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Abstract 

 

The purpose of this thesis is to investigate different formulations of multivariate 

GARCH models and to apply two of the popular ones – the BEKK- GARCH model 

and the DCC- GARCH model – in evaluating the volatility of a portfolio of 

zero-coupon bonds. Multivariate GARCH models are considered as one of the most 

useful tools for analyzing and forecasting the volatility of time series when volatility 

fluctuates over time. This feature demonstrates its availability in modeling the 

co-movement of multivariate time series with varying conditional covariance matrix. 

From this point of view, firstly we focus on understanding the model specifications of 

several widely used multivariate GARCH models so as to select appropriate models; 

and then construct the BEKK form and the DCC form separately by employing the 

financial data obtained from the website of the European Central Bank. The next work 

is dedicated to diagnose the goodness of fit of the established models even though 

there are comparatively few tests specific to multivariate models according to 

previous literatures. On top of those, we compare the fitting performance of these two 

forms and predict the future dynamics of our data on the ground of these two models. 
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1. Introduction 

  

With the increase in the complexity of the instruments in the risk management field, 

huge demands for the various models which can simulate and reflect the characteristics 

of the financial time series have expanded. One of the significant features of financial 

data that has won much attention is the volatility; because it is a numerical measure of 

the risk faced by individual investors and financial institutions. It is well known that the 

volatility of financial data often varies over time and tends to cluster in periods, i.e., high 

volatility is usually followed by high volatility, and low volatility by low volatility. This 

phenomenon corresponds to the fluctuating volatility. The Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) model and its extensions have been proved to 

be able to capture the volatility clustering and predict volatilities in the future.  

Specifically, when analyzing the co-movements of financial returns, it is always 

essential to estimate, construct, evaluate, and forecast the co-volatility dynamics of asset 

returns in a portfolio. This task can be fulfilled by multivariate GARCH (MGARCH) 

models. The development of MGARCH models could be thought as a great 

breakthrough against the curse of dimensionality in the financial modeling. Many 

different formulations have been constructed parsimoniously and still remain necessary 

flexibility. MGARCH models can be applied to asset pricing, portfolio theory, VaR 

estimation and risk management or diversification, which require the volatilities and 

co-volatilities of several markets [Bauwens et al., 2006]. 

In this thesis, MGARCH models are estimated for volatility and co-volatility of 

three zero coupon bond prices with different maturities. The data is provided by the 

website of the European Central Bank (ECB) which is the institution of the European 

Union tasked with administrating the monetary policy of the 16 EU member states 

taking part in the Eurozone.  
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A zero coupon bond is a non-coupon-bearing bond that pays face value at the time 

of maturity even though it is bought at a price lower than its face value. It has no 

reinvestment risk and is more sensitive to interest rate change than coupon-bearing 

bonds. Due to these features, zero-coupon bonds can be easily used to create any type of 

cash flow stream and thus match asset cash flows with liability cash flows (e.g. to 

provide for college expenses, house-purchase down payment, or other liability funding.), 

and are used by pension funds and insurance companies to offset, or immunize the 

interest rate risk of these firms' long-term liabilities.  

Moreover, the return of zero coupon bond, referred to as zero rate, is a fundamental 

element in the field of fix-income pricing and risk evaluation. By using 

cash-flow-mapping method [Hull, 2005], any fixed cash flow can be mapped to a 

portfolio consisting of a few zero coupon bonds, which match the cash flow’s return and 

volatility. This viewpoint exemplifies how to generalize the specific zero coupon bond 

volatilities into a general case. It also motivates our study to model volatility and 

co-volatility of three zero-coupon bonds with different maturities of 6 month, 1 year and 

2 year. In later section, we estimated two MGARCH models based on the BEKK form 

and DCC form by the quasi - maximum likelihood method and also tested the goodness 

of fit of these models. 

The reminder of this thesis is organized as follows. Section 2 reviews MGARCH 

models, including its different forms, diagnostics and the forecasting. In section 3 we 

present the BEKK and DCC MGARCH models of volatility and co-volatility of ECB 

zero coupon bond data set. Section 4 provides conclusions and further work. 
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2. Model Specification and Estimation Methodology 

 

 In order to accurately capture the characteristic heteroskedasticity of many 

financial data, which refers to the fact that the market volatility varies and tends to 

cluster in periods of high volatility as well as periods of low volatility, the ARCH model 

was introduced by Engle (1982). 

