

Battle Management Language

- An Implementation for a Military Scenario Editor

LTH School of Engineering at Campus Helsingborg

Computer Science

Bachelor thesis:
Henric Lind
Mathias Lubera

 Copyright Henric Lind, Mathias Lubera

LTH School of Engineering
Lund University
Box 882
SE-251 08 Helsingborg
Sweden

LTH Ingenjörshögskolan vid Campus Helsingborg
Lunds universitet
Box 882
251 08 Helsingborg

Printed in Sweden
Media-Tryck
Biblioteksdirektionen
Lunds universitet
Lund 2009

Abstract
Battle Management Language Battle Management Language Battle Management Language Battle Management Language ---- An Implementation An Implementation An Implementation An Implementation for a Military Scenario for a Military Scenario for a Military Scenario for a Military Scenario
EditorEditorEditorEditor

In order to plan and control a military simulation, there is a need for a language
which can be understood by all parts and levels of the organization - both man
and machine. This need has encouraged the development of a highly structured
and unambiguous language. The term for this type of language is Battle
Management Language. The United States military has further developed the
concept into an actual solution for use with joint forces, called Joint Battle
Management Language.

Saab Training Systems AB is a company which develops training solutions for
military training. Many of their solutions involve linking different systems with
each other, and often with a simulation platform. Saab Training Systems AB has
also developed General Scenario Editor - an application in which it is possible to
plan a military operation by positioning military units on a battlefield. Battle
Management Language will make it possible to control different units and state
commander’s intent with a universal language.

The goal is to enable the user to manage orders in General Scenario Editor by
assigning tasks to involved units in the scenario. The application should be able
to export a scenario to Joint Battle Management Language using XML.

General Scenario Editor is not intended solely for use with Joint Battle
Management Language. The biggest challenge is to allow users to plan a military
scenario without the concern of the destined output format. This means that
Joint Battle Management Language cannot fully determine the design of the
application. However, the concept of Battle Management Language can still
influence the method for structuring and storing orders in the application. This is
done with the 5 W’s principle, which can be recognized as the fundamental of all
military tasks. The principle is used in the implementation and specifies What,
Who, Where, When and Why for each military task.

The result is that General Scenario Editor can be used to plan a scenario, complete
with assigned orders. The scenario can be exported to Joint Battle Management
Language. In order to further show the proof of concept, a scenario can also be
exported to the game Virtual Battlespace 2, in which the scenario can be visualized
and simulated.

Keywords: Battle Management Language, BML, Joint Battle Management Language,
Coalition Battle Management Language, General Scenario Editor

Sammanfattning
Battle Management Language Battle Management Language Battle Management Language Battle Management Language –––– En implementation för En implementation för En implementation för En implementation för General Scenario General Scenario General Scenario General Scenario
EditorEditorEditorEditor

För att kunna planera och kommendera en militär simulation finns det behov för
ett språk som alla delar av organisationen kan förstå – såväl människa som
maskin. Behovet har drivit på utvecklingen av ett välstrukturerat och entydigt
språk, vilket benämns som Battle Management Language. Militärväsendet i USA
har nyttjat konceptet för att skapa en fungerande lösning att användas med sina
förenade styrkor, kallat Joint Battle Management Language.

Företaget Saab Training Systems AB utvecklar träningslösningar för militära
ändamål. Många av företagets lösningar innefattar ihopkoppling av olika system,
ofta i samband med en simulationsplattform. Saab Training Systems AB har också
utvecklat General Scenario Editor - en applikation som gör det möjligt att planera
en militär operation genom att placera ut enheter på en karta. Battle Managment
Language gör det möjligt att ge uppgifter till enheter med hjälp av ett
allomfattande språk.

Målet är att kunna ge användaren möjlighet att hantera militära ordrar i General
Scenario Editor genom att ge uppgifter till enheter i ett scenario. Applikationen
ska kunna exportera ett scenario till Joint Battle Management Language med hjälp
av XML.

General Scenario Editor är inte enbart till för att användas med Joint Battle
Management Language. Den största utmaningen är att låta användaren planera ett
militärt scenario i applikationen utan tanke i vilket system informationen skall
användas. Detta innebär att Joint Battle Management Language inte ensamt kan
bestämma hur applikationen ska vara uppbyggd. Däremot kan konceptet av
Battle Management Language användas för att strukturera och lagra uppgifter i
applikationen. Detta sker genom att man i detalj anger Vad, Vem, Var, När och
Varför för varje militär uppgift. Detta kan ses som den mest väsentliga
informationen för alla militära uppgifter.

Resultatet är att General Scenario Editor kan användas för att planera ett militärt
scenario, med tillhörande militära ordrar. Scenariot kan exporteras till Joint Battle
Management Language. För att ytterligare styrka konceptet, kan ett scenario
exporteras till datorspelet Virtual Battlespace 2, i vilket scenariot visualiseras och
spelas upp.

Nyckelord: Battle Management Language, BML, Joint Battle Management
Language, Coalition Battle Management Language, General Scenario Editor

Foreword

This bachelor thesis was made at Saab Training Systems AB in Helsingborg for
Lund University, LTH School of Engineering.
The main contribution of this thesis is the software extensions made to General
Scenario Editor and the research around Battle Management Language.

Thanks to our examiner Lise Jensen at LTH and our expert advisors Per
Gustavsson, Jakob Blomberg, Deepak Sumra and Stefan Lundmark for great
guidance and aid. Also special thanks to other employees at Saab Training Systems
AB for help and support.

List of contents

1 Background ..1
1.1 Previous work by Saab Training Systems1
1.2 General Scenario Editor ..2
1.3 Battle Management Language, BML..2

1.3.1 History...2
1.3.2 Concept ..3
1.3.3 C2IEDM and JC3IEDM ...4
1.3.4 Army BML ...4
1.3.5 JBML ...5
1.3.6 C-BML...5
1.3.7 geoBML...6
1.3.8 Summary...6

2 Problem description...7
2.1 Visions and goals...7
2.2 Scope..8

2.2.1 Design data storage for the extensions in GSE8
2.2.2 Design and implement extensions to GSE8
2.2.3 Implement support for games ..9

2.3 Limitations ...9

3 Work methods ...10
3.1 Project model...10
3.2 Working base structure...10

3.2.1 Gathering of information ...12
3.2.2 Task 1: Design output and data storage12
3.2.3 Task 2: Design and create extensions to GSE12
3.2.4 Task 3: Implement support for exportation into games12

3.3 Design, Implementation and Testing13

4 Proposed solutions ..14
4.1 Focus ..14

4.1.1 Data structure focus ..14
4.1.2 Graphical structure focus ...14

4.2 Orders structure in General Scenario Editor16
4.2.1 Fixed order structure..16
4.2.2 Generic order structure ..16

4.3 BML used in the implementation ...16
4.3.1 Coalition Battle Management Language...............................17
4.3.2 Joint Battle Management Language17

4.4 Building appropriate BML output .. 17
4.4.1 Output format... 17
4.4.2 Combine Military Scenario Definition Language and BML
output ... 18

4.5 Exporting to a game ... 18
4.5.1 What scenario could be shown in the game? 19

4.5.1.1 The basic order ... 19
4.5.1.2 The more advanced order.. 19

5 Result ... 20
5.1 Mapping to the 5 W’s ... 20

5.1.1 What .. 20
5.1.2 Who ... 20
5.1.3 Where... 20
5.1.4 When.. 21
5.1.5 Why.. 21
5.1.6 Other information ... 21

5.2 Data model.. 22
5.2.1 External database .. 23

5.2.1.1 E/R model ... 23
5.2.1.2 SQL tables... 23
Table: OrderBase .. 23
Table: OrderMove... 24
Table: OrderAttack.. 25
Table: AreaOfInterest .. 25

5.2.2 Classes.. 25
5.2.2.1 BMLOrder... 26
5.2.2.2 BMLActionType... 26
5.2.2.3 BMLCondition... 26

5.3 General Scenario Editor functions.. 27
5.3.1 Routes .. 27
5.3.2 Order editor .. 27

5.3.2.1 Attack and Strike order ... 28
5.3.2.2 Move order... 29
5.3.2.3 Where-parameter.. 29
5.3.2.4 When-parameter .. 29
5.3.2.5 Interaction with the map... 30

5.3.3 Order view .. 30
5.3.4 Export to Joint Battle Management Language 31

5.3.4.1 Processing the data for exportation 31
5.3.4.2 Export wizard.. 31

5.3.4.3 Validation of the output ..35
5.4 Export to Virtual Battlespace 2...35

5.4.1 Output format ...35
5.4.1.1 Waypoints...36
5.4.1.2 Coordinates ..36

5.4.2 Export wizard ..37
5.4.3 Example of exportation to VBS2 ...38

5.5 Future extensions..40
5.5.1 Future extensions to GSE ...40

5.5.1.1 Additional order types ...40
5.5.1.2 Order modes...40
5.5.1.3 View modes ..40
5.5.1.4 Phases...41
5.5.1.5 Areas of interest..41
5.5.1.6 Advanced tactical graphics ..41
5.5.1.7 Selective exportation using labels41

5.5.2 Future extensions to VBS2 exportation41
5.5.2.1 Order of orders ...42
5.5.2.2 Identification of vehicles using symbols42

6 Conclusions ..43
6.1 Lessons learned ...43

6.1.1 Difficulties with JBML in a scenario editor44
6.2 The resulting solution ...45
6.3 Project conclusions ..47

7 References..48

8 Terminology...51

9 Appendix..53
9.1 WISE Connectivity ...53
9.2 E/R-diagram...54
9.3 The property grid ..55

9.3.1 Groups..55
9.3.2 Special combo-box ..55

9.4 The order editor, technical details..56
9.4.1 How the order editor handles orders56
9.4.2 Dynamic lists in the order editor ...57

9.5 The BML export wizard, technical details58
9.6 For further extensions ..58

9.6.1 Adding a new order type to the internal structure58
9.6.2 Adding new properties to order types59

1

1 Background

In order to plan and control a military simulation, there is a need for a language
which can be understood by all parts and levels of the organization - both man
and machine. This need has encouraged the development of a highly structured
and unambiguous language. The term for this type of language is Battle
Management Language.

Saab Training Systems AB is a company which develops training solutions, mostly
for military training. Such solutions often involve linking existing systems with a
simulation platform. This integration between systems is significantly simplified
by Saab Training Systems AB current solution, WISE Connectivity (see Appendix
9.1).

The development of a standardized Battle Management Language has now reached
a point where Saab Training Systems AB is interested in the concept of such a
language. Using Battle Management Language with WISE Connectivity will make
it possible to control different linked systems and simulations with a common
language.

1.1 Previous work by Saab Training Systems

To build military training scenarios that can be understood by different systems,
the Military Scenario Definition Language standard was set by the Simulation
Interoperability Standards Organization. While this language is merely used to
define the organization and its resources of a military operation, Battle
Management Language is intended for managing orders in the same organization.
[4, 2]

In 2008 a student group at Saab Training Systems AB investigated the possibilities
of Military Scenario Definition Language. The study, made by Fredrik Ullner and
Anders Lundgren, led to a product implementing support for the language. This
product is called General Scenario Editor and is currently under development. [5]

As an initial step to investigate the concept of Battle Management Language, Saab
Training Systems AB now plans to further extend the scenario editor to include
support for the new language.

2

1.2 General Scenario Editor

Figure Figure Figure Figure 1111----1111: The original General Scenario Editor: The original General Scenario Editor: The original General Scenario Editor: The original General Scenario Editor

As seen in Figure 1-1, the original version of General Scenario Editor presents the
information using a map and a tree-view containing the units of the organization.
The user can define the organization and place units on the map. The original
version of the scenario editor have the possibility to import and export Military
Scenario Definition Language 1.0 using eXtensible Markup Language, also known
as XML. There is only very minor functionality regarding order management.

