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ABSTRACT 
 

The aim of this paper is to characterize the daily price fundamentals of European Union 
Allowances (EUAs) traded in the EU Emissions Trading Scheme (ETS) during the period 
September 2005 - February 2010. We use GARCH model in order to account for changes in 
volatility. We split our analysis into two periods according to the two phases of the ETS. We 
disregard the period 02.04.2007 – 11.08.2008, when the trading in the spot market was 
practically inexistent and the price of EUAs was smaller than 1 Euro. Our findings suggest that 
weather data does not have a linear influence, while the coldest days, extremely rainy days and 
extremely windy days have an important impact during the first period. From energy variables, 
brent is a sustainable factor. Additionally, electricity and coal seem to be substitutes for each 
other, with electricity having a negative impact on EUAs prices in the first period and coal in the 
second. We also find that the change in industrial production is not one of the factors that seem 
to influence the price of emissions allowances. 

 

1 
 
 



 

Proposal for Master Thesis in Finance 

 

TITLE CO2 Emissions Allowances. 

Modeling the Price Dynamics in the EU Emission Trading System  

DATE June 2010 

COURSE MASTER THESIS within the MSC in FINANCE PROGRAM, 10 Sw. credits (15 ECTS-
credits) 

AUTHORS Duguleana Lucia 

Dumitrache Lena Iulia 

E-MAIL lucia.duguleana@gmail.com 

iuliadumitrache@yahoo.com 

ADVISOR 
PROPOSALS 

Hossein Asgharian 

THESIS TYPE Empirical study 

PURPOSE In this paper we analyze the spot price behaviour of carbon dioxide (CO2) emissions 
allowances of the EU-wide CO2 emissions trading system (EU ETS).  This allows an 
initial understanding of the risks and determining factors of this new commodity. 

Our study will be of interest to academics in the field of finance, risk management 
consultants, brokers and traders who buy and sell emissions allowances. 

To our knowledge no recent study so far has been conducted which includes economic 
growth, weather index and fuel price as determinants of CO2 emissions allowances prices. 
We intend to shed light on these matters. 

RESEARCH 
OBJECTIVES 

There are several questions which need to be answered in this master thesis: 

• How do spot prices and prices of derivatives move over time? 

• How does industrial production (and economic growth) influence the price dynamics 
of CO2 emissions allowances? 

• How does weather influence the price dynamics of CO2 emissions allowances? 

• How do fuel prices influence the price dynamics of CO2 emissions allowances? 

METHODOLOGY In this paper we use multiple regression analysis combined with  GARCH modeling in 
order to determine the spot price dynamics of CO2 emissions allowances.  

EMPIRICAL 
FOUNDATION 

For CO2 emissions allowances spot prices we use Point Carbon Spot Index.  

Datastream database is used to collect industrial production data, energy prices. 

KEY 
REFERENCES 

• Eva Benz, Stefan Trück, 2009, “Modeling the price dynamics of CO2 emission 
allowances“, Energy Economics 31, pp. 4-15 

• Alberola, Chevallier and Chéze, 2007, “Price drivers and structural breaks in European 
carbon prices 2005–2007”, Energy Policy 36, pp 787–797 

• Mansanet-Bataller, Pardo and Valor, 2007, “CO2 Prices, Energy and Weather”, The 
Energy Journal, Vol. 28, No. 3, pp 73-92 

 

2 
 
 

mailto:lucia.duguleana@gmail.com
mailto:iuliadumitrache@yahoo.com


 

 

TABLE OF CONTENTS 
 

1. INTRODUCTION 
1.1. Background………………………………………………………………...…….4 
1.2. Problem Discussion ………..…………………………………………………….6 
1.3. Purpose …………………………………………………………………………...7 
1.4. Delimitations ………………………………………..……………………………8 
1.5. Audience ………………………………………………………………………….8 
1.6. Thesis Outline ………………………………………………………..…………..8 

2. THEORETICAL BACKGROUND 
2.1. European Union Emission Trading Scheme …………………………………..9 
2.2. Literature Review and Existing Models ……………………………………...10 
2.3. Price Determinants of CO2 Emissions Allowances ……………………….....12 

3. METHODOLOGY 
3.1. Research Approach …………………………………………………………….17 
3.2. Data Collection …………………………………………………………………17 
3.3. Criticism of Data Sources ……………………………………………………...19 
3.4. Hypotheses regarding the determinants of EUAs prices ……………..……..19 

3.4.1. Weather Data ……………………………………………………………19 
3.4.2. Energy Data ……………………………………………………………..20 
3.4.3. Macroeconomic Data ……………………………………………………21 
3.4.4. Policy and Regulatory Factors …………………………………………..21 

3.5. Computation of Variables ……………………………………………………..21 
3.5.1. Weather Variables ……………………………………………………….21 
3.5.2. Energy Variables ………………………………………………………...22 
3.5.3. Macroeconomic Variables ………………………………………………23 
3.5.4. Structural Breaks ………………………………………………………...23 

3.6. Constructing the Regression …………………………………………………..23 
4. EMPIRICAL FINDINGS AND ANALYSIS 

4.1. Evolution of EUAs Prices .……………………………………………………..28 
4.2. Descriptive Statistics …………………………………………………………...32 
4.3. Regression Analysis ……………………………………………………………35 

4.3.1. Fitting the Model ………………………………………………………...35 
4.3.2. Regression Results – First Period ……………………………………….36 
4.3.3. Regression Results – Second Period …………………………………….41 
4.3.4. Differences between the Two Periods …………………………………..44 

5. CONCLUSIONS AND PROPOSALS FOR FURTHER RESEARCH ………..………46 
6. REFERENCES …………………………………………………………………...……….48 
Appendix 1: Kyoto Protocol  - Annex 1 Countries   
Appendix 2 - Unit Root Tests 
Appendix 3: ARCH test – First Specification for the First Period 

3 
 
 



 

 

1. INTRODUCTION 

This chapter provides a background for European Union Allowances (EUAs) trading; presents 

and motivates the choice of research topic and gives delimitations of the thesis purpose. The 

chapter ends with a description of the audience and a thesis outline. 

1.1. Background 

Greenhouse gas (GHG) emissions represent the biggest market failure the world has ever seen 

and are proved to be linked to human activities. All of us produce emissions, people around the 

world are already suffering from past emissions – through global warming and climate change - 

and current emissions will potentially have a catastrophic impact in the future for human health, 

environment and the economy (see Stern, 2007).   

As a response to these risks, governments realized that something must be done, with 

considerable disagreement as to exactly what. The initial form of environmental policy has been 

a command-and-control type regulation, which meant that companies had to rigorously comply 

with emissions standards or implement particular technologies (see Benz and Trück, 2009).   

But market mechanisms proved to be, as usual, more efficient than centralized systems of 

decision. In the financial world, pioneering financial products have been developed, specifically 

to manage such environmental problems, namely CO2 emissions allowances. Initially traded 

OTC, the market for CO2 emissions allowances has grown in importance since the Kyoto 

Protocol was enforced in February 2005, requiring that all affected plants in the 170 countries 

that adhered to the Protocol limit their GHG emissions according to well-specified caps. The 

ultimate goal is to reduce GHG emissions by 8% compared to the 1990 level by the years 2008-

2012. In order to give incentives for the companies to find the least costly and most efficient way 

to reduce CO2 emissions, the Kyoto Protocol proposes three market mechanisms: International 

Emissions Trading (IET), Clean Development Mechanism (CDM) and Joint Implementation (JI). 
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Through IET the Protocol lays the groundwork for trading human-related emissions permits, 

primarily carbon dioxide, in organized financial markets. 

In an Emission Trading Scheme, the central authority decides on the total level of emissions and 

each year issues to companies a number of emissions allowances depending on their size and on 

a decided base-year’s actual emissions. These allowances/credits can be traded: when a company 

can abate CO2 emissions at a lower cost than the price of a CO2 credit it will do so, selling the 

credit on the market and making a profit. Other companies that cannot find a cheap enough way 

to reduce emissions will buy the credits needed. In effect, the system allows for the seller to be 

rewarded for reducing emissions with more than it was needed, while the buyer is charged for 

polluting. At the end of the year the companies have to own a number of allowances equal to 

their actual emissions. The companies that fail to comply will be sanctioned for exceeding their 

allowances. On the same principle, IET allows for emissions trading between governments. The 

other two mechanisms allow for flexibility. While CDM permits industrialized countries to 

invest in CO2 emissions reduction projects in developing countries, JI considers industrialized 

and transition countries to invest in emissions reduction projects in other industrialized and 

transition countries. In each case, such countries are allocated Certified Emission Reductions 

(CERs) and Emission Reduction Units (ERUs) respectively. CERs and ERUs are also tradable 

and able to substitute to a certain level the emissions allowances.  

Out of several national and regional emissions markets that have been established, Europe has 

emerged as the leader in the emissions trading industry, with the EU Emissions Trading Scheme 

(EU ETS) being the largest market for CO2 emissions allowances worldwide (see Daskalakis, 

Psychoyios and Markellos, 2009). 

In a carbon constrained economy, CO2 emissions allowances are traded with increasing liquidity 

within the EU ETS and the market is evolving towards maturity, having already experienced a 

severe economic crisis. These new financial products are innovative, exciting, and have been 

called by scientists “the link between economics and ethics” (see Stern, 2007). It is for these 

reasons that we decided to focus our study on pricing the carbon emission permits spot contracts.  
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1.2. Problem Discussion 

EU ETS has been organized in three phases. The first phase is called the trial period and it lasted 

from 2005 to 2007 while the second one, called Kyoto commitment phase, lasts from 2008 to 

2012. A third period has been proposed from 2013 to 2020. There is a very important restriction 

that separates the first period from the second in essentially two different markets. The EUAs 

from the first period cannot be banked, i.e. they cannot be stored in order to be used at a later 

date in the second phase of the EU ETS. In effect the EUAs from the first period have an 

expiration date. In the same manner companies that have to comply with regulation in the first 

period cannot borrow credits from a future year in the second period. Borrowing is only possible 

during the phase of EU ETS. This might have an impact on our analysis as we are going to 

initially consider the whole period and, when doing the analysis, we are going to separate 

between the two phases.  

The current paper proposes a model for pricing of spot EUAs. For the purpose of this paper we 

are going to consider the emissions trading rights as a commodity and determine their price 

according to commodity pricing models rather than stock pricing models. As Benz and Trück 

(2009) discuss, emissions permits have little in common with stocks, for which the demand and 

the value are based on future profit expectations of the underlying firm. They also determine two 

main factors influencing the demand and price of permits:  

1. Policy and regulatory issues that have a long term impact on prices and consist of NAPs1 

(National Allocation Plans) that set rules and reduction targets and lead to sudden 

changes in price levels or volatility 

2. Market fundamentals that concern the production of CO2, such as weather data, fuel 

prices (cost of fossil fuels relative to cost of oil or natural gas), economic growth and 

unexpected events such as unforeseen problems at a power plant. 