Even though this model captures the varying volatility of financial time series in 

contrast with the constant volatility in previous research, there was still need for a better 

model to measure risk which is reflected as the volatility. This section mainly concerns a 

more generalized model of the ARCH model from the univariate case to multivariate 

cases. 

 

2.1 ARCH models 

The mean process of ARCH models can be expressed by 

.ttr   ,     t = 1,……,T                                        (1) 

Here, μ is the mean of the time series rt and εt denotes its residual. T is the number 

of observations. 

Regarding the residuals’ variance process of ARCH models, assume εt=σt·zt, where 

zt ~ N(0,1) and the series σt
2
 are modeled by  

22

110

2

qtqtt     ,                                        (2) 

where α0 > 0 and αi ≥ 0, i > 0. 

It specifies a stochastic process for the residuals and predicts the average size of the 

residuals. 

However, it has its own drawbacks in that the assumption that positive and negative 
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shocks have the same effects on volatility goes contrary to the reality. It is very common 

that the price of a financial asset responds differently to positive and negative shocks 

[Paul, 2007]. In addition, it is always the case that ARCH models require the estimation 

of a large number of parameters as a high order of ARCH terms has to be selected for 

the purpose of catching the dynamic of the conditional variance.  

2.2 GARCH models 

    The following subsections introduce the general formulation of a univariate 

GARCH model, the most widely used GARCH form – GARCH (1, 1) and some 

extensions. 

2.2.1 General form of GARCH models 

In view of the ARCH model’s limitations, Bollerslev (1986) proposed the 

Generalized ARCH model (GARCH), in which the conditional variance satisfies the 

following form. 

22

11

22

110

2

ptptqtqtt                           (3) 

where 0i and 0i . 

In GARCH models, residuals’ lags can be replaced by a limited number of lags of 

conditional variances, which simplifies the lag structure and as well the estimation 

process of coefficients.  

2.2.2 GARCH (1, 1) models 

The most frequently used GARCH model is the GARCH (1, 1) model. In GARCH 

(1, 1), the conditional variance matrix is calculated from a long-run average variance 

rate, VL, and also from the lag terms 1n and 1n . The equation of the conditional 

variance for GARCH (1, 1) is  

2

1

2

1

2

  nnLn V                                              (4) 
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where   is the weight assigned to VL,  is the weight assigned to 2

1n , and   is the 

weight assigned to 2

1n . In addition, the weights sum to one, that is,  

1                                                       (5) 

The GARCH (1, 1) models specifies that 2

n  is based on the most recent 

observation of 2

n  and the most recent variance rate 2

1n .  

Setting LV  , the GARCH (1, 1) model can be rewritten as 

2

1

2

1

2

  nnn                                               (6) 

This is the form that is usually used for the estimation of parameters in the 

univariate case. 

2.2.3 Extensions of the GARCH models 

There are many extensions of the standard GARCH models
1
. Nonlinear GARCH 

(NGARCH) was proposed by Engle and Ng in 1993. The conditional covariance 

equation is in the form 2

1

2

11

2 )(   tttt  , where .0,,   The 

integrated GARCH (IGARCH) is a restricted version of the GARCH model, where the 

sum of all the parameters sum up to one. The exponential GARCH (EGARCH) 

introduced by Nelson (1991) is to model the logarithm of the variance rather than the 

level. The GARCH-in-mean (GARCH-M) model adds a heteroskedasticity term into the 

mean equation. The quadratic GARCH (QGARCH) model can handle asymmetric 

effects of positive and negative shocks. The Glosten-Jagannathan-Runkle GARCH 

(GJR-GARCH) model (1993) can also model asymmetry in the GARCH process. The 

threshold GARCH (TGARCH) model is similar to GJR-GARCH with the specification 

on conditional standard deviation instead of conditional variance. Family GARCH 

(FGARCH) by Hentschel (1995) is an omnibus model that is a mix of other symmetric 

                                                             
1 http://en.wikipedia.org/wiki/Autoregressive_conditional_heteroskedasticity 
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or asymmetric GARCH models. 

