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Abstract 

Improving energy efficiency is a popular means of reducing consumption of energy. When 

energy efficiency is improved, the marginal cost of energy and energy services will fall, 

leading to an increase in demand. This is called the rebound effect. This paper explains how 

the rebound effect arises and what determines the size of it. By examining existing research, it 

finds that rebound effects are ultimately determined by the price elasticity of demand for 

energy services, but that the research which is most reliable shows that these effects are small. 

The paper subsequently discusses the implications the rebound has on energy policy, with a 

focus on Swedish energy policy. It concludes that policies trying to induce energy efficiency 

improvements by attempting the raise the price of energy will also mitigate the rebound 

effect, indicating that these policies are more appropriate if rebound effects are large. 

 

Keywords: energy efficiency, rebound effect, energy policy, energy economics
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1 Introduction 

Improving energy efficiency is an important part of many countries’ energy policies and is 

universally accepted as an effective means of reducing energy consumption (see e.g. Pacala & 

Socolow, 2003). One of the main objections to decreasing the use of energy is that since it is 

so inextricably linked to economic growth, reducing energy use may compromise living 

standards and wealth. Another fear is that that tighter restriction on energy use would make 

industry less competitive and cause businesses to migrate to places with less stringent 

regulations. The prospect of doing more with less, which incidentally is the title of a European 

Commission report on energy efficiency, has singled out energy efficiency as something of a 

silver bullet in the problem of lower the use of energy without hampering growth. Being able 

to sustain the recent levels of growth and welfare without having to worry about polluting 

emissions or any of the other negative consequences associated with increasing use of energy 

would obviously be desirable. The cost for governments to invest in energy efficiency is at the 

same time estimated to be lower than e.g. transitioning to more renewable energy sources, and 

are sometimes even associated with negative costs (i.e. there are profits to be made from 

investing in energy efficiency) (European Commission, 2006; McKinsey & Co, 2007). For 

these reasons and more, energy efficiency is an important part of many countries’ energy 

policies. 

 

Starting with William Stanley Jevons in 1865 and continuing with a number of energy 

economists from the 1970’s and onward, a problem has been identified regarding the potential 

of energy efficiency in reducing energy consumption. During recent history, technological 

advances have led to ever increasing productivity in using energy as a factor of production. At 

the same time, the use of energy has increased exponentially. While this may come as no 

surprise (after all, energy increases with GDP and GDP has grown constantly over time), 

economic reasoning can be used in order to provide an explanation why energy efficiency 

may not be as effective as hoped. When energy is used more efficiently, the price of a given 

amount of energy falls, ceteris paribus. When prices fall, demand increases so that the 

improvement in efficiency indirectly is offset to some proportion by changes in consumption 

patterns. This is known as the rebound effect (Greening et al., 2000).  

 

The aim of this paper is to examine what determines the occurrence and magnitude of the 

rebound effect according to economic theory. The characteristics of rebound effects will be 
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handled with the help of fairly simply microeconomic tools and concepts such as elasticities 

and static equilibrium models. In light of my findings, policies on energy efficiency, with a 

particular emphasis on Swedish policy, will be evaluated to see which tools best mitigate the 

problems of rebound. In order to do so, I will review literature on the subject and present 

relevant findings.  

 

While it is theoretically possible to show that energy efficiency is in fact entirely counter-

productive, most empirical studies do show that pursuing energy efficiency is worthwhile as 

the rebound effect is at least less than 100 % and in some cases nearly insignificant (Sorrell, 

2009). This paper finds that while there is a number of different policy measures used to 

promote energy efficiency, because the rebound effect is so tightly linked to the real price of 

energy services, policies which aim to increase the price of energy should be most effective in 

mitigating the rebound effect. As will be discussed, there are several problems associated with 

relying on price-policies, and mix of policy options is usually preferred (Sorrell et al., 2004, 

chap. 8). 

   
The disposition of this paper will be as follows. Chapter 2 reviews some previous studies of 

the rebound effect and energy policy. The third chapter gives some definitions of terms and 

concepts which will be used throughout the text. The fourth chapter covers the reasons for 

why improving energy efficiency is desirable and how technological advances have led to 

efficiency gains in the past. The fifth chapter goes through the rebound effect theoretically 

and summarizes some of the empirical evidence for it. The sixth chapter covers what the 

barriers are to increasing energy efficiency, the government’s roll in encouraging this and 

which policy instruments are used generally and more specifically in Sweden. The seventh 

chapter discusses policy options in light of the knowledge about the rebound effect. The 

eighth chapter concludes. 

1.1 Delimitation 

This paper focuses mainly on the microeconomic explanation of how rebound effects arise. 

There is much literature on how rebound effects occur at economy-wide levels of aggregation 

(see e.g. Saunders, 2000), and these findings will be presented insofar as they are necessary to 

analyze the implications of policies on energy efficiency. As will be presented below, the 

studies which have been conducted on the micro level give much more modest estimates of 

rebound effects and are at the same time subject to much less debate regarding the validity of 
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their findings. The economy-wide debate surrounding rebound effects is rarely based on 

empirical data, but rather draws conclusions from theory and historical evidence. There is 

little consensus on how rebound effects manifest themselves at the macro level making it 

difficult to draw any definitive conclusions on the matter. For this reason, rebound effects at 

the macro level are only handled summarily, provided mainly to enable understanding of how 

the debate on the rebound effect has developed historically. 
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2 Earlier research 

Sorrell (2007, 2009), Sorrell & Dimitropolous (2008), Berkhout et al. (2000) and Binswanger 

(2001) have studied the microeconomic interpretation of rebound effects. Reports by various 

organizations have been used to review general policies on energy efficiency (IEA, 2009; 

McKinsey & Co, 2007), as well as work by Schipper & Meyers (1992). A Swedish 

Government Official Report (SOU 2008:25, Energiutredningen, 2008) has been the basis of 

the review of Swedish energy policy.  

 

While most studies on the rebound effect include analyses of policy implications, there are a 

limited number of studies which focus on the implications of rebound effects on energy policy 

in Sweden. The Swedish Environmental Protection Agency has issued a report 

(Naturvårdsverket, 2006) on the problems of rebound effects when designing environmental 

policy. This report focuses mainly on issues belonging to higher levels of aggregation than 

mine, such as welfare and economic growth and discusses how society is to deal with the 

surplus of energy created when energy efficiency increases. Sorrell (2007) has authored a 

report to the UK Energy Research Council on the rebound effect, with a section devoted to 

how energy policy, specifically British policy, can be adapted to mitigate the rebound effect. 

To this end, he finds that policies which target prices may be more effective than other 

policies. Levett has written a chapter in Sorrell & Herring (eds.) (2009) on how to design 

policy in order to account for rebound effects. He also points out some of the issues with 

using price-targeting as a policy response. 

 

This paper attempts to specifically analyze Swedish policy in light of microeconomic findings 

of the rebound effect, an approach which as so far been missing from the corpus of research 

of the rebound effect and energy policy. 
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3 Definitions 

In this section I will define some terms and concepts which will be made use of throughout 

the text.  

 

The energy content of fuels, heat or electricity is commonly measured in Joules, which is the 

basic unit of measurement in the SI system. At the aggregate level, different units are often 

used when measuring total energy use. One of the most common is tons of oil equivalent 

(toe). The relationship between these are 1 EJ (exajoule) = 1018 Joules = 240 × 106 toe. To get 

a sense of scale, annual per capita energy consumption is on average 5.7 toe in Sweden 

(compared to e.g. 8.35 toe in the United State and 3.64 toe in Denmark). The total global 

energy consumption is approximately 53 million toe (US Energy Information Administration, 

2009-11-08).  

 

When referring to electricity it is common to speak in terms of watts (W) and watt-hours 

(Wh) to measure effect. Most often kWh (= 1000 Wh) are used when speaking of personal 

consumption, whereas TWh (= 1012 Wh) in the case of consumption at higher levels of 

aggregation (Schipper & Meyers, 1992, p. xi). It is common to convert the entire energy 

consumption into TWh, and the total Swedish consumption of energy was approximately 624 

TWh in 2007 (Swedish Energy Agency, 2008, p 54). 

 

Technically, energy is neither produced nor consumed. According to the first law of 

thermodynamics, it can only be transformed between different states. Regardless, it is 

commonplace to use these terms when discussing energy in the same way as for “regular” 

goods and services. The second law of thermodynamics implies that as energy is transformed 

from one state to another, there will be losses from conversion. In other words, these 

processes are never completely efficient (see e.g. Areskoug, 2005, pp 62-63). 

 

Energy efficiency can be measured in a number of ways. At the aggregate level, energy 

intensity is often used, which is defined as the amount of energy consumed per unit of GDP 

(see e.g. Schipper & Grubbs, 2000). At the basic level of aggregation, energy efficiency is 

measured as the amount of useful work received for a level of input of energy. This is often 

measured as the thermal efficiency, denoted by the Greek letter eta, η. I will use this notation 

for energy efficiency throughout the text. A more formal definition can be stated as 
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Q

W
≡η ,  (3.1) 

 

where W denotes the useful work or output, and Q the amount of energy put into the process 

(see e.g. Areskoug, 2005, pp 64-66). I will use these definitions throughout the text as well. 

For example, if a 60-watt incandescent light bulb emits around 3 watts of light, this yields a 

thermal efficiency of %505.0603 ===η . 

 

The output or useful work, W, will also be used to denote an energy service. In the above 

example, the energy service is the light provided by the light bulb. In other cases it could be 

driving a car, measured e.g. as the distance driven (where the appropriate input, Q, would be 

fuel), space heating or running a washing machine (Areskoug, 2005, pp 69-72). By definition, 

the energy efficiency is therefore improved if the amount of useful work for a given amount 

of energy increases. The reason for focusing on energy services is that consumption of energy 

per se can hardly be said to yield any utility. Rather, it is necessary to focus on what is 

actually accomplished with the energy that is consumed.  
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4 Energy efficiency 

4.1 Reasons for Investing in Energy Efficiency 

There are several reasons for promoting energy efficiency. In the case of dealing with a finite 

source of energy, improvements in energy efficiency are necessary in order not to deplete the 

resource. Dependence on foreign sources of energy are often seen as risky from a security 

perspective, and being able to be self-sufficient using domestic sources is often politically 

attractive. In the wake of the oil crisis in 1973 many countries started implementing energy 

efficiency policies in order to move away from dependence on oil, the price of which became 

higher and more volatile (IEA, 2009). Today, roughly 50 percent of the energy consumed in 

Europe is imported. This share is expected to rise to 70-80 percent over the next 20 to 30 

years (European Commission, 2006). Currently, the argument for promoting energy efficiency 

receiving most attention is perhaps to enable the decrease in use of fossil fuels and the 

emissions of greenhouse gasses associated with it, reducing the need to make absolute cuts in 

the burning of fossil fuels, the consumption of which is strongly correlated with economic 

growth (Tietenberg & Lewis, 2009, chap. 8). The International Energy Agency, in its World 

Energy Outlook report for 2009, describe energy efficiency as the single most important 

source of CO2 abatement, accounting for more than half of the reduction in carbon emissions 

hoped to be achieved by 2030. The improvement of energy efficiency is considered by many 

to be the most “economic, proven, and readily available means of achieving [a better use of 

the world’s resources]” (IEA, 2009). The International Panel on Climate Change strongly 

urges governments to implement policies targeting improved energy efficiency: “World 

governments should exploit energy efficiency as their energy resource of first choice because 

it is the least expensive and most readily scalable option to support sustainable economic 

growth, enhance national security, and reduce further damage to the climate system” (IPCC, 

2007, p 7). 

 

Some energy consumption is hard to replace with substitutes. Energy services such as lighting 

and heating, or the power needed to run industrial equipment can come from a wide range of 

sources, fuel used in the transport sector is harder to replace. While there are substitutes to 

fossil fuels in the form of biofuels, the potential supply of these greatly falls short of the 

demand for fuel. Increasing energy efficiency in the transport sector is therefore important 

(IEA, 2008). 
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Energy efficiency will not be provided in adequate amounts by the market as energy use is 

associated with negative externalities (Tietenberg & Lewis, 2009, p 183). This is one of the 

barriers to implementing energy efficiency measures which will be discussed below. 

However, many improvements in the efficient use of resources are actually estimated to lead 

to “negative costs”. In other words, there is money to be made from investing in energy 

efficiency. The logic is that implementing measures to increase energy efficiency will lower 

the amount of energy consumed and thereby lowering costs, perhaps enough so that the 

investment is more than covered by the savings in lower energy costs over the life-span of the 

product. For example, in the building sector, improving the efficiency of lighting by replacing 

incandescent light bulbs with CFL:s (compact florescent lights) or LED:s (light-emitting 

diodes) is estimated to save both energy and money if implemented (McKinsey & Co, 2007, p 

34-6). If all the options available to decrease CO2-emissions were ordered according to the 

cost per ton of CO2-equivalent, one would get a marginal abatement cost curve. An example 

of this curve is presented in Figure 3. As can be seen, many of the measures associated with 

negative costs are those which promote energy efficiency. There would seem to be a “free 

lunch” available here, as Brookes (2000) puts it.   

Figure 1. Marginal abatement costs for reducing CO2-emissions. Adapted from McKinsey & Co (2007). 
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4.2 Historical Advances in Energy Efficiency 

Energy efficiency has improved constantly over the course of history due to technological 

progress, which can be characterized as occurring in irregular leaps. For example, Thomas 

Edison’s first electricity-generating plants in the 1880’s could convert less than 10 percent of 

the energy content of coal into electricity, and a light bulb of that era converted approximately 

1 percent of the electricity into light. This meant that 0.1 percent of the energy stored in coal 

was converted into light. Comparable figures in 1994 were 40 percent efficiency in coal 

power plants and 20 percent for the best light bulbs, implying that 8 percent of the energy in 

coal was converted into light. The efficiency of light therefore increased 80-fold in a little 

over a century. Similar advances have been made in steam-driven machines, where the first 

engines could only convert a fraction of a percent of energy into useful work, whereas modern 

turbo generators are more than 40 percent efficient (Smil, 1994, p 12; p 229). Aside from the 

technological advances in energy conversion processes, the increasingly efficient use of 

energy has up until recently, and still is in many cases, a residual of other objectives, such as 

cost-minimization (Brookes, 2000).  

 

Over the past 200 years, the energy intensity of the global economy has fallen as a result of 

technological improvements (Grübler, 1998, pp 280-290). This trend is continuing: since the 

first oil crisis in 1973, energy intensity has fallen considerably in the OECD-countries. In 

2000, the energy intensity had fallen to two thirds of the energy intensity in 1973 (Geller et 

al., 2006). An implication of the ever increasing energy efficiency is that the cost of energy 

services has decreased (Berkhout et al., 2000).  
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5 Rebound effects 

In this chapter I present the economic explanation for the presence of the rebound effect. I 

will also show how the magnitude of the direct rebound effect is related to the own price 

elasticity of demand for energy services and the efficiency elasticity of demand, and when 

more goods are added to the analysis, how the direct and indirect rebound effects can be 

explained in terms of the substitution and income effects. I also briefly review the debate 

regarding economy-wide rebound effects. Finally, I present some empirical estimates of the 

rebound effect. 

5.1 Economic theory 

When there is an increase in energy efficiency, this leads to a decrease in the marginal cost of 

providing an energy service. In a simple model of supply and demand, this is illustrated as an 

outward shift of the supply curve, as depicted in Figure 1. The efficiency gain is associated 

with a lower price corresponding to a larger quantity of the energy service being consumed. 

  

Figure 2. The effect of a lower marginal cost of an energy service. 

 

Further, there will be effects on the quantity demanded of other goods as a lower price of one 

good means that the consumption possibilities of the consumer have expanded due to a larger 

budget. When energy efficiency increases, less energy is used to produce a given energy 

service, but because more of that service is demanded, more energy is consumed. This 

secondary effect is what is called the rebound or take-back effect (Sorrell, 2009). A simple 
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example of this rebound effect is fuel efficiency in cars. Increased fuel efficiency means that a 

longer distance can be driven for a given amount of fuel. The price of fuel (in terms of cost 

per mile) would drop, which would mean that the demand for fuel increases. The consumer 

may then drive more because of cheaper fuel, which would increase the consumption of fuel. 

This is called the direct rebound effect. Further, the cheaper fuel may also expand the car 

owner’s budget so that he can purchase more of other goods which also use energy as a factor 

of production. This indirect rebound effect illustrates the fact that the changes in price and 

energy use will have repercussions on other markets as well. These secondary effects could 

potentially be far-reaching. The energy efficiency improvement obviously causes rebound 

effects on many levels, the first-order effect being relatively easy to quantify, with each 

successive order proving more and more difficult to quantify (Berkhout et al., 2000). 

 

The size of the rebound effect depends on the system boundaries within which it is studied. 

These boundaries could e.g. be a single firm, a market, several markets or the whole 

economy. Sorrell et al. (2009) define rebound effects on three levels: 

 

• Direct rebound effect 

Increasing energy efficiency leads to lower real price of energy services, which causes 

demand for energy to rise. This effect may offset some or all of the energy saving 

made from increasing efficiency. 

 

• Indirect rebound effects 

The lower cost of energy services means that the cost of energy services have 

decreased and the consumer’s budget has expanded. The consumer can now purchase 

more of other goods and services, which also use energy as an input when produced. 

This will further increase the energy use as a consequence of the efficiency increase. 

 

• Economy-wide rebound effects 

The lower real cost of energy causes changes in demand at the economy-wide level, 

with energy as a factor of production replacing other factors of production. The 

increased use of energy from this effect can partially or, arguably, totally offset the 

savings made from increased productivity. 
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Below, I will describe the rebound effects on the three levels more thoroughly, with an 

emphasis on the direct and the indirect rebound effect. 

5.1.1 The direct rebound effect 

In this section I will examine how the magnitude of the rebound effect depends on the price 

elasticity of demand of the energy service. It can then be established that the relationship 

between the rebound effect and the real price of energy services is a key to understanding how 

energy efficiency policy can be designed to take the rebound effect into consideration.  

 

There are a few different methods of handling the direct rebound effect analytically, but they 

all have in common that they define the rebound effect as a function of price elasticity or 

efficiency elasticity of the energy service in question (Sorrel, 2009). I will use the most 

parsimonious one for clarity’s sake. The efficiency elasticity explains the percentage change 

in demand for the energy service (i.e. the useful work) and energy (i.e. the input) respectively 

as the energy efficiency changes by one percent. Denoting the useful work as W and energy as 

Q, efficiency as η (where QW≡η ), and the elasticity as ε, the two efficiency elasticites can 

be defined as 

 

W

W
W

η

η
εη

∂

∂
= , (5.1.1.1) 

 

which is the efficiency elasticity of demand for the energy service, and 

 

Q

Q
Q

η

η
εη

∂

∂
= ,  (5.1.1.2) 

 

which is the efficiency elasticity of demand for energy (See Sorrell & Dimitropoulos, 2008). 

The relationship between expressions (5.1.1.1) and (5.1.1.2) can be shown to be (see Berkhout 

et al., 2000) 

 

1−= WQ ηη εε , (5.1.1.3) 

 

which tells us that the if the demand for an energy service does not change when energy 

efficiency is increased by one percent, then the demand for energy decreases by one percent. 
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This would mean that net energy savings are the same as engineering savings. Expression 

(5.1.1.1), the efficiency elasticity of demand, can thus be interpreted as the direct rebound 

effect.  

 

Due to data restrictions most research uses price elasticities to estimate the direct rebound 

effect (Sorrell, 2009). When deriving the rebound effect from the price elasticity of demand it 

is assumed that other inputs are held constant (Sorrell & Dimitropoulos, 2008). With the help 

of this exercise, it is possible to show more clearly how the size of the rebound effect is 

determined by the price elasticity of demand. The price of an energy service, PW, can be 

expressed as 

 

ηQW PP = .   (5.1.1.4) 

 

The price of an energy service will go down, ceteris paribus, if the energy efficiency 

increases. From this it follows that the demand for an energy service (W) can be written as a 

function of energy prices and efficiency such that 

 

( )η,QPwW = .1 

 

Similarly, the demand for energy (Q) can be written as  

 

( ) ηη,QPqQ = . 

 

The relationship of price elasticity of demand for energy and the efficiency elasticity of 

demand is 

 

Qηε  
( )

Q

W

Q

Q η

η

ηη

η ∂

∂
=

∂

∂
=  

 
( )

W

W
W

η

ηηη

η









∂
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+

∂

∂
=
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1 Note that w denotes a function, as does q in the subsequent expression. 
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 1−
∂

∂
=

η

η W

W
  (5.1.1.5) 

 1−= Wηε  

 

Using the fact that WQ PP=η , equation (5.1.1.5) can be rewritten as  

 

Qηε  1−
∂

∂
=

η

η W

W
 

 
( )

1−
∂

∂
=

WQ

WQ

PP

W

W

PP
 

 1−−= PWε   (5.1.1.6) 

 

Equation (5.1.1.6) says that the efficiency elasticity of demand for energy is equal to minus 

the price elasticity of demand for the energy service minus one. From this equation it is 

evident that a high price elasticity of demand for an energy service corresponds to a large 

rebound effect (Berkhout et al., 2000). Equation (5.1.1.6) implies that a 1 % increase in 

energy efficiency is followed by a decrease in energy demand equal to ( )%1 PWε−  

(Binswanger, 2001). A good is said to be inelastic if 1<ε and elastic if 1>ε  (see e.g. 

Varian, 2006, chap. 15).  

 

In words, the efficiency elasticity of demand of an energy service, which can be interpreted as 

direct rebound effect, is inversely proportional to the price elasticity of demand for an energy 

service. If the price elasticity of demand for e.g. driving a car is large, then a change in the 

price of driving (from better fuel efficiency or lower fuel price) elicits a large change in the 

amount of driving done. As equation (5.1.1.6) shows, a high price elasticity of demand for an 

energy service will also be associated with a high efficiency elasticity of demand. The 

relationship between the price and efficiency elasticities of energy can be shown to 

be 1−−= PQQ εεη , which shows that the rebound effect can be approximated as the own price 

elasticity of demand (Sorrell & Dimitropoulos, 2008). Generally speaking, the more price-

elastic an energy service is, the larger the rebound effect will be. In addition to these, there are 

a number of definitions of the rebound effect which take into consideration such aspects as 
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time costs. A highly elastic demand for energy could lead to the extreme case of the rebound 

effect, namely backfire. 

 

Figure 3. Change in demand due to lower price for different price elasticites. 

 

Figure 3 clearly illustrates what happens to the quantity demanded of an energy service 

depending on the price elasticity. In panel (a), demand is very inelastic, and a price change 

therefore has little effect on the quantity demanded. Panel (b) displays an elastic demand, 

where a price change causes a larger effect on demand.  

 

The exercise presented above begs the question of how elastic demand is for energy services. 

Empirical estimates of the price elasticity of demand for energy services show that they are 

usually inelastic (Sorrell et al., 2009). However, energy services are often interconnected and 

energy markets are full of feedbacks which can make it difficult to analyze them (see e.g. 

Levett, 2009). Energy services are provided through energy systems which include the energy 

source, primary and secondary conversion equipment as well as the equipment to actually 

distribute the energy. This could be, in the case of space heating, oil which is burned in a 

boiler which runs a radiator which in turn is distributed through air ducts. The efficiency of an 

energy system can be defined as the ratio of useful work to total energy input. How to 

measure this depends on what the boundaries of the energy system are and what energy 

services are to be included in the measure. For example, a car may be said to provide the 

useful work of transporting the passengers a certain amount of kilometers. A more energy 

efficient car would thus be one which could transport the passengers farther using the same 

amount of fuel. But it is entirely possible that if energy efficiency is improved, consumers 

choose to buy larger cars which consume more fuel, so that they travel the same distance for a 
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given amount of fuel as before, leaving total fuel consumption unchanged. Under these 

circumstances, perhaps the useful work that is provided by cars should be defined as 

kilometer-tons. There is obviously a deal of complexity in deciding what actually useful work 

is, but this does have a profound consequence in estimating the rebound effect. There is 

evidence that the average fuel economy of cars in the United States decreased by about 10 % 

between 1987 and 2002 as a result of people buying larger cars (Stern, 2006, p 383). 

Therefore, ignoring the possibility of consumers changing cars will give misleading estimates 

of the rebound effect. A similar situation exists for e.g. refrigerators. While an increase in the 

energy efficiency of refrigerators probably will not cause consumers to use their refrigerators 

more, it is possible that larger refrigerators are purchased, which means there is a rebound 

effect. In Japan, average electricity use by refrigerators decreased 15 % between 1979 and 

1997, but the average size increased by 90 % over the same period (Geller et al., 2006). 

Obviously, there are practical limits to how large refrigerators for domestic use can be. There 

is clearly decreasing marginal benefit from energy services so that at a certain point demand is 

saturated (Schipper & Grubb, 2000). If demand is saturated, price changes will only lead to 

minor responses from consumers (Naturvårdsverket, 2006). The size of the rebound effect 

will thus depend on how much the demand for energy services is actually constrained by high 

prices or limited resources of energy. If the consumer is actually held back from driving as 

much as he would like because the price of fuel is too high, then he would be expected to 

drive more with a more efficient engine. If he on the other hand does not demand more of an 

energy service the rebound effect is less of a problem (Greening et al., 2000). Of course, there 

is an obvious possibility that someone expecting to be doing more driving purchases a more 

fuel efficient car and subsequently drives more, which would not be a rebound effect (Small 

& Van Dender, 2007). Furthermore, it seems plausible that the lower price of an energy 

service should attract new consumers of the good whose willingness-to-pay were not met 

previously, which would cause demand for energy services to rise.  

5.1.2 The indirect rebound effect 

The technical derivations of the direct rebound effect generally assume that there is a single-

service market so that the demand for an energy service ultimately is determined by the own-

price elasticity of demand. The above treatment of the rebound effect is the one pioneered by 

Khazzoom in the early 1980’s and is associated with several restrictive assumptions. The 

single-service model implicitly assumes that there are no other services which might be 

substituted for as prices change, so that substitution and income effects are not taken into 
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account. Failing to take these into consideration might lead to overestimating the rebound 

effect (Binswanger, 2001). With the determinants of the magnitude of the rebound effect 

explained, I will now explain when and why the rebound effect occurs with the aid of a 

simple microeconomic supply-and-demand model. Including another good in the analysis also 

allows for explaining the indirect rebound effect. 

 

Consider a consumer who can choose to allocate his income between two goods, X being an 

energy service (such as driving) and Y being a composite good which is everything other than 

good X which the consumer wants to purchase. We assume that the consumer wants to 

maximize his utility so that he consumes at indifference curve which is located as far to the 

right of the origin as possible.  

 

The consumer’s budget constraint is 

 

mYpXp YX ≤+  (5.1.2.1) 

 

where the pi represents the price of each good, X and Y the quantity of each good, and m the 

consumer’s budget.  

 

In Figure 4, the initial budget line for the consumer is the innermost of the two thick lines. 

Consumption takes place at point A, which is associated with utility level U0. When there is 

an increase in energy efficiency in the energy service, the price of that service will drop. The 

endpoints of the budget line represent the amount of each good that could be purchased if the 

consumer’s entire budget were allocated to that good. The price of good X is lowered, so with 

the same budget the consumer can now purchase more of that good. The decrease of the price 

of X is illustrated as a pivot of the budget line around the vertical intercept. This allows the 

consumer to purchase commodity bundle B, which is associated with a higher utility level 

than A. He now consumes X2 of the energy service which is higher than previously. The 

increase in energy efficiency is therefore associated with an increase in demand for the energy 

service, so that the consumption of energy increases. This is a simple illustration of what the 

rebound effect is.  
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Figure 4. Rebound effect for the consumer. Adapted from Berkhout et al. (2000). 

 

It may be illuminating to make a numerical example based on the explanation above. 

Borrowing notation from Berkhout et al. (2000), let E(X) denote the energy use corresponding 

to consuming amount X in the initial situation, and Eʹ(X) the energy use corresponding to 

amount X after the increase in energy efficiency. The energy used in producing amount X will 

be smaller after the increase in efficiency, so that 
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This allows the size of the rebound effect (RE) to be defined as  
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Assuming that Y is a non-energy good so that the increase in energy efficiency does not affect 

it, (5.1.2.2) reduces to 
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Consider a person who drives on average 10 km per day consuming 10 liters of fuel. Assume 

there is a gain in fuel efficiency so that only 6 liters of fuel is required to drive the 10 km but 

that the person now chooses to drive 12 km per day instead. The rebound effect will then be 
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The rebound effect in this case would be 30 %. The engineering savings are calculated as 

( ) %4010410610 ==− . Of these 30 % are “taken back” due to the rebound effect, leaving 

net energy savings resulting from the increase in energy efficiency of 

( ) %2424.04.03.01 ==×− , instead of the 40 % originally predicted.  

 

The rebound effect can be decomposed into an income effect and substitution effect, as 

illustrated in Figure 5 (Greening et al., 2000).  

 

Figure 5. Decomposition of increased demand into substitution and income effects. 

 

The substitution effect arises from the fact the lower price of the energy service allows the 

consumer to substitute consumption of other goods for the cheaper energy service, and the 

Substitution effect Income effect 
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income effect comes from the increase in real income due to the increase energy efficiency 

which allows a higher consumption of all goods, including the energy service (Sorrell, 2009). 

The substitution effect thus corresponds to the direct rebound effect and the income effect to 

the indirect rebound effect. As was presented in section 4.1, one advantage of investing in 

energy efficiency is the money which can be saved as a result of the adoption of more 

efficient energy services. The higher the money-saving potential, the larger the income effect 

should be as more money is made available to spend on other goods and services. However, 

“[t]he size of the [indirect rebound effect] for a consumer is dependent on the share of the 

consumer's total income or total expenditures spent on energy services. Since energy is a 

relatively minor share of an individual consumer's total expenditures, the secondary effects 

are probably insignificant” (Greening et al., 2000). In other words, because expenditure on 

energy services generally do not constitute a large part of an individual’s budget, the budget 

increase resulting from a lower real price of the energy service will not be very large.  

 

An issue raised by Lovins is that many energy services become inferior goods at higher levels 

of income, so that the income effect may reduce the rebound effect (Binswanger, 2001). 

According to the Slutsky identity, the size of the total change in demand is identical to the 

substitution effect plus the income effect. The sign of the substitution effect is always the 

opposite that of the price change (i.e. if the price decreases, demand will increase and vice 

versa) (Varian, 2007, pp 142-3). This means that if an energy service were an inferior good, 

the size of the rebound effect would be smaller than otherwise. However, there is little 

empirical evidence for this, and studies of the OECD countries show that energy consumption 

increases with income levels (Binswanger, 2001). 

 

The rebound effect also applies to firms. Consider a firm producing a good, Y, with two the 

two production factors energy, E, and capital, K, so that the production function can be 

written as 

 

( )EKfY ,= . 

 

The production possibilities are illustrated in Figure 6 where the thicker curves are isoquants 

representing different combinations of K and E for which the same amount of output of Y can 

be attained. The rebound effect will affect a producer as “an improvement of energy 

efficiency implies that he can (a) shift the production factor mix in the long run, and (b), 
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reduce the unit production costs, creating a margin for price setting – dependent on his market 

power.” (Berkhout et al., 2000). Initially, the producer maximizes output at point A, which 

required K1 capital and E1 energy. As energy efficiency is improved, a given amount of output 

can be produced with the same amount of capital but with less energy than before. Because 

the isoquants represent the combinations of production factors required to produce a given 

amount of output, an increase in energy efficiency and the resulting decrease in energy 

required for production is illustrated as a leftward shift of the isoquant, from Y to Yʹ, which 

results in production at point B, with energy use now at E2. However, it is evident that this is 

not an optimal point of production as it is possible to substitute energy (from E2 to E3) for 

capital (from K1 to K2) to produce the same amount of output but at a lower cost. Doing this 

brings production to point C which is associated with a lower production cost than A for the 

same amount of output. With perfect competition, prices will fall to reflect the new level of 

production costs. Depending on how elastic the demand is, the price drop will cause demand 

to rise and production to move to point D. Energy use now moves to E4, and there is a second 

rebound effect, which will depend on how elastic demand is. It is possible that the demand is 

such that E4 > E1, illustrating a case of backfire (Berkhout et al., 2000).   

 

As energy efficiency improves, the firm will increase the use of energy at the expense of other 

inputs. This will occur until the marginal productivities of all factors are equal. This will 

induce the firm to consume more energy services instead of other inputs. The elasticity of 

substitution will decide how much of the other inputs are substituted for energy services and 

is therefore an important determinant of how large the rebound effect will be. An elasticity of 

substitution of 1 implies that as marginal rate of substitution between two factors of 

production changes by one percent, the ratio of inputs to production change by one percent. If 

there is an increase in the productivity of energy and the elasticity of substitution between 

energy and, say, capital, is less than 1, then and increase in energy efficiency will lead to a net 

decrease in energy use. If it is greater than 1, then the total energy consumption will increase 

as a result of the increased productivity of energy (Greening et al., 2000).  
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Figure 6. Rebound effects for a producer. Adapted from Berkhout et al. (2000). 

 

It is, of course, entirely possible to extend this example to a consumer ”producing” household 

energy services such the temperature in a room using heating or insulation as mentioned 

above. 

 

As mentioned above, when taking more markets and goods into account, elasticity of 

substitution, i.e. the ease with which one factor can be replaced by another in production is an 

important determinant of the size of the rebound effect (Birol & Kepler, 2000). Many energy 

efficiency improvements can be characterized as substituting capital for energy. An example 

of this could be the possible combinations of energy and capital in order to maintain a certain 

indoor temperature, where it is possible to substitute fuel (energy) for insulation (capital). 

However, the installation and maintenance of this capital also consumes energy. As a second 

example, if the energy efficiency in steel production were to increase, then the price of steel 

should drop. Industries which use steel as input in production would then be able to pass 

savings on to producers of goods further down the production chain, so that the price of e.g. 

cars would decrease, thereby increasing the demand for cars as well as fuel so that total 

energy use might increase. Because of the many possible feedback mechanisms and 

complexities, it is difficult to estimate these indirect rebound effects, but they are generally 

believed to be smaller than the direct rebound effect due to the fact mentioned above that 

energy constitutes a relatively minor share of both consumers’ and producers’ budgets 

(Sorrell, 2007).   
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Some studies point out that rebound effects with respect to energy efficiency can be partly 

explained by the invention and adoption of increasingly time-saving equipment. Many 

technological innovations are designed to save time (rather than to explicitly save energy), but 

also consume more energy. This is especially true for periods of low energy prices, as 

incentives to invest in energy efficiency will be lower. Illustrations include traveling by car 

instead of horse or on foot, using electric razors instead of visiting a barber and writing e-

mails instead of letters. Each of these transitions speeds up the process of transportation, 

shaving and correspondence respectively, but may require more energy in order to do so. The 

“time cost” of performing these various tasks decreases, which, by the same reasoning as for 

the rebound effect with respect to energy, means that consumers demand more of that 

particular service. Similarly, with more time on their hands, consumers are now free to engage 

in other activities which in turn require energy. These effects should be stronger the higher 

wages are as the opportunity cost of time increases (Binswanger, 2001). Depending on how 

consumers chose to spend this extra time, there may be an increase in total energy 

consumption so that a rebound effect with respect to time is observed (Naturvårdsverket, 

2006).  

5.1.3 Economy-wide effects 

At the highest level of aggregation, the rebound effects can be explained as the increase in 

energy consumption arising from productivity gains. The exact nature of this relationship is a 

matter of debate (Sorrell, 2009). The issue is whether it can be determined if the increase in 

demand can be attributed to improved productivity (Schipper & Grubb, 2000).  

 

William Stanley Jevons is credited with first identifying this effect. Jevons’s concern was 

identifying the risk of Great Britain’s running out of coal, which at the time was the driving 

force behind the county’s industry, and that in a more efficient usage of coal “we have, it is 

supposed, the means of completely neutralising the evils of scarce and costly fuel” (Jevons, 

1865, p 137). However, Jevons refuted this notion: “It is wholly a confusion of ideas to 

suppose that the economical use of fuel is equivalent to a diminished consumption. The very 

contrary is the truth.” (ibid, p 140). Additionally, Jevons outlines how an increase in 

efficiency in one factor of the economy, while it may not lead to increased consumption in 

itself, has repercussions on other parts, so that the increasingly efficient use of coal in one 
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sector would put further strains on the coal reserves due to more activity in other sectors (ibid, 

pp 141-142). 

 

Jevons’ Paradox describes the most extreme version of the rebound effect, sometimes called 

“backfire” (Sorrell, 2009), a scenario where a gain in efficiency of using a resource will lead 

to a net increase in the use of it. As I have described above, measures to increase energy 

efficiency play a prominent roll in many countries’ energy policies, especially in light of 

environmental issues associated with the use of fossil fuels. A case in point for Jevons is the 

2/3 reduction of coal used to produce one ton of iron in Scotland between 1830 and 1863 

leading to a ten-fold increase in the consumption of iron, “not to speak of the indirect effect of 

cheap iron in accelerating other coal-consuming branches of industry” (Jevons, 1865, p. 154). 

These feedback effects could be elaborated upon to claim that the lower cost of iron made 

both steam engines (which burn the coal) as well as railways (which transport the coal) 

cheaper, exacerbating the rebound effect (Sorrel, 2009). 

 

Papers published by Khazzoom and Brookes during the late 1970’s and 80’s led to a heated 

debate regarding the merits of increasing energy efficiency as a means to reduce energy use. 

According to them, the energy consumption today is larger than it would have been had 

energy efficiency efforts not been undertaken. The papers sparked a debate between 

economists which was reignited in light of concerns of global warming in the early 1990’s. 

While both camps seem to agree that there are microeconomic rebound effects, how this 

translates into effects at the economy-wide level, and whether or not increase energy 

efficiency leads to backfire has been a matter of fierce debate. The supporters of using energy 

efficiency as means to reduce energy use argue that there is a difference between 

improvements in energy efficiency arising from technological development and 

improvements arising as a result of political intervention. Sectors where technological 

advances are likely to be made are those where demand is sensitive to price, whereas markets 

where demand is inelastic are less likely to induce “naturally” occurring improvements in 

efficiency. But these are often the sectors where most gains can be realized, and therefore 

often the target of government policy. The markets where there are natural incentives to 

improve energy efficiency will be constrained by high prices or a limited supply of energy. In 

these cases there would be a risk of encountering large rebound effects, but on markets where 

there are no constraints the risks are smaller. The rebound effect arising from policy-driven 

gains in energy efficiency would therefore be significantly smaller than those caused by 
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technological advances which are driven by the will to overcome constraints in the form of 

high prices or low supply. As a consequence, using the rebound effects seen in naturally 

occurring technological development as evidence for rebound effects in policy-driven energy 

efficiency-increases is not valid, according to those who do not believe large rebound effects 

at the economy-wide level (Grubb, 1990). Those who argue that improving energy efficiency 

causes backfire do not believe in extrapolating results obtained at the microeconomic level to 

the economy-wide level, but that this ignores certain complexities. They stress the importance 

of increased productivity in other factors of production as an explanation for the fact that 

energy intensity has fallen (Brookes, 1990). These claims have empirical support. Schurr 

(1985) shows that during the period from World War I to the oil crisis, energy use per hour 

worked in the United States rose, but that the energy intensity of the economy fell as a result 

of the economy growing faster than energy use. It is important to keep in mind that this debate 

centers on the question of whether there is backfire or not at the economy-wide level, i.e. if 

the rebound effect is greater than 100 %.  

 

Saunders (1992) gives the hypothesis that increased energy efficiency at the micro level will 

lead to higher energy consumption at the economy-wide level the name the Khazzoom-

Brookes postulate and incorporates it into a neoclassical growth model. He shows that with a 

Cobb-Douglas production function, increases in energy efficiency (energy-augmenting 

technological change) causes energy consumption to increase. At the same time, all 

technological improvements, which are the driving force behind economic growth in this 

framework, raise consumption per capita, so that more energy is demanded. While this is 

hardly contentious, the fact is that “pure” energy productivity gains caused energy use to 

increase due to cheaper energy substituting for capital and/or labor and the increase in 

consumption per capita in the model. Because energy use grows at the same rate as GDP in 

the absence of efficiency gains, the implication is that increased energy efficiency leads to 

higher levels of energy consumption. An economy-wide rebound effect can be seen as the 

increased use of energy due to higher GDP caused by improving energy efficiency (Schipper 

& Grubb, 2000). As the increase in productivity of any factor of production would raise total 

output, it is argued that the rise in multifactor productivity, whether from increases in the 

productivity of energy, labor, capital, etc., could completely offset the gains in energy 

efficiency by increasing the energy use. Therefore, a rise in productivity at the micro-level 

could at the highest level of aggregation of energy use lead to a net increase in the use of 

energy (Brookes, 2000). As Grübler (1998, p 289) puts it: “whatever technology has ‘given’ 
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in the form of increase environmental productivity, it has more than ‘taken back’ through 

concomitant increases in output”. 

 

While it is quite simple to demonstrate theoretically the existence of the rebound effect, 

empirically it has proven to be more difficult (Saunders, 2000). Economy-wide rebound 

effects have been estimated both using computer models and econometric estimates. 

Computer modeling gives varying results depending on how parameters are defined as well as 

general assumption of how markets and actors behave. Many of the findings from analyses at 

the micro-level are expected to be found at the economy-wide level as well: “Rebound effects 

may be expected to be larger in energy intensive sectors and also where the input mix is fairly 

flexible and where the demand for products is relatively price-elastic” (Sorrell, 2007, p 51). 

The existence of an economy-wide rebound effect is most often supported with historical 

evidence of ever increasing levels of technological advances coupled with more energy being 

consumed (Brookes, 2000).  

5.2 Empirical estimates of the rebound effect 

There are a number of studies which estimate the direct rebound effects for different energy 

services. The best documented are those for automotive transport and domestic space heating 

in OECD-countries as this is where most data is available. The size of estimations of the 

rebound effect will also be determined by the definition used, resulting in quite varying 

estimates (Greening, 2000).  

 

Various studies employing different methods and definitions of the rebound effect have been 

conducted over the past years. Understandably, they come to quite different conclusions. The 

most well-documented rebound effects are the direct rebound effects, which are the ones 

which will be focused upon here. The conclusion of several studies is that demand for energy 

services is inelastic for OECD-countries, which means that there is little risk of large direct 

rebound effects or backfire. However, calculated elasticities must be treated with caution as 

they are rarely stable and vary with price-levels, price-change expectations and saturation 

(Sorrell et al., 2009). Personal transport is the energy service for which the rebound effect has 

been most frequently studied. Meta-analyses by Greening et al. (2000) and Sorrell et al. 

(2009) put the direct rebound effect for personal transport between 10 % and 30 %, but there 

is a rather large variance depending over different time scales, from 3 % to almost 90 %. In 

the case of the former interval, it would mean that energy efficiency improvements in the 
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personal transport sector are associated with fuel savings of at least 70 % of the improvement 

in OECD countries. 

 

Rebound effects for indoor heating are also relatively well-documented. Many of these studies 

also take a number of other variables into account, such as income of the household. Results 

show that the rebound effect is larger for low-income households, which may be due to the 

fact that their indoor temperatures are lower from the beginning. This is a good illustration of 

saturation, as indoor temperatures approach 21 °C, the rebound effect starts to decline. 

Reasonably, there is a limit as to how high someone would want their indoor temperature to 

be, much as there are limits to how much someone would drive regardless of the fuel prices. 

The rebound effects are estimated less accurately for indoor heating than transport, and are 

put at between 10 % and 60 %, with a mean value of 20 % (Sorrell, 2009). 

End use Range of estimates (percent) "Best guess" (percent) 

Personal automotive transport 3–87 10–30 

Household heating 0.6–60 10–30 

House cooling 1–26 1–26 

Other consumer energy services 0–41 < 20 
 

Table 1. Empirical estimates of direct rebound effects for different energy services. Source:  Sorrel et al. (2009). 

 

While not as numerous, there are estimates of the rebound effect in other household services 

as well, where the rebound effect for lighting is estimated to be less than 10 % (Sorrell, 2009) 

and the rebound effect for clothes washing is found to be around 6 % in a thorough study by 

Davis (2008). 

 

Small & Van Dender (2007) argue that the rebound effects decrease with income levels as the 

cost of energy (fuel in their study) becomes a small part of the consumer’s budget. Rising 

incomes couples with decreasing real prices of fuel had led to the rebound effect for the years 

1997-2001 being only half as large as the period 1966-2001. 

 

Specifically for Sweden, Nässén & Holmberg (2009) have quantified the rebound effects and 

found it to be 5-15 % in most cases, while the rebound effect arising from switching from a 

large to a small car is 48 %. 
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While the distinction between the direct and indirect rebound effects are fairly straight-

forward to handle theoretically, as seen above, it is generally ignored in empirical estimates of 

the rebound effect (Binswanger, 2001), usually because of restrictions due to data availability 

(Greening et al., 2000).  

 

Evidence for higher-order rebound effects is limited. Most of the findings are based on 

models and simulations (Greening et al., 2000). At the economy-wide level, the most common 

measure of energy efficiency is energy intensity, which can change without there being any 

change in the energy efficiency of individual equipment, thereby giving a misleading 

indication of energy efficiency improvements (Herring, 1998). The lack of evidence for 

economy-wide rebound effects means that the discussions have been mostly theoretical and 

speculative, using historical evidence as the main evidence for claims of large rebound effects 

(Sorrell, 2009). Evidently, it is hard to translate what happens with demand at the micro level 

when the efficiency of equipment is improved into how the entire economy reacts when the 

productivity of energy as a factor of production is increased. 
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6 Policy 

In this section I will examine some of the barriers which explain why energy efficiency is not 

implemented to the extent that the cost-saving estimates presented earlier suggest it should be. 

Following this, I will present some of the basic ideas behind policies looking to overcome 

these barriers and summarize the specific policies in place in Sweden and what their results 

have been.  

6.1 Barriers to implementing energy efficiency policies 

This section reviews some of the factors that hinder the implementation of energy efficiency 

policies. The fact that these policies do not always lead to energy savings is one issue (see e.g. 

Oikonomou et al., 2009), but this section focuses on barriers to actually getting the policies in 

place. As described above, energy efficiency has improved considerably in the past through 

technological progress, but for reasons stated earlier, it is by many seen as desirable to speed 

up this process (European Commission, 2006). However, there are obstacles which hinder the 

implementation of such measures. The fact that energy efficiency is not as prioritized as it 

should be given the cost-saving potentials presented above, indicates the presence of hidden 

costs, market failures or other barriers (Stern, 2006, p. 378). One obstacle to switching over to 

more efficient technology is the cost. While neoclassical economic theory assumes that there 

are no adjustment costs in its models (Berkhout et al., 2000), this is obviously not true in 

reality. Even if it is plausible that a large initial investment in a new, more efficient piece of 

equipment will pay off over time as energy use and therefore costs decrease, it has been 

shown that consumers generally expect that household investments to have payback periods 

of 2-3 years. Even if this shortsightedness is overcome, consumers may not afford upgrading 

their existing stock of appliances (McKinsey & Co, 2007). 

 

A second barrier is the pricing of energy. Energy prices are often lower than their true cost, a 

fact which affects investment decisions. There are several reasons for this, one being direct 

and indirect subsidies which lower the cost of energy to below marginal costs. A further issue 

is that the externalities associated with producing energy, such as pollution and emissions 

associated with the burning of fossil fuels are rarely reflected in the price of energy which is a 

typical case of a market failure leading to underinvestment in energy efficiency (Schipper & 

Meyers, 1992, pp 305-6).  
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A third barrier is the invisibility of energy consumption. For example, it is often difficult to 

determine how much each appliance in a household contributes to total energy consumption 

as this commonly lumped together in either in monthly or yearly electricity bills (McKinsey 

& Co, 2007). The energy use of households especially seems to be domesticated in a way that 

prevents individuals from realizing how the energy systems of their homes function 

(Löfström, 2008). This is perhaps not as big a problem for large firms as they tend to be more 

mindful of cost-saving potentials and have the technical staff to evaluate and implement these 

options (Schipper & Meyers, 1992, p 307). It may also be the case that households and small 

businesses do not care about energy costs as they often make up a small portion of total 

expenditure, and are therefore unwilling to take steps to increase energy efficiency (Grubb, 

1990). The absence of a relevant price mechanism implies that consumers do not consider any 

budget optimization pertaining to energy costs (Birol & Keppler, 2000) In addition to not 

realizing the economic consequences of their energy use, consumers may not understand the 

environmental impacts their consumption patterns have (Stern, 2006, p 385). 

 

A fourth barrier, common in the building sector, is the problem of “misplaced incentives” 2 

(Schipper & Meyers, 1992 p 307). In many buildings, the constructor, owner and occupant are 

often different parties, which means that their interests in promoting energy efficiency are not 

always aligned. While the payer of the electricity bill wants this to be as small as possible, the 

construction firm may be more interested in cost-minimization and therefore installs cheaper 

but perhaps less efficient heating, appliances, etc. (McKinsey 2007). According to the IEA, of 

the energy used for refrigerators, space heating, water heating and lighting in the United 

States, more than 30 % was affected by problems of misplaced incentives (IEA 2007, p 191). 

 

Another class of barriers is social and institutional norms which are strong determinants of 

behavior. In the case of perfect markets, market mechanisms are preferred to regulatory 

measures, but where there are barriers in the form of e.g. market failures, regulation may be 

appropriate. In a case where externalities are not included in the price of energy, banning 

certain chemicals or setting efficiency standards can remove the most environmentally 

harmful elements from the market entirely (Stern, 2006, p 377).  

 

                                                 
2 This is a case of a principal-agent problem (IEA, 2007) which is also known as the “landlord-tenant problem” 
(Stern, 2006, p 380). 
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These are some of the barriers which prevent energy efficiency investments from being as 

large as they optimally should. The aim of policies encouraging energy efficiency aim at 

removing these barriers or at least mitigate them. 

6.2 General policy instruments for increasing energy efficiency 

In this section is will summarize some of the policies used to promote energy efficiency in 

order to see how they affect the rebound effect. As several studies point out, investment in 

energy efficiency has been an integral part of many countries’ energy policies since the oil 

crises of the 1970’s. Policies aiming to increase energy efficiency will attempt to overcome 

the barriers to energy efficiency as discussed above. There are two main options for 

influencing energy efficiency through policy measures: changing relative prices so that energy 

becomes more expensive or introducing new, more productive technology. These are not 

mutually exclusive. Because energy efficiency gains and the energy intensities at higher levels 

of aggregation may deviate, as will be elaborated upon below, one of the main objectives of 

policies on energy efficiency must be to ensure that “improvements in technical energy 

efficiency translate to the largest possible extent into corresponding reductions in energy 

intensities” (Birol & Keppler, 2000).  

 

The fact that energy prices do not reflect the true cost of energy is a market failure which 

limits the demand for energy efficiency savings. Other barriers are debatable if they actually 

are true market failures or rather normal aspects of a market economy, and if they can, or 

indeed should, be addressed by government policy. Appropriate energy policy may therefore 

see to correcting true market failures and provide information to consumers and investors in 

order to reduce uncertainty and risk associated with new technology. This can be done by 

targeting both existing and new goods and capital stock (Schipper & Meyers, 1992, pp 306-8).   

 

As mentioned above, one of the main objectives of energy policy is to ensure that energy 

prices correctly reflect the societal cost of its use or at least that the price is equal to marginal 

cost. Many countries have subsidies which distort the price signals on the market. Removal of 

these, however politically unpopular, is one policy which would move the country toward 

encouraging energy efficiency. The production and consumption of energy is often associated 

with different externalities which are not reflected in the price. Most notable is pollution and 

emissions associated with the burning of fossil fuels. If energy prices were to internalize these 

externalities they would rise, causing energy efficiency investments to be more lucrative. 
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There are plenty of examples of how this could be done, e.g. by a tax on emissions, subsidies 

to more efficiency technology or by emission trading schemes (Schipper & Meyers, 1992, p. 

311-25). As energy prices often are lower than what they would be if they reflected the entire 

societal cost, moving towards this theoretical equality would increase the price of energy. 

Following the induced innovation hypothesis posited by John Hicks, an increase in the price 

of a factor would spur innovation directed at economizing that factor (Newell et al., 1999). 

Raising the price of energy would therefore stimulate both a shift towards using the most 

efficient existing technology as well as spurring innovation where new technology is 

perfected. 

 

Information may be provided in order to reduce the risk associated with investments in energy 

efficiency. This is especially important for households and small businesses (Schipper & 

Meyers 1992, p 312). This often comes in the shape of labeling of e.g. appliances, but there 

are also possibilities of energy auditing or counseling. Labeling of appliances combined with 

efficiency standards has been successful in reducing electricity usage in appliances (Geller et 

al., 2006). For example, two different television sets of similar type and size may differ in 

energy consumption by as much as 33 %. A clearer labeling of these differences may 

influence consumption choices (McKinsey 2007, p 37). Policies with goals of providing 

increased information are meant to tackle the problem of visualization described above. Apart 

from labeling, requiring utilities to provide clients with regular, accurate and informative 

energy bills is one way of informing households and firms of their energy consumption 

pattern. More sophisticated methods such as implementing smart meters in homes and work-

places, which give detailed information on energy use in real time, or gear shift indicators 

which let car drivers know when they should shift gears in order to maximize fuel efficiency, 

are other examples of how energy efficiency potentials can be revealed (Stern, 2006) 

 

Imposing regulations and standards for equipment of buildings which regulate their energy 

efficiency is another common policy option used by governments. Design standards “can 

create scale economies for strategically important technologies” (Stern, 2006, p 383). 

Sometimes these come in the shape of agreements between the government and producers of 

certain equipment. (Schipper & Meyers, 1992, p 313) In Germany, an agreement between 

major industry and utilities to reduce the CO2-intensity by 28 % between 1990 and 2005 is 

one example of this. Japan has enacted the “Front Runner” program, whereby the most energy 

efficient TV, refrigerator, toilet seat warmer etc. sets the standard for all products on that 
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market to live up to. In the United States, standards for fuel economy in cars, CAFE-

standards, have helped to increase the fuel efficiency in cars by more than 100 % from 1975 

to 1988 (Geller et al., 2006).  

 

Financial incentives are sometimes used to promote energy efficiency, either by offering 

rewards for efficiency in the shape of lower taxes, low-interest loans, exemptions from certain 

fees, etc, or by punishing poor efficiency with higher taxes or other fees (Schipper & Meyers, 

1992, p 314-5). In many countries it is possible to obtain low-interest loans to support 

construction of buildings with low environmental impact (Geller et al., 2006, p 6).  

 

Direct support to research and development of new technology is also a crucial policy 

instrument for governments to use. While private investments focus on short and medium 

term improvements in energy efficiency, government spending can be used to finance basic 

research which could improve energy efficiency in the long term as these are often less 

economically interesting for companies to invest in, as well as being associated with higher 

risk (Schpper & Meyers, 1992, p 315).  Billions of dollars were granted to R&D related to 

energy efficiency in the United States following the oil crises. This was also a common policy 

response in Western European countries (Geller et al., 2006).  

 

Both the use of energy and the efficiency with which it is used has increased immensely 

during the past centuries and decades, making the effect of energy efficiency programs hard to 

evaluate by simply observing time series of energy use. A common definition of energy 

efficiency at the economy-wide level is, as mentioned earlier, energy intensity. This is the 

ratio of units of GDP per unit of energy consumed. Energy intensity may be misleading, 

however, as in many advanced economies the service sector is replacing heavy industry as a 

source of income; the service sector consuming less energy than e.g. manufacturing.  Usually, 

the impacts of energy efficiency investments are calculated based on hypothetical scenarios of 

what energy consumption would look like hade the investment not been made. Obviously, 

whether or not potential rebound effects are included in these calculation may have a large 

effect on what the impacts are found to be. As will be demonstrated in the next section, 

energy savings vary considerably depending on whether the full (potential) rebound effect is 

taken into account or not.   
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A recent report by the IEA (2009) reports data showing the effects of various energy policies 

on energy efficiency. Policies targeting households have played a key roll in improving 

energy efficiency in appliances and space heating since 1990, but these were offset by larger 

appliances being used as well as a larger number of small appliances. In the service sector, it 

is clear that energy intensity fell between the years 1990 and 2006, but it is difficult to 

determine whether or not this was the result of policies targeting energy efficiency. Most 

policies targeting personal transport have been aimed at increasing the fuel economy of cars. 

While this has increased by 15 % over the period surveyed, increased driving distances and 

number of cars has offset the gains from energy efficiency. 

 

Most policies target end-use efficiency, i.e. the energy use in appliances, cars etc. rather than 

actually trying to alter consumer behavior (Geller et al., 2006) or increase the efficiency in the 

generation of electricity, the potential for which in many cases is approaching the theoretical 

maxima which the laws of thermodynamics dictate (Smil, 1994, p. 229).  

6.3 Swedish policy 

In this section I will summarize the policies used specifically in Sweden and what effects they 

have had on energy efficiency. In 2006, the European Union issued a directive mandating 

member states to undertake cost-effective, viable and reasonable measures in order to improve 

energy efficiency. A quantitative goal of 9 percent energy savings from energy efficiency of 

the baseline 2001-2005 values by 2016 was set. This is a part of the general target of reducing 

energy use by 20 % by 2020 set up by the EU, which, however, is not binding 

(Energiutredningen, 2008). Directives only specify the goal which is to be attained, the 

specifics of how this is done are up to the member states themselves to outline. Swedish 

policy on energy efficiency had been in place long before the directive, and earlier measures 

may in some cases be incorporated into the final 9 percent goal. In the case of Sweden, 

approximately half of the savings in 2016 (which are expected to exceed 9 percent) are 

savings derived from earlier energy efficiency policies between 1991 and 2005 

(Energiutredningen, 2008). There are both specific policies targeting individual sectors of the 

economy, as well as more general policy measures such as energy taxes.  

6.3.1 Taxes 

Sweden taxes energy in a number of ways: both electricity and fuel are taxed, as well as 

emissions of CO2 and sulfur dioxide (SO2). The tax system is rather complex and 
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differentiated depending on usage area and source, with industry receiving exemptions or 

reductions (Energiutredningen, 2008). Improving energy efficiency is one of the explicit goals 

of energy taxation (Swedish Energy Agency, 2008).  

6.3.2 Buildings and residential sector 

The building sector is where the largest gains from energy efficiency improvements are 

expected to be realized (Energiutredningen, 2008). The Swedish government subsidizes 

installation of more efficient heating systems in homes and places of business. There is a law 

requiring appliances to be labeled according to their energy efficiency with the aim of helping 

consumers in their purchasing decisions. The labeling is routinely followed up by controls at 

the locations of retailers. There is also a program of energy counseling where independent 

counselors help households, small businesses and organizations make decisions aimed at 

reducing energy use and increasing energy efficiency. In an agreement between the 

government and several agents in the building sector, banks, insurance companies as well as 

local government where the parties promise to work towards a set of goals which will 

promote sustainable development in the building sector, one of them being to reduce the 

amount of energy used through gains in energy efficiency (Swedish Energy Agency, 2007). In 

2006, a law was passed that all new building must have energy declarations which are hoped 

to aid in identifying cost-effective efficiency improvements in individual buildings as well as 

clarifying the efficiency of a building for buyers, sellers and tenants. There are also minimum 

requirements pertaining to energy efficiency which must be fulfilled when renovating or 

constructing new buildings. In the long run, investments in research, development and 

demonstration are key instruments (Energiutredningen, 2008). 

6.3.3 Industry 

In 2004 the Program for Energy Efficiency was launched whereby a tax on electricity used by 

the manufacturing industry was imposed. Firms were given the possibility of receiving a full 

tax exemption provided they participate in a five-year program designed to help them improve 

the efficient use of electricity (Swedish Energy Agency, 2008). It is possible that this program 

will be extended to include smaller firms (Energiutredningen, 2008). A service called Energy 

Performance Contracting involves companies which analyze the technical and operational 

status of industries and buildings and compile the results into a program for increasing energy 

efficiency which the company performing the analysis guarantees will be profitable. This 

way, work dealing with making buildings and industries more efficient are outsourced to a 
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third party, relieving the industries and operators of building of that burden (Swedish Energy 

Agency, 2007). 

6.3.4 Transport 

Fuel tax is the main way in which consumption of fuel is disincentivized and transition to 

low-energy modes of travel. Cars which can run on ethanol or biogas receive tax reductions, 

as do electric cars. Taxation of new automobiles (model 2006 or newer) is CO2-differentiated, 

i.e. based on the amount of carbon dioxide they emit, as opposed to weight as was the 

situation previously, in addition to a basic tax. There is also a system of automatic speed 

control cameras erected along Swedish roads, a positive side effect of which is the reduction 

of fuel consumed by cars, as lower average speeds lead to lower fuel consumption of cars and 

can therefore be seen as a measure to increase energy efficiency. Education in “ecodriving” is 

now a part of Swedish driving school sessions, teaching prospective drivers how to drive 

more efficiently. In a longer perspective, improving social planning with respect to 

environmental issues and investments in research, development and demonstration are 

important policies (Energiutrednigen, 2008). 

6.3.5 Policy results and forecasts 

The Swedish Energy Agency estimates that energy use in Sweden has decreased by 82 

TWh/year as a result of measures undertaken in order to increase energy efficiency. Forecasts 

of energy savings resulting from efficiency gains up 2016 are made under two scenarios, 

Scenario 1 where taxes are assumed to remain at the same level as in 2005, and Scenario 2 

where taxes are assumed to rise at the same rate as during the period 1970-2005. Further, for 

each scenario savings are calculated both without the rebound effect taken into consideration 

as well as the full rebound effect taken into consideration. 

 

Sector Scenario 1 Energy efficiency gains 

(TWh/year) 2016 

Scenario 2 Energy efficiency gains 

(TWh/year) 2016 

 Full rebound 

effect 

No rebound 

effect 

Full rebound 

effect 

No rebound 

effect 

Buildings 0,01 4,51 6,18 * 63,25 * 

Industry (non-trading) 0,03 0,94 0,45 2,28 

Transports 0,07 0,45 0,67 3,97 

Total 0,11 5,9 7,4 69,5 

 
Table 2. Projected energy savings from improvements in energy efficiency. Source: Swedish Energy Agency. 

Note: * indicates insignificant estimates. 
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Evidently, including a full rebound effect (i.e. 100 %) has a significant effect on estimates of 

how effective policies aiming at improving energy efficiency will be. The numbers presented 

in each column are the bounds between which the efficiency gains can be expected to end up 

depending on the size of the rebound effect. This interval is significant; it is obviously of 

interest estimating how large the rebound effects might be. 
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7 Discussion 

Much hope is pinned on energy efficiency helping to reduce energy use and thereby emissions 

of greenhouse gases. However, taking the rebound effect into account, policies aiming to 

increase energy efficiency may not be as effective as intended. While few people would 

probably argue to try to halt technological progress, the source of many efficiency gains, it is 

perhaps relevant to question whether governmental policy should target energy efficiency as a 

means of reducing greenhouse gas emissions. There are, after all, many different options to 

achieve this (see e.g. Pacala & Socolow, 2003). Given the findings presented in section 5.2, 

the rebound effect only offsets a small portion of the reduction in energy use due to efficiency 

gains, meaning that energy efficiency probably still is worth pursuing for policymakers. This 

does not mean that the rebound effect should be ignored. The fact that energy efficiency 

seems to have so much potential for reducing energy consumption means that it should be of 

interest to mitigate these effects. Because the rebound effect arises mainly due to the price-

sensitivity of end-users of energy services, policies which target the real prices of these 

services may be able to mitigate the rebound effect. However, as will be discussed shortly, 

there are problems associated with such policies. 

 

In chapter 6, I presented some policies used to promote energy efficiency. These can be 

divided into those which directly target prices and those which do not. Obviously, energy 

taxation is the main example of these policy instruments, which is used in Sweden in e.g. the 

transport sector.  In many parts of the world, energy is subsidized. Removing these subsidies 

would be one way to raise the price of energy services (Naturvårdsverket, 2006), but after 

they have been removed completely, some price-targeting policy would have to be 

implemented. Policies which do not target energy prices, such as information campaigns, and 

various programs like those in the Swedish building sector, would then not be able to cope 

with rebound effects. 

 

As was presented in section 5.1.1, the direct rebound effects is closely related to the own price 

elasticity of demand for energy services. It is also the case that the price elasticity is lower 

when real prices are at a lower level. This means that rebound effects can be expected to be 

larger for those energy services that are relatively expensive and low for those that are 

relatively cheap.  
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As the direct rebound effect is expected to be larger where energy demand is more elastic, and 

research has indicated that the demand for energy services usually is inelastic, this would 

indicate that behavioral changes are not a threat to energy efficiency policies. Energy costs 

usually constitute small shares of both firms’ and households’ total budgets.  

 

Assume governments where to try and keep the real price of energy from dropping by e.g. 

using taxes in order to compensate for gains in energy efficiency. This would mean that those 

who could not keep up with technological progress would face ever rising costs of energy 

services as they would face the barriers to energy efficiency as presented in section 5.1. 

Particularly, those who would be prevented from upgrading e.g. household appliances, cars 

due to the cost of doing so will most likely be low-income households, making such an 

approach seem unfair. Additionally, as was pointed out in section 4.2, technological advances 

are often made in “leaps”, which makes them hard to foresee. If taxes were designed to reflect 

this, end-users who did not install the latest equipment would be subject to unpredictable 

prices, which is negative for investment (Schipper & Meyers, 1992, pp 312-3). Furthermore, 

should equipment be able to be replaced as energy efficiency improves, depending on how 

much could be recycled, the high turn-over rate for cars, household appliances, etc., would 

consume energy in order to produce new equipment. As pointed out by Levett (2009), the 

improvements in energy efficiency are different for different equipment, which, together with 

the inability for low-income households to keep up, “would have complex redistributive 

effects between different people and energy using products, and have more effect on some 

needed to neutralise rebounds, and less on others” (Levett, 2009, p 196). 

 

Again, consider equation (5.1.1.4): 

 

ηQW PP = . 

 

The objective of raising taxes on is to ensure that the price of the energy service, PW, does not 

drop as a result of the energy efficiency, η, rising. This means that the energy price, PQ, rises. 

An issue with this is that this is the price which will be visible to consumers, which could 

bring instances of money illusion, i.e. the phenomenon that consumers focus on nominal 

prices rather than real ones when making decisions, into play. Some research suggests that 
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there is a bias towards nominal prices versus real prices in decision-making (Fehr & Tyran, 

2001). 

 

As described above, the debate regarding how energy productivity and energy consumption at 

the economy-wide level is yet to be resolved. In the case that there is a difference between 

policy-driven efficiency gains and those occurring “naturally”, as proposed by Grubb (1990), 

governments can continue promoting energy efficiency. If those who believe in economy-

wide backfire are correct, then doing so would be entirely counter-productive. During periods 

of high oil prices such as during the oil crises of the 1970’s, energy demand is expected to 

fall. As explained above, during the same periods measures to increase energy efficiency were 

undertaken in order to reduce dependence on oil. According to Herring (1998), “whether this 

is due to the adverse consequences of higher fuel prices on economic activity or energy 

efficiency improvements, was a matter of fierce dispute.” The fact that the price elasticity of 

demand is proven to be quite small at the micro-level does not preclude that higher levels of 

aggregation bring with it increased consumption of energy as technological advancements are 

made. The lack of scientific consensus of what happens at the economy-wide level makes it 

impossible to conclude what implications there are for energy policy. Therefore, using the 

findings regarding the rebound effect at the micro level seems more appropriate. 

 

Because the rebound effect arises when the price of energy decreases an implication is that 

policies which strive to raise the price of energy would be more efficient than non-price 

policies in terms of mitigating the rebound effect. As taxes can be set higher on goods and 

services for which the demand is inelastic (see e.g. Rosen & Gayer, 2009, chap. 16), energy is 

a prime candidate for high energy taxes, which is also the case in Sweden. Depending on how 

large the demand which is constrained by high prices or low supply is, the rebound effect will 

be large or small. Some research of how energy use at the economy-wide level is affected by 

energy efficiency improvements can lead to conclusions that pursuing policies aimed at 

increasing energy efficiency is counter-productive. Most research, however, does show while 

there are rebound effects, improving energy efficiency does reduce energy use. 
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8 Concluding remarks 

Energy efficiency has often been regarded as something of a silver bullet to reigning in energy 

consumption which is desirable for a number of reasons, the most urgent of which, in recent 

years, is to decrease emissions of pollution associated with the burning of fossil fuels causing 

environmental degradation and contributing to climate change. Energy efficiency programs 

are an integral part of many countries’ energy and environmental policies, among them 

Sweden.  

 

This paper has showed how rebound effects arise as a result of consumption patterns adjusting 

to lower real prices of energy brought on by more efficient energy use. In the presence of 

rebound effects, policies which aim to promote energy efficiency may not be as effective as 

often assumed. Economists agree that there are rebound effects but not on their magnitude. 

Empirical studies at the micro level have shown that the rebound effects are small, usually no 

more than a few percent. Given the lack of empirical evidence at the economy-wide level for 

rebound effects and the evidence for an absence of large rebound effects at the micro level, a 

continued pursuit of energy efficiency as a means to reduce energy consumption seems to be 

suitable. 

 

Rebound effects prove to be part of a system which is fraught with feedback loops, both 

positive and negative, which makes it dynamic, non-linear and hard to predict. Understanding 

how these effects arise and interact is crucial to designing effective policy. This paper has 

presented some, but surely not all of these feedbacks.  

 

Government policy can be used to counteract the rebound effects. This paper has showed that 

the changes in real price of energy services caused by the efficiency improvement is a strong 

contributor to the rebound effect, implying that keeping the price of energy and thereby 

energy services high through government intervention may reduce the rebound effects. 

Because increasing the real price of energy is one way to induce the development of more 

efficient energy services, these policies may also have the benefit of mitigating rebound 

effects. However, targeting prices is not unproblematic: different energy-consuming 

equipment develops at different and often unpredictable rates, and not everyone will afford to 

keep upgrading their equipment.  
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8.1 Future research 

There are many issues which would be interesting to study further in order to better 

understand how the rebound effect can be mitigated by policy measures. More research on 

how the economy-wide rebound effects work is desirable in order to resolve the debate 

regarding this. Without a deeper understanding of this, it is difficult to determine if energy 

policy should target energy efficiency. While there is a greater degree of consensus regarding 

rebound effects at the micro level, there are some areas which would benefit from more 

research. For example, it would be of great importance to determine if energy services which 

are the subject of energy efficiency policies targeting prices are more resilient to rebound 

effects, ceteris paribus, as the findings of this paper indicate should be the case.  
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