1.3 Battle Management Language, BML

1.3.1 History
Command & Control is a term to describe the routine of a commanding officer to
assign tasks to forces in a military mission. Ever since computerized Command &
Control systems were introduced, there has been an increasing wish to use
simulation systems in military training. Several systems have been used and have
become more and more effective. This improvement has especially affected the
training for the higher echelons in the military. [11]

The problem for computer-based training systems has been the large number of
required personnel for controlling the simulations, which made this type of
training very resource demanding. The main reason originated in the lack of
means to communicate between different systems and the simulation. Improved
communication between these systems would make it possible for different
systems to exchange information and also to interact with the simulation. This
would reduce the number of workstation controllers needed.

3

To achieve this, later systems evolved to rely on “free text”-messages within the
Command & Control messages. Although communication with “free text”-
messages is easily understood and structured by humans, computerized systems
can merely distribute these messages, but not understand them.
To further develop intelligent systems that can analyze, interpret and control a
battle situation, an unambiguous and structured language for orders has to be
defined. This is where Battle Management Language comes into the picture. [11]

1.3.2 Concept
In the paper “Standardizing Battle Management Language – Facilitating
Coalition Interoperability” by Hieb, we learn that a language for managing battle
situations is actually nothing new. There has always been a language to direct
forces in military operations. Nowadays, a commander must be able to structure
an order so that it can be understood correctly by all participants, both human,
machine and simulation. Hieb also means that early solutions, like EAGLE BML
and CCSIL, did not successfully accomplish a generic solution to all problems.
The major problem was that the mentioned languages were very dependent on
the specific simulation in question and required a great amount of customization.
[2, 11, 25]

As a result of the development of a standardized Battle Management Language, the
following definition for BML has been set:

”BML is the unambiguous language used to command”BML is the unambiguous language used to command”BML is the unambiguous language used to command”BML is the unambiguous language used to command
and control forces and equipment conducting militaryand control forces and equipment conducting militaryand control forces and equipment conducting militaryand control forces and equipment conducting military
operations and to provide for situational awarenessoperations and to provide for situational awarenessoperations and to provide for situational awarenessoperations and to provide for situational awareness
and a shared, common operational picture.”and a shared, common operational picture.”and a shared, common operational picture.”and a shared, common operational picture.” [20] [20] [20] [20]

When Battle Management Language (BML) is used in this report, the above
definition is the one assumed.

During the recent years there have been several attempts for creating a Battle
Management Language. Some of them are more specific than others, and targeted
for different purposes. The solutions listed below have been investigated to find
an appropriate candidate to use explicitly in this thesis.

 Specification Ground Air Naval Implementation Software services International

MIP/JC3IEDM X X X X X

ArmyBML X X

JBML X X X X X X

C-BML X X X X X X

geoBML X X X
Table Table Table Table 1111----1111: The table shows the specific purposes and abilities for some well known languages.: The table shows the specific purposes and abilities for some well known languages.: The table shows the specific purposes and abilities for some well known languages.: The table shows the specific purposes and abilities for some well known languages.

4

1.3.3 C2IEDM and JC3IEDM
To allow commanders to make fast decisions in joint operations, there must be
an interoperability of information. Also, in operations which include several
countries, the information needs to be exchanged across both national standards
and lingual boundaries.

Figure Figure Figure Figure 1111----2222: How the C2IEDM can be used to : How the C2IEDM can be used to : How the C2IEDM can be used to : How the C2IEDM can be used to connect to different systems. [24connect to different systems. [24connect to different systems. [24connect to different systems. [24]]]]

Multilateral Interoperability Programme tries to achieve interoperability of
Command & Control information systems for all levels of the organization.
Multilateral Interoperability Programme’s solution is the Command and Control
Information Exchange Data Model, or C2IEDM. The model structures the
exchangeable information needed by the commanders in a joint operation. This
allows these different systems to exchange information, and makes it possible to
decide what and to whom the information should be exchanged. [7, 10]

The C2IEDM is an earlier version of the current Joint Consultation, Command
and Control Information Exchange Data Model, or simply JC3IEDM. [3]
C2IEDM and JC3IEDM are used as a base for some available solutions of Battle
Management Language.

1.3.4 Army BML
As described in the paper “Evaluating the Proposed Coalition Battle Management
Language Standard as a Basis for Enhanced C2 to M&S Interoperability“, the
military of the United States has made some attempts to develop a feasible Battle
Management Language for use with their joint forces. The development started by
studying many doctrine manuals; from very general field manuals to more
detailed manuals for the different branches of the United States military. This
study resulted in the definition of the 5 W’s principle, which stands for What,

5

When, Where, Who and Why. This principle can be used to structure a military
task. More details about the 5 W’s can be found later in chapter 5.1. In 2003 a
prototype, Army BML, demonstrated the principles of Battle Management
Language for battalion operations. This prototype led to a follow-up project,
XBML, which was sponsored by US Joint Forces Command. The main goals for
XBML was: [18]

1. To use web technology for communication between the systems.
2. Use the Command and Control Information Exchange Data Model.

1.3.5 JBML
US Joint Forces Command saw the potential of using XBML with Command &
Control-systems and simulations and realized that its concept was feasible for both
air and ground operations. This later led to the development of Joint Battle
Management Language (JBML). [3]

Figure Figure Figure Figure 1111----3333: The different layers of JBML: The different layers of JBML: The different layers of JBML: The different layers of JBML

JBML is characterized by three layers in its implementation. The above layer,
Domain-Configured Service, defines Battle Management Language in a domain. It
is implemented by a web service which uses XML to transfer all information
needed by the 5 W’s. This is from where the user of the application access JBML.
[3]

The middle layer, BML Base Service, disassembles the 5 W’s into information that
can be placed in the corresponding tables in JC3IEDM. It uses an interface to the
bottom layer, Common Data Access Software, to access these tables. [3]

1.3.6 C-BML
The Coalition Battle Management Language (C-BML) is a currently developing
standard by Simulation Interoperability Standards Organization. Unlike Joint

6

Battle Management Language, C-BML only includes a specification, not an
implementation. It is supposed to be a definition of how military tasks should be
structured. [3, 8]

C-BML is built upon the 5 W’s principle to translate military tasks to a subset of
the Command and Control Information Exchange Data Model. In a paper by Tolk,
it is revealed that the development of the standard is also closely related to the
Military Scenario Definition Language. This is done by also mapping Military
Scenario Definition Language to the 5 W’s which makes it possible to further map
it to a Battle Management Language. [9]

The C-BML study group report divides the development of the standard into
three separate phases. After the completion of phase one, the standard should
specify a data model for issuing military orders. The data model should be a
subset of Command and Control Information Exchange Data Model using XML.
Phase two will focus on developing a well documented and parse-able grammar
for C-BML. The grammar will include syntax, vocabulary and semantics.
Extensions to the grammar will be made so that reporting of military orders is
possible. In the last phase, which is planned to be finished in April 2010, the
standard should include a definition of the ontology of battle management. As a
result, interoperability between services will be possible. [8]

1.3.7 geoBML
While other Battle Management Language solutions have focused on the domain
and the structure of the language, geoBML addresses the surrounding
environment in the planning of coalition operations. As forces move against a
net-centric operation, more emphasis needs to be put on using the terrain and
weather in the aid of Coalition Command & Control. The information must also
be efficiently exchangeable between several coalitional parties. [1, 19]

1.3.8 Summary
The most interesting languages for use in General Scenario Editor are Coalition
Battle Management Language and Joint Battle Management Language which are
further investigated and evaluated in this thesis. This consideration is described in
chapter 4.3.

7

2 Problem description

The purpose of this project is to extend the order management in the original
General Scenario Editor to support Battle Management Language to the point
where the result shows the possibilities of its concept. The user of the application
should be able to assign military orders to different parts of the organization. This
also involves exportation of a structured Battle Management Language from the
scenario editor, and also exportation to a computer game’s native scenario
scripting format. The games of interest are Steel Beasts 2 Pro and Virtual
Battlespace 2, both already having a working interface to the integration system
WISE Connectivity. [6, 26, 27]

The academic aspect of this thesis is to find the core component that unifies the
concept of Battle Management Language, and to decide which parts are the most
beneficial for the intentions of General Scenario Editor.

The original General Scenario Editor only has very minor functionality
concerning order management, which is only to the extent where it is possible to
issue very specific tasks to the organization. These tasks can more accurately be
seen as waypoints on the map. There is no way to export or import a structured
Battle Management Language from and to the application. Nor is there a working
function to export the orders to any of the applications used in Saab Training
Systems AB current solutions.

The questions that will be answered in this thesis are the following:

• Which difficulties exist when designing a scenario editor with the support
for order management and Battle Management Language?

• What data model will be needed to store the data in the scenario editor
and how do we output this for exportation?

• Which extensions will need to be made to the scenario editor?

• Which orders could be simulated in the game?

• Which are the restrictions in the game?

• What must the orders look like in order to be imported into a specific
game’s format?

2.1 Visions and goals

On the market of military training there is currently considerable interest in
Battle Management Language. To follow the development of this upcoming
standard, Saab Training Systems AB wants to investigate how Battle Management
Language can be integrated into their products, especially in the integration
platform WISE Connectivity. In the end, Battle Management Language could be

8

used in many aspects of military training, from multiple Command & Control
systems to many different simulations and end systems.

The vision is also to combine the support for Military Scenario Definition
Language with Battle Management Language in the scenario editor. This creates a
complete solution for training scenario editing and is possible due to the
organization structure of Military Scenario Definition Language and the military
task assignment of a Battle Management Language.

The goal of this thesis is to demonstrate the functionality of supporting a Battle
Management Language in the General Scenario Editor application. Practically, this
is accomplished by going from a created scenario in the scenario editor, to a
Battle Management Language and eventually to a specific game which simulates
the scenario. The result can then be used to further investigate the use of Battle
Management Language.

2.2 Scope

2.2.1 Design data storage for the extensions in GSE
As the original General Scenario Editor is very limited concerning order
management, the initial focus is to extend the scenario editor to be able to store
data in a way that makes it possible to store military tasks and output to a Battle
Management Language.

The new data model must be able to:

• Store a military order, with all its essential data.

• Preferably use the data model already present for the Military Scenario
Definition Language functionality.

• Be easy to export to a structured military order format.

• Be easily expandable for new purposes, additional order types and different
Battle Management Language solutions.

2.2.2 Design and implement extensions to GSE
Functions to draw symbols and objects on a map are already implemented in the
original General Scenario Editor. This implementation includes a subset of the
common war fighting symbology defined in MIL-STD-2525B, which is a
standard set by the United States military. As the original version of the scenario
editor only includes symbols from Appendix A of the standard, it may be
preferable to also implement support for the tactical oriented symbols from
Appendix B. [12]

Depending on the solution, different features are needed to be implemented.
However, some general features are required regardless of solution:

9

• A user interface for creating and assigning the military orders, using
graphical- or text-input.

• Functions to represent military orders on the map and other preferred
graphical extensions.

• Store information in the new data model.
• Retrieve all necessary information from the data model and export it to a

Battle Management Language, possibly using some kind of export wizard.

2.2.3 Implement support for games
The material in the extended General Scenario Editor should be exportable into a
game’s native scripting language. The following steps are to be performed:

• Determine what possibilities the game
o Analyze the game’s scripting format.
o Find the requirements, concerning input and output, for the game.

• If required, make additions to the different order types so that it can be
successfully exported to a game.

2.3 Limitations

The extended General Scenario Editor serves as a proof of concept, and should not
be considered a finished product for order management. With the extensions
done during this thesis, it will be possible to further develop the scenario editor to
a commercial product in the future.