 

2.3 Multivariate GARCH models 

The basic idea to extend univariate GARCH models to multivariate GARCH 

models is that it is significant to predict the dependence in the comovements of asset 

returns in a portfolio. To recognize this feature through a multivariate model would 

generate a more reliable model than separate univariate models. 

In the first place, one should consider what specification of an MGARCH model 

should be imposed. On the one hand, it should be flexible enough to state the dynamics 

of the conditional variances and covariances. On the other hand, as the number of 

parameters in an MGARCH model increases rapidly along with the dimension of the 

model, the specification should be parsimonious to simplify the model estimation and 

also reach the purpose of easy interpretation of the model parameters. However, 

parsimony may reduce the number of parameters, in which situation the relevant 

dynamics in the covariance matrix cannot be captured. So it is important to get a balance 

between the parsimony and the flexibility when designing the multivariate GARCH 

model specifications. Another feature that multivariate GARCH models must satisfy is 

that the covariance matrix should be positive definite.  

2.3.1 Formulations of Multivariate GARCH models 

This section emphasizes on giving a brief introduction to several different 

multivariate GARCH models. 

 VEC/DVEC-GARCH models 

The first MGARCH model was introduced by Bollerslev, Engle and Wooldridge in 

1988, which is called VEC model. It is much general compared to the subsequent 

formulations. In the VEC model, every conditional variance and covariance is a function 

of all lagged conditional variances and covariances, as well as lagged squared returns 
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and cross-products of returns. The model can be expressed below: 








 
p

j

jtj

q

j

jtjtjt HvechBvechAcHvech
11

' )()()(  ,                    (7) 

where vech (·) is an operator that stacks the columns of the lower triangular part of its 

argument square matrix, Ht is the covariance matrix of the residuals, N presents the 

number of variables, t is the index of the tth observation, c is an N(N+1)/2 × 1 vector,  

Aj and Bj are N(N+1)/2 × N(N+1)/2 parameter matrices and   is an N × 1 vector. 

The condition for Ht to be positive definite for all t is not restrictive. In addition, the 

number of parameters equals (p+q)×(N(N+1)/2)
2
+N(N+1)/2, which is large. Furthermore, 

it demands a large quantity of computation. 

The DVEC model, the restricted version of VEC, was also proposed by Bollerslev, 

et al (1988). It assumes the Aj and Bj in equation (7) are diagonal matrices, which makes 

it possible for Ht to be positive definite for all t. Also, the estimation process proceeds 

much smoothly compared to the complete VEC model. However, the DVEC model with 

(p+q+1)×N×(N+1)/2 parameters is too restrictive since it does not take into account the 

interaction between different conditional variances and covariances. 

 BEKK-GARCH models 

To ensure positive definiteness, a new parameterization of the conditional variance 

matrix Ht was defined by Baba, Engle, Kraft and Kroner (1990) and became known as 

the BEKK model, which is viewed as another restricted version of the VEC model. It 

achieves the positive definiteness of the conditional covariance by formulating the 

model in a way that this property is implied by the model structure. 

The form of the BEKK model is as follows 

 
   




q

j

K

k

p

j

K

k

kjjtkjkjjtjtkjt BHBAACCH
1 1 1 1

                        (8) 

where Akj, Bkj, and C are N×N parameter matrices, and C is a lower triangular matrix. 
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The purpose of decomposing the constant term into a product of two triangular matrices 

is to guarantee the positive semi-definiteness of Ht. Whenever K > 1 an identification 

problem would be generated for the reason that there are not only a single 

parameterization that can obtain the same representation of the model. 

The first-order BEKK model is  

BHBAACCH tttt 111 
  .                                    (9) 

The BEKK model also has its diagonal form by assuming Akj, Bkj matrices are 

diagonal. It is a restricted version of the DVEC model. The most restricted version of the 

diagonal BEKK model is the scalar BEKK one with A = aI and B = bI where a and b are 

scalars. 