The literature discussing the pricing of emissions allowances is rather new and sparse, mostly 

concerned with environmental economy and policy, despite the growth and importance of the 

carbon market. Recent literature that addresses empirical evidence deals with one of the 

                                                 
1 The National Allocation Plan defines the basis on which allocations of free greenhouse gas emission allowances to 
individual installations covered by the Emissions Trading Scheme will be made. 
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following three models: equilibrium modeling (see Beltratti, Colla and Cretì, 2009; Chesney and 

Taschini, 2009), time series modeling (Benz and Trück, 2009; Uhrig-Homburg and Wagner, 

2009) and continuous time modeling (Daskalakis, Psychoyios and Markellos, 2009; Uhrig-

Homburg and Wagner, 2009). Fundamentals used to be discussed a few years ago (Mansanet-

Bataller, Pardo and Valor, 2007; Alberola, Chevallier and Chéze, 2007) but recently have been 

disregarded.  Even though all new articles recognize the influence of the factors presented above, 

neither explicitly takes them into account in their models. The vast majority of the research is 

concerned with EU ETS since it is by far the biggest market and the most liquid.  

The present research also focuses on the EU ETS market, but it tries to look at it from a different 

perspective. It brings two major contributions by explicitly accounting for factors such as fuel 

prices, economic development and it takes into account weather data as a way of explaining the 

different movements of the price of carbon emission permits, and bringing fundamentals once 

again into light. The second major contribution regards the period taken into consideration. It 

extends the previous research through the financial crisis phase and it examines any special 

characteristics it might have on carbon market. The present paper proposes pricing models for 

spot contrcts. 

We are going to consider data from countries that are both part of EU ETS and Annex1 countries 

of the Kyoto protocol (see Appendix 1) throughout all the period we take into account. For this 

purpose we will use the EU25 member states. We are going to consider Norway, Iceland and 

Liechtenstein that joined the scheme in 2008 and also Bulgaria and Romania which entered the 

scheme in 2007. In each case we have to adjust the data when new countries join the EU ETS. 

1.3. Purpose 

The aim of this study is to determine to what extent fuel prices, weather data and economic 

development influence the price of spot carbon emissions permits. The paper is also intended to 

establish if there are any important differences between the phases of EU ETS and to account for 

reasons for such disparities. In essence we intend to establish what the determinants are for each 

period and whether in different periods we can determine different determinants. Due to changes 
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in regulations we expect that the periods will have different results. At the same time we give 

some suggestions for further research.     

1.4. Delimitations 

One delimitation is the fact that, due to lack of data availability, we did not include any kind of 

weather or industry production data for Lichtenstein, although it adhered to EU ETS IN 2008. 

Also, we essentially consider that there are two markets, one for the first trading period, 

particularly the interval 15.09.2005-30.03.2007 and one for the second trading period, namely 

11.08.2008-26.02.2010. The reason, as it will be described in more detail in Chapter 4, is that 

trading in the spot market was practically inexistent during the period 02.04.2007 – 11.08.2008. 

This interval is therefore excluded from our regressions. 

Additionally, the weather data we included were monthly data extrapolated to a daily basis, 

while previous research used daily data. However, due to limited availability of daily weather 

data we were coerced to use monthly data.  

1.5. Audience 

Our study will be of interest to academics in the field of finance, risk management consultants, 

brokers and traders who buy and sell emissions allowances. Having a reliable pricing and 

forecasting model will allow companies, investors and traders to realize effective risk 

management, investment decisions and trading strategies in the carbon market. The results of our 

paper will also be of interest to policy makers and for the future organization of the carbon 

market. 

1.6 Thesis Outline 

The remainder of the thesis is divided into four chapters. Chapter two gives an overview of the 

theoretical framework related to carbon emissions allowances. We also consider the methods 

used for pricing of emissions permits in the framework of EU ETS. Chapter three presents data 

collection and methodology used in the empirical study. The fourth chapter shows the empirical 
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results following from the methodology presented previously and the findings from the analysis 

performed. Finally, chapter five consists of conclusions, reflections on the study, and proposes 

ideas for future research. 
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2. THEORETICAL BACKGROUND 

In this chapter we will describe the theoretical context of CO2 emissions allowances. Previous 

research will be reviewed and compared through the perspectives of methodology employed and 

determinants of the prices of CO2 emissions allowances. 

2.1 European Union Emissions Trading Scheme 

The European Union Emissions Trading Scheme (EU ETS) started in 2005 and it is the largest 

multinational greenhouse gas (GHG) emissions trading system accounting for 98% of global 

transactions for 2007 (see Daskalakis, Psychoyios and Markellos, 2009). The EU member states 

participate in this system in order to reach the binding targets of GHG reduction established 

through the Kyoto Protocol at the lowest cost possible. EU ETS is in effect an IET system 

broken down to the company level. EU ETS covers more than 10 000 installations, i.e. refineries, 

coke ovens, companies form metal, pulp and paper, glass and ceramic industries (see Uhrig-

Homburg and Wagner, 2009), that have a heat excess of 20 MW and which are collectively 

responsible for close to half of the EU's emissions of CO2 and for 40% of its total greenhouse gas 

emissions (see Questions and Answers on the Commission's proposal to revise the EU Emissions 

Trading System, 2008). 

Each year, the member states decide upon the so-called national allocation plans (NAPs), which 

determine their total level of GHG emissions allowances and the number of emissions 

allowances (EUAs) for each installation. Each allowance gives the holder the right to emit 1 tone 

of CO2. The yearly cap is decreasing, putting pressure on companies to reduce their emissions. 

Companies are free to trade the credits (using spot market or derivatives): the ones that have 

cheap abatement opportunities will be sellers while companies for which abatement is too costly 

will buy emissions permits on the market. After a year companies have to submit to the national 

authorities the EUAs in accordance with their emissions volume. In case a company fails to 

deliver the appropriate number of permits it has to pay a sanction of 40€/ton of CO2 (in 2005-
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2007) or 100€/ton of CO2 (in 2008-2012), plus to surrender the missing number of EUAs the 

following year (see Beltratti, Colla and Cretì, 2009). 

EU ETS has been organized in three phases. The annual allocations for the first period were 

2270 million permits, 2080 million for the second period (see Beltratti, Colla and Cretì, 2009) 

and for 2013 to 2020 as follows: 

Table 2.1: EU wide emissions cap 

Year Mil t CO2 
2013 1,974 
2014 1,937 
2015 1,901 
2016 1,865 
2017 1,829 
2018 1,792 
2019 1,756 
2020 1,720 

 
Source: Questions and Answers on the Commission's proposal to revise the EU Emissions Trading System (2008). 

These figures need to be adjusted as they do not take into account the inclusion of aviation (an 

industry which will be included in the EU ETS from 2011 onwards), nor of emissions from 

Norway, Iceland and Liechtenstein. A linear factor of 1.74% (applicable to the previous number 

of permits) was used to determine the cap in the third phase and will continue to be applied after 

the end of this trading period (see Questions and Answers on the Commission's proposal to 

revise the EU Emissions Trading System 2008). 

2.2. Literature Review and Existing Models 

In spite of the fact that the carbon market is increasing in size and importance, relevant academic 

research is rather sparse and almost entirely concentrated on the EU ETS market, since they are 

without a doubt the most liquid. 

The first paper that deals with emissions trading belongs to Dales (1968), who defines them as 

market-based instruments created to efficiently reduce GHG emissions. By setting an emissions 

cap applied to an entire industry, country, or a set of countries, companies that want to emit more 

(fewer) emissions than covered by their allowances can buy (sell) EUAs. According to market 
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theory, companies will adjust their buying and selling behavior in accordance to their marginal 

abatement costs (see Klepper and Peterson, 2006; de Brauw, 2006). If marginal abatement costs 

exceed the price of CO2 emissions allowances, companies will buy additional EUAs; if they are 

lower, it is beneficial to sell allowances.  

Consequently, emissions allowances are seen as an efficient market-based instrument of 

environmental policy encouraged by many economists and politicians. This opinion is based on 

the assumption of a perfect market and rational behavior of all market players. However, this 

assumption does not hold in practice and leads to serious market failures. To illustrate this, it was 

clear that large companies with significant market power were favored when national allocation 

plans where distributed, especially electricity producing companies (see Gilbert et al., 2004). 

This leaves room for information asymmetry as the dominant companies, which are also main 

emitters, have better information of the total scarcity of allowances. 

Although CO2 emissions allowances have been traded in the EU ETS for a considerable period 

of time, the literature has not presented yet any conclusive results with respect to the most 

appropriate pricing method. Benz and Trück (2009) analyze the short-term OTC spot price 

behavior of CO2 permits employing both an AR-GARCH and a Markov–switching model to 

capture the heteroskedastic behavior of the return time series. In contrast, Paolella and Taschini 

(2008) use a new, innovative GARCH-type structure to analyze the intrinsic heteroskedastic 

dynamics in the returns of SO2 in the U.S. and of CO2 emissions permits in the EU ETS. They 

find that models based on the analysis of fundamentals yield implausible results due to the 

increased market complexity. 

Chesney and Taschini (2008) constructed an endogenous model for describing the emissions 

allowances spot price dynamics, which accounts for the prospective presence of asymmetric 

information in the market. Seifert et al. (2008) developed a theoretical stochastic equilibrium 

model with the purpose of incorporating the most important stylized features of EU ETS in the 

CO2 emissions allowances price dynamics. Their analysis showed that spot prices must always 

be positive and bounded by the penalty cost plus the cost of having to deliver any lacking 

allowances. Regarding volatility, they argued that a steep increase will occur towards the end of 
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the trading period. This requires the use of models with conditional variance, in order to capture 

whether the market is in a period of high or low volatility. 

Mansanet-Bataller et al. (2007) study the relevance of energy prices and weather variables on the 

determination of CO2 emissions allowances spot prices by performing multivariate linear 

regressions using the least squares method. The results show that energy sources are the prime 

factors determining CO2 allowances price levels, and that only extreme temperatures influence 

them. Alberola, Chevallier and Chèze (2007) employ similar multivariate regressions but, 

compared to previous literature, find two structural breaks in phase I (April 2006 and October 

2006) due to the disclosure of emissions and the announcement of new allocations for phase II, 

respectively. Also in contrast to previous literature, they find that prices react to unanticipated 

weather events and show the nonlinearity of the relationship between temperatures and carbon 

price changes. 