The new, extended, data model will features the necessary parts for
demonstrating the concept of order management. This model must be further
extended in the future to support more order types and functions.

The military order types available in General Scenario Editor are “MOVE”,
“ATTACK” and “STRIKE” (see chapter 5.3.2). The only distinction between
these order types when exporting to a game is that the units do not fire when
performing a “MOVE”-order.

No additional symbols were designed as all needed could be retrieved from
MIL-STD-2525B.

10

3 Work methods

3.1 Project model

Much of the work in this thesis is software development, which is performed
using an appropriate project model. There is also some necessary research that is
integrated with the software development work.

As the concept of a Battle Management Language is new to Saab Training Systems
AB, the development is performed in small steps with constant evaluation of the
progressing result. This makes it possible to detect serious mistakes and
misconceptions at an early stage, and the work can be redirected without much
lost work. It is also important for the company to be able to apply “trial and
error” as a working method, where a function is implemented in a very simple
way, only to show if it is reasonable or not. This is especially appropriate during
development of user interface as it allows tryout and visualization.

The above description is similar to an evolutionary project model where there is
always a working piece of software at the end of each cycle - the product
“evolves”. The advisor at Saab Training Systems AB weekly looks at the progress
made and evaluates the result. After consultation with other advisors, a decision is
made of how to proceed with the development and when to expect results. This
approach is similar to the agile project model SCRUM, described on the official
website of that project model, but without a defined set and lengths of sprints.
[13] Such restrictions do not benefit the project, as the different application
functions to implement vary in extent.

3.2 Working base structure

From the scope of this thesis, three obvious tasks can be distinguished:

• Data modelling

• Designing and extending General Scenario Editor
• Export to a game

Each task requires the gathering of information, which is performed in parallel
with all tasks. This occurs intuitively as new information is revealed and
assimilated during the development process.

The first and second tasks have the highest priority, and these are performed in
parallel to some extent, as they are closely related. The third task has the lowest
priority, which is also the reason why it is the last task and is performed as far as
time allows it.

11

Figure Figure Figure Figure 3333----1111: The project algorithm: The project algorithm: The project algorithm: The project algorithm....

Figure 3-1 shows a graphical representation of the work structure. The vertical
boxes can be seen as the three main tasks. The blue arrows represent the direction
in which the work advances. The red dashed arrows show the relation between
the main tasks. Such relation implies that those tasks are likely to be worked on
in parallel with each other.

An observation that can be made in the horizontal box, is that the blue arrows are
two-way for the first two subtasks but not for the last subtask. This implies that
there should be no, or very little, modification to the work made in the previous
tasks when reaching the “Exportation to a game” task.
The color of the vertical boxes indicates the priority of the tasks, where orange
has higher priority than blue.

12

3.2.1 Gathering of information
As none of the participants of the project initially have any knowledge about
Battle Management Language or much of its surrounding military terms, a lot of
information is required and assimilated. This is done by reading a lot of material
listed in chapter 7 and by consulting expert advisors. More information is
revealed as the project advances and as advisors answer questions. This is taken in
consideration when making decisions.

3.2.2 Task 1: Design output and data storage
When enough information is collected about Battle Management Language in
general, a preliminary design of the data model and its content is created for
General Scenario Editor. This data model contains most features needed for the
proof of concept.

The second part of this task is to actually implement an export mechanism from
the internal database of General Scenario Editor to a Battle Management Language.

3.2.3 Task 2: Design and create extensions to GSE
This second task is the most time consuming task and at its completion serves as
the answer to the major questions of this thesis.

The main work in this task is to graphically design and implement the functions
to the General Scenario Editor. During design, there is continuous
communication with the advisor at Saab Training Systems AB.

The implementation includes the storage of the information input by the user
into the defined database from the new data model. This is done by using
existing functions for database management in the application. The result can
later be exported to a Battle Management Language’s output format. The exact
specification of this output format, along with the data model, is determined
during Task 1.

3.2.4 Task 3: Implement support for exportation into games
Although a demonstration of the result is valuable, it is not vital for the proof of
concept to demonstrate exportation to different games. This is the reason why
this last phase has a lower priority.

There are two possible exportation methods that are considered depending on the
result of the previous tasks.

• An export function integrated in the scenario editor that directly exports
the material from the database to a game. In this way, all needed
information is fetched directly from the database.

• Convert an exported BML-file independently of the scenario editor. An
external conversion tool will need to be developed. It is however difficult

13

to produce any good results if there are too many limitations in the
exported BML-file.

In this task, a “lexicon” is defined that translates the orders from the scenario
editor in a way that the specific game can simulate it accordingly. A number of
examples are developed to show some variations between order types in the game.

3.3 Design, Implementation and Testing

The first step is to design the data model of the database and the internal storage
of General Scenario Editor. This is done after extensive research on Battle
Management Language so that no serious mistakes are done at this point.

When a draft for the data model is done, it is possible to start the design for
several different functions to be implemented in the scenario editor. Each
function is processed one by one, which means that a function is designed,
implemented and then tested before the next function is undertaken. Input from
the advisor at Saab Training Systems AB and the other expert advisors will be
considered during design and gives opportunity to experiment with different
designs.

As the original General Scenario Editor is written in C#, the extensions made
during this project are also done in the same language. Saab Training Systems AB
provides some data structures, graphical components and methods that is usable.
These include methods for interaction with the database, and the controller for
drawing on and modifying the map.

Testing is integrated into the implementation process. No specific phase will be
dedicated to just testing. All functions are first implemented as a draft and then
presented to the advisor at Saab Training Systems AB. When the concept of the
function is approved, errors from the draft implementation are corrected. After
several functions have been implemented, approved and tested, approximately
one complete work day is dedicated for finding and correcting errors in overall
functionality in the application. After this, further implementation proceeds as
usual. The goal is to ensure stable operation of the application without crashes
induced by the extensions done during this thesis.

14

4 Proposed solutions

During the information gathering and design phase, different solutions were
proposed and considered. In this chapter, the advantages and disadvantages is
compared which leads to the result in chapter 5 and the conclusions drawn in
chapter 6.

4.1 Focus

Due to limitations in time, compromises have to be made when deciding what
focus the application design will have. There are two approaches to consider.
The first choice is to concentrate on the representation of the order internally in
the application, and to design the graphical functionality from there.
The second choice is to let a graphical representation of order management
decide what the internal data structure will look like and thereby creating more
visually appealing, and maybe more user-friendly, implementation.

4.1.1 Data structure focus
In this approach, the focus is put on the data structure for representing order
within the application. A more thorough and flexible data structure makes it
possible to expand the application more easily in the future. More time can also
be spent on the exportation/conversion to the destined game (Steelbeasts 2 Pro or
Virtual Battlespace 2). This gives a more elaborated demonstration of the whole
chain of order management, all the way from the scenario editor to the games.

As less focus is put on the graphical representation of order management, it is
possible that the result does not provide such a detailed view of the scenario just
by looking at the map. Instead, simple symbols and colored lines represent
orders. Some simple functionality with clickable symbols is also implemented.

A graphical interface that supports the underlying data structure is required. This
interface is used to create and edit orders in a text-based manner. This interface
can then easily be expanded to a more sophisticated graphical representation of
orders in the future.

4.1.2 Graphical structure focus
If main focus is put on the graphical representation of the orders, this influences
the data structure internally in the application. The internal data structure stores
for example the placement of the symbols for the scenario, and maybe some
additional information. During exportation to other formats, this graphical
information is then interpreted and converted into textual order information.

This solution is of course preferable if the goal is to create a sophisticated
graphical design regarding tactical orders. Complex symbols indicate specific

15

orders and settings, which makes most of process of creating an order to be
completely graphical. It is a matter of placing symbols on the map instead of
textually defining the orders. Commercial products, such as Military Overlay
Editor (MOLE) [23], are considered as a potential candidate to use as graphical
user interface for this solution.

Figure Figure Figure Figure 4444----1111: Screenshot of an application using MOLE for graphical tac: Screenshot of an application using MOLE for graphical tac: Screenshot of an application using MOLE for graphical tac: Screenshot of an application using MOLE for graphical tactics. [23tics. [23tics. [23tics. [23]]]]

From a product point of view, the profit of making an advanced graphical
representation of orders is that the promotion of the product is potentially easier.
The problem of this concept is however the difficulty in both design and
implementation of such a user interface. Interpreting graphical orders could not
only lead to ambiguousness but also introduce limitations for order management.
If such limitation is found late in the development process, it is difficult to
redesign and change. The outcome of this solution is thereby very uncertain and
is highly dependable on time. This because serious limitations can be
encountered late during development, especially when trying to export orders to
different output formats.

Comparing advantages and disadvantages, “Data structure focus” is the most
advantageous option and is used in the implementation.

16

4.2 Orders structure in General Scenario Editor

The goal is to make extensions to the scenario editor without interfering with the
existing structure of the original version. Two solutions are proposed concerning
the internal order structure in General Scenario Editor, and the differences are
discussed in this chapter.

4.2.1 Fixed order structure
To be able to start implementing the new extensions quickly into the scenario
editor, a fixed structure for each order type (verb) is created. This is less time
consuming as it is only necessary to consider the order types that this thesis
intend to implement, with not much concern of future extensions. The data
model is also easy to design.

This approach may be tempting in order to see results early in the
implementation process and to reach the goals of the thesis in time. It is however
an irresponsible solution regarding future development of the scenario editor
concerning order management.

4.2.2 Generic order structure
The fact that many orders share the same structure can be exploited to create a
flexible internal data structure for managing orders. For this, it is necessary to
study Command & Control lexical grammar and Battle Management Language to
identify common parameters and their possible values. If these are correctly
obtained, a universal order base can be created with all of these common
parameters. This simplifies the process of extending the scenario editor with new
order action types in the future. Even the external database is arranged in such a
way that this “flexible” property is supported.

The disadvantage of this solution is that it can become very complex and cause
some overhead. From the scope of this thesis, this solution is not reasonable
because of the small quantity of order types implemented. It however opens up
the possibility for additional order types and is therefore the chosen solution.

4.3 BML used in the implementation

There are different Battle Management Languages defined, all of them have some
similar characteristics. It is however possible that some of these languages are
more appropriate to use in the General Scenario Editor than others. Looking at
the table in chapter 1.3.2, the two languages Coalition Battle Management
Language and Joint Battle Management Language are chosen as candidates for the
implementation. These two languages are examined further and which of them to
implement is decided.

17

4.3.1 Coalition Battle Management Language
Coalition Battle Management Language is a standard in progress and is considered
new and fresh. The development of the standard is divided into three phases.
This phase consists of developing a formalized and structured language to be
transferred to the 5 W’s principle.

There are draft data models that can be used for implementation in General
Scenario Editor. The drawback of using the draft version of Coalition Battle
Management Language in this thesis is that it can be hard to find information that
can be used. The draft XML schema definition files may also be lacking some
functionality.

4.3.2 Joint Battle Management Language
As mentioned in previous chapter, Joint Battle Management Language
is developed for the United States military and contains both a specification and
an implementation. There is a working data model available and it is easier to
find substantial information about it, which is the main reason why JBML is
chosen as the language to implement.

The differences between the candidate languages do not affect the result
significantly. As Andreas Tolk explains in one of his papers, the work made
during the development of Joint Battle Management Language is also the main
contributor to the development of the current Coalition Battle Management
Language. [3] So even though JBML is quite old itself, the concept and features of
the language is not obsolete. This means that extensions made to the General
Scenario Editor is not in vein no matter which of the two languages are selected.
The purpose of this thesis is to demonstrate the proof of principle with Battle
Management Language in a scenario editor. As the extended General Scenario
Editor stores order information in a generic manner it is not very difficult to also
export to other languages as well.

4.4 Building appropriate BML output

Users of the application likely have different preferences about the output format.
It is necessary to take this into consideration when deciding a solution.