Estimation of a BEKK model still bears large computations due to several matrix 

transpositions. The number of parameters of the complete BEKK model is 

(p+q)KN
2
+N(N+1)/2. Even in the diagonal one, the number of parameters soon reduces 

to (p+q) K×N+N×(N+1)/2, but it is still large. The BEKK form is not linear in 

parameters, which makes the convergence of the model difficult. However, the strong 

point lies in that the model structure automatically guarantees the positive definiteness 

of Ht.. Under the overall consideration, it is typically assumed that p = q = K = 1 in 

BEKK form’s application. 

Constant Conditional Correlations (CCC) models 

The Constant Conditional Correlation model was introduced by Bollerslev in 1990 

to primarily model the conditional covariance matrix indirectly by estimating the 

conditional correlation matrix. The conditional correlation is assumed to be constant 

while the conditional variances are varying. Obviously, this assumption is impractical 

for real financial time series. Then certain modifications were made grounded on this 

form [Annastiina and Timo, 2008]. 

Dynamic Conditional Correlations (DCC) models 
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The Dynamic Conditional Correlation model was proposed by Engle in 2002. It is a 

nonlinear combination of univariate GARCH models and it is also a generalized version 

of the CCC model. The form of Engle’s DCC model is as follows: 

tttt DRDH                                                      (10) 

where 

),,( 2/12/1

11 NNttt hhdiagD   

and each hiit is described by a univariate GARCH model. Further,  

),,(),,( 2/12/1

11

2/12/1

11 NNtttNNttt qqdiagQqqdiagR  , 

where Qt = (qijt) is the N×N symmetric positive definite matrix which has the form: 

111)1(   tttt QuuQQ  .                                 (11) 

Here, iititit hu / ,  and   are non-negative scalars that 1  , Q is the 

N×N unconditional variance matrix of ut. 

The shortcoming of the model is that all conditional correlations follow the same 

dynamic structure.  

The number of parameters to be estimated is (N+1)×(N+4)/2, which is relatively 

smaller than the complete BEKK form with the same dimension when N is small. When 

N is large, the estimation of the DCC model can be performed by a two-step procedure 

which decreases the complexity of the estimation process. In brief, in the first place, the 

conditional variance is estimated via univariate GARCH model for each variable. The 

next step is to estimate the parameters for the conditional correlation. The DCC model 

can make the covariance matrix positive definite at any point in time. 

Other multivariate forms 

To overcome the difficulty of large number of parameters, the O-GARCH model 

was proposed by Alexander in 2000. It tries to express a multivariate GARCH in terms 
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of univariate ones. The advantage of this model is that the fluctuating volatility can be 

explained by a few principle components. One of the disadvantages is that it is usually 

uncertain whether the unconditional variances have the coherent scaling. Another 

multivariate GARCH model GO-GARCH model is proposed by Bauwens et al. in 2006. 

2.3.2 Estimation of MGARCH models 

The most usual way to estimate the conditional covariance matrix in the MGARCH 

model is by the quasi maximum likelihood method.  

Let Ht(θ) be a positive definite N×N conditional covariance matrix of some N×1 

residual vector εt, parameterized by the vector θ. Denoting the available information at 

time t by Ƒt, we have  

Et-1[εt | Ƒt-1] = 0;                                                   (12) 

Et-1[εtεt’ | Ƒt-1] = Ht(θ).                                              (13) 

Generally the conditional covariance matrix Ht(θ) is well specified based on a 

certain MGARCH model. Suppose there is an underlying parameter vector θ0 which one 

wants to estimate using a given sample of T observations. The quasi maximum 

likelihood (QML) approach estimates θ0 by maximizing the Gaussian log likelihood 

function 

 
 





T

t

T

t

ttttT HH
TN

L
1 1

1'
2

1
log

2

1
)2log(

2
)(log  .                (14) 

One needs to notice its assumption that the time series treated should be stationary 

and the distribution of its residual is pre-defined as a conditional Gaussian distribution. 

The latter assumption can meanwhile give us hints on how to check the adequacy of the 

established MGARCH model. 

2.3.3 Diagnostics of MGARCH models 

The check of the adequacy of MGARCH models is essential in identifying whether 

a well specified MGARCH model can attain reliable estimates and inference. 
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Graphical diagnostics for MGARCH models can be fulfilled by examining plots of 

the sample autocorrