cheaply, and enters a maximum bid at $10, unaware of the maximum
bid of Mark. Now Travis gets the highest bid at $8, increasing Mark’s
bid to $9, followed by Travis’ bid increasing to $10 and Mark again
getting the highest bid with $11. But the required bid for Travis to
outbit Mark is now $12, which is more than what he has entered as
his maximum bid, and his bid is not increased any further.

The auction is ended with Mark winning the t-shirt at the price of
$11. Notice that this is a fair and optimal outcome: Tom’s valuation
of the t-shirt is $6 and he rather gets a no-object than has to pay
more than $11 for the t-shirt. The situation is basically the same for
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Travis. For Mark, we know that his valuation is $16 but that he only
has to pay $11, so he is also happy about the deal. The optimality
comes from the price being the lowest possible (or highest negative
compensation) given the level of the minimum increment.

As Ebay related trivia can be added that another technique called “sniping” has
evolved, again by the more fanatic Ebayers. They wait until the last minute to
enter their maximum bid, and hope thereby to avoid some sort of a “bidding
war”. Anyway - the former disadvantages for the casual bidders has been dealt
with, and the possibilities for a fair allocation have increased!
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7 Related literature

The problem of fairly allocating a number of indivisible objects or positions
together with some money has already been studied for many years. The idea
of fairness as a state where no one envies anyone else was introduced by Foley
(1967), but then applied to divisible objects.

The existence of equilibrium when dealing with indivisible objects, or what we
call optimal allocations, was proven and investigated under various conditions
by Svensson (1983), Alkan, Demange & Gale (1991) and Tadenuma & Thomson
(1991) to mention a few.

Throughout the years of studying the indivisibles, a couple of different ap-
proaches and results have been established. Next we will describe these different
alternatives, followed by a table where the elementary assumptions and results
of some of the related papers easily can be compared.

n=m versus any The most general approach is to allow for any relation
between the number of individuals and the number of objects. In the table this
is called “any”. The most common assumption has however been n = m, i.e. as
many individuals as objects, followed by forcing every individual to be assigned
exactly one object.

Quasilinear versus general The idea of using quasilinear preferences some-
times simplifies the analysis. For instance, in our paper we can assume that
everyone still feels the same about the objects if we compensate every object
with an extra unit of money. Furthermore, the supposition is probably not too
unrealistic in some cases - it is merely an assumption that everyone can esti-
mate their monetary valuation of the object. A side note is that, throughout
every considered paper, the utility function is always assumed to be increasing
in money and continuous.

x̄ versus lump sum The limitations on the compensations or prices have
basically been used in two ways. Either you put a lump sum limitation on the
total of all compensations or, as we have done using x̄ = {x̄1, x̄2, . . . , x̄m}, you
put a limit on every single compensation. The difference between the approaches
is presented in the following example.

Consider a firm looking to hire personnel. They present a couple of positions
(our objects) together with some salaries (our compensations) to a group of
interested individuals. The target is to achieve fairness by altering the salaries.
In the lump sum case, we suppose that the company has some budget for the
sum of the entire staff’s salary, whilst our approach is a way of regulating the
individual salary for the CEO, his assistant, and every other employee.

IR versus not IR Individual rationality is, as described before, a way of
allowing individuals the opportunity of rejecting every object if, for instance,
the compensations are too low or the prices too high. We do this by adding no-
objects for every individual, which requires the model to have more objects than
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individuals. As is shown in Andersson & Svensson (2008), individual rationality
actually is a simplifying assumption once the results have been proven for the
case of more objects than individuals. However, for instance in the case of an
auction, it is arguably more realistic.

ISP versus CSP The rule is individually strategy-proof if it is not manipu-
lable by a single individual on his own, whilst it is coalitionally strategy-proof if
no group of individuals (including groups of one) can team up, manipulate the
rule and improve the situation for everyone of them.

Matching versus allocation Our model is an allocation model, where we
imagine one person holding all the objects, gathering every individual’s valua-
tions and then distributing the objects according to the allocation rule. In a
matching model we instead look at multiple individuals holding an object each,
and then try to match these with another group of individuals to achieve a fair
outcome. This can be thought of as a case of supply and demand, where every
supplier holds one object. On the market prices establish in such a way that
every supplier’s object is demanded by exactly one individual, achieving some
sense of stability between supply and demand. The optimality in this sort of a
model could for instance be to have prices as low as possible.

There are a few additional remarks to be made about some of the papers in
the following table. When it comes to CSP, the paper by Demange & Gale
(1985) presents a generalization (using a matching model) of the earlier men-
tioned Vickrey auction by Vickrey (1961). Vickrey only considered one-object
auctions, whilst Demange & Gale allow for multiple objects but require indi-
vidually rational outcomes. The model was then generalized even further by
Andersson & Svensson (2008), by allowing for, however not requiring, individ-
ual rationality.

Another remark is on the paper by Svensson (2009), which consists, unlike the
rest, of an “if and only if” part, proving that the allocation rule is coalitionally
strategy-proof if and only if it is fair and optimal.
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Svensson (1983) X X X X X

Demange & Gale (1985) X X X X X X

Alkan, Demange & Gale (1991) X X X X X

Tadenuma & Thomson (1991) X X X X X

Sun & Yang (2003) X X X X X X

Andersson & Svensson (2008) X X X X X X X

Svensson (2009) X X X X X X

This paper X X X X X X
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8 Summary

This paper has been based on three main issues: (i) how to allocate indivisible
objects, (ii) how to do it in a fair way and (iii) how to make the allocation
non-manipulable. We have investigated these problems in a quite restricted
environment, with limitations on the number of individuals equaling the number
of objects equaling three and the use of quasilinear utility functions. Seeing that
every result established in this paper has already been shown in much more
general cases, a larger weight has been put on providing the results and ideas
in a simpler and clearer way.

The first results of importance were that the set of fair distributions is closed
and convex and that the optimal distribution is unique for each preference pro-
file and compensation limit. The most important proof has however been the
one concerning coalitionally strategy-proofness, in which we showed that the
allocation rule is not manipulable by neither one nor an entire group of individ-
uals. In some sense this adds stability to our model, and, given that we know
the preferences of the participating individuals, we can correctly forecast the
optimal allocation of the objects.

Next we noted that, by allowing for individually rational outcomes, we could
interpret the model as an auction. Throughout the text we have often referred
to and given examples of the so called Vickrey (or second-price) auction, which
has been generalized by, for instance, Andersson & Svensson (2008) using the
same model as we do. Furthermore, we provided an extensive glance at other
related literature on the subject, ending up with a table comparing a few of the
earlier articles and putting this paper in some perspective.

In what way can we develop this particular model further in the future? The
proof of coalitionally strategy-proofness for a more general case, where we allow
for an arbitrary number of objects and the same number of individuals, is prob-
ably not a too difficult hurdle to climb. In our special case with three objects
the results regarding the fair distributions can be shown using a nice graphical
intuition. This possibility disappears if we consider more objects. Furthermore,
if we would step away from the assumption of quasilinear preferences, we would
still be able to get graphs, but not necessarily with the simplifying linearity.

To sum the text up, we again note that the main purpose of the paper, i.e.
constructing a way of allocating three indivisible objects to three individuals
with some money in a fair and non-manipulable way, has been proven using a,
hopefully, untechnical and straight-forward method.
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