The methodology employed in our paper combines multivariate regressions used in Mansanet-

Bataller et al. (2007) with a GARCH-type structure similar to the one used by Benz and Trück 

(2009) to capture the heteroskedastic behavior of the spot returns time series.  

2.3. Price Determinants of CO2 Emissions Allowances  

Browsing through previous research, we find that various models give different answers to the 

question of what factors influence CO2 allowances price levels, as they focus on different 

aspects of the effects of emissions trading on the economy. 

So far, the most comprehensive reference on this subject has been Springer (2003), who gathered 

results from 25 models of the market for tradable GHG emissions permits. Among the factors 

that influence the long-term CO2 emissions allowances price levels, the author considers climate 

factors (temperature and climatic conditions), energy factors (price level of energy sources and 

energy substitutability possibilities) and microeconomic and macroeconomic factors 

(characteristics of the energy sector, GDP growth, emissions growth, and emissions targets).  

Similarly, Benz and Trück (2009) categorize the main driving factors of CO2 allowances prices 

into policy and regulatory issues and market fundamentals that concern the production of CO2. 

13 
 
 



 

The former have a long term impact on prices and consist of NAPs that set rules and reduction 

targets and lead to sudden changes in price levels or volatility. The latter refer to weather data, 

energy prices, economic growth and unexpected (environmental) events2. 

Mansanet-Bataller et al. (2007) and Alberola, Chevallier and Chèze (2007) are the only papers 

where the influence of weather variables and energy prices on the determination of CO2 spot 

prices is analyzed by performing multivariate linear regressions. In the former, Mansanet-

Bataller et al. (2007) have considered the supply of EUAs and factors that affect European CO2 

production such as weather variables (temperature and rainfall) and energy-related variables (oil, 

gas, and coal price levels and fuel switching from coal to gas) in order to explain the main 

determinants of carbon price levels. Their methodology is similar to that followed in studies of 

determinants of other weather dependent variables such as the price level of electricity 

(Longstaff and Wang, 2004; Stevenson et al, 2006), the price level of gas (Bopp, 2000) and the 

price level of orange juice futures contracts (Roll, 1984;  Boudoukh et al, 2007). The results 

show that the energy sources are the main factors in the determination of CO2 price levels, and 

that only extreme temperatures influence them. The findings of Alberola, Chevallier and Chèze 

(2007) extend, among other contributions, the results of Mansanet-Bataller et al. (2007) by 

emphasizing that carbon price changes react not only to energy prices with forecast errors, but 

also to unanticipated temperatures changes during colder events. 

We noticed that the factors found in theoretical models are generally consistent with market 

agents' perceptions. Firstly, Point Carbon3 and Powernext consider weather, macroeconomic and 

microeconomic factors as being the main determinants of CO2 emissions allowances price 

levels. Secondly, energy factors such as the price level of oil, natural gas and electricity, as well 

as temperature and rainfall are quoted in most of the "Weekly summary of emissions market" 

published by Enervia4. Finally, the European Climate Exchange jointly with the Chicago 

Climate Exchange and Point Carbon, in their report entitled ''What determines the price of 

carbon in the European Union?" by Christiansen and Arvanitakis (2004), argue that the way to 

                                                 
2 E.g. power plant breakdowns (nuclear-, coal-fired- or hydroelectric power plants) where more emission intensive 
power stations have to be set up or unexpected environmental disasters (forest fire, earthquakes, etc.) shock the 
demand and supply side of CO2 allowances. 
3 See http://www.pointcarbon.com, www.powemext.fr and http://www.carbonriskmanagement.com. 
4 http://www.enervia.com/ 
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forecast trends in price levels is to assess three fundamental aspects: policy and regulatory issues, 

market fundamentals and technical analyses. In the role of fundamentals they consider both the 

supply of allowances and the demand for allowances, which are in turn a function of CO2 

production levels (Mansanet-Bataller et al., 2007). 

In contrast with the before mentioned literature, Paolella and Taschini (2008) found that 

commodity prices do not generally exhibit trends over long periods. Even though steep rises are 

observed during short periods for specific events, such as the weather or political conditions, 

commodity prices tend to revert to normal levels in the long run. The resulting properties of 

commodity prices are a consequence of the general behavior of mean-reversion combined with 

spikes in prices caused by shocks in the supply/demand balance. 

The table 2.2 summarizes the most important literature in the field of CO2 emissions allowances 

price dynamics. 

 



 

 

Table 2.2: Literature review on CO2 emissions allowances:  

 

Methodology 

employed 

Study Sample Price determinants Key findings 

 
 
GARCH-type 

Paolella and 
Taschini (2008) 

Spot daily prices from 
Powernext (25.06.2005-
3.11.2006) 

Prices are mean-reverting, with 
short-term influences caused by: 
-weather conditions 
-political conditions 

-The fundamentals analysis based on few market 
components overlooks the complexity of the 
variables that come into play 
-The spot-forward parity approach is, in the 
current market conditions, inadequate. 

- AR-GARCH 
- Regime-
switching model 

Benz and Trück 
(2009) 

OTC Spot daily prices 
from Spectron 
(03.01.2005-29.12.2006) 

-Policy and regulatory issues 
(NAPs changes) 
-Market fundamentals (weather, 
fuel prices, economic growth) 

-Analysis of short-term price behaviour of EUAs 
-Superior performance of models with conditional 
variance explained by the relationship between 
allowance prices, regulatory factors and 
fundamental variables 

Stochastic two-
factor equilibrium 
model(GBM with 
jumps) 

Daskalakis et al. 
(2009) 

-Spot daily prices from 
Powernext and NordPool 
(25.10.2005-28.12.2007) 
-Futures daily prices from 
ECX and NordPool for 
Dec 2006- 2009 contracts 
 

-Negative correlation with equity 
market returns 
-Changes in public policy 
-Variations in emitter marginal 
pollution control costs 

-The prohibition of banking of emissions 
allowances between distinct phases of the EU ETS 
has significant implications in terms of futures 
pricing. 
- Valid framework for the pricing and hedging of 
intra-phase and inter-phase futures and options on 
futures 
- Emissions allowance spot prices are likely to be 
characterized by jumps and nonstationarity and are 
better approximated by a GBM augmented by 
jumps. 

Stochastic 
equilibrium model 
(GBM) 

Chesney and 
Taschini (2009) 

Phase I emissions permits 
spot prices 

-The future probability of a 
shortfall in permits 
-The penalty that will be paid in 
the event of a shortfall 
-The discount rate 

-Using dynamic optimization, this paper generates 
endogenously the price dynamics of emissions 
permits under asymmetric information, allowing 
inter-temporal banking and borrowing. 
- Derived a closed-form pricing formula for 
European-style options  
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Stochastic 
equilibrium model 

Seifert et al. 
(2006) 

Phase I emissions permits 
spot prices 

-Time left until the end of the 
trading period 

- Spot price processes incorporating Brownian 
motion better fit the CO2 price data compared to 
mean reversion models. 
- Discounted spot prices are martingales 
- The volatility increases when coming closer to 
the end of the trading period while at the same 
time it reaches zero when spot prices are close to 
the price bounds. 
- It would be advantageous for the further 
development of trading in the CO2 emissions 
market if the regulators enabled a smoother 
transition between trading periods. 

Cost-of-carry 
relation 

Uhrig-Homburg 
and Wagner 
(2009) 

-Spot daily prices from 
Powernext (24.06.2005-
15.11.2006) 
-Futures daily prices from 
ECX for Dec 2006 and 
2007 contracts 
 

-Futures contracts lead the price 
discovery process of CO2 
emissions allowances 

- Spot and futures prices are linked by the cost-of-
carry approach within the first trading period. 
- After initial divergence, spot prices equal 
discounted futures prices for futures maturing 
within the trial period. 
- It is not recommended to link spot and second 
period futures prices via some convenience yield 
approach. 

Multivariate linear 
regression 

Mansanet-
Bataller et al. 
(2007) 

OTC Forward daily price 
changes from ECX during 
2005 

-Weather (extreme temperatures) 
- Energy sources 
- Supply versus demand of 
emissions allowances 

-Some rationality of pricing behaviour is found 
- The most important variables in the 
determination of CO2 price changes are the Brent 
and natural gas price changes. 
- Extremely hot and cold days in Germany have a 
positive influence on CO2 price levels. 
- Neither the price level of the most intensive 
emission source (coal) nor the switching effect 
between gas and coal price changes affect CO2 
price changes. 

Multivariate 
regression 

Alberola, 
Chevallier and 
Chèze (2007) 

Spot daily EUAs price 
changes (01.07.2005-
30.04.2007) 

-Policy issues 
-Energy prices 
-Temperature events 
-Economic activity 

- EUAs spot prices react not only to energy prices 
with forecast errors, but also to unanticipated 
temperatures changes during colder events. 
- Two structural breaks occurred in phase I (April 
2006 and October 2006) due to the disclosure of 
emissions and the announcement of new 
allocations for phase II, respectively. 



 

 

3. METHODOLOGY 

This chapter describes the methodology used in order to perform the empirical study. The data 

collection process, the hypotheses, the computation of variables and the regression construction 

are presented further. 

3.1. Research Approach  

There are two general research approaches: deductive and inductive. The deductive approach 

develops a theory and designs the research to test the previously-mentioned theory; the inductive 

approach develops theories as a result of data analysis (Saunders, Lewis, Thornhill, 2003). 

The primary purpose of this thesis is to determine how factors such as oil, coal, gas and 

electricity prices, weather data and economic development influence the price of carbon 

emissions permits. The theories regarding these factors already exist and we intend to test them 

and bring amendments if necessary. As a consequence a deductive approach will be employed. 

In order to perform our analysis quantitative data is mainly used.  The quantitative information is 

used to objectively test the hypothesis and perform descriptive statistics. In order to reach our 

goals related to the impact of weather data we will be using qualitative information in form of 

extremely high/low temperatures or extremely rainy/dry weather accounted for through dummy 

variables.  

3.2. Data Collection 

All the data employed is secondary data. The database DataStream is used to download spot 

carbon, oil, gas, coal and electricity prices. The temperature and rainfall indices, as well as 

industrial production index are gathered from monthly reports created by BlueNext exchange.  

The temperature index is the average of BlueNext weather indices – France, Germany, UK and 

Spain – weighted by the allowances allocated to each country. The BlueNext temperature indices 
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are defined on the basis of average temperatures, weighted by the population of the 

representative regions making up each country.  

The rainfall index is the average of precipitation indices for Lyon, Oslo, Turin, Vienna and 

Madrid, weighted by the hydroelectric share in each country’s electric power mix.  

