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Abstract 

 

The aims of the thesis are to investigate the estimation power and the normality of standardized 

residuals for Generalized autoregressive conditional heteroscedasticity models (GARCH).  We 

facilitate the analysis by only dealing with GARCH(1, 1) models.  We take use of MATLAB as 

the statistical programming tool for the simulation of the data and the estimation.    

 

We define the meaning of estimation power in three ways.  Firstly, how close estimated 

expectation of estimators is to the actual value given a value of biasness.  Secondly, another way 

to define the estimation power is by calculating Root Mean Square Error (RMSE) of estimated 

values.  Finally, we define it by how large proportion of significant models we get.   

 

To analyze the estimation power, we perform three simulation tests to measure the biasness, the 

RMSE and the proportion of significant GARCH(1, 1) models.  In addition, we analyze the 

normality by calculating the proportion of standardized residuals using the Jarque-Bera test.   

 

Based on the results from those three simulation studies focused on the estimation power, we 

conclude that when the number of observations increases, it reduces the biasness of the estimated 

parameters.  Secondly, the size of the GARCH and ARCH parameters plays a major role in 

determining the estimation power.  The larger GARCH and ARCH effects are contained in the 

series, the better estimation power we get.  Moreover, we conclude that for a given sum of 

GARCH and ARCH values being constant, the combination that has equal weight has the best 

estimation power.   

 

Finally and most importantly, based on the result from the fourth simulation test, we understand 

that as long as we get an estimated model in which both estimated GARCH and ARCH 

parameters are significant, we have at least ninety percent of the standardized residuals that are 

normally distributed with the properties of zero mean and unit variance.   
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1. Introduction 

 

Generalized autoregressive conditional heteroscedasticity models are often abbreviated as 

GARCH models.  GARCH models, introduced by Bollerslev (1986), generalized Engle’s (1982) 

earlier ARCH models to include the autoregressive (AR), as well as moving average (MA) 

terms. GARCH models can be more parsimonious (use fewer parameters), increasing 

computational efficiency.   

 

The theory behind GARCH is that it includes past variances in the explanation of future 

variances.  Due to this feature, GARCH has played a central role in analyzing financial time 

series for decades.  We can apply GARCH models to such areas as risk management, option 

pricing, portfolio management and asset allocation and so forth.   

 

The aims of the thesis are to investigate the estimation power and the normality of standardized 

residuals for GARCH models.  We try to define the meaning of estimation power in three ways.  

Firstly, how close estimated expectation of estimators is to the actual value given a value of 

biasness.  To get a good estimation power, the bias should be close to zero.  Secondly, another 

way to define the estimation power is by calculating Root Mean Square Error (RMSE) of 

estimated values.  If the RMSE is close to zero, it implies that the estimation power is good.    

Finally, we define the estimation power by how large proportion of significant models we get.   

 

Based on the definitions of estimation power, we perform three simulation tests to investigate the 

estimation power in these three ways.  In the first simulation study, we focus on measuring the 

biasness of estimated parameters when we increase the number of observations.  In the second 

simulation test, we concentrate on how the actual GARCH and ARCH parameters affect the 

estimation power by comparing RMSE of estimated values.  In the third simulation test, we 

focus on testing how the length of the series and the effect of using different combinations of 

actual GARCH and ARCH values influence the estimation power, especially getting estimated 

models for which both estimated GARCH and ARCH parameters are significant.  Finally, we 

perform a simulation test to calculate the proportion of standardized residuals by increasing the 



 2 

length of series and using different combinations of actual GARCH and ARCH values.   To 

facilitate the analysis, we only deal with GARCH(1, 1) models in the thesis.   
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2. Methodology 

 

2.1. Generalized Autoregressive Conditional Heteroscedasticity model 

 

Let {𝑦𝑡 ; t = 0,….,T} be an observed data series 

𝑦𝑡 = 𝐶 + 𝜀𝑡  ,   (2.1) 

where 𝜀𝑡  is the error term and 𝐶 is a constant value and 

 𝜀𝑡 =  𝑧𝑡𝜎𝑡  . (2.2) 

 

𝑧𝑡  is the standardized residual that follows a normal distribution of zero mean and unit variance, 

while 𝜎𝑡  is a nonnegative process which is the square root of the conditional variance 

𝜎𝑡
2 = 𝐾 +  𝛼𝑖

𝑞

𝑖=1

𝜀𝑡−𝑖
2 +  𝛽𝑗

𝑝

𝑗=1

𝜎𝑡−𝑗
2  , 

(2.3) 

where  𝐾 > 0, 𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0. This is the generalized autoregressive heteroscedasticity model, 

denoted as GARCH(p,q) by Enders (1995).   

 

To facilitate the analysis, we use GARCH(1, 1) models.  The standardized residual is  𝑧𝑡 =
𝜀𝑡

𝜎𝑡
   

with the conditional variance of innovation 

𝜎𝑡
2 = 𝐾 + 𝛼𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2  . (2.4) 

 

In addition, 𝜀𝑡  is a stationary process if it is under the condition  𝛼 + 𝛽 < 1.  This condition is 

obtained from the unconditional variance of the error term  𝜀𝑡    

𝑣𝑎𝑟 𝜀𝑡 = 𝐾 (1 − 𝛼 − 𝛽)  . (2.5) 

 

For positive variance  1 − 𝛼 − 𝛽 > 0  𝑖. 𝑒.  𝛼 + 𝛽 < 1, where 𝛼 is ARCH parameter and  𝛽  is 

GARCH parameter. 
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2.2. Quasi-Maximum Likelihood Estimate 

 

The quasi-maximum likelihood differs from maximum likelihood, and it deals with conditional 

variance of GARCH model that depends on the previous conditional variance and the error term.  

It was introduced by Robert Wedderburn in 1974.   

 

Under the condition that the standardized residual 𝑧𝑡  follows a normal distribution with zero 

mean and unit variance, we can maximize the quasi likelihood conditioned on 𝜎0
2 to obtain quasi-

maximum likelihood that could be applied on series to estimate the model parameters.  In our 

case we try to estimate GARCH(1, 1) parameters 𝜃 = (𝐶, 𝐾, 𝛼, 𝛽).  We use the MATLAB build-

in function (garchfit) and this function applies quasi-maximum likelihood to perform the 

estimation.   

 

𝐿𝑇 𝑦0,…..,𝑦𝑇 , 𝜎0
2; 𝜃 = 𝐿𝑇 𝜃 = −(2𝑇)−1  (ln 𝜎𝑡

2(𝜃)

𝑇

𝑡=1

+
𝜀𝑡

2

𝜎𝑡
2(θ)

) , 
(2.6) 

 

where   

𝜎𝑡
2 θ = 𝐾 + 𝛼  𝛽𝑘𝜀𝑡−1−𝑘

2

∞

𝑘=0

 
(2.7) 

and 

   𝜀𝑡 = 𝑦𝑡 − 𝐶 . (2.8) 

 

The quasi-maximum likelihood estimator (QMLE) maximizes the 𝐿𝑇 𝜃 .  The QMLE may be 

consistent, see e.g. Elie and Jeantheau (1995), and asymptotically normal, provided that the 

innovation has a finite fourth moment, even if it is far from Gaussian, see Hall and Yao (2003) as 

well as Berkes, Horváth and Kokoszka (2003).  We show however that even though the 

estimators are asymptotically normal, they are often far from normal in finite sample sizes. 
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2.3. Biasness 

 

Bias of an estimator (or mean-bias) in our case is the difference between the expectation of the 

estimated parameters and the actual value of the parameter.  An estimator with zero bias is 

unbiased. Otherwise the estimator is said to be biased.  

 

The smaller value of bias we get, the better estimation power we obtain.   

𝐵𝑖𝑎𝑠 𝜃  = 𝐸 𝜃  − 𝜃 = 𝐸 𝜃 − 𝜃  . (2.9) 

 

Under the condition 𝐸 𝜃  ≠ 𝜃, where 𝜃 ∈ {𝐶, 𝐾, 𝛼, 𝛽}, 𝜃  is biased.   

 

We estimate the bias of  𝜃   by estimating the expectation of  𝜃   using Monte Carlo method with 

𝑁 series.  Letting 𝜃 𝑖 be the estimate from the i
th

 simulated series, then  

𝐸 𝜃   = 𝑁−1  𝜃 𝑖

𝑁

𝑖=1

 

(2.10) 

is the estimated expected value of  𝜃 .   

 

More of this will be discussed in the next section.   

 

 

 

2.4. Root Mean Square Error 

 

The Root Mean Square Error (RMSE) 

𝑅𝑀𝑆𝐸 𝜃  =  𝑀𝑆𝐸 𝜃  =  𝐸   𝜃 − 𝜃 
2
  , 

(2.11) 

where 𝜃 ∈ {𝐶, 𝐾, 𝛼, 𝛽}, is a frequently used measure of the difference between the estimated 

value and the actual value.  RMSE is a good measure of precision, it serves to aggregate into a 

single measure of predictive power.  The smaller RMSE we get, the better estimation power we 

obtain.   
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We estimate the RMSE of  𝜃  by estimating the expectation of squared difference of estimator 

and the actual value using Monte Carlo method with 𝑁 series. 

 

The individual differences 𝜃 𝑖 − 𝜃 are also called residuals where 𝜃 𝑖 be the estimate from the i
th

 

simulated series and the estimated  𝑅𝑀𝑆𝐸 𝜃   is then  

𝑅𝑀𝑆𝐸 𝜃   =  𝑁−1   𝜃 𝑖 − 𝜃 
2

𝑁

𝑖=1

 . 

(2.12) 

   

More of this will be discussed in the next section.   

 

 

2.5. Wald test for significant GARCH(1, 1) models 

 

We define a significant GARCH(1, 1) models to be a model where both estimated GARCH and 

ARCH parameters are significant from zero at the 5% level.  The hypothesis test performed was 

the Wald test as follows: 

𝐻0: 𝜃 = 0 

𝐻1 : 𝜃 ≠ 0. 

 

𝑊𝑎𝑙𝑑  𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =  
(𝜃 − 𝜃)2

𝑣𝑎𝑟(𝜃 ) 
, 

(2.13) 

which is compared against a chi-square distribution with 1 degree of freedom and 𝜃 ∈

{𝐶 , 𝐾 , 𝛼 , 𝛽 } . 
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2.6. Jarque-Bera test for the normality  

 

The Jarque–Bera test is a goodness-of-fit test for departure from normality, based on the sample 

kurtosis and skewness. The test is named after Carlos Jarque and Anil K. Bera (Jarque and Bera, 

1987). The test statistic JB is defined as follows: 

 

𝐽𝐵 =
𝑇

6
 𝑠 2 +  𝑘 − 3 

2
4   , 

(2.14) 

where the skewness 𝑠  and the kurtosis 𝑘  in our case are obtained by calculating the skewness and 

kurtosis of the estimated standardized residuals  

𝑧 𝑡 =
𝜀 𝑡

𝜎 𝑡
 

(2.15) 

and the estimated conditional variance 

𝜎 𝑡
2 = 𝐾 +  𝛼 𝑖

𝑞

𝑖=1

𝜀 𝑡−𝑖
2 +  𝛽 𝑗

𝑝

𝑗=1

𝜎 𝑡−𝑗
2  , 

(2.16) 

for t=1,…,T  where T is the number of observations in the series. 

 

The skewness is  

   𝑠 =
𝑇−1  (𝑧 𝑡 − 𝑧 )3𝑇

𝑡=1

(𝑇−1  (𝑧 𝑡 − 𝑧 )2𝑇
𝑡=1 )3 2  

(2.17) 

and the kurtosis is 

𝑘 =
𝑇−1  (𝑧 𝑡 − 𝑧 )4𝑇

𝑡=1

(𝑇−1  (𝑧 𝑡 − 𝑧 )2𝑇
𝑡=1 )2

 , 
(2.18) 

for the mean   

𝑧 = 𝑇−1  𝑧 𝑡

𝑇

𝑡=1

 . 
(2.19) 

The null hypothesis and the alternative hypothesis of this test are  

𝐻0:  𝑧𝑡 ′𝑠 𝑎𝑟𝑒 𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦  𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑  

𝐻1 :  𝑧𝑡
′ 𝑠 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑛𝑜𝑟𝑚𝑎𝑙𝑙𝑦  𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 . 
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3. Simulations 

 

3.1. An overview of estimation power and properties of GARCH 

 

The purpose of the simulation in this part is to investigate how estimated parameters C, K, 

GARCH and ARCH behave while number of observations increases.  In addition, we want to 

investigate the effect of large and small actual GARCH and ARCH parameters.    

 

First of all, we simulate 5000 series for GARCH(1, 1) with actual parameters C, K, GARCH and 

ARCH which are 0.2, 0.2, 0.2 and 0.1 respectively.  Each series has 100 observations.  Next, we 

estimate 5000 series using the GARCH(1, 1) model so that we can get 5000 estimated 

parameters for C, K, GARCH and ARCH respectively.  Third, we calculate the averages for each 

of those 4 estimated parameters and subtract the actual parameters from the average estimated 

parameters.  At the same time descriptive statistics of 4 parameters are calculated.  Fourth, we 

repeat the procedure by increasing the number of observations in 200, 500, 1000, 2000 and 5000.  

The results are shown in Table 3.1.  Finally, in order to investigate the effect with large and 

small values for GARCH and ARCH actual parameters, we repeat the procedure again by using 

actual parameters C, K, GARCH and ARCH being 0.2, 0.2, 0.5 and 0.4 respectively.  The results 

are shown in Table 3.2.   

 

Table 3.1 The biases of the estimated parameters for small actual parameters 

 

        Actual 

value 

T=100 T=200 T=500 T=1000 T=2000 T=5000 

      C 0.2 0.0003 -0.0006 -0.0003 -0.0004 0.0001 0.0000 

      K 0.2 -0.0564 -0.0406 -0.0225 -0.0136 -0.0045 0.0002 

 GARCH 0.2 0.1898 0.1414 0.0820 0.0503 0.0169 -0.0002 

  ARCH 0.1 0.0061 -0.0009 -0.0043 -0.0035 -0.0014 -0.0007 
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Table 3.2 The biases of the estimated parameters for large actual parameters 

        Actual 

value 

T=100 T=200 T=500 T=1000 T=2000 T=5000 

      C 0.2 0.0016 -0.0002 0.0002 0.0006 0.0003 0.0001 

      K 0.2 0.0887 0.0420 0.0155 0.0078 0.0036 0.0016 

 GARCH 0.5 -0.0701 -0.0388 -0.0136 -0.0067 -0.0032 -0.0015 

  ARCH 0.4 -0.0072 -0.0004 -0.0009 -0.0006 -0.0003 0.0001 

 

According to the results in Table 3.1 and 3.2, there are two findings that we can obtain.  Firstly, 

no matter what actual parameters of GARCH and ARCH are, when the number of observations 

increases, the biases are approaching zero either from positive or negative side.  For instance, 

when the number of observations is 100 and the actual GARCH and ARCH are 0.2 and 0.1, the 

biases of GARCH and ARCH are 0.1898 and 0.0061 respectively.  When the number of 

observations is 5000, biases of GARCH and ARCH are -0.0002 and -0.0007 respectively.   

 

Secondly, with small actual GARCH and ARCH parameters, when number of observations 

increases, biases of GARCH and ARCH are from the positive side approaching to zero. It can be 

explained in other words that the average estimated parameters for GARCH and ARCH decrease 

to approach the actual values.  On the contrary, the bias of K is from the negative side 

approaching to zero.  It also can be explained that the average estimation of K is from small 

average estimated values approaching to the actual parameters.  For example, bias of GARCH is 

from 0.1898 to -0.0002 while bias of K is from -0.0564 to 0.0002.   

 

Relatively, with large actual GARCH and ARCH parameters, when number of observations 

increases, biases of GARCH and ARCH are from the negative side approaching to zero which 

can be interpreted as the average estimated GARCH and ARCH are from small estimated values 

approaching to the actual parameters .  On the other hand, the bias of K is from the positive side 

approaching to zero.  It also means that the average estimation of K is from large estimated 

values approaching to the actual value.  For instance, bias of ARCH is from -0.0072 to 0.0001 

while bias of K is from 0.0887 to 0.0016.   
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Table 3.3 Descriptive Statistics for estimated parameters with small actual parameters 

        Actual 

value 

T=100 T=1000 T=5000  

 
Figure 3.1 Distribution of parameters for T = 100 

 
Figure 3.2 Distribution of parameters for T = 1000 

 
Figure 3.3 Distribution of parameters for T = 5000 

     

      C 0.2    

Mean  0.200 0.200 0.200 

S.D.  0.054 0.017 0.007 

Skewness  0.022 -0.024 -0.029 

Kurtosis  2.998 2.886 2.883 

     

      K 0.2    

Mean  0.144 0.188 0.201 

S.D.  0.094 0.068 0.037 

Skewness  0.052 0.713 -0.352 

Kurtosis  1.887 2.687 2.804 

     

 GARCH 0.2    

Mean  0.390 0.245 0.195 

S.D.  0.362 0.250 0.132 

Skewness  0.345 0.908 0.472 

Kurtosis  1.622 2.963 2.983 

     

  ARCH 0.1    

Mean  0.106 0.098 0.100 

S.D.  0.113 0.042 0.018 

Skewness  1.259 0.242 0.026 

Kurtosis  4.664 2.864 3.005 
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According to the descriptive statistics in Table 3.3 for the small actual values of the parameters, 

when number of observations increases, some findings can be drawn.  First of all, the properties 

of estimated parameter C are not affected by increasing the number of observations except for 

the sample standard deviation.  When number of observations increases, sample standard 

deviation  decreases from 0.054 to 0.007.  Secondly, estimated parameter K is affected by the 

increase of the number of observations.  The distribution of K shows that when the number of 

observations increases, the distribution is tending to be normal with negative skewness.  There is 

an interesting thing occurred when T = 1000 and 5000, K has a high peak between 0.2 and 0.3.  

Looking at the GARCH parameter when T = 100, we find that the distribution is approximately 

uniform with two spikes close to 0 and 1.  When T = 1000, the left spike remains unchanged 

while the right spike disappears.  When T = 5000, the distribution is getting to be normal with 

the positive skewness which is affected by the spike at the value 0 and the frequency at zero 

starts decreasing from 1500 to 500.  Finally, when T = 100, there is a left spike with skewness = 

1.259 and kurtosis = 4.664 for ARCH parameter.  When T increases, the spike is disappearing 

and the distribution tends to be normal.   

 

According to the correlation coefficient in Tables 3.4-3.6 for actual values of C=0.2, K=0.2, 

GARCH=0.2 and ARCH=0.1, some findings can be drawn.  Firstly, parameter C does not 

correlate to the others.  In addition, there is an extremely strong negative correlation between 

estimated parameter K and GARCH, this negative correlation is getting slightly stronger as T 

increases.  There is a weak positive correlation between estimated parameter K and ARCH.  

Moreover, there is a negative correlation between estimated parameters GARCH and ARCH.  

When the number of observations increases, the negative correlation is getting weaker from -

0.50 to -0.32. 
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The correlations between estimated parameters with actual values C=0.2, K=0.2, GARCH=0.2 

and ARCH=0.1 are given in Table 3.4-3.6.  In figures 3.4-3.6, the estimated parameters are 

shown pairwise for the 5000 series for different lengths of series.                                                              

 

Table 3.4 Correlation matrix for T = 100 

 
 C K GARCH ARCH 

C 1 -0.01 0.00 0.00 

K  1 -0.93 0.26 

GARCH   1 -0.50 

ARCH    1 

 

 
Figure 3.4 Pairwise comparisons for T = 100 

Table 3.5 Correlation matrix for T = 1000 

 
 C K GARCH ARCH 

C 1 0.00 0.01 -0.02 

K  1 -0.98 0.29 

GARCH   1 -0.41 

ARCH    1 

 

 
Figure 3.5 Pairwise comparisons for T = 1000 

Table 3.6 Correlation matrix for T = 5000 

 
 C K GARCH ARCH 

C 1 -0.01 0.02 -0.02 

K  1 -0.99 0.22 

GARCH   1 -0.32 

ARCH    1 

 

 
Figure 3.6 Pairwise comparisons for T = 5000 
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Table 3.7 Descriptive Statistics for estimated parameters with large actual parameters 

        Actual 

value 

T=100 T=1000 T=5000 

 
Figure 3.7 Distribution of parameters for T = 100 

 
Figure 3.8 Distribution of parameters for T = 1000 

 
Figure 3.9 Distribution of parameters for T = 5000 

     

      C 0.2    

Mean  0.202 0.201 0.200 

S.D.  0.096 0.029 0.013 

Skewness  0.057 -0.018 0.032 

Kurtosis  3.257 3.061 3.389 

     

      K 0.2    

Mean  0.289 0.208 0.201 

S.D.  0.206 0.042 0.018 

Skewness  1.710 0.584 0.049 

Kurtosis  7.518 3.941 4.797 

     

 GARCH 0.5    

Mean  0.430 0.493 0.499 

S.D.  0.211 0.054 0.024 

Skewness  -0.244 -0.127 0.210 

Kurtosis  2.784 3.616 6.571 

     

  ARCH 0.4    

Mean  0.393 0.400 0.399 

S.D.  0.174 0.054 0.025 

Skewness  0.227 0.025 0.158 

Kurtosis  2.906 3.037 6.433 
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According to the descriptive statistics for the large actual values of parameters shown in Table 

3.7, when number of observations increases, some findings can be drawn.  Firstly, when the 

number of observations has an increase from 100 to 5000, the sample standard deviation for 

estimated parameter C has a decrease from 0.096 to 0.013.  The other properties of estimated 

parameter C are not affected by changing the number of observations.  Thus, we get a similar 

result while we compare it with small actual parameter values.  Secondly, estimated parameter K 

is affected by the increase in the number of observations.  At the beginning the distribution has a 

positive skewness with a heavy tail.  When number of observations increases, the distribution is 

tending to be in belt shape with high kurtosis.  The skewness decreases to 0.049 when T = 5000.  

The distribution of estimated parameters GARCH starts following a normal distribution with a 

left spike when T = 100.    When T = 1000, the left spike disappears.  When T = 5000, the shape 

seems to be normal but the kurtosis is equal to 6.571 which is higher than expected for the 

normal distribution.  Finally, when T = 100, there is a small left spike with frequency near to 50 

for ARCH parameter.  When T increases, the estimated parameters of ARCH behave similar to 

the estimated GARCH parameters.   

 

Basically, we find that when we compare the estimation power, we can get a better estimation 

when the actual values of GARCH and ARCH parameters are large.   

 

According to the correlation coefficient for C=0.2, K=0.2, GARCH=0.5 and ARCH=0.4 given in 

Table 3.8-3.10 and figures 3.10-3.12, some findings can be drawn.  First of all, parameter C does 

not correlate to the others.  Second, there is a strong negative correlation between estimated 

parameter K and GARCH, this correlation is not affected by T.   There is a weak positive 

correlation between estimated parameter K and ARCH.  When T increases, it is slightly 

increasing from 0.15 to 0.25.  Moreover, there is a negative correlation between estimated 

parameter GARCH and ARCH.  When the number of observations increases, the negative 

correlation is getting stronger from -0.57 to -0.72. 
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The correlations between estimated parameters with actual values C=0.2, K=0.2, GARCH=0.5 

and ARCH=0.4 are given in Table 3.8-3.10.  In figures 3.10-3.12, the estimated parameters are 

shown pairwise for the 5000 series for different lengths of each series.                                                              

 

Table 3.8 Correlation matrix for T = 100 

 
 C K GARCH ARCH 

C 1 0.01 -0.01 0.01 

K  1 -0.75 0.15 

GARCH   1 -0.57 

ARCH    1 

 

 
Figure 3.10 Pairwise comparison for T = 100 

Table 3.9 Correlation matrix for T = 1000 

 
 C K GARCH ARCH 

C 1 -0.02 0.02 -0.02 

K  1 -0.77 0.24 

GARCH   1 -0.70 

ARCH    1 

 

 
Figure 3.11 Pairwise comparison for T = 1000 

Table 3.10 Correlation matrix for T = 5000 

 
 C K GARCH ARCH 

C 1 0.01 -0.01 0.01 

K  1 -0.76 0.25 

GARCH   1 -0.72 

ARCH    1 

 

 
Figure 3.12 Pairwise comparison for T = 5000 
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3.2. Estimation power by varying actual parameters of GARCH and ARCH 

 

In the previous simulation, we showed how the estimation power behaves when the number of 

observations increases.  In this part, the purpose of the simulation is to investigate to what extent 

the actual GARCH and ARCH values affect the power of estimation.  We use RMSE to measure 

the estimation power using different combinations of actual GARCH and ARCH parameters.  

Before we start the simulation, we need to know how many repetitions are needed to get 

sufficient accuracy.   

 
Figure 3.13 Checking steady state of RMSE for estimated parameters 
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According to the Figure 3.13, the estimated RMSE of estimated C, K, GARCH and ARCH 

parameters are stable when the number of series (i.e. 𝑁  in (2.12)) is larger than 1000 

approximately.  Thus, to be sure that the simulation is accurate enough, we set the number of 

simulated series to be 5000.   

 

The procedure of simulation is performed in the following way.  Firstly, we simulate 5000 series 

and the length of each series is 100.  The initial values of C and K are 0.2.  Next, we do the 

estimation for those 5000 series and get 5000 estimated parameters of C, K, GARCH and ARCH.  

Then, we calculate the RMSE using those 5000 estimated parameters.  Third, we repeat the 

procedure above by using different combinations of actual GARCH and ARCH values.  The 

minimum of actual GARCH and ARCH values are 0.1 and the maximum of actual GARCH and 

ARCH values are 0.8.  The actual GARCH and ARCH values are increased by 0.1 at a time 

subject to that the sum of the GARCH and ARCH values are less than 1.  Finally, this procedure 

is repeated by using 1000 and 5000 as the length of each series.   

 

The results for the length of 5000 observations are shown in Tables 3.11-3.14.  Since the results 

for the length of 100 and 1000 observations are similar to the ones in these tables for the length 

of 5000 observations, these results deferred to the appendix in tables A.1-A.8.   

 

The RMSE of estimated parameters C, K, GARCH and ARCH with the 5000 series and 5000 

observations in each series are as follows: 
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Table 3.11 RMSE of estimated parameter C 

 

 Actual ARCH parameter value 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Actual 

GARCH 

parameter 

value 

0.1 0.007 0.007 0.007 0.008 0.007 0.008 0.012 0.008 

0.2 0.008 0.008 0.008 0.008 0.008 0.009 0.009  

0.3 0.008 0.009 0.008 0.009 0.010 0.010   

0.4 0.009 0.010 0.010 0.011 0.012    

0.5 0.010 0.011 0.012 0.015     

0.6 0.012 0.012 0.015      

0.7 0.013 0.017       

0.8 0.019        

 

min 0.007 

max 0.019 

 

 

 

Table 3.12 RMSE of estimated parameter K 

 

 Actual ARCH parameter value 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Actual 

GARCH 

parameter 

value 

0.1 0.029 0.018 0.015 0.013 0.012 0.011 0.013 0.010 

0.2 0.036 0.022 0.017 0.014 0.014 0.013 0.012  

0.3 0.039 0.024 0.019 0.015 0.015 0.014   

0.4 0.045 0.026 0.019 0.016 0.016    

0.5 0.044 0.026 0.020 0.018     

0.6 0.047 0.025 0.021      

0.7 0.044 0.026       

0.8 0.039        

 

min 0.010 

max 0.047 
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Table 3.13 RMSE of estimated parameter GARCH 

 

 Actual ARCH parameter value 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Actual 

GARCH 

parameter 

value 

0.1 0.120 0.066 0.045 0.033 0.028 0.022 0.020 0.016 

0.2 0.132 0.072 0.049 0.036 0.029 0.025 0.020  

0.3 0.124 0.067 0.046 0.032 0.028 0.022   

0.4 0.118 0.061 0.038 0.029 0.023    

0.5 0.096 0.048 0.032 0.022     

0.6 0.079 0.035 0.023      

0.7 0.053 0.023       

0.8 0.027        

 

min 0.016 

max 0.132 

 

 

 

Table 3.14 RMSE of estimated parameter ARCH 

 

 Actual ARCH parameter value 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Actual 

GARCH 

parameter 

value 

0.1 0.018 0.022 0.025 0.026 0.029 0.032 0.041 0.034 

0.2 0.019 0.023 0.024 0.028 0.029 0.030 0.032  

0.3 0.019 0.022 0.024 0.026 0.029 0.031   

0.4 0.018 0.021 0.023 0.027 0.026    

0.5 0.017 0.020 0.023 0.024     

0.6 0.017 0.018 0.021      

0.7 0.015 0.017       

0.8 0.012        

 

min 0.012 

max 0.041 

 

According to the results in table 3.11-3.14 and in table A.1-A.8, we observe some findings.  

Firstly, when the number of observations increases, RMSE for 4 parameters decreases in whole 

but the distribution of minimum and maximum values for those 4 parameters remain the same.  It 

shows that the effect of number of observations is only on the power of getting estimated 

parameters but it does not affect the effect of using different combination of GARCH and ARCH 

parameters.   For instance, the minimum and maximum RMSE of estimated parameter C is min 
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= 0.049, 0.015, 0.007 and max = 0.133, 0.04, 0.019 with the same combinations which are 

(GARCH = 0.1, ARCH = 0.1) for minimum RMSE and (GARCH = 0.8, ARCH = 0.1) for 

maximum RMSE respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14 Size direction of RMSE for C Figure 3.15 Size direction of RMSE for K 

 

Based on the results in Table 3.11, 3.12, A.1, A.2, A.5 and A.6, we find that there is a similarity 

between parameter C and K.  To get a minimum RMSE for C and K, the actual values of 

GARCH and ARCH should be close to zero.  In addition, the RMSE of C and K are getting 

larger when the sum of actual GARCH and ARCH values is approaching to one.  Moreover, we 

can get the maximum RMSE for C and K by using the same combination of actual GARCH and 

ARCH values which are near to GARCH = 0.8 and ARCH = 0.1.   

 

Apart from the similarity, parameter C and K also have a difference.  We obtain the minimum 

and maximum of RMSE of C when the actual GARCH and ARCH parameters are close to 

(GARCH = 0.1, ARCH = 0.1) and (GARCH = 0.8, ARCH = 0.1) respectively.  As shown in 

figure 3.14, RMSE of C is getting larger from (GARCH = 0.1, ARCH = 0.1) to (GARCH = 0.8, 

ARCH = 0.1).  On the other hand, we obtain the minimum and maximum RMSE of K when the 

actual GARCH and ARCH parameters are near to (GARCH = 0.1, ARCH = 0.8) and (GARCH = 

0.8, ARCH = 0.1) respectively.  According to the figure 3.15, we find that RMSE of K starts 

getting larger from (GARCH = 0.1, ARCH = 0.8) to (GARCH = 0.8, ARCH = 0.1).   

 

 

  

max 

K 

min 

0.8 

0.8 0.1 
0.1 min 

max 

C 

0.8 

0.8 0.1 
0.1 
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Figure 3.16 Size direction of RMSE for GARCH Figure 3.17 Size direction of RMSE for ARCH 

 

The GARCH and ARCH parameters also have a similarity based on the RMSE and the similarity 

behaves opposite compared to the parameters C and K.  According to the tables 3.13, 3.14, A.3, 

A.4, A.7 and A.8, we find that the minimum RMSE for GARCH and ARCH are on the right 

diagonal which means that we can get the minimum RMSE for GARCH and ARCH when the 

sum of actual GARCH and ARCH values is close to one.  In addition, the RMSE of GARCH and 

ARCH are getting larger when the actual GARCH and ARCH values are approaching to zero.   

 

By measuring the RMSE of GARCH and ARCH, we obtain the minimum and maximum RMSE 

of GARCH when the actual GARCH and ARCH parameters are close to (GARCH = 0.1, ARCH 

= 0.8) and (GARCH = 0.1, ARCH = 0.1) respectively.  According to figure 3.16, RMSE of 

GARCH starts getting larger from (GARCH = 0.1, ARCH = 0.8) to (GARCH = 0.1, ARCH = 

0.1).  On the other hand, we obtain the minimum and maximum of RMSE of ARCH when the 

actual GARCH and ARCH parameters are close to (GARCH = 0.8, ARCH = 0.1) and (GARCH 

= 0.1, ARCH = 0.1) respectively.  Figure 3.17 shows that RMSE of ARCH starts getting larger 

from (GARCH = 0.8, ARCH = 0.1) to (GARCH = 0.1, ARCH = 0.1).   
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GARCH 

min 0.1 

0.8 

0.8 0.1 
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0.8 

0.8 

0.1 
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3.3. Proportion of significant GARCH(1, 1) by varying number of observations 

 

In this part we are interested in whether the length of series and the combination of actual 

GARCH and ARCH parameters have effects on the proportion of getting significant 

GARCH(1, 1).  The meaning of getting significant GARCH models is that both estimated 

GARCH and ARCH parameters are significant at 0.05 level of significance.     

 

We study the proportion of getting significant GARCH(1, 1) by increasing the number of 

observation and using different combinations of actual ARCH and GARCH values. This 

proportion is calculated by dividing the number of estimated models that have significant ARCH 

and GARCH parameters by the total number of estimated models.  The level of significance is 

0.05.   

 

As we know that all simulated series contain both GARCH and ARCH effects, a certain 

proportion of significant GARCH(1, 1) models also at the same time gives a complementary 

proportion of wrongly rejected GARCH(1, 1) models.  If the estimated parameters are not 

significant, it implies that the estimation method does not perform well.  Those insignificant 

models are the models where at least one of the estimated GARCH or ARCH parameter is not 

significant.   

 

Table 3.15 The proportion of getting significant GARCH(1, 1) models with N = 1000 series 

T C = 0.2 

 K = 0.2 

 ARCH = 0.2 ARCH = 0.4 ARCH = 0.6 

 GARCH = 

0.2 

GARCH = 

0.4 

GARCH = 

0.6 

GARCH = 

0.2 

GARCH = 

0.4 

GARCH = 

0.2 

100 0.011 0.046 0.126 0.060 0.266 0.134 

200 0.074 0.199 0.461 0.183 0.653 0.364 

500 0.191 0.542 0.936 0.471 0.954 0.802 

1000 0.329 0.828 0.996 0.765 1.000 0.986 

2000 0.489 0.977 1.000 0.973 1.000 1.000 

5000 0.865 1.000 1.000 1.000 1.000 1.000 

 



 23 

Based on the results in Table 3.15, we can conclude the following findings.   

 

First of all, the proportion increases when the number of observations increases.  For instance, 

under (GARCH = 0.2, ARCH = 0.2), the proportion is 0.011 when T = 100.  When the number 

of observations increases to 2000, the proportion is 0.489.   

 

In addition, the larger the sum of actual GARCH and ARCH values is, the higher proportion of 

significant GARCH(1, 1) we get.  For example, when we compare the same number of 

observations such as T = 2000, under (GARCH = 0.2, ARCH = 0.2), the proportion is only 0.489.  

However, under (GARCH = 0.4, ARCH = 0.4), the proportion of getting significant 

GARCH(1, 1) is 1.  Even though we increase the number of observations to T = 5000 with actual 

values (GARCH = 0.2, ARCH = 0.2), the proportion is only 0.865.  It proves that to get 

significant GARCH and ARCH estimated parameters, the actual values of GARCH and ARCH 

play an important role.   

 

Besides, there is an interesting finding that even though the sum of different combinations is the 

same, the effect of different combinations can be very different.  Let’s take the sum of GARCH 

and ARCH is 0.8 as an example.  As we can see there are 3 combinations which are (GARCH = 

0.2, ARCH = 0.6), (GARCH = 0.4, ARCH = 0.4) and (GARCH = 0.2, ARCH = 0.6), the sum of 

actual GARCH and ARCH values is equal to 0.8.  Based on comparing the proportion, the best 

combination to get higher proportion is (GARCH = 0.4, ARCH = 0.4).  As the Table 3.15 shows 

that no matter how long the series we use, the combination of (GARCH = 0.4, ARCH = 0.4) 

always gets the highest proportion.  For example, when T = 500, the proportion of (GARCH = 

0.4, ARCH = 0.4) is 0.954 but the proportions for combinations of (GARCH = 0.6, ARCH = 0.2) 

and (GARCH = 0.2, ARCH = 0.6) are only 0.936 and 0.802 respectively.  It shows that when 

actual GARCH and ARCH values are high and equal, we get highest proportion.   

 

In addition, when we do a comparison with the other two combinations, we find that when the 

length of series is short such as T = 100, the combination of (GARCH = 0.6, ARCH = 0.2) has a 

lower proportion than (GARCH = 0.2, ARCH = 0.6).  However, when the length of series 

increases such as T = 200, 500, …etc, the chance to get a higher proportion significant 
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GARCH(1, 1) for (GARCH = 0.6, ARCH = 0.2) is getting larger.  It shows that the effect of 

actual GARCH value has a higher relation to the length of series than the actual ARCH value.    

 

 

 

3.4. Investigating the proportion of normality for standardized residuals 

 

The findings that we got in the previous simulations show 2 important results.  Firstly, the length 

of series affects the estimation power.  Secondly, when the sum of actual GARCH and ARCH is 

close to one, we can get good estimation results.  On the other hand, if the sum of actual GARCH 

and ARCH is far from one, for instance GARCH = 0.05 and ARCH = 0.05, the estimation power 

is bad.   

 

Based on the findings above, we are interested to investigate whether the length of series and the 

actual values of GARCH and ARCH affect the normality of standardized residuals.  In addition, 

we evaluate the normality by measuring the proportion of getting normally distributed 

standardized residuals and Jarque-Bera test is used to perform the hypothesis to test the 

normality.   

 

We obtain the standardized residuals only from the significant GARCH(1, 1) models.  Those 

insignificant GARCH(1, 1) models are disregarded.  The reason why we do not collect 

standardized residuals from insiginificant GARCH(1, 1) models is that in the normal procedure 

when we perform an estimation of a time series, if the estimated parameters are not significant, 

we may have doubt that the series fit GARCH(1, 1) models.  Therefore, we discard the estimated 

GARCH(1, 1) models and try to perform other estimated models instead.   

 

In order to take the effect of the length of series and actual values of GARCH and ARCH into 

consideration, we use four pairs of actual GARCH and ARCH values which are (GARCH = 0.05, 

ARCH = 0.05), (GARCH = 0.05, ARCH = 0.45), (GARCH = 0.45, ARCH = 0.05) and  

(GARCH = 0.45, ARCH = 0.45) to simulate the series with the length of each series = 50, 500 

and 5000 respectively.  The actual values of C and K are equal to 0.2.  Moreover, to make sure 
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that all standardized residuals are from the GARCH(1, 1) model with both estimated GARCH 

and ARCH parameters significant, we discard, during the simulation process, the estimated 

results if at most one of GARCH and ARCH are significant until we collect 500 significant 

estimated models.   

 

Table 3.16 The proportion of getting normal standardized residuals 

500 series Model 1 Model 2 

T ARCH = 0.05 ARCH = 0.45 

 GARCH = 0.05 GARCH = 0.45 GARCH = 0.05 GARCH = 0.45 

50 0.95 0.96 0.94 0.96 

500 0.93 0.93 0.96 0.95 

5000 0.95 0.95 0.95 0.95 

 

An important finding is that as long as the estimated GARCH and ARCH parameters are both 

significant, the length of series and actual values of GARCH and ARCH do not affect the 

possibility of getting normally distributed standardized residuals.  As you can see the proportion 

of getting standardized residuals using T = 50 with the combination of (GARCH = 0.05, 

ARCH = 0.05) is as high as the one using T = 5000 with the combination of (GARCH = 0.45, 

ARCH = 0.45).   

 

However, when we tried to simulate the process, especially using short length of series such as T 

= 50 with small actual GARCH and ARCH values for 500 series, it took us almost 24 hours to 

get the result.    It shows that with short length of series and small actual GARCH and ARCH 

values, it is rarely possible to get a GARCH(1, 1) model that estimated GARCH and ARCH 

parameters are significant.   
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4. Conclusion 

 

Based on the results from the previous simulation tests, we can obtain some interesting 

conclusions for the estimation power and properties of GARCH model and the normality of 

standardized residuals as well.   

 

First of all, based on measuring the biasness for the estimated parameters, we can conclude that 

when number of observations increases, it reduces the bias of the estimated parameters.  At the 

same time we can conclude that with actual GARCH values equal to or larger than 0.2 and 

ARCH values equal to or larger than 0.1, we get a bias which is less than or equal to absolute 

0.05.  This occurs when the length of the series is larger than or equal to 2000.    

 

In addition, the size of the GARCH and ARCH effect that are contained in the series also plays a 

major role in determining the estimation power.  The larger the GARCH and ARCH effects are, 

the better estimation power we get.  Based on measuring the RMSE, we can conclude that when 

the sum of actual values of GARCH and ARCH is close but less than one, we get the best 

estimation power.   

 

Moreover, according to the third simulation measuring the estimation power by proportion of 

getting GARCH(1, 1) model with both GARCH and ARCH parameters significant, we conclude 

that if the sum of the actual GARCH and ARCH values is the same, the combination which has 

the equal GARCH and ARCH values gives the best estimation power.  On the other hand, we 

find that GARCH effect has a higher relation with the number of observations than the ARCH 

effect.   

 

Finally and most importantly, based on the result from the fourth simulation test, we understand 

that as long as we get an estimated model in which both estimated GARCH and ARCH 

parameters are significant, we have at least 90 percent chance to obtain standardized residuals 

with the properties of zero mean and one variance.       
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Appendix. Root Mean Square Error of section 3.2 for series of length 100 and 1000 

Number of observations = 100 

Number of series = 5000 

C = 0.2 

K = 0.2 

 

Table A.1 RMSE of estimated parameter C 

 

 Actual ARCH parameter value 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Actual 

GARCH 

parameter 

value 

0.1 0.049 0.054 0.052 0.053 0.053 0.056 0.057 0.060 

0.2 0.055 0.055 0.061 0.058 0.061 0.066 0.069  

0.3 0.056 0.059 0.066 0.065 0.069 0.076   

0.4 0.062 0.071 0.073 0.077 0.086    

0.5 0.072 0.076 0.087 0.097     

0.6 0.085 0.090 0.107      

0.7 0.096 0.131       

0.8 0.133        

 

Min =  0.049 

Max =  0.133 

 

Table A.2 RMSE of estimated parameter K 

 

 Actual ARCH parameter value 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Actual 

GARCH 

parameter 

value 

0.1 0.113 0.091 0.085 0.076 0.073 0.075 0.069 0.074 

0.2 0.109 0.100 0.092 0.089 0.094 0.099 0.109  

0.3 0.114 0.107 0.107 0.109 0.123 0.111   

0.4 0.126 0.129 0.140 0.145 0.149    

0.5 0.146 0.176 0.187 0.215     

0.6 0.202 0.236 0.293      

0.7 0.323 0.430       

0.8 0.659        

 

Min =  0.069 

Max =  0.659 
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Table A.3 RMSE of estimated parameter GARCH 

 

 Actual ARCH parameter value 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Actual 

GARCH 

parameter 

value 

0.1 0.475 0.359 0.314 0.237 0.212 0.186 0.156 0.139 

0.2 0.401 0.359 0.285 0.253 0.216 0.179 0.158  

0.3 0.369 0.315 0.286 0.236 0.208 0.185   

0.4 0.347 0.309 0.278 0.246 0.191    

0.5 0.343 0.319 0.276 0.227     

0.6 0.354 0.302 0.244      

0.7 0.368 0.278       

0.8 0.369        

 

Min =  0.139 

Max =  0.475 

 

Table A.4 RMSE of estimated parameter ARCH 

 

 Actual ARCH parameter value 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Actual 

GARCH 

parameter 

value 

0.1 0.109 0.152 0.175 0.195 0.207 0.227 0.225 0.221 

0.2 0.113 0.144 0.171 0.193 0.220 0.212 0.197  

0.3 0.118 0.148 0.181 0.193 0.202 0.207   

0.4 0.115 0.145 0.172 0.187 0.182    

0.5 0.113 0.147 0.169 0.166     

0.6 0.114 0.148 0.151      

0.7 0.110 0.132       

0.8 0.104        

 

 

Min =  0.104 

Max =  0.227 
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Number of observations = 1000 

Number of series = 5000 

C = 0.2 

K = 0.2 

 

Table A.5 RMSE of estimated parameter C 

 

 Actual ARCH parameter value 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Actual 

GARCH 

parameter 

value 

0.1 0.015 0.016 0.017 0.017 0.017 0.018 0.018 0.018 

0.2 0.017 0.017 0.017 0.019 0.019 0.020 0.021  

0.3 0.019 0.018 0.020 0.020 0.021 0.022   

0.4 0.020 0.022 0.022 0.024 0.026    

0.5 0.021 0.024 0.025 0.030     

0.6 0.024 0.029 0.033      

0.7 0.032 0.038       

0.8 0.040        

 

Min =  0.015 

Max =  0.040 

 

Table A.6 RMSE of estimated parameter K 

 

 Actual ARCH parameter value 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Actual 

GARCH 

parameter 

value 

0.1 0.062 0.040 0.031 0.028 0.024 0.024 0.030 0.025 

0.2 0.070 0.048 0.039 0.032 0.027 0.028 0.024  

0.3 0.079 0.054 0.041 0.038 0.033 0.031   

0.4 0.089 0.061 0.049 0.040 0.038    

0.5 0.103 0.065 0.047 0.043     

0.6 0.121 0.068 0.049      

0.7 0.133 0.070       

0.8 0.129        

 

Min =  0.024 

Max =  0.133 
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Table A.7 RMSE of estimated parameter GARCH 

 

 Actual ARCH parameter value 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Actual 

GARCH 

parameter 

value 

0.1 0.254 0.151 0.101 0.079 0.059 0.052 0.042 0.037 

0.2 0.260 0.160 0.107 0.077 0.062 0.056 0.043  

0.3 0.251 0.151 0.101 0.082 0.062 0.049   

0.4 0.238 0.147 0.101 0.071 0.054    

0.5 0.224 0.120 0.076 0.055     

0.6 0.200 0.095 0.052      

0.7 0.150 0.060       

0.8 0.082        

 

Min =  0.037 

Max =  0.260 

 

Table A.8 RMSE of estimated parameter ARCH 

 

 Actual ARCH parameter value 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Actual 

GARCH 

parameter 

value 

0.1 0.042 0.052 0.063 0.074 0.077 0.070 0.074 0.075 

0.2 0.041 0.048 0.053 0.060 0.062 0.071 0.070  

0.3 0.040 0.045 0.051 0.060 0.065 0.066   

0.4 0.040 0.048 0.057 0.059 0.061    

0.5 0.038 0.046 0.050 0.054     

0.6 0.037 0.044 0.046      

0.7 0.035 0.039       

0.8 0.029        

 

Min =  0.029 

Max =  0.077 

 

 

 

 

 

 

 

 

 