4.4.1 Output format
Joint Battle Management Language provides schema definition files for XML
output, which can be used to structure an order. The schema definition files will
make it very convenient to export data from the data model to a XML-file
containing the military orders. This is the most logical approach since General
Scenario Editor already includes functions to construct XML-documents.

18

It is of course possible to study the schema definition files and create a
proprietary format for exportation. This is however redundant work as XML
libraries are already available.

4.4.2 Combine Military Scenario Definition Language and BML output
Saab Training Systems AB looks at the possibility to combine the Military Scenario
Definition Language and Battle Management Language functionalities in the
scenario editor. This also opens a discussion if the exported output should
combine both of these formats into one output format.

The original General Scenario Editor supports the functionality to export the
organization of a military scenario to Military Scenario Definition Language 1.0.
Joint Battle Management Language also supports the representation of the units
and resources involved in the order using its own modified version of Military
Scenario Definition Language. So the question is whether to use this modified
Military Scenario Definition Language version or to deviate from Joint Battle
Management Language’s definition and instead use Military Scenario Definition
Language 1.0. By doing so, the original schema definition files for Joint Battle
Management Language cannot be used when validating the output.

In some cases it is also desirable to completely separate the organization and the
order management, creating separate output files for the Military Scenario
Definition Language and Battle Management Language.

The decision is to implement all of these variations, and introduce them in an
export wizard in the application. Then the user can decide what output he or she
wants. This approach will of course be more time consuming than to just
implement one variation, but it will make it possible to evaluate different aspects
of Battle Management Language and Military Scenario Definition Language.

4.5 Exporting to a game

As stated in the problem description (chapter 2) there are two games of interest
concerning the exportation from the extended General Scenario Editor. These
games are Steel Beasts 2 Pro and Virtual Battlespace 2. The investigation revealed
that the mission files for Steel Beast 2 Pro was binary formatted and
undocumented. To a developer, the difficulties in that situation are obvious and
therefore Virtual Battlespace 2 can be determined as the game of choice. This
game uses a text-based and scriptable mission format, yet undocumented.

Although Virtual Battlespace 2 has a lot of possible settings, these specific
properties can be set to a default values for all scenarios. This makes the 5 W’s
principle used in the General Scenario Editor sufficient for structuring a basic

19

order even in the game. Any specific vital information is either configured in an
export wizard, or using optional input during the order creation.

4.5.1 What scenario could be shown in the game?
The investigation of the game and its mission editor revealed that it is possible to
simulate both simple and quite advanced orders within the game.

4.5.1.1 The basic order
The orders in Virtual Battlespace 2 (VBS2) are, in the most basic form, just
waypoints that can be assigned to the units present in the scenario. All units need
to be a member of a group. A waypoints assigned to a group leader applies to all
of the group’s members. No orders for individual units of a group are allowed.
All waypoints can be configured independently to affect the approach of the units
using the waypoint. The primary option for a waypoint is its “Type”, which is a
setting that affects the overall execution of the waypoint. A more detailed
description of these types can be found in the VBS2 Editor Manual. Other
settings include the units’ behavior in combat situations and the speed of
movement. [22]

4.5.1.2 The more advanced order
Virtual Battlespace 2 has a built-in scripting format that allows the user to create
very complex missions. Script code snippets can be inserted for most objects in
the scenario. Also a specific object, called “Trigger”, can be placed on the map to
allow script code to be run when a specific condition is valuated true.

As an example, the condition could be set to: “Activate trigger if a vehicle enters a
100 meter radius of the trigger’s position”. The activation of a trigger basically
means that its “activation statement” is executed. Such statement could for
example be: “Reduce the activating vehicle’s fuel tank to half“.

There are many functions in the scripting language that allows very detailed
coordination of the units’ behavior in the scenarios. This opens up the possibility
to make AI units appear making decisions, just by using a set of well placed
triggers.

With the scope and timeframe of the project in mind, it is decided to only aim
for some basic order translation from the scenario editor to the game. This would
not require extensive scripting.
With a simple “Move”-waypoint, both order types “MOVE” and “ATTACK”
from the scenario editor can be translated to the game. To distinguish the two
order types in the game, the waypoints used for “MOVE” have a “Hold fire”-
setting applied, while the “ATTACK” have a “Fire at will” setting applied. This
somewhat naive distinction is enough to at least prove the concept.

20

5 Result

The result of this thesis can be seen as the new functions to the scenario editor.
For a more technical explanation of some functions refer to appendix in chapter
9.

5.1 Mapping to the 5 W’s

The first thing that had to be done was to decide what input that should be
available to the user. As Joint Battle Management Language relies on the 5 W’s
principle, this was a good approach when finding the different properties of the
order that could be input. To be able to build a relevant order, some information
is crucial while some can be optional. When designing the database and the
graphical user interface all these properties were considered and are expected to
work even if the solution is extended to support other output formats in the
future. [3, 17]

5.1.1 What
“What” defines the verb of the order, which tells what kind of action that is to be
executed. It is important that the sender and the receiver of a military order share
the same lexicon so that an order can not be misinterpreted. The extensions made
to General Scenario Editor resulted to include only three verbs.
The specific “What” may also affect how the related W’s and additional
information will be structured.

5.1.2 Who
Depending on the chosen verb in the “What” and the BML used, different types
of “Who” can exist in an order. In every BML encountered during this thesis at
least two types of “Who” need to be specified in each order -“Tasker” (issuer) and
“Taskee” (performer). However, additional “Who”-parameters, such as
“Affected”, can be added depending on the situation.

5.1.3 Where
As every military order need to have some kind of reference concerning where it
should be executed, this parameter must be very flexible for adding information
about different types of locations. Sometimes the information has to be more
describing than just a simple coordinate. For example, “Move along the river” or
“Approach unit X at a radius of 200 meters”. It might also be of interest to have
information regarding “From Where”. This information can be used to execute
more complex orders, such as “Ambush”.
In Joint Battle Management Language, it is possible to specify what type of category
(Route, Minefield etc) and the classification (Point, Area or Line) the location is.
Also a qualifier should be chosen, which states how the approach to the location
should be performed (Along, Between, To etc).

21

5.1.4 When
Basically there could be two properties of “When” in an order. One which tells
when the order should be executed and there could also be one which tells when
an order should end.

In most Battle Management Language solutions there are also two types of When-
parameters. One that specifies a time and another that specifies a reference to
another order. There could also be a qualifier (“Not before”, “At time”, “ASAP”
etc) with which it possible to state for example that an order should not be
executed before another order has been completed.

5.1.5 Why
This part of an order could basically be a text-string that describes the purpose of
the order. It can also be structured in a formal language which is the case with
Joint Battle Management Language. An example of a Why-parameter would be
“in-order-to surprise”. In Joint Battle Management Language, “Why” is an
optional parameter and is not implemented in General Scenario Editor.

5.1.6 Other information
Depending on the Battle Management Language, there can be additional
information supplied with an order. For example, the Joint Battle Management
Language offers the possibility to choose a transport-type for ground positioned
units, while some other Battle Management Language solutions supports the
specification of a formation of the units included in an order.

22

5.2 Data model

Figure Figure Figure Figure 5555----1111: Storage layers of General Scenario Editor: Storage layers of General Scenario Editor: Storage layers of General Scenario Editor: Storage layers of General Scenario Editor

It is possible to distinguish three layers regarding data storage in General Scenario
Editor. The top layer consists of the graphical user interface (GUI), which
presents information to the user and selects the information that should be
forwarded further down.
Before the information is passed down to the next layer it passes “Internal data
storage” of the GUI. This layer synchronizes the new information that is sent
down, so that the same information also is presented in the GUI. This especially
applies to the tree-hierarchy view that always should present a correct view of the
scenario’s organization.

The information travels down to the next level, “Internal scenario storage”. This
layer stores a copy, as a local cache, of the whole external database – a SQLite
database. The interface to above layers consists of methods for fetching and
altering the local cache. Eventually the local cache and the external database must
be synchronized, which is done when the user decides to save the scenario.

23

The main task of the development has been to design the internal data storage of
the scenario editor to support order management. There are basically three parts
that has been designed:

• Data structures for internally representing order information
• Internal storage of information
• An external database (tables) that supports the internal data structure

5.2.1 External database
As the extended General Scenario Editor does not feature any extensive set of
order types, it is required that the database is easy to expand in the future. A lot
of work has been done in making a generic data model internally in General
Scenario Editor that supports the external database.

5.2.1.1 E/R model
As seen in the picture of Appendix 9.2, an object oriented view is present even in
the database, where the different order types share a common base of properties.
It should be pointed out that there is information stored in this data model that is
not used by Joint Battle Management Language. This is because the goal was not
to create a “Joint Battle Management Language editor” but a generic scenario
editor that can be used for exporting to different formats. This will also be
advantageous when extending the export possibilities to different Battle
Management Language formats in the future.

5.2.1.2 SQL tables
The different entities from the E/R model is implemented as separate tables
instead of just combining them into one. In this implementation, where there are
only two classes of orders, this solution might not seem appropriate. But when
the number of order types increases, a separation of the tables will probably be
very advantageous as different parameters (fields) may apply to different order
types.

Table: OrderBase
This table contains the common properties of an order. This can be directly
linked to the class BMLActionType in the internal data structure of the scenario
editor.
The actionType field in OrderBase determines which additional table that is
necessary to complement the order.

24

FieldFieldFieldField DescriptionDescriptionDescriptionDescription
orderId Unique id for an order.
actionType Name of the order type.
orderName Name of the order. Should be unique.
scenarioId Specifies which scenario this order belongs to.

Refers to the table “Scenario”.
taskerType Type of tasker. Can only be “Unit” in the current

implementation.
taskerId Id of the type of tasker specified in taskerType.
taskeeType Type of taskee. Can only be “Unit” in the current

implementation.
taskeeId Id of the type of taskee specified in taskeeType.
why A textual representation of the intent of the order.

Not implemented at the moment.
startConditionType Type of the start condition. Can be “Time

condition” and “Action condition”.
startConditionQualifier Qualifier of the start condition.
startConditionAction Id of another order, specified for an “Action

condition”.
startConditionTime Time for the condition, specified for a “Time

condition”.
endConditionType Type of the end condition. Can be “Time

condition” and “Action condition”.
endConditionQualifier Qualifier of the end condition.
endConditionAction Id of another order, specified for an “Action

condition”.
endConditionTime Time for the condition, specified for a “Time

condition”.
WhereType Type of location. Can be “Coordinates”, “Route”

and “Indirect unit”.
WhereCategory Category of location.
indirectUnit Id of another unit, specified for “Indirect unit”.
routeId Id of a route, specified for “Route”.
Longitude Longitude, in degrees.
Latitude Latitude, in degrees.

Table: OrderMove
Orders that can be classified as movement orders should be placed in this table.
In the internal structure of the scenario editor, this corresponds to the subclass
BMLMoveActionType. In the implementation this table is used for the order type
“Move”.

25

FieldFieldFieldField DescriptionDescriptionDescriptionDescription
orderId Unique id for an order. References an order id

from the table OrderBase.
Speed Speed associated with the move order.
Formation Formation associated with the move order.

Table: OrderAttack
Orders that involve attacking a target should be placed in this table. In the
internal structure of the scenario editor, this corresponds to the subclass
BMLAttackActionType. In the implementation this table is used for the order
types “Attack” and “Strike”.
FieldFieldFieldField DescriptionDescriptionDescriptionDescription
orderId Unique id for an order. References an order id

from the table OrderBase.
Resource A resource to be used when executing the attack

order.

Table: AreaOfInterest
With this table, it is possible to globally define a collection of coordinates for the
scenario. In this implementation of the scenario editor, only “routes” can be
defined. The idea is that “areas” and “single points” should be supported in the
future.
FieldFieldFieldField DescriptionDescriptionDescriptionDescription
aoiId Unique id for the collection of coordinates.
scenarioId Specifies which scenario this order belongs to.

Refers to the table “Scenario”.
name Name for the collection of coordinates.
type The type of collection. Can only be “ROUTE” in

the current solution.
coordinates A serialized text string of an array with

coordinates.

5.2.2 Classes
The classes for structuring orders in General Scenario Editor are divided into three
data structures.

• BMLActionType, which contains almost all information about the task.

• BMLCondition, which is used for specifying some kind of condition for the
order.

• BMLOrder, mainly consists of the two types above.

As the original version of General Scenario Editor implemented simple functions
for handling orders and actions, many obvious class-names were taken. This is
the reason why the keyword “BML” was added for most new classes. This is

26

actually not implying that the use of these classes are restricted for use with Battle
Management Language, it is only done to not cause any confusion.

5.2.2.1 BMLOrder
When all information is gathered, it is
packed into a final BMLOrder instance. The
main member attribute of this class is an
instance of BMLActionType. Other
information included is an identification
string and the name of the order. There are
also two BMLCondition objects attached;
one for specifying a start condition and
another for the optional end condition.

5.2.2.2 BMLActionType
The biggest component of an order is the
BMLActionType. This structure basically
contains all information given in the order editor about the military task. It also
deals with the interface to the property grid (see terminology) in the order editor.
More specifically, it generates and synchronizes its attributes with the options
available in the property grid of the order editor window.

The BMLActionType contains all information considered as fundamental for an
order, based on the 5 W’s principle. This makes it possible to extend this class
with more functionality to include many other, more specific, order types. Two
of these are created for demonstration:

• BMLAttackActionType – see respective chapter 5.3.2.1
• BMLMoveActionType – see respective chapter 5.3.2.2

Each of these subclasses also has their own table in the database to demonstrate
how further extensions of order types could be separated from each other. A
corresponding solution would instead be to include all the new fields in the
OrderBase-table.

5.2.2.3 BMLCondition
An order always requires some kind of condition for it to begin, whether it is “as
soon as received” or a specific time. It could also be a condition connected to
another event. To assemble this concept, BMLCondition is designed as a basic
structure to be attached onto a BMLOrder. The structure can store a time, a
reference to another order and a qualifier.

The information stored in BMLCondition is also accessible from the
BMLActionType attributes. It may therefore seem redundant to include

Figure Figure Figure Figure 5555----2222: Content of the BMLOrder: Content of the BMLOrder: Content of the BMLOrder: Content of the BMLOrder----classclassclassclass

27

BMLCondition in the BMLOrder as well. The argument for this solution is to
further emphasize the distinction of conditions and the actions that should be
performed in the task.

5.3 General Scenario Editor functions

5.3.1 Routes

Figure Figure Figure Figure 5555----3333: Shows the route in : Shows the route in : Shows the route in : Shows the route in the treethe treethe treethe tree----hierarchy and dhierarchy and dhierarchy and dhierarchy and displayed on map.isplayed on map.isplayed on map.isplayed on map.

The original General Scenario Editor lacked the possibility to draw routes and
other areas of interest on the map. Such areas of interest can be very useful when
issuing an order. It was decided to extend the functionality to include routes in
General Scenario Editor. As the same route could possibly be used for many
different orders, routes are made global to the entire scenario. The route-editing
functionality is put in the tree-hierarchy (see Figure 5-3). With a simple click, the
user can proceed to draw a route and give it a name. This name is then used to
assign the route as the destination for an order. As the routes are global, they are
also put in their own table in the database, see 5.2.1.2.

Internally, the routes have a header class named Route. The header, basically a
header for a linked list, references the first and last waypoint of the route. The
waypoints within belongs to the class Waypoint. The waypoints themselves keep
track of the following and previous waypoint. The coordinates of these waypoints
are serialized to the database to fit in a single table row.

5.3.2 Order editor
The order editor is the tool for creating and editing orders in the scenario and is
the main functional extension made to General Scenario Editor. The editor
utilizes the existing organization management in the scenario editor for issuing
orders between them.

28

The intent was to make a simple graphical
interface to the internal data storage of the
scenario editor. All settings of an order are
possible in the order editor window. This
may not be very user friendly alone, but
when extending the window to interact
with the map and other means of input,
the concept is actually very user-friendly
and useful.

To use the order editor, one simply selects
the unit in the tree-hierarchy and this
choice will be set as the tasker (issuer) for
the order. In the order editor, an order
type is selected and its available properties
are presented in the property grid. A name
of the order can be specified during the
creation of the order, and all other settings
are done by changing the properties in the
property grid.

Previously created orders can be loaded
and edited, or deleted, from the order list
which is presented at the bottom of the
window. This order list presents the
created orders from the currently selected
tasker.

Figure Figure Figure Figure 5555----5555: Shows the adding of an optional: Shows the adding of an optional: Shows the adding of an optional: Shows the adding of an optional parameter. parameter. parameter. parameter.

Another feature concerning orders, are the ability to add optional properties to
the order. This enables the user to increase the detail of the order when the
situation requires it.

5.3.2.1 Attack and Strike order
In the military doctrine, there are differences between the meaning of “Attack”
and “Strike”. “Attack” is a general attack while “Strike” is more aggressive and

Figure Figure Figure Figure 5555----4444: The order editor in GSE: The order editor in GSE: The order editor in GSE: The order editor in GSE

29

should result in the total defeat of the target and the control of its position. In the
scenario editor however, the only difference between them is the name. This
similarity allows both to share the same class in the internal structure of the
application. Only one special property differ the “common order” from these
order types, which is the ability to specify a resource (such as a weapon) to be
used during execution of this order.

5.3.2.2 Move order
The “Move” order type was implemented due to the simplicity of the order, as it
only requires an end point in the form of end coordinates. Also some optional
parameters where added, like “Formation” and “Speed”, to show the flexibility of
the order creation.

5.3.2.3 Where-parameter
The options for defining the “Where”-parameter were constructed with the
support for the XML schema definition files in mind. This was the most logical
solution, as it would be easy during exportation to Joint Battle Management
Language. [17]

The schema definition files offered three different ways of defining the “Where”-
parameter:

• To a coordinate

• To an indirect unit

• To a set of coordinates
This introduced three options in the order editor:

• “Coordinate”, which refers a coordinate on the scenario map

• “Indirect unit”, which refers the position to a unit in the organization.

• “Route”, which refers to a previously defined set of waypoints

5.3.2.4 When-parameter
The tasks of a military operation have a start-condition and optionally an end-
condition. These conditions are specified in two ways according to Joint Battle
Management Language: [17]

• By a point in time

• As a relation to another task
This also introduced two types of options in the order editor:

• “Time condition”, which is set to a date and time

• “Action condition”, which is set to another order present in the scenario.
In both cases, it is also possible to set a qualifier for the condition, for example
“After” and “As soon as possible”.

30

5.3.2.5 Interaction with the map

Figure Figure Figure Figure 5555----6666: Shows the right: Shows the right: Shows the right: Shows the right----click menu on the map in General Scenario Editorclick menu on the map in General Scenario Editorclick menu on the map in General Scenario Editorclick menu on the map in General Scenario Editor

During the process of creating an order, the user is able to right-click on the map
to list some of the objects in that area. Such objects can be units, routes,
coordinates and other existing orders. Moving deeper in the menu-tree, the user
can select options that reflect choices in the order editor. For example one can set
a specific unit on the map as the target of an attack by right-clicking nearby and
click “Set as target” for that unit.

The right-click menu features the following list of options for different objects on
the map:

• For a Unit
o Set as target for the Where-parameter.
o Set as the performer of the order.

• For a Route
o Set order to be executed via route.

• For an other order
o Set as start-condition for the order.
o Set as end-condition for the order.
o Modify… (opens the order in the order editor)

• For the clicked coordinate
o Set as target for the Where-parameter.

5.3.3 Order view

Figure Figure Figure Figure 5555----7777: Shows the order viewer in General Scenario Editor for relations with orders.: Shows the order viewer in General Scenario Editor for relations with orders.: Shows the order viewer in General Scenario Editor for relations with orders.: Shows the order viewer in General Scenario Editor for relations with orders.

31

By default, when a unit is selected in the tree-hierarchy, all orders issued by this
unit are presented on the map. This unit is usually called the tasker.
The order view panel gives the user two useful functions for controlling the way
orders are visualized in the scenario.

• It visualizes the whole scenario for the selected tasker in a chart. In this
chart, orders are grouped by taskee (performing unit) vertically and placed
horizontally regarding time. By clicking on an order in the chart, that
order is editable in the order editor window.

• By using the range bar (time line) above the chart, the user may even
further decide what orders should be visible on the map. This avoids the
map from being cluttered with too many orders.

5.3.4 Export to Joint Battle Management Language
In order to show the result of the order management in the extended General
Scenario Editor, the content of a scenario is exportable to Joint Battle Management
Language (JBML).

5.3.4.1 Processing the data for exportation
XML schema definition files from JBML 1.4 are used as the format for output.
This makes it fairly easy to export the data stored in the database.

Although the exportation overall is quite straightforward, some fields in the
schema definition files can not be determined easily from the internal database.
In this case, they were left to a default value.

Even if Battle Management Language and Military Scenario Definition Language
are closely related, the new export handler does not interfere with the original
General Scenario Editor export mechanism for Military Scenario Definition
Language. Instead, the new export handler for Joint Battle Management Language
is called within the old export handler when needed.

For further details about the internal procedure of exportation, see Appendix 9.5.

5.3.4.2 Export wizard
An export wizard is implemented to make the exportation to Joint Battle
Management Language as user-friendly as possible. The export wizard is actually
an extension of the previous Military Scenario Definition Language export wizard.

32

Figure Figure Figure Figure 5555----8888: The first step of the wizard: The first step of the wizard: The first step of the wizard: The first step of the wizard....

The export wizard makes it possible for the user to export a scenario to Military
Scenario Definition Language and Joint Battle Management Language in five
different output-modes:

• Military Scenario Definition Language 1.0 only

• JBML 1.4 with organization part removed.

• JBML 1.4 with Military Scenario Definition Language 1.0 as the
organization part, in separate output files.

• JBML 1.4 with Military Scenario Definition Language 1.0 as the
organization part, in the same output file.

• JBML 1.4

33

Figure Figure Figure Figure 5555----9999: MSDL: MSDL: MSDL: MSDL----step of the wizardstep of the wizardstep of the wizardstep of the wizard

Figure Figure Figure Figure 5555----10101010: BML: BML: BML: BML----step of the wizardstep of the wizardstep of the wizardstep of the wizard

According to Joint Battle Management Language, each order created with the
scenario editor is exported into a “task” in the outputted XML file. Every task has

34

to be a part of an “order push”, which is simply a collection of tasks from the
same issuer (tasker) at a given time. The export wizard makes it possible for the
user to select which issuer’s orders to export and outputs these “order pushes” in
separate files. The user can also choose to exclude a specific order.
For each issuer, it is also possible to specify settings for the order push, such as
issuing time and an appropriate name for the push.

An example of Joint Battle Management Language output from General Scenario
Editor can be observed below:

35

5.3.4.3 Validation of the output
Using the supplied XML schema definition files and the built-in functionality in
C#, it is possible to validate the output from the scenario editor. This validation
basically means that the content and the structure of all elements in the XML
document are checked to ensure that everything is as expected.

The supplied schema definition files cannot be used if the material to validate is
Joint Battle Management Language using Military Scenario Definition Language
1.0. This is due to the collision of an identical namespace name (“msdl:”)
between the schema definition files.

5.4 Export to Virtual Battlespace 2

The result of the exportation to Virtual Battlespace 2 demonstrates a very basic
order execution. Although it is possible to make orders very complex in Virtual
Battlespace 2, the only distinction between “MOVE” and “ATTACK” was
“move, hold fire” and “move, fire at will”. This is explained in previous chapter
4.5.

5.4.1 Output format
A Virtual Battle Space 2 mission consists of three different files. These files are
stored in a folder according to the pattern
<TheMissionName>.<ShortMapName>, for example ScenarioTest.Sama. [22]

mission.sqmmission.sqmmission.sqmmission.sqm
This file is the first to be read by the game. It contains information about the
initial point of the scenario, which includes the definition of the participating
units and general settings for the mission. No information regarding the actions
of these units exists in this file. [22]

mission.sqfmission.sqfmission.sqfmission.sqf
This is the script file which executes after mission.sqm has been loaded. This will
activate all the actions of the scenario. The file is generated using the mission.biedi
file. [22]

mission.biedimission.biedimission.biedimission.biedi
The content of this file defines all the mission’s objects, including units, triggers,
waypoints etc. It is used when generating mission.sqf but also by the VBS2 Mission
Editor when loading a mission in it. [22]

The files mission.sqm and mission.biedi are structured in the same way using the
following format:

36

In the extended General Scenario Editor, a method is written to simplify the
construction of the above structure. The mission.sqf looks a bit different.

5.4.1.1 Waypoints
The tasks to be executed by the units of the scenario are represented by so called
waypoints in the game. Units can be assigned to these waypoints, which in their
turn can be connected to other waypoints. Specific settings can be applied to each
waypoint.

All orders in General Scenario Editor are translated to waypoints in the game.
Although the information about each order within the scenario editor is sufficient
to build waypoints in the game, it is required to decide in which order these
orders should be executed. This is done by sorting the orders by the time of their
start condition.

5.4.1.2 Coordinates
The coordinates of the map is represented with simple (x,y,z) coordinates, where
the altitude (z) often can be excluded to automatically place an object on the
ground.
The (0,0) coordinate is positioned differently on every map, which makes the job
of using a game-map in General Scenario Editor a bit complicated. No general
method of determining where the (0,0) position is on the map could be found.
The process of importing a map from the game into General Scenario Editor must
therefore be done manually. The first step is to obtain an image of the map (tip:
screenshot) and then identifying the coordinates of the image’s corners. These
corner-positions must then be entered when using the image in the scenario
editor.

class Classname {
 variablename=”value”;
 class SubClass {
 arrayVariable[]={“value1”,”value2”};
 variableNumber=66
 }
}

37

5.4.2 Export wizard

Figure Figure Figure Figure 5555----11111111: The Virtual Battlespace 2 export wizard, first step.: The Virtual Battlespace 2 export wizard, first step.: The Virtual Battlespace 2 export wizard, first step.: The Virtual Battlespace 2 export wizard, first step.

The first step of the export wizard allows the user to define the start-time of the
simulation. This time will be used as a reference when exporting the orders,
which may have their own start-times set. As a consequence, this might induce
some waiting time for some tasks. If this is not wanted, all such waiting times can
be removed by checking the box below.
All scenarios in Virtual Battlespace 2 must include a playable unit. This unit is set
using the combo-box.

38

Figure Figure Figure Figure 5555----12121212: The Virtual Battlespace 2 export wizard, second step.: The Virtual Battlespace 2 export wizard, second step.: The Virtual Battlespace 2 export wizard, second step.: The Virtual Battlespace 2 export wizard, second step.

The export wizard automatically assigns a “type” to each unit. This type is used
by Virtual Battlespace 2 to determine its model and is also dependent on the
affiliation of that unit. In the future, it should be possible to assign different types
manually in the export wizard. Such wizard step is prepared for use, as seen
above.

5.4.3 Example of exportation to VBS2
Virtual Battlespace 2 is delivered with its own specific “mission editor”. To be able
to analyze the correctness of the exportation, a scenario was created in General
Scenario Editor and exported to the game’s mission files. The output material was
then loaded into Virtual Battlespace 2 own mission editor. An example of this
procedure can be observed on the next page.

The first picture is taken from the scenario in General Scenario Editor while the
second picture shows the result in the game’s own mission editor. Although
numerous differences between the pictures can be observed, the mission is
actually being performed as intended.

39

Figure Figure Figure Figure 5555----13131313: A screenshot of a scenario created in General Scenario Editor.: A screenshot of a scenario created in General Scenario Editor.: A screenshot of a scenario created in General Scenario Editor.: A screenshot of a scenario created in General Scenario Editor.

Figure Figure Figure Figure 5555----14141414: The exported scenario from : The exported scenario from : The exported scenario from : The exported scenario from Figure Figure Figure Figure 5555----13131313 and loaded into VBS2 Mission Editor. and loaded into VBS2 Mission Editor. and loaded into VBS2 Mission Editor. and loaded into VBS2 Mission Editor.

40

5.5 Future extensions

During the development, many promising ideas have emerged. The following
ideas have not been implemented but could be considered by future developers.

5.5.1 Future extensions to GSE
The following ideas are for General Scenario Editor.

5.5.1.1 Additional order types
There are many different types of orders that would be needed to make a versatile
product. Looking at for example Joint Consultation, Command and Control
Information Exchange Data Model (see chapter 1.3.3), there are very many action
types possible in a military scenario. Since orders in Battle Management Language
are constructed with a structured syntax, some of these orders are almost identical
in terms of input from the user in the order editor. This would make it possible
to add a considerable amount of new order types without making extensive
modifications to the application.
For a detailed description of how new order types can be added, see appendix
chapter 9.6.

5.5.1.2 Order modes
The scenario editor should be a general scenario editor. Thereby, it should be able
to export several different formats, maybe different implementations of Battle
Management Language.
Even if the input into the scenario editor should remain “general”, some output
formats would require that some specific input is done. To simplify the
exportation of different output formats, the application could have different
“modes” for orders.

An “order mode” functionality would define what information is required and
what is optional for that specific mode. There could for example be a “JBML”-
mode.

The contrary of modes, which is the current solution, is to specify all additional
information in export wizards. This works well during small scale scenarios, but
can be very time consuming in large scale.

5.5.1.3 View modes
During development in this thesis, it was assumed that the user views the scenario
from a planner’s perspective. This causes the operations and viewpoint to be
“issuer”-orientated. It could however be of interest to some users to view the
scenario from a performer’s (taskee) perspective. This would affect the method of
issuing orders but also the presentation of the timeline.
To be able to select between these perspectives, a “View mode” option could be
introduced to the scenario editor.

41

5.5.1.4 Phases
The implemented timeline gives a time-influenced view of the orders within the
scenario. The start condition of an order decides where on the time line it will
appear. The start condition is either time or action based.

The commander of an operation might want to plan a mission according to
different phases, with a specific intent for every phase. This approach could be
used in the scenario editor as well. The user could for example define new phases
and assign a set of orders to a specific phase. Some filter would allow the user to
traverse between the different phases, and the order view would only display the
orders within the selected phase.

5.5.1.5 Areas of interest
Similar to routes, there could also be a need for defining a specific area on the
map. Areas would likely have the same type of input method as routes, described
in chapter 5.3.1. The existing functionality to handle routes in the scenario editor
can easily be adapted to also support areas. This is because the only difference
between an area and a route is the way the coordinates are interpreted. Even the
table for routes in the database supports areas without any modifications.

Regardless of routes and areas, some locations could be of special interest - drop
zones, meeting point etc. The user might want to mark such position on the map
and define it with a certain amount of data. Such positions could be called “areas
of interest”. These points could then be assigned as an order’s target location.

5.5.1.6 Advanced tactical graphics
To visualize orders in a more overviewed way on the map, the scenario editor
could support the appropriate use of the symbol set 2525B Appendix B.
If all orders are specified correctly, all the data that has been collected can be used
for choosing the appropriate tactical image, and to place it accordingly on the
map.

5.5.1.7 Selective exportation using labels
At the time of exportation, the user might want to specify different parts of the
scenario to export. For example when exporting to Virtual Battlespace 2, only a
subset of all the units in the scenario should be included in the output. This
selection could be done completely in an export wizard but it would greatly
simplify the matter if the user could define a set of labels that can be put on the
different parts of the organization. During exportation, only entities with desired
labels are included in the exported material.

5.5.2 Future extensions to VBS2 exportation
The following ideas are regarding the exportation to Virtual Battlespace 2.

42

5.5.2.1 Order of orders
A problem encountered during the implementation of the exportation
mechanism was in determining the order in which tasks are executed. In Virtual
Battlespace 2, all orders of a performer (taskee) are planned in a sequence. In
General Scenario Editor however, orders are initially created independently of each
other and can thereafter be assigned a “start condition”. This means that the
planner might have difficulties to determine in which order the orders will be
executed when planning in General Scenario Editor.
This could be solved by letting the user explicitly define the order of orders,
either in the export wizard or in another window of the application. An example
how such interface would look can be seen in Figure 5-15.

Figure Figure Figure Figure 5555----15151515: Example window of how the user co: Example window of how the user co: Example window of how the user co: Example window of how the user coulduldulduld order the orders. order the orders. order the orders. order the orders.

5.5.2.2 Identification of vehicles using symbols
It would be possible to automatically identify the model (type) to be used for
each unit in Virtual Battlespace 2. This could be done for each unit by mapping
its symbol from 2525B Appendix A to a corresponding model in Virtual
Battlespace 2.

43

6 Conclusions

6.1 Lessons learned

In the introductory research phase of this project, it was hard to identify any
substantial differences between different Battle Management Language (BML)
solutions available. At least any that directly would affect the work on the
scenario editor. The goal was to find a common base of different languages and
use it for designing the order structure in the scenario editor. It did not simplify
the matter that every Battle Management Language seemed to aim for the same
thing, or that some of the languages are just standards, while others are actual
implementations.
After hours spent by reading about BML and all of its different variations, it
became clear that the most logical approach would be to follow the 5 W’s
principle, which is a very convenient way for structuring orders. This principle is
used by many of the encountered BML:s.
At the end it was decided to use Joint Battle Management Language (JBML) as a
reference during development of the scenario editor. This decision was made in
conjunction with the advisors recommendations but also backed up by the fact
that JBML already had a design for implementation.

The 5 W’s principle is used by the order structure in the scenario editor, simply
because it is widely accepted and also proposed by the advisor. As the 5 W’s is
fundamental for all military tasks, the principle could be used as the base for all
orders. The result is the BMLActionType class design in the application (see
chapter 5.2.2.2). It is also very easy to map the 5 W’s to positions on the map, in
order to implement a simple way to draw the tasks. Basically, it is all a matter of
identifying the “Who” and “Where” for the task, where the first specifies the start
of the order arrow and the second specifies the end point.

Because Military Scenario Definition Language is a well formed standard for
defining an organization it seems very natural to combine it with BML to
initialize a scenario. As stated in the paper “An Application Extension for the
Military Scenario Description Language”, the connection between the two
languages is very clear. Coalition Battle Management Language is being developed
with Military Scenario Definition Language in mind, while even JBML uses its
own modified version of the language. [8, 9, 17]
This connection is even more obvious when working with Battle Management
Language in a military scenario editor. The organization management in the
application was already implemented in the original General Scenario Editor.
When the order management in the application was designed, the bridge between

44

the organization and its orders became very clear and many parts linked together
perfectly.