Wind speed data were downloaded from Weather Underground5. The wind speed index is the 

wind speed in each country’s capital weighted by the share of the country’s number of wind 

turbines at the end of the preceding year in the total number of wind turbines in Europe in that 

year. We only take into consideration countries that have a clear policy of developing the wind 

energy sector. 

We use for spot prices data the Point Carbon Spot Index from 15.09.2005 to 26.02.2010.  

Industrial production is gathered for the EU256 up to January 2007, when Romania and Bulgaria 

joined the EU ETS. For the period January 2007- December 2007 we use EU27 and starting 

January 2008 we will also include Norway and Iceland7. 

The sample periods are explained by the EU-ETS phases and availability of data. There is 

available data before 2005, starting as early as 2003 when trading with EUAs began, in form of 

futures prices of a not yet traded underlying that could complete our spot series (see Benz and 

Trück, 2009). However since the volume was very small and bid-ask spreads quite large we 

consider the inconsistency to be too large and disrupting for our analysis and, as a consequence, 

we disregard the pre-2005 period.    

One particular problem that we are concerned about regarding the data sample is selection bias. 

We try to avoid this problem by always taking into account all the countries that participate in 

the EU ETS. We consider the weather indices to be representative as they include countries both 

from north, centre and south of Europe and have been used by other authors also.   

                                                 
5 http://www.wunderground.com/history/ 
6 The countries were members of both EU-ETS and Kyoto Protocol – Annex 1 Countries in Kyoto Protocol – See 
appendix 1 
7 They joined the carbon trading scheme in 2008, once the second period started along with Liechtenstein which we 
disregard due to lack of data. 
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3.3. Criticism of Data Sources 

The secondary data used (price of EUAs, price of energy, oil, coal, gas) is gathered from 

DataStream, which is an established database. The validity of this source can be proven by the 

fact that it is common for researchers to use this source to collect information for their empirical 

studies. BlueNext and Weather Underground are used for obtaining weather data. As important 

and established international sources for a wide range of information, we consider them 

trustworthy. 

3.4. Hypotheses regarding the determinants of EUAs prices 

3.4.1. Weather Data 

The weather has an impact on CO2 emissions allowances, whether there are very high or very 

low temperatures, very rainy, windy or very dry periods, it is supposed to affect the energy 

consumption. This, in turn, will lead to an increase or decrease in CO2 emissions, on which a 

scarcity condition is imposed. 

We first determine a set of hypotheses which will lead to expected signs for each of the 

coefficients in our regression.   

Hypothesis 1:  Extremely low temperatures lead to an increase in the price of CO2 emissions 

allowances.  Cold weather increases energy consumption and CO2 emissions for power and heat 

generation. This leads to an increase in the demand side for CO2 allowances and hence to an 

increase in the price of EUAs. (see Mansanet-Bataller, Pardo and Valor, 2007) 

Hypothesis 2:  Extremely high temperatures lead to an increase in the price of CO2 emissions 

allowances. It is expected that very high temperatures will lead to an increase in energy 

consumption due to use of air conditioning and by the same rationale as above to an increase in 

the price of EUAs. We expect that the effect will not be as large as in the case of extremely cold 

weather, as industrial activity won’t need the same increase in power generation as in the case of 

cold weather. (see Mansanet-Bataller, Pardo and Valor, 2007) 
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Hypothesis 3:  Extremely rainy weather leads to a decrease in the price of CO2 emissions 

allowances. Rainfall will affect the share of power generation of non-CO2 sources. High 

precipitation level will increase the possibility of producing hydroelectricity and will make it 

possible to switch the energy production to non intensive emission sources (see Mansanet-

Bataller, Pardo and Valor, 2007) 

Hypothesis 4:  Extremely dry weather leads to an increase in the price of CO2 emissions 

allowances. This can be explained considering flip side of the rationale above. (see Mansanet-

Bataller, Pardo and Valor, 2007) 

Hypothesis 5:  Extremely windy weather leads to a decrease in the price of CO2 emissions 

allowances. Wind speed will affect the share of power generation of non-CO2 sources. High 

wind-speed level will increase the possibility of producing wind energy and will make it possible 

to switch the energy production to non intensive emission sources (see Mansanet-Bataller, Pardo 

and Valor, 2007) 

Hypothesis 6:  Extremely little wind leads to an increase in the price of CO2 emissions 

allowances. This can be explained considering flip side of the rationale above. 

3.4.2. Energy Data 

As previous studies have determined, high (low) energy prices contribute to high (low) CO2 

emissions allowances prices (see Kanen, 2006; Alberola, Chevallier and Chéze, 2007). The 

prices of energy sources as input prices to produce the electricity are also important.  

Hypothesis 7:  Switching cost from coal to gas has a positive impact on EUAs. The difference 

between the price of gas and the price of coal is considered to represent the abatement cost to 

reduce CO2
8. The higher this difference, the fewer sources will change to using gas and as a 

consequence there will be higher CO2 emissions and the price of EUAs will increase. 

Hypothesis 8:  Clean dark spread has a positive impact on EUAs. The clean dark spread 

represents the theoretical profit of a electricity producer based on frying coal and is calculated as 

                                                 
8 By burning gas instead of coal Europe can reduce CO2 emissions. 
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the difference between the price of electricity and the price of coal, corrected with the price of 

CO2 emissions. As long as using gas is more expensive than coal we expect a positive correlation 

between the clean dark spread and the price of EUAs (see Alberola, Chevallier and Chéze, 

2007). 

 Hypothesis 9:  Clean spark spread has a negative impact on EUAs. The clean spark spread 

represents the theoretical profit of a electricity producer based on frying gas and is calculated as 

the difference between the price of electricity and the price of gas, corrected with the price of 

CO2 emissions. As long as using gas is more expensive than coal we expect a negative 

correlation between the clean spark spread and the price of EUAs because producers will prefer 

using coal (see Alberola, Chevallier and Chéze, 2007). 

We also intend to see the separate influence of changes in the price of oil, coal, gas and 

electricity on the carbon emissions allowances returns. 

3.4.3. Macroeconomic Data 

Hypothesis 10: It is expected that an increase in industrial production will lead to higher EUAs 

prices. Economic development leads to higher CO2 emissions and to an increase in the demand 

side for CO2 allowances and hence to an increase in the price of EUAs.   

3.5. Computation of Variables 

3.5.1. Weather Variables 

In order to account for extreme weather events we are going to create two dummy variables for 

each weather characteristic. We first transform the monthly weather data in daily data by 

considering the same value for the ten or eleven days in the middle of the month. The days in the 

last part of the month and the first part of the following month will be given a value equal to the 

average between the two monthly values. We take the distribution of the values for each factor 

and we determine the 10% and 90% quintiles, as the lowest temperature/ driest weather/least 

windy and the highest temperature/ most rainy/ most windy weather.  
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Further we are going to construct a set of dummy variables. For all days that are at least as cold 

as the lowest quintile for the temperature series we give the dummy variable Temp- the value of 

1 and 0 otherwise.  For all days that are at least as hot as the highest quintile for the temperature 

series we give the dummy variable Temp+ the value of 1 and 0 otherwise.  For all days that are 

at least as dry as the lowest quintile for the rainfall series we give the dummy variable Rain- the 

value of 1 and 0 otherwise. For all days that are at least as rainy as the highest quintile for the 

rainfall series we give the dummy variable Rain+ the value of 1 and 0 otherwise. For all days 

that are at least as windless as the lowest quintile for the wind speed series we give the dummy 

variable Wind- the value of 1 and 0 otherwise. For all days that are at least as windy as the 

highest quintile for the wind speed series we give the dummy variable Wind+ the value of 1 and 

0 otherwise. Thus we have six dummy variables which we expect to behave as presented in table 

3.1 
Table 3.1: Weather influences 

Temp- will have a positive impact on EUAs prices 
Temp+ will have a positive impact on EUAs prices 
Rain- will have a positive impact on EUAs prices 
Rain+ will have a negative impact on EUAs prices 
Wind- will have a positive impact on EUAs prices 
Wind+ will have a negative impact on EUAs prices 

3.5.2. Energy Variables 

We calculate the cost of CO2 abatement as the difference between the cost of gas and the cost of 

coal for obtaining the same amount of energy. We use this variable as the Switch variable in our 

regression to account for the cost of switching to a new, less pollutant technology.  

Switch = Gas price/unit of electricity - Coal price/unit of electricity  

In order to calculate the dark spread and the spark spread we need to consider the fuel efficiency 

factors9 and energy conversion factors10. In the case of gas the fuel efficiency factor is 49.13% 

and the energy conversion factor is 0.2929 and in the case of coal 35% and 7.1 respectively. We 

compute the dark spread and spark spread as below: 

                                                 
9 The factor represents how much energy is obtained from 1 unit of fuel. 
10 The factor converts 1 unit of fuel into 1 unit of energy (million British thermal units in megawatt/hour for 
example) 
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DS = Electricity price – (Coal price / 7.1/ 0.35)  

SS = Electricity price – (Gas price / 0.2929/ 0.4913) 

We then calculate the clean dark spread and the clean spark spread by accounting for the price of 

CO2. We have to consider the emission intensity factor11 for each source of power. In the case of 

coal this factor is 0.96 tCO2/MWh and in the case of gas 0.411 tCO2/MWh.   

CDS = DS – (Carbon price*0.96) 

CSS = SS – (Carbon price*0.411) 

We expect energy variables to influence the price of emissions allowances in the following way: 
Table 3.2: Energy influences  

Switch will have a positive impact on EU prices 
CDS will have a positive impact on EUAs prices 
CSS will have a negative impact on EUAs prices 

3.5.3. Macroeconomic Variables 

There is one big difference between the macroeconomic data and other variables we use. While 

energy prices, carbon prices and weather data are with daily frequency, the macroeconomic data 

is available only monthly. In order to account for changes in industrial production we are going 

to use a dummy variable. For each month that the European industrial production increased the 

value of the dummy EUprod will be 1, while for each month the average industrial production 

decreases the value of the EUprod will be -1. We expect this variable to have a positive 

coefficient. 

3.6. Constructing the Regression 

In order to determine which variables have an impact on the price of carbon emissions 

allowances, we are going to construct a set of multiple regressions. Our dependent variable, the 

first log difference of EUAs prices, Rt, is split into two periods 15.09.2005-30.03.2007 and 

11.08.2008-26.02.2010. For each period we are going to use multiple specifications estimated by 

GARCH method. We disregard the period 02.04.2007 – 11.08.2008 when the trading in the spot 

                                                 
11 The factor represents the quantity of CO2 that will be emitted as a result of burning coal or gas 

24 
 
 



 

market was practically inexistent and the price of EUAs was smaller than 1 Euro (see Figure 

3.1). 

Our explanatory variables are energy variables, industrial production dummy variable, weather 

variables, weather dummies and the lagged return on EUAs (as it proved to be significant in 

previous studies). For each energy variable we calculate the return on the price series as we 

consider that the changes in the prices of emissions allowances are due to changes in the prices 

of energy variables. In contrast with Alberola, Chevallier and Chèze (2007) we consider that 

changes in the clean dark and clean spark spreads and changes in the switching cost, rather than 

the simple price series, influence the changes in EUAs prices.  

Figure 3.1: Price Behavior of EUAs 
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Source of data: Point Carbon Spot Index  

 

As a consequence to our approach, we also dispose of non-stationarity by using either log 

returns, where possible, or normal returns, where the series contains negative values. 

We begin by checking for existence of multicolinearity between the independent variables. We 

consider only the energy variables, as the dummy variables cannot be multicolinear due to the 

way they were constructed. 
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We construct the correlations between the returns on energy variables separate for each period. 

For the first period we have the following result: 
Table 3.3: Correlations between independent variables in the first period 

  RCoal RBrent RGas RElectricity RCES RCDS RSwitch  
RCoal 1       
RBrent 0.005706 1      
RGas 0.021021 0.253615 1     
RElectricity 0.009205 0.009867 -0.006840 1    
RCSS 0.050222 0.030755 -0.070140 0.15334248 1   
RCDS 0.010425 -0.041910 -0.005560 0.19383856 0.24247838 1  
RSwitch  -0.180410 0.217520 0.907052 0.00253517 -0.08600617 -0.024729 1 

The only correlation that might impose problems is the one between the return on switching cost 

and RGas. In case both variables turn out to be significant, we have to control for the high 

correlation between the two. 

For the second period we have the following results: 
Table 3.4: Correlations between independent variables in the second period 

  RCoal RBrent RGas RElectricity RCSS RCDS RSwitch  
RCoal 1       
RBrent -0.055080 1      
RGas 0.103099 0.143415 1     
RElectricity -0.041980 0.022779 0.129165 1    
RCSS 0.011241 0.028949 -0.016510 0.243979 1   
RCDS 0.016692 0.012691 -0.000880 0.012195 -0.00371897 1  
RSwitch  0.144460 -0.004650 0.016120 -0.041320 -0.01103893 -0.0006684 1 

In this case we are not concerned with any correlation between the returns on energy variables, 

as all the correlations are low.  

The first specification we are going to use includes weather data, extreme weather events, 

returns on composed energy variables and macroeconomic data. 

Rt = α0 + α1*L(Rt) + α2*Temperature + α3*Temp- + α4*Temp+ + α5*Rainfall + α6*Rain- + 

α7*Rain+ + α8*Wind-speed + α9*Wind- + α10*Wind+ + α11*RSwitch + α12*RCDS + 

α13*RCSS + α14*EUprod +  Ut; 

Where L is the lag operator, Ut is the error term and each of the α coefficients has the following 

expected sign: 
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Table 3.5: Expected sign of coefficients in the first specification 

Coefficient α0 α1 α3 α4 α5 α6 α7 α8 α9 α10
 α11

 α12
 α13

 α14
 

Expected 
sign + + + + - + - - + - + + - + 

In the second specification, we are only going to include weather data, the returns on basic 

energy data: prices of coal, gas, electricity and oil, and the macroeconomic dummy variable. 

Rt = α0 + α1*L(Rt) + α2*Temperature + α3*Temp- + α4*Temp+ + α5*Rainfall + α6*Rain- + 

α7*Rain+ + α8*Wind-speed + α9*Wind- + α10*Wind+ + α11*RCoal + α12*RBrent + 

α13*RGas + α14*RElectricity + α15*EUprod +  Ut;   where 

Table 3.6: Expected sign of coefficients in the second specification 

Coefficient α0 α1 α3 α4 α5 α6 α7 α8 α9 α10
 α11

 α12
 α13

 α14 α15
 

Expected 
sign + + + + - + - - + - - + + + + 

As Kanen (2006) showed, energy prices should have, in general, a positive impact on the price of 

carbon emissions allowances. However, previous empirical studies have shown that not all the 

variables are significant (see Mansanet-Bataller, Pardo and Valor, 2007; Alberola, Chevallier and 

Chéze, 2007) and, moreover, different studies have reached different conclusions. We are going 

to provide further evidence on this issue.  

As a third specification we are going to consider all the returns on energy variables: 

Rt = α0 + α1*L(Rt) + α2*Temperature + α3*Temp- + α4*Temp+ + α5*Rainfall + α6*Rain- + 

α7*Rain+ + α8*Wind-speed + α9*Wind- + α10*Wind+ + α11*RCoal + α12*RBrent + 

α13*RGas + α14*RElectricity + α15*RSwitch + α16*RCDS + α17*RCSS + α18*EUprod +  Ut; 

 where 

Table 3.7: Expected sign of coefficients in the third specification 

Coefficient α0 α1 α3 α4 α5 α6 α7 α8 α9 α10
 α11

 α12
 α13

 α14 α15
 α16

 α17
 α18

 

Expected 
sign + + + + - + - - + - - + + + + + - + 
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In each case we are going to construct a second regression to include lagged energy data, as 

previous studies have shown significant influences when data is lagged (Alberola, Chevallier and 

Chèze, 2007). We check for ARCH effects and, in case such effects exist, we are also going to 

estimate a second equation for the variance. As we will see, the most appropriate model will be a 

GARCH (1,1) specification. 

Ut = εt *σt;         σt
2  = a0 + a1*Ut-1

2 + a2*σt-1
2 

In each case we check for autocorrelation in the residual series. We observe that there is no case 

of autocorrelation. 
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4. EMPIRICAL FINDINGS AND ANALYSIS 

This chapter presents the empirical results from the study performed. A description of the data 

and the evolution of the CO2 Emissions Allowances price are presented first. Afterwards, the 

models we consider to best suit the data are evaluated. A regression analysis is used to verify our 

initial hypothesis regarding the determinants of EUAs prices.  

4.1. Evolution of EUAs Prices  

Our final sample consists of 807 daily observations, which represent EUAs prices. It can be seen 

from the plot of the EUAs prices over time (Figure 3.1) that trading in the spot market was 

practically inexistent during the period 02.04.2007 – 11.08.2008. This interval is excluded from 

our regressions and delimits between the two main periods in our data set: the first period is 

15.09.2005-30.03.2007 (402 observations) and is the sample that corresponds to the trial period 

(2005-2007), and the second interval is 11.08.2008-26.02.2010 (405 observations) and is the 

sample representative for the Kyoto commitment period (2008-2012).  

New trading markets normally need a “trial period” to achieve real price discovery. As seen in 

Fig. 3.1, the EUA price pattern experienced strong price fluctuations during the first two years. 

Starting with the 15th on September 2005, EUAs prices fluctuated during the following four 

months in the range of 20–25 EUR, then rose to 30 EUR until the end of April. On the last week 

of April 2006 prices collapsed when operators disclosed 2005 verified emissions data and 

realized the scheme was oversupplied. That is, disclosures by the Netherlands, Czech Republic, 

France, and Spain revealing long positions in allowances caused drastic changes in the market’s 

expectations and the sharp price break. On the 15th of May 2006 the European Commission 

confirmed that verified emissions were about 80 million tons, or 4%, lower than yearly 

allocations, which made things even more straightforward. 

After this significant adjustment by 54% in four days, EUAs prices moved in the range of 15 to 

20 EUR until October 2006, when the European Commission announced more restricted 
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allocations for Phase II NAPs. This overlapped with a downturn over the last months in the 

prices of oil and natural gas, which took the price of electricity with them (see Figure 4.1). From 

this date, the EU ETS is sending two price signals responding to different dynamics. Phase I 

prices are declining towards zero, as it can be seen in Figure 3.1., whereas Phase II Futures 

prices are increasing to 20 EUR. On April 2007 verified emissions were again below the 2006 

yearly allocation, and the Phase I Spot price never recovers after this date. This is due to the fact 

that emissions allowances are not bankable from one Phase to the next, and companies already 

had in their portfolios more emissions allowances than they needed for compliance with the EU 

standards for 2007, the last year of Phase I. 

Figure 4.1. 

Evolution of Electricity, Brent and Gas prices in Phase I
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Source of data: Datastream 

The second phase of the European Union Emissions Trading Scheme (EU ETS) began in the 

second half of 2008, at a price equal to the Futures Price Dec 08 of 22.5 EUR. The downward 

EUA price trend that followed lasted until March 2009 (see Figure 3.1) and reflects the rapid 

deterioration of the economic situation, which massively reduced the industry's need for 

allowances (see Figure 4.2). The EUA price downturn took place in spite of the European 

temperature indicator being almost 3°C below its ten-year average in winter 2009. Such an 

anomaly would normally boost demand for electricity and heat, which in turn tends to increase 

the price of CO2. However, this factor was more than offset by the economy's plunge into the 
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most severe recession of the postwar era. More so, what added to the EUA price decline was the 

fact that companies started using all possible means of raising cash, including the sale of their 

CO2 allowances. 

Figure 4.2. 

 
Source: Tendances Carbone  

For the first time since its launching in 2005, the EU ETS recorded an overall deficit of 

allowances in 2008, which can be explained to a great extent by the reduction in the volumes 

allocated by Member States to installations. To ensure their compliance, installations that were 

short of allowances used two mechanisms as alternatives to buying allowances on the market in 

2008: borrowing from their 2009 allocations - an option that is available only until 2011, the year 

before the end of phase II - and importing credits issued for CDM or JI12 projects on condition 

that the number of imported credits does not exceed the limit set by each Member State13. This 

deficit on the supply side boosted up the price of EUAs in March 2009, after reaching its lowest 

point in Phase II in February at the 8EUR level. But this was not the only reason for the 

turnaround. 

                                                 
12 See section 1.1. of this paper for details on CDM and JI; 
13 http://www.bluenext.fr/TendancesCarbone/TCN.36_05.2009_En.pdf 
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Growing confidence in a possible economic recovery has caused an improvement in equity and 

commodity markets worldwide. Crude oil, further supported by OPEC’s production cut of 4.2 m 

barrels per day, has risen nearly 40% from the low reached in December 2008. On the other 

hand, prices of coal, electricity and gas have remained low. In April 2009, coal and electricity 

recovered slightly, while gas continued its plunge due to high supply and low demand. Though 

clean spark spread and clean dark spread have both declined, with prices of gas going down 

substantially more than those of coal, clean spark spread was greater than clean dark spread for 

the first time since September 2008, providing an incentive to switch from coal to gas (see 

Figure 4.3). Under these conditions, carbon recovered remarkably in the month of April, rising 

74% from the historical low set in February 2009. 

Figure 4.3. 

Price of EUA, Electricity, CDS and CSS
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Source: Datastream 

Starting with May 2009 and onwards the industrial production index for Europe stabilized and 

the industrial confidence indicator started to improve, backed by a strong increase in production 

expectations. The drop in gas prices and the rise in coal prices continued, leaving the CO2 switch 

price on the decline. It fell from 11.60 EUR/t in May 2009 to 1.98 EUR/t in August 2009. This 

would, under normal circumstances, provide an incentive for power producers to switch from 
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coal to gas which is less carbon intensive, which would imply a decline in the price of CO2 

emissions allowances. However, the carbon price exhibited the opposite trend during the 

aforementioned period, which could mean that the slack capacity left for coal to gas switching 

has been more or less exhausted.  

The eagerly-expected UN Climate Change Conference held in December 2009 in Copenhagen 

left a general feeling that international climate negotiations, which failed to yield the expected 

results, were going nowhere. The only concrete commitment regarded the amount of financing 

the developed countries must provide to the developing countries over the period 2010-2012 in 

order to help them reduce their emissions and “adapt” to the effects of climate change. The 

amount is 30 billion dollars in 2010-2012, to be raised to 100 billion dollars a year by 2020. 

In the first few months of 2010 the prices of electricity rose less than those of coal and natural 

gas, narrowing the difference between clean dark and clean spark spreads. CO2 switch price 

remained below CO2 market price, providing an incentive for power producers to switch from 

coal to gas. CO2 price broke out of its trading range and rose to €15.8 in February 2010. 

Ultimately, the effectiveness of the EU-ETS will be judged by the extent to which it achieves 

environmental objectives at the lowest cost. In doing so, the price must continue to be allowed to 

respond to fundamentals, while also sending price signals to the market that give the industry an 

incentive to reduce emissions. In the next part of this paper we will empirically test the impact of 

these fundamentals on CO2 prices. 

4.2. Descriptive Statistics 

In order to have an overview of the differences in underlying characteristics among the EUA price 

and the prices of energy-related variables, which will facilitate giving a more accurate interpretation 

of the empirical findings, a section on descriptive statistics is provided before the results. 

A summary statistics for the EUA prices, logreturns and returns on the energy-related variables in the 

first period (15.09.2005-30.03.2007) is presented in Table 4.1 below: 
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Table 4.1: Descriptive statistics for Period I 

Period I Mean Median Max Min Std. dev. Skew. Kurt. N 
EUA 15.682 16.050 29.750 0.780 8.271 -0.312 -0.982 402 
Rt -0.007 -0.001 0.584 -0.346 0.062 0.796 25.674 401 
RBrent 0.000 0.000 0.056 -0.055 0.018 -0.207 0.040 401 
RGas -0.001 0.000 0.172 -0.163 0.048 0.120 1.642 401 
RCoal 0.001 0.000 0.216 -0.064 0.018 7.954 91.101 401 
RSwitch 0.002 0.000 0.643 -0.447 0.107 1.315 8.704 401 
RElectricity -0.001 0.001 1.736 -1.830 0.271 -0.100 10.964 401 
RCDS 0.356 -0.048 109.047 -42.134 7.193 10.241 152.579 401 
RCSS 0.137 -0.087 32.996 -30.278 4.518 2.383 31.996 401 

The EUA price time series exhibits heteroskedasticity and volatility clustering. The spot market 

under scrutiny is characterized by a very high historical volatility, as estimated by the standard 

deviation of daily returns, which exceeds 100% (has the level of 8.271). When the first external 

verified reports regarding each EU member state’s actual emissions during the previous 

compliance year came out in April 2006, prices soared up to their maximum level of nearly 30 

euros and the logreturns also exhibit a clearly increased volatility (see Figure 4.4).  

Figure 4.4. 

Daily EUA logreturns for Period I
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Source: Datastream 

The minimum level of the logreturns time series is also within that small period surrounding the 

announcements of the results for 2005. The skewness parameter for the EUA logreturns is 0.796 

and the kurtosis parameter is equal to 25.647. This suggests a leptokurtic distribution with 
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positively skewed returns. Due to asymmetry, excess kurtosis and heavy tails, we conclude that 

the data does not fit the normal distribution. Brent and electricity returns time series are left-

skewed during Period I, while the other energy-related time series are right-skewed, also 

suggesting a different distribution than the normal.  

Table 5.2 presents a summary statistics for the EUA prices, logreturns and returns on the energy-

related variables in the second period (11.08.2008-26.02.2010). 

Table 4.2: Descriptive statistics for Period II 

Period II Mean Median Max Min Std. dev. Skew. Kurt. N 

EUA 16.189 15.660 24.950 8.000 3.305 0.704 1.047 405 

Rt -0.001 0.000 0.172 -0.151 0.031 0.165 4.789 404 

RBrent -0.001 0.000 0.157 -0.114 0.029 0.246 2.919 404 
RGas -0.001 0.000 0.250 -0.241 0.049 0.471 4.962 404 
RCoal 0.001 0.000 0.221 -0.091 0.019 4.843 51.823 404 
RSwitch -0.065 0.000 14.051 -55.508 3.047 -14.832 275.164 404 
RElectricity -0.001 -0.007 1.608 -1.556 0.196 0.389 22.070 404 
RCDS -3.413 -0.043 99.739 -1514.79 75.676 -19.859 397.679 404 

RCSS 0.125 -0.024 60.932 -63.653 4.982 0.080 126.406 404 

It is interesting to see that, similar to the first period, not only does the data show volatility 

clustering, but both maximum positive and negative logreturns could be observed during the 

same period, namely in April 2009 (see figure 4.5). This is when the EU ETS announced the 

actual emissions for 2008 and its first overall deficit of allowances.  

Just like in the first period, the EUA price time series is characterized by high volatility, as the 

standard deviation has a value of 3.305. The maximum EUA price is higher in the first period 

than in the second one, and that is also when the minimum price is the lowest. The skewness 

parameter for the EUA logreturns is 0.165 and the kurtosis parameter is equal to 4.789, which 

suggests a leptokurtic distribution with positively skewed returns, just like in the first period. 

Unlike in period I, brent and electricity returns time series are right-skewed, while the returns on 

switch costs and clean dark spread are left-skewed.  
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Figure 4.5. 

Daily EUA logreturns for Period II

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

8/12/2008

10/12/2008

12/12/2008

2/12/2009

4/12/2009

6/12/2009

8/12/2009

10/12/2009

12/12/2009

2/12/2010

Time

Lo
gr

et
ur

ns

 
Source: Datastream 

Although analyzing the similarities between the variables’ underlying characteristics is useful, 

running the actual regressions and interpreting the results will give us more information. 

4.3. Regression analysis  

4.3.1. Fitting the Model 

We firs begin our analysis by looking at the returns on EUA prices. The series looks stationary in 

both periods taken under consideration and exhibits volatility clustering. We are going to exclude 

from the first period some dates where the series exhibits abnormal movements: 26.04.2006, 

12.05.2006, 15.05.2006. 19.02.2007. We argue that these extreme movements are due to 

different announcements made by regulators. “On April 25, 2006, first disclosures by the 

Netherlands, Czech Republic, France, and Spain revealing long positions and caused a sharp 

price break. On May 15, 2006 the EC confirmed verified emissions were about 80 million tons or 

4% lower than yearly allocation, this leading to a sharp decrease in the price of allowances.” 

(Alberola, Chevallier and Chéze, 2007). Each year in February there is the announcement 

regarding the number of emissions for the next year. The next figure shows the movements of 

the log return EUA price series during the two periods: 
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Figure 4.6.  
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We test for stationarity by performing a unit root test (see results in Appendix 2). In both cases 

we can reject the null hypothesis that a unit root exists. As a consequence, our series are 

stationary and we can continue to perform the regressions. 

We first perform the regression using the ordinary least squares technique and check for 

existence of ARCH-effects. The results for the first specification in the first period are presented 

in Appendix 3. Both F test and Chi-Square are very significant, yielding the same results and 

suggesting the presence of ARCH effects. We obtain similar results for all the other regressions. 

We further try to determine the best GARCH model for our regressions. We start with a 

parsimonious model of GARCH(1,1), as previous studies have shown that this is the one of the 

best models in the case of emissions allowances. We test for higher orders of GARCH(p, q). As 

it turns out, the coefficients for higher orders of GARCH and ARCH terms are insignificant. We 

also test for a simple ARCH(p) model vs. GARCH(1,1). According to the Schwarz Information 

Criteria, GARCH(1,1) yields a better performance in all the cases considered. 

4.2.2. Regression Results – First Period 

The following table presents the results from the first specification. As it can be seen, the only 

significant coefficients at a p-value lower than 10% are: the lagged return on prices of EUA, 

Temp-, Rain+, Wind+, and the return on switching cost (see Table 4.3.). 
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Table 4.3: Results from first specification first period 

  Coefficient Std. Error Prob.   Expected sign 
α0 0.030585 0.02241 0.1723  
L(Rt) 0.195582 0.05943 0.0010 + 
Temperature -0.000376 0.00046 0.4170  
Temp- 0.024430 0.01344 0.0690 + 
Temp+ -0.000295 0.00728 0.9676 + 
Rainfall -0.000172 0.00020 0.3893 - 
Rain- 0.008296 0.01234 0.5016 + 
Rain+ -0.020281 0.01203 0.0919 - 
Wind Speed -0.001768 0.00194 0.3617 - 
Wind- 0.004414 0.00732 0.5466 + 
Wind+ -0.039029 0.00958 0.0000 - 
RSwitch 0.034193 0.01330 0.0101 + 
RCDS -0.000435 0.00032 0.1721 + 
RCSS 0.000311 0.00035 0.3742 - 
EUprod 0.001029 0.00188 0.5840 + 

α0 has a positive value. It is, however, statistically insignificant. 

The results for the weather coefficients mostly confirm our expectations regarding the signs of 

these coefficients. The Temperature (for which we didn’t establish an expected sign) has a 

negative impact, whereas Rainfall and Wind-speed have a negative impact, as expected. 

However, these coefficients are highly insignificant, leading us to the conclusion that weather 

data does not have a linear impact on EUA price, but we should rather expect extreme events to 

influence it. This finding is similar to Alberola, Chevallier and Chéze (2007) and Mansanet-

Bataller, Pardo and Valor (2007).  

Extremely low temperatures, extremely rainy days and extremely windy days seem to have a 

significant influence. As expected, low temperatures lead to an increase in the price of CO2, 

while high amounts of rain and high wind speed lead to a decrease in the price of CO2. Temp+, 

Rain- and Wind- don’t have a significant influence. As Alberola, Chevallier and Chéze (2007) 

have also shown, extremely hot weather does not have an impact on allowance price changes.  

The return on switching cost is the only composed energy variable that has an influence on the 

price of EUA. As expected, the higher the switching cost the more use of coal and, as a 

consequence, the higher the prices for CO2 emissions rights are.  
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The industry production dummy is insignificant. This might be due to the fact that the monthly 

data available for this independent variable cannot be properly accounted for to determine daily 

movements for the price of CO2 allowances. 

In three cases the expected sign differs from our empirical findings. However, we do not pay too 

much attention to this issue as the coefficients are insignificant and the results sensitive to the 

period, variables and model chosen. The signs for clean dark spread and clean spark spreads are 

opposite than expected. Towards the end of the difference between clean dark and clean spark 

spreads has narrowed so even if the return on clean dark spread increases, companies might still 

find it more profitable to use gas and, as a consequence, the signs of the spreads have changed. 

We also try to see if the lagged energy data has an influence on our dependent variable. We use 

the same specification and we lag the composed energy data one period. The results turn out to 

be completely insignificant and the regression variables do not explain at all the log-return of 

EUA. 

The second specification brings further evidence on the important variables that influence the 

price of allowances. The weather conditions remain significant, as in the first case, with Temp-, 

Rain+ and Wind+ being significant at least at a 10% level (see Table 4.4. below).  

Table 4.4: Results from second specification first period 

  Coefficient Std. Error Prob.   Expected sign 
α0 0.028430 0.023598 0.2283  
L(Rt) 0.204348 0.057082 0.0003 + 
Temperature -0.000297 0.000468 0.5262   
Temp- 0.029045 0.015279 0.0573 + 
Temp+ -0.001932 0.006914 0.7799 + 
Rainfall -0.000148 0.000184 0.4223 - 
Rain- 0.011278 0.010312 0.2741 + 
Rain+ -0.024716 0.013977 0.0770 - 
Wind Speed -0.001722 0.002090 0.4100 - 
Wind- 0.005236 0.007301 0.4733 + 
Wind+ -0.038577 0.009990 0.0001 - 
RCoal -0.047082 0.106096 0.6572 - 
RBrent 0.209028 0.057454 0.0003 + 
RGas 0.048940 0.031254 0.1174 + 
RElectricity -0.009494 0.004723 0.0444 + 
EUprod 0.001034 0.001825 0.5710 + 
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From the energy variables considered, the return on prices of brent and electricity are statistically 

significant. Brent has a positive impact, as expected, while electricity has a negative impact. 

We can argue that when the price of electricity increases, the population tends to use less 

electricity and as a consequence less CO2 is emitted in order to fulfill the lower demand for 

electricity. Our results partially resemble those of previous studies. Alberola, Chevallier and 

Chéze (2007) find a positive impact for brent and also positive for electricity ( the sign of the 

coefficient being in contrast to our results). 

We also perform a regression using the lagged energy data. As in the previous case, the 

coefficients for the lagged data turn out to be completely insignificant. 

In the third specification we include all energy data. Results are presented in Table 4.5. 

Temperature variables seem to have a steady impact among all the specifications. Again Temp-, 

Rain+ and Wind+ are significant in explaining the movements of the CO2 emissions allowances. 

Table 4.5: Results from third specification first period 

  Coefficient Std. Error Prob.   Expected sign 
α0 0.028173 0.023853 0.2376  
L(Rt) 0.206843 0.057605 0.0003 + 
Temperature -0.000279 0.000466 0.5494   
Temp- 0.029483 0.015236 0.0530 + 
Temp+ -0.002159 0.006860 0.7530 + 
Rainfall -0.000141 0.000188 0.4542 - 
Rain- 0.010296 0.010564 0.3298 + 
Rain+ -0.025035 0.013944 0.0726 - 
Wind Speed -0.001713 0.002105 0.4158 - 
Wind- 0.004785 0.007274 0.5106 + 
Wind+ -0.038638 0.009982 0.0001 - 
RCoal -0.063597 0.118408 0.5912 - 
RBrent 0.202946 0.060522 0.0008 + 
RGas 0.094794 0.083358 0.2555 + 
RElectricity -0.009026 0.005113 0.0775 + 
RSwitch -0.024715 0.043247 0.5677 + 
RCDS -0.000183 0.000402 0.6488 + 
RCSS 0.000090 0.000353 0.7993 - 
EUprod 0.000822 0.001817 0.6510 + 
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RBrent and RElectricity also keep their significance and sign, while the return on switching cost 

becomes insignificant. We are not concerned with the multi-colinearity between RGas and 

RSwitch as both independent variables are insignificant. Including lagged energy data worsens 

the results. It can be observed that all the composed energy variables have the opposite sign as 

those expected and are insignificant. 

This can be due to the fact that market participants might not see these measures important or 

consider to be accounted for through other variables such as electricity or brent. Another issue 

that can lead to distortions in the results might be the fact that the market is still not fully 

developed and market participants are not used to trading CO2 allowances, and especially 

regulators still tackle the problem related to the number of allowances issued to each company.  

As a variant of the last specification we are trying to find a parsimonious equivalent by 

successively eliminating from the regressions the most insignificant variable until all the 

coefficients are significant at 10% level (see Table 4.6.).   

Table 4.6: Results from parsimonious model in the first period 

  Coefficient Std. Error Prob.   
α0 -0.000266 0.001501 0.8595 
L(Rt) 0.208151 0.057278 0.0003 
Temp- 0.007338 0.002992 0.0142 
Wind+ -0.045698 0.005097 0.0000 
RBrent 0.234909 0.051684 0.0000 
RElectricity -0.010535 0.004626 0.0228 

We end up with five explanatory variables with more powerful coefficients. All coefficients 

except α0 keep their signs. α0 is insignificant, however we keep the coefficient to control for any 

distortions in inferences. (we keep the coefficient in order to have a distribution for the residuals 

as close to a normal distribution as possible).   

In contrast to previous studies and in contrast to our expectations the models seem to explain 

little of the dependent variable. 
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Table 4.7: Comparison measures for the models 

 Equation 1 Equation 2 Equation 3 Equation 3b 
R Square 0.070873 0.093453 0.091925 0.093378 
Adjusted R Square 0.029525 0.050624 0.041476 0.074829 
AIC -3.849472 -3.885101 -3.872481 -3.912159 
SIC -3.669856 -3.695506 -3.652951 -3.822351 

We can notice that the parsimonious model performs slightly better (see table 4.7.) than the other 

models according to the Adjusted R Square and the information criteria used (Akaike and 

Schwarz).  However the models perform worse than the models proposed by Alberola, 

Chevallier and Chéze (2007) and Mansanet-Bataller, Pardo and Valor (2007), despite the 

similarities. We consider that the differences are due to the fact that the weather data we included 

were monthly data extrapolated to a daily basis, while previous research used daily data. 

However, due to limited availability of daily weather data we were coerced to use monthly data.  

4.2.3 Regression Results – Second Period 

The three specifications are replicated for the second period. For the first specification it can be 

observed that none of the coefficients are significant (see table 4.8.). Moreover, α0 turns negative 

and Wind-speed positive, contradicting our expectations.  

Table 4.8: Results from first specification second period 

 

 

 

 

 

 

 

 Coefficient Std. Error Prob. Expected sign 
α0 -0.008934 0.031344 0.7756  
L(Rt) 0.061100 0.060105 0.3094 + 
Temperature 0.000145 0.000484 0.7648  
Temp- 0.003396 0.009308 0.7152 + 
Temp+ 0.002599 0.006306 0.6802 + 
Rainfal -0.000073 0.000173 0.6736 - 
Rain- 0.002128 0.006695 0.7506 + 
Rain+ -0.009807 0.006904 0.1555 - 
Wind Speed 0.000961 0.002619 0.7137 - 
Wind- 0.003328 0.005688 0.5585 + 
Wind+ -0.005581 0.007573 0.4612 - 
RSwitch 0.000091 0.001009 0.9280 + 
RCDS -0.000023 0.000205 0.9094 + 
RCSS 0.000037 0.000744 0.9599 - 
EUprod 0.001204 0.001729 0.4863 + 

No weather data seem to influence the price of CO2 in this case. 
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We further look at the second specification to determine some factors that can be considered 

determinants of the price of emissions allowances (see Table 4.9.). In this case the lagged return 

on EUA prices becomes significant at 10% level. Also, coal and brent emerge as determinants of 

the allowances’ price. Coal has a negative impact as the higher the price of coal the less coal 

companies will use, trying to replace it with other energy source and, as a result, the lower level 

of emissions  will lead to a lower price for CO2 allowances. The negative impact of coal has also 

been found by Alberola, Chevallier and Chéze (2007) when computing the regression for their 

whole period. Mansanet-Bataller, Pardo and Valor (2007) found that lagged coal returns 

negatively influences the dependent variable; however the coefficient in their case was 

insignificant. 

Table 4.9: Results from second specification second period 
 Coefficient Std. Error Prob. Expected sign 
α0 -0.027487 0.027655 0.3203  
L(Rt) 0.093370 0.055632 0.0933 + 
Temperature 0.000503 0.000428 0.2399  
Temp- 0.006689 0.007382 0.3649 + 
Temp+ -0.001627 0.005532 0.7687 + 
Rainfal -0.000098 0.000158 0.5346 - 
Rain- 0.002992 0.006112 0.6244 + 
Rain+ -0.009059 0.006455 0.1605 - 
Wind Speed 0.002276 0.002341 0.3310 - 
Wind- 0.005928 0.005071 0.2424 + 
Wind+ -0.007193 0.007305 0.3248 - 
RCoal -0.133668 0.071224 0.0606 - 
RBrent 0.355601 0.041682 0.0000 + 
RGas -0.015296 0.025692 0.5516 + 
RElectricity 0.007834 0.006069 0.1967 + 
EUprod 0.000432 0.001631 0.7912 + 

In our case lagged energy data has no influence on the prices of CO2 allowances. This might be a 

consequence of the different choice of data. While we took under consideration spot energy 

prices, Mansanet-Bataller, Pardo and Valor (2007) considered the price of futures contracts. 

For the third specification the only significant coefficients are the ones for log-return on EUA 

prices, coal and brent (see Table 4.10.). Brent again emerges as a highly significant determinant. 

The positive coefficient, as expected, is similar to previous studies. 
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Weather data do not have any influence on the price of emissions credits, nor do composed 

energy data such as switching cost and clean spreads.  

The industrial production dummy is highly insignificant, showing no relationship between the 

constructed dummy and the changes in the price of allowances.  

Table 4.10: Results from third specification second period 
 Coefficient Std. Error Prob. Expected sign 
α0 -0.031785 0.027849 0.2537  
L(Rt) 0.091983 0.055580 0.0979 + 
Temperature 0.000583 0.000428 0.1728  
Temp- 0.008202 0.007507 0.2746 + 
Temp+ -0.001869 0.005550 0.7363 + 
Rainfal -0.000100 0.000162 0.5395 - 
Rain- 0.002869 0.006162 0.6415 + 
Rain+ -0.009137 0.006469 0.1579 - 
Wind Speed 0.002549 0.002380 0.2842 - 
Wind- 0.006093 0.005095 0.2317 + 
Wind+ -0.007118 0.007383 0.3350 - 
RCoal -0.136240 0.075380 0.0707 - 
RBrent 0.359238 0.041268 0.0000 + 
RGas -0.015043 0.025643 0.5575 + 
RElectricity 0.008339 0.006568 0.2042 + 
RSwitch 0.000304 0.000557 0.5858 + 
RCDS -0.000025 0.000173 0.8845 + 
RCSS -0.000194 0.000428 0.6504 - 
EUprod 0.000398 0.001615 0.8052 + 

We also construct for this period the variant of the last specification. We are trying to find a 

parsimonious equivalent by successively eliminating from the regressions the most insignificant 

variable until all the coefficients are significant at a 10% level (see Table 4.11). 

Table 4.11: Results from parsimonious model in the second period 
  Coefficient Std. Error Prob.   
α0 -0.000635 0.001133 0.5752 
L(Rt) 0.101660 0.053926 0.0594 
RCoal -0.150722 0.071556 0.0352 
RBrent 0.348256 0.039604 0.0000 

We end up only with the significant coefficients in the third specification. All coefficients keep 

their expected signs. α0 is insignificant, however we keep the coefficient to control for any 
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distortions in inferences (we keep the coefficient in order to have a distribution for the residuals 

as close to a normal distribution as possible).  

Table 4.12: Comparison measures for the models 
  Equation 1 Equation 2 Equation 3 Equation 3b 
R Square 0.01026 0.113568 0.115882 0.115091 
Adjusted R Square -0.033442 0.072016 0.067151 0.101683 
AIC -4.288063 -4.419704 -4.411851 -4.456357 
SIC -4.10945 -4.231169 -4.193546 -4.386897 

As before, the parsimonious model performs slightly better than the other models according to 

the Adjusted R Square and the information criteria used (Akaike and Schwarz - see Table 4.12.). 

The results are somewhat better than in the first period; however our models underperform when 

compared to similar models from previous research. Nevertheless, previous research besides 

having slightly different approaches they also consider price movements only up to the end of 

the first compliance period, i.e. do not contain the second period on which we performed our 

empirical study.  

4.2.4. Differences between the Two Periods 

We expected that in the second period the market would be more mature, participants more 

acquainted to the market, regulators better informed and prices more closely linked to the 

fundamental price determinants. The question being: which are these price determinants?  

It appears that weather data is important only during the first considered period.  This might be a 

consequence of the fact that market participants are less interested in weather conditions, as they 

seem to cancel out over a certain period of time (temperatures over one month can be very 

different in Stockholm from, for example, Madrid). At the same time, another reason might be 

the fact that during the first period, on average, the values for weather data were more extreme 

than in the second period, thus having a larger impact during the first period.  

The returns on composed energy data do not have an important influence on the prices of EUA, 

with the exception of switching cost in the first specification of the first period. However, when 

included with all the other energy data, the return on switching cost looses importance. Row 
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energy data on the other hand influences emissions allowances prices, with brent being a steady, 

highly significant factor during both periods. 

The lagged return on CO2 allowances prices has also a stable and significant influence over both 

periods, which was expected, as it encompasses all the past information relevant for the current 

prices.  

The changes in industrial production do not influence in any way the prices of CO2. We 

previously stated that one of the reasons is the difficulty to transform the monthly industrial 

production information in a variable on a daily basis. Another reason that can lead to the 

insignificance of the explanatory variable is that not all sectors included in the industrial 

production index are part of the EU ETS market. Specific information for EU ETS sector is very 

hard to find, especially for the first compliance period. Additionally, changes in the production 

of this sector are not correlated with changes in the industrial production in general.  
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5. CONCLUSIONS AND PROPOSALS FOR FURTHER 

RESEARCH 

Based on the results from the previous sections, this chapter offers concluding remarks and 

discusses the possibilities for further research.   

 

The aim of this study is to determine to what extent fuel prices, whether data and economic 

development influence the price of spot carbon emissions permits. Moreover we intend to see 

which the main determinants of EUA prices are in different periods and why there might be 

differences between the periods. 

We determined that weather data has some form of nonlinear influence on price changes of CO2 

in the first period. However, the coldest days lead to an increase in price changes during the first 

period. At the same time, extremely rainy days and extremely windy days lead to a decrease in 

the same dependent variable. The second period has shown no influence from weather variables. 

We consider this a consequence of the fact that the first period had weather events that were 

more extreme than those in the second period. We propose that further research should be made 

on this issue with daily data, rather than extrapolated monthly data on a daily basis. 

The energy variables seem to influence the price changes of EUA, with brent being a sustainable 

factor. In the first period electricity is statistically significant and has a negative influence. 

Surprisingly, in the second period, coal substitutes electricity as a significant factor. It would be 

interesting to determine if the price of coal can be a substitute for electricity prices on a longer 

term, especially that power plants using coal are expected to switch to gas to abate CO2 

emissions. Therefore we would expect that the price of gas, rather than coal will substitute 

electricity price. 
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The return on composed energy variables (switching cost, CDS, CSS) does not influence the 

dependent variable, exception being the switching cost in the first specification for period one. 

We consider that the effect of this variable is partially substituted by brent and coal in the third 

specification of the second period.  

Industrial production is not one of the factors that seem to influence the price of emissions 

allowances. Further research is needed to determine weather the production of EU ETS sector is 

the proper factor. However, data is scarce and gathering observations for a longer time series 

might impose problems. 

The lagged return on EUA is also a steady and significant factor during both periods and all 

specifications.  

An interesting issue for further study would be to check whether the factors that we mentioned 

will keep being important for further periods, especially taking into consideration the regulatory 

changes that will take place: switching to one Europe-wide cap instead on National Allocation 

Plans, auctioning of allowances instead of allocation, introducing more sectors in the scheme 

(aluminium and ammonia producers) and new gases (nitrous oxide and perfluorocarbons)14. 

 

 

 

                                                 
14 : Questions and Answers on the Commission's proposal to revise the EU Emissions Trading System (2008) 
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Appendix 1: Kyoto Protocol  - Annex 1 Countries   
 
AUSTRALIA   
AUSTRIA  
BELARUS  
BELGIUM  
BULGARIA  
CANADA  
CROATIA  
CZECH REPUBLIC  
DENMARK  
ESTONIA  
FINLAND  
FRANCE  
GERMANY  
GREECE  
HUNGARY  
ICELAND  
IRELAND  
ITALY  
JAPAN  
LATVIA  
LIECHTENSTEIN  
LITHUANIA  
LUXEMBOURG  
MONACO 
NETHERLANDS  
NEW ZEALAND  
NORWAY  
POLAND  
PORTUGAL  
ROMANIA  
RUSSIAN FEDERATION  
SLOVAKIA  
SLOVENIA  
SPAIN  
SWEDEN  
SWITZERLAND  
TURKEY  
UKRAINE  
UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND  
UNITED STATES OF AMERICA  
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Appendix 2 - Unit Root Tests 
First period: 

Null Hypothesis: LOG_RET_EUA has a unit root  
Exogenous: Constant   
Lag Length: 0 (Automatic based on SIC, MAXLAG=16) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -16.87562  0.0000 
Test critical values: 1% level  -3.446484  

 5% level  -2.868547  
 10% level  -2.570568  

*MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(LOG_RET_EUA)  
Method: Least Squares   
Date: 05/25/10   Time: 15:58   
Sample (adjusted): 9/19/2005 3/30/2007  
Included observations: 400 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.  

LOG_RET_EUA(-1) -0.835478 0.049508 -16.87562 0.0000
C -0.005276 0.002364 -2.231801 0.0262

R-squared 0.417094     Mean dependent var -0.000210
Adjusted R-squared 0.415630     S.D. dependent var 0.061353
S.E. of regression 0.046901     Akaike info criterion -3.276574
Sum squared resid 0.875477     Schwarz criterion -3.256616
Log likelihood 657.3147     F-statistic 284.7864
Durbin-Watson stat 1.987581     Prob(F-statistic) 0.000000
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Second period 
 
Null Hypothesis: LOG_RET_EUA has a unit root  
Exogenous: Constant   
Lag Length: 0 (Automatic based on SIC, MAXLAG=17) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -18.53448  0.0000 
Test critical values: 1% level  -3.446362  

 5% level  -2.868493  
 10% level  -2.570539  

*MacKinnon (1996) one-sided p-values.  
     
     

Augmented Dickey-Fuller Test Equation  
Dependent Variable: D(LOG_RET_EUA)  
Method: Least Squares   
Date: 05/25/10   Time: 16:03   
Sample (adjusted): 8/13/2008 2/26/2010  
Included observations: 403 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.  

LOG_RET_EUA(-1) -0.923206 0.049810 -18.53448 0.0000
C -0.000890 0.001535 -0.579989 0.5622

R-squared 0.461403     Mean dependent var 4.10E-05
Adjusted R-squared 0.460060     S.D. dependent var 0.041916
S.E. of regression 0.030800     Akaike info criterion -4.117623
Sum squared resid 0.380416     Schwarz criterion -4.097777
Log likelihood 831.7010     F-statistic 343.5270
Durbin-Watson stat 1.990946     Prob(F-statistic) 0.000000
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Appendix 3: ARCH test – First Specification for the First Period 
 
ARCH Test:    

F-statistic 21.09520     Prob. F(1,397) 0.000006
Obs*R-squared 20.13174     Prob. Chi-Square(1) 0.000007

     
Test Equation:   
Dependent Variable: RESID^2   
Method: Least Squares   
Date: 05/25/10   Time: 16:20   
Sample (adjusted): 9/20/2005 3/30/2007  
Included observations: 399 after adjustments  

Variable Coefficient Std. Error t-Statistic Prob.  

C 0.001589 0.000287 5.530877 0.0000
RESID^2(-1) 0.224713 0.048926 4.592951 0.0000

R-squared 0.050455     Mean dependent var 0.002046
Adjusted R-squared 0.048064     S.D. dependent var 0.005519
S.E. of regression 0.005385     Akaike info criterion -7.605323
Sum squared resid 0.011513     Schwarz criterion -7.585328
Log likelihood 1519.262     F-statistic 21.09520
Durbin-Watson stat 2.097745     Prob(F-statistic) 0.000006
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