The extensions made to the scenario editor were supposed to result in the
possibility to export the scenario to JBML. To guarantee the success of this task,
XML schema definition files for the language were used as a reference during
design of the internal order structure. This ensured that the scenario would be
convertible to JBML. And because JBML uses the 5 W's principle for orders, it is
possible to export the orders to other languages as well.
Having the military doctrine behind JBML as a reference has influenced many
decisions for the scenario editor. This introduced ideas that else would not had
been thought of. For example without the guidance of JBML, the idea of
implementing a way for specifying an indirect unit as a location for the order
would probably not have been discovered. Some options available for an order,
like the list of possible qualifiers for a start condition, were directly mapped from
JBML to the order editor. The advantageous aspect of this is that the exportation
can be done without any complex transformation between scenario editor and the
JBML output. However, this has maybe drawn the development away from a
“general” scenario editor, to a more specific JBML order editor at some points.
This dilemma has introduced the idea of implementing “modes” as a feature in
the scenario editor (see chapter 5.5.1.2).

6.1.1 Difficulties with JBML in a scenario editor
Academics at George Mason University are currently working on IBML which
intends to correct some problems and limitations with JBML. [16, 21]
Some of these problems and limitations were encountered during the work on
this thesis.

The perspective of the scenario editor changed during the design process, which
affected the end result. The first vision was that orders should be assigned from
an executer’s view and not the issuer’s. In JBML, a set of orders is always oriented
towards a single issuer and transmitted in an “order push” (a set of orders). This
means that all orders in an exported JBML output have to be from the same
issuer. So with this in mind, the scenario editor is designed to require the issuer
to be selected before the performing unit is specified. Another dilemma is that the
scenario editor allows orders to be placed in relation to any other order in the
scenario. If this relation spans over different issuers, this cannot properly be
reflected in JBML output.

An order push in JBML is not only limited to a single issuing tasker, but also the
issuing time of the whole order push. This property of JBML shaped the idea of
introducing “phases” in the scenario editor as future extension. The idea is
mentioned in previous chapter 5.5.1.4. Phases would make it possible to not only

45

separate JBML output in the asp0ect of issuers, but also in a defined set of phases
for the whole scenario. As a result, an issuer could have multiple order pushes
with different issuing times for every phase.

A difficulty encountered with JBML was during the export according to the XML
schema definition files. These files clearly stated what options that should be
available for each attribute of an order, but did not specify what combinations of
these properties that should be allowed. This makes it possible to create illogical
and strange orders, where the properties contradict each other. So the question
was whether to control the input to avoid such orders or to leave it at the user’s
responsibility to create proper orders. There is no documentation available that
states which options that are reasonable combined with another. After
consultation with the advisors, it was decided to leave the responsibility in the
hands of the user.

6.2 The resulting solution

While some properties of an order are always needed for the task, there is some
information that will only further enhance the detail richness of the order. Such
information can be considered as “optional”. Making the scenario editor as
“general” as possible, the idea of offering optional properties in the order editor
was proposed.

Optional properties can be used in a future implementation of “order modes”.
For example, imagine that the optional properties available represent parameters
for a specific platform, such as a specific game. It is then still possible to create a
general order, but also adding optional properties that only affect the exported
material for a specific game. This would enable less information to be required in
the export wizard during exportation.

Even if the order editor alone is enough to create and edit orders, it is still quite
inconvenient to specify everything using a property grid (see terminology). To
demonstrate a solution to this problem, some more user-friendly functions to edit
an order is implemented using the map as interface. A right-click menu is added
to the map, which is described in chapter 5.3.2.5.

The vision for visualizing orders on the map changed dramatically from the start
of the project to the end result. At first, the proposed solution was to focus on
tactical graphics for creating and visualizing orders, as described in chapter 4.1.2.
More advanced components like MOLE and the symbol set 2525B Appendix B
were considered as means of representing and creating orders.
When it comes to the graphical representation of orders on the map, the end
result is simpler than the first vision. Instead of advanced graphics on the map,

46

the focus was put on maintaining a clear overview of the scenario, and the
simplicity of creating an order. Orders are represented by simple arrows on the
map. This outcome is a consequence of the proposed solution described in 4.1.1.
This choice was made after the initial examination of the components in General
Scenario Editor. That examination showed that it would be very time consuming
to modify the component that controls the map, to allow advanced graphics to be
drawn on the map.

The first implementation for drawing orders on the map was not optimal when it
came to show the scenario in a clear way. This was mainly because all orders of
the scenario were simultaneously shown on the map, which gave an unreadable
overview. A way of separating the view of the scenario in time would solve the
problem. Also since the perspective of the order management is issuer (tasker)
oriented; it also makes sense to only visualize the selected issuer’s orders. The first
proposed solution was to only implement a simple timeline. A timeline allows the
user to select a time span, in which only the encapsulated orders are viewed.
However it would be difficult for the user to understand what the timeline
represents because it would not present the relation or extent of orders. This is
the reason why a Gantt chart is added to serve both as scale for the timeline and
to also give a more visualized overview of the orders regarding time. The result of
this solution can be seen in chapter 5.3.3.

As stated in the problem description (chapter 2) there were two games of interest
when it came to exporting a scenario from the application. These games, Steel
Beasts 2 Pro and Virtual Battlespace 2, were both investigated. It was discovered
that the mission files for Steel Beasts 2 Pro is in a binary and undocumented
format, which makes exportation from the scenario editor virtually impossible
considering the time frame of the last phase of the project. This led to the choice
to follow up Virtual Battlespace 2 as the target of exportation.

As none of the participants has enough experience regarding the principles of war
fighting, it is difficult to make a realistic and advanced scenario translation to
Virtual Battlespace 2. Even if the translation of military tasks was simplified, the
result shows that the implementation of the order management was successful
when exporting to the game. It is possible to create a more advanced translation if
an exact definition of the different order types is used.

The interpretation of order assignments differs slightly between General Scenario
Editor and Virtual Battlespace 2. In General Scenario Editor, the planner sets a
start condition for each separate order, either dependent of time or another
action. In Virtual Battlespace 2 the orders are always issued one after another.
Because the planner can combine action dependent and time dependent tasks in

47

the General Scenario Editor, this makes the order of tasks uncertain. To solve this,
a simplification was done, described in chapter 5.4.1. The way of managing
orders in General Scenario Editor can achieve the exact same result as Virtual
Battlespace 2. It however raises the question if General Scenario Editor should
feature the possibility to organize the tasks in the order of execution. This is a
decision that has to be made by future developers.

6.3 Project conclusions

At the beginning of this project, a great amount of information was revealed and
processed rapidly. The most valuable information was found with the help of
expert advisors, which made the research easier. Their aid during this project has
been a crucial asset.

The project model and working base structure described in chapter 3 was
followed quite well. As intended, weekly meetings were held with the advisor at
Saab Training Systems AB. In this way, the development of General Scenario
Editor was controlled as time went by. After the completion of the first and
second task, the work was fully directed to third task as intended. After the
completion of task three, there was some overall bug fixing of the entire solution
for stabilizing General Scenario Editor.

As the original General Scenario Editor was written with C# as primary
programming language, the extensions would also be written in C#. The fact that
neither of the participants during this thesis had any previous experience with this
language, led to some delays during development. This was however overcome
after a small amount of time, when lots of similarities with Java were discovered.

Initially it was decided to use a “property grid” (see terminology) as the
component for editing the properties of an order. Looking back, a more extensive
inspection of General Scenario Editor and the property grid component should
have been performed. Not saying that the choice of using a property grid is a bad
decision, but many problems during initial implementation could have been
avoided. These problems originated from the fact that the implementation was
started before all the limitations of the property grids were known. For a more
detailed description of the implementation of property grid, refer to chapter 9.3.

48

7 References

[1] Powers M., “A Geospatial Battle Management Language (geoBML) for
Terrain Reasoning (I-110)”

[2] Kleiner M., “Standardizing Battle Management Language - A Vital Move
Towards the Army Transformation”

[3] Tolk A., “Joint Battle Management Language (JBML) -
US Contribution to the C-BML PDG and NATO MSG-048 TA”

[4] Simulation Interoperability Standards Organization (SISO), “Standard for:
Military Scenario Definition Language (MSDL)”

[5] Ullner F. and Lundgren A., “Lessons learned from implementing a MSDL
Scenario Editor”

[6] Saabgroup, WISE Connectivy product description, (5 May 2009)
<http://products.saabgroup.com/PDBWebNew/Generic.aspx?Entrance=Product
&ProductCategoryId=274&ProductGroupId=394&ProductId=1593>

[7] Multilateral Interoperability Programme, “Overview of the C2 Information
Exchange Data Model (C2IEDM) (C2IEDM Overview)”

[8] Blais C., “Coalition Battle Management Language (C-BML) Study Group
Report”

[9] Tolk A., “An Application Extension for the Military Scenario Description
Language”

[10] Multilateral Interoperability Programme official website about the
organization, (5 May 2009)
<http://www.mip-site.org/011_Public_Home_Concept.htm>

[11] Hieb M., “Standardizing Battle Management Language – Facilitating
Coalition Interoperability”

[12] Department of Defense, “Department of Defense Interface Standard,
Common Warfighting Symbology”

[13] SCRUM official website, (5 May 2009) <http://www.controlchaos.com/>

49

[14] Jakob Blomberg at Saab Training Systems AB, there has been weekly
meetings during this project.

[15] Per Gustavsson,

DateDateDateDate TypeTypeTypeType DescriptioDescriptioDescriptioDescriptionnnn

2009-02-15 12:43 E-mail First encounter with Per, got basic
knowledge regarding Battle Management
Language and Military Scenario Definition
Language.

2009-02-16 14:42 E-mail Received a great amount of documents that
included information about: C-BML
Schema Definition files, Military Scenario
Definition Language and Command &
Control Lexical Grammar.

2009-02-17 Meeting During this meeting, several aspects,
regarding which Battle Management
Language that should be used, were clarified.
Lots of information about the different
BML:s.

2009-03-03 14:18 E-mail Received a chart containing the Where-
categories.

2009-03-05 15:20 E-mail Clarification regarding Command & Control
Lexical Grammar with different start-
time/action qualifiers.

2009-03-23 09:15 E-mail A discussion about difficulties concerning
Command & Control Lexical Grammar and
information about how to deal with
problems in the Where attributes located in
the 5 W’s.

[16] Deepak Sumra,

DateDateDateDate TypeTypeTypeType DescriptionDescriptionDescriptionDescription

2009-03-19 20:18 E-mail Got an answer about how the Schema
Definition Files should be used regarding
relations between orders and taskers.

[17] JBML official website, with XSD files downloadable, (5 May 2009)
<http://netlab.gmu.edu/JBML/>

[18] Hieb M. et al., “Evaluating the Proposed Coalition Battle Management
Language Standard as a Basis for Enhanced C2 to M&S Interoperability”

50

[19] US Department of Defense (DOD), “Geospatial Battle Management
Language (GeoBML)”

[20] Hieb M., “Developing Extensible Battle Management Language to Enable
Coalition Interoperability”

[21] Michael R. Hieb,

DateDateDateDate TypeTypeTypeType DescriptionDescriptionDescriptionDescription

2009-04-06 20:32 E-mail Clarification about references between
orders, also information about IBML was
brought up in this e-mail.

[22] Bohemia Interactive Australia, “VBS2 Editor Manual 1.02”, (5 May 2009)
<http://www.cs.adfa.edu.au/coursework/ZITE3107/documentation/VBS2_1_15
/VBS2EditorManual.pdf>

[23] Official website of ESRI, developer of MOLE, (5 May 2009)
<http://www.esri.com/software/arcgis/extensions/mole/index.html>

[24] An article concerning C2IEDM on the official website of The
Forschungsgesellschaft für Angewandte Naturwissenschaften (FGAN – Research
Establishment for Applied Science) (20 May 2009)
<http://www.fgan.de/fkie/fkie_c40_f12_en.html>

[25] Salisbury M., “Command And Control Simulation Interface Language
(CCSIL): Status Update”

[26] Official website of Virtual Battlespace 2, (5 June 2009)
<http://virtualbattlespace.vbs2.com>

[27] Official website of Steel Beasts 2 Pro, (5 June 2009)
<http://www.steelbeasts.com>

51

8 Terminology

Abbreviation/ExpressionAbbreviation/ExpressionAbbreviation/ExpressionAbbreviation/Expression Meaning/DefinitionMeaning/DefinitionMeaning/DefinitionMeaning/Definition

2525B See MIL-STD-2525B

5 W’s principle Where, When, What, Who, Why. A principle for
structuring an order.

BML Battle Management Language.
Defined as:
“BML is the unambiguous language used to command
and control forces and equipment conducting military
operations and to provide for situational awareness
and a shared, common operational picture.”

C2IEDM A data model used for interoperability between
military systems.

C-BML Coalition Battle Management Language.
The standardization of BML, currently under
development.

Command & Control Often abbreviated C2.
Command & Control is a term to describe the
routine of a commanding officer to assign tasks to
forces in a military mission.

Command, Control,
Communications,
Computers, and
Intelligence

Often abbreviated C4I. C4I can be summarized as
C2, but adding the communication with
computers and military intelligence.

Export wizard A graphical guide for collecting required user input,
which will then be used during an export
procedure.

Gantt chart A type of bar chart.

GSE General Scenario Editor (from Saab Training
Systems AB).

JBML Joint Battle Management Language.

JC3IEDM See C2IEDM.

MIL-STD-2525B A set of symbols, used for military representation.
Includes several appendixes, for different purposes.
Appendix A – Units and resources.
Appendix B – Tactical representations.

52

MOLE Military Overlay Editor.
Is a set of COM components for developers to
create custom applications that support
Department of Defense (DoD) MIL-STD 2525B
and NATO's APP6a specifications.

MSDL Military Scenario Definition Language.

Order editor, order editor
window

The window in the extended GSE application
which allows the user to create orders in the
scenario.

Order push A collection of orders (tasks) that is sent by an
issuer.

Original General Scenario
Editor

The version prior to the extensions made during
this project.

Extended General Scenario
Editor

The version after the extensions made in this thesis.

Property grid A graphical component in Visual Studio.

Route A defined set of waypoints used for traveling.

SB2 Steel Beasts 2 Pro.

Scenario editor An application used for planning a military
scenario.

Timeline The graphical component in GSE that allows
filtering of order by time.

VBS2 Virtual Battlespace 2

Who: Affected The one that is affected by the order.

Who: Executer The one that executes the order.

Who: Taskee The one that receives the order.

Who: Tasker The one that gives the order.

XSD XML Schema Definition.
Defines the structure of a XML file.

53

9 Appendix

9.1 WISE Connectivity

Figure Figure Figure Figure 9999----1111: The process of configuring transformation between a system and a common database.: The process of configuring transformation between a system and a common database.: The process of configuring transformation between a system and a common database.: The process of configuring transformation between a system and a common database.

The traditional approach for linking several different systems is to modify the
participating systems to make a common interface for communication. This
method is costly and time-consuming which is why Saab Training Systems AB
developed WISE Connectivity. The main idea is to enable the developer to
“configure” the integration instead of using programming as the primary tool [6].
To achieve this, WISE Connectivity does not require modification of the current
systems, but instead make the integrations into a common backbone system,
leaving the systems intact. The only programming actually needed is the driver
for the specific system, linking it to the backbone. The rest of the work mainly
consists of configuring the setup and the information model, which enables data
to be shared between the systems [6].
Figure 9-1 shows the part of the configuration where an information model for a
specific application is linked and transformed to the common information model
for all participating systems.

54

9.2 E/R-diagram

55

9.3 The property grid

Microsoft Visual Studio 2008 provides a graphical component called a “Property
grid”. This can be used as a graphical user interface to specify values to an object.
During examination and study of the original version of General Scenario Editor,
the use of this component could be observed in several solutions in the
application. It also seemed to be a very convenient component to specify settings
for an order.

Figure Figure Figure Figure 9999----2222: A sample of a pr: A sample of a pr: A sample of a pr: A sample of a property gridoperty gridoperty gridoperty grid

A “property” for an order is a defined attribute for some part of an order. For
example the number 44,322 is assigned to the “Longitude” property.
The property grid component lacked a few dynamic aspects that would be needed
for the order management in the extended General Scenario Editor. Therefore a
certain workaround, or extension, is made.

9.3.1 Groups
The first requirement was to allow grouping of different properties for an order.
For example a “Coordinate”-parameter for an order requires both a Longitude-
and Latitude-property. As a result of this, a simple data structure,
WISEPropertySpecGroup, is created which basically contains a list of
WISEPropertySpec objects.

9.3.2 Special combo-box
In an order, there are some properties which rules out other ones, and vice versa.
An example would be that if a coordinate is specified as the location of a target,

56

there cannot be another type of property that specifies the location the target, as
that would cause ambiguity. The solution is to create a special type of combo-
box. When one option is selected in the box, several new properties appear in the
property grid, and the old ones are removed. This was solved by creating a
subclass of WISEPropertySpec, to maintain compatibility with other methods. The
new subclass was named WISEPropertySpecCombo. Several WISEPropertyGroup
objects can be added to an instance of this class. The different groups are inserted
into the property grid depending on the selection of the combo-box.

Figure Figure Figure Figure 9999----3333: Code example of both : Code example of both : Code example of both : Code example of both WISEPropertySpecComboWISEPropertySpecComboWISEPropertySpecComboWISEPropertySpecCombo and and and and WISEPropertySpecGroupWISEPropertySpecGroupWISEPropertySpecGroupWISEPropertySpecGroup....

9.4 The order editor, technical details

9.4.1 How the order editor handles orders
All created orders require an instance of a BMLActionType-object, or a class
derived from it. The most information about the task is contained within this
class. A new instance of the class is created when the user chooses the type of
order in the order editor window. It is actually a BMLActionType object that is
edited in the order editor’s property grid. The order editor has a special procedure
when loading a new action type, as follows.

//////////////////////////////////
//TASKEE
//////////////////////////////////
WISEPropertySpecCombo comboTaskee = new WISEPropertySpecCombo (

this ,
"Taskee type" ,
"Who" ,
"Taskee type" ,
"");

WISEPropertySpecGroup groupComboTaskeeType = new
WISEPropertySpecGroup ("Taskee type");
groupComboTaskeeType.Add(comboTaskee);

WISEPropertySpec propTaskeeUnit = new WISEPropertySpec (

this ,
"Unit (taskee)" ,
typeof (UIListBoxEditor),
"Who" ,
"Unit" ,
"" ,
typeof (UIListBoxEditor),
typeof (System.Drawing.Design. UITypeEditor));

WISEPropertySpecGroup groupTaskeeUnit = new
WISEPropertySpecGroup ("Unit");
groupTaskeeUnit.Add(propTaskeeUnit);

comboTaskee.Add(groupTaskeeUnit);
_specGroups.Add(comboTaskee.Name, groupComboTaskeeT ype);
groupComboTaskeeType.Mandatory = true ;

57

When a BMLActionType is loaded in the order editor, the first thing needed to be
done is to setup its property specifications. This only needs to be done once with
the method updateProperties(). The method simply defines all the property
specifications groups (WISEPropertySpecGroup) and their containing
specifications (WISEPropertySpec) for the action type.

When the specifications are defined, the action type is processed by the order
editor and adds the property groups and their property specifications to the
property grid, visible to the user. Only the property groups that have their
inserted-flag raised will be added to the property grid. At this point, all properties
in the grid have a null value, or maybe the default value of its type.

Afterwards, the member method initializeProperties() is called for the action type.
This method assumes that all needed property specifications have been added to
the property grid, and assigns values to these properties, according to the values
from the member attributes of the BMLActionType object. This makes it possible
to set default values to the property grid when a new order is created. But it also
enables synchronization of saved variables from an BMLActionType fetched from
the database.

When the user changes a property in the property grid, this update must also be
mapped to the objects member attributes. This is done using the
UpdateProperty() member method. The order editor calls this method when
property has been changed. As this is event triggered, the property grid and the
member attributes of the BMLActionType are always synchronized.

When the user wants to save the order, either by creating a new one or saving
changes for an existing order, the order must be packaged in a BMLOrder
instance. Checks are made so that no mandatory property has been left unfilled
by the user. The method createOrder() returns a packaged BMLOrder instance
containing all the options specified in the order editor, ready to be transferred to
the database.

9.4.2 Dynamic lists in the order editor
For some of the properties in the property grid for an order, their values might
only be a certain set of options. For example, if a “Target”-property should list all
the units of the scenario, this list must be updated when a unit is added or
removed from the scenario. Therefore a method, maintainLists(), in the order
editor was written to automatically update affected lists present in the property
grid. The method is also used as an initialization procedure for properties needing
a dynamic list.

58

9.5 The BML export wizard, technical details

The wizard is started when an instance of the Military Scenario Definition
Language export handler (MSDLHandler) is created. When the wizard is finished,
all information needed for the export has been gathered and the exportation can
begin. One of the following cases will be executed depending on the choice of
export mode that has been made in the first step of the wizard.

• If the output should be Military Scenario Definition Language only, just call
the original Export-method in the Military Scenario Definition Language
export handler.

• If the output should be JBML only. Create an instance of BML export
handler (BMLHandler) and call its Export-method.
The Export-method will be aware of the options and will not include any
organization information in its output.

• If the output should be JBML and Military Scenario Definition Language
1.0 in the same file, an instance of the BML export handler will be created
and its Export-method will be called. The Export-method will be aware of
the options, and call getOrganizationPart() from Military Scenario
Definition Language export handler to generate appropriate MSDL output.

• If the output should be JBML and Military Scenario Definition Language
1.0 in separate files, call the original Export-method of both export
handlers. The BML export handler will be aware of the options and will
not include any organization information in its output.

9.6 For further extensions

This chapter should not be seen as a detailed user guide for further extensions. It
merely provides a “checklist” for things to do when extending the order
management in General Scenario Editor based on the current implementation.

9.6.1 Adding a new order type to the internal structure
As described in chapter 5.2.2, the implementation uses the BMLActionType as the
base for the representing all tasks. Two inheriting classes, BMLMoveActionType
and BMLAttackActionType are added to demonstrate the functionality of the
internal order structure in the extended General Scenario Editor. Different order
types are then assigned directly to BMLActionType or specifically to one of its
subclasses. The only difference between orders belonging to the same class is the
name of the order type, such as “ATTACK” or “STRIKE”.

If a new order type is needed, and its properties equals to one already existing
BMLActionType-class, it is only a matter of defining the new order type name and
assigning it to an existing class in the order editor source code. However, if the
new order type requires new types of settings, one will need to further inherit
BMLActionType or one of its subclasses and add the new properties to it.

59

For example, a new order type is needed. The new order type is almost identical
to the existing “ATTACK” order type, but requires one extra property called
“Rate of fire”. The developer can then easily create a subclass which inherits
BMLAttackActionType in which he or she defines the new property “Rate of fire”.
All other properties would be inherited from the base classes. A new property also
requires a new field in the database for storage. As modifications to the database
are made, also the interface for fetching and saving orders from the database
(ScenarioDataAccess) will need to be extended as well.

9.6.2 Adding new properties to order types
When adding or changing a property to a BMLActionType-class, there are several
places in the source code to consider.

• The updateProperties() method, which defines the properties.

• The initializeProperties() method, which sees to that the properties visible
in the property grid is gets the actual values of the BMLActionType’s
attributes.

• The UpdateProperty() method, which sees to that all changes in the
property grid are synchronized to the BMLActionType’s attributes.

• All methods regarding order fetching, creation and updating in the
database interface (ScenarioDataAccess) needs to be updated to support the
new database table fields for the new property.

• If the property is a new type of dynamic list (9.4.2), the method
maintainLists() may need to be modified to support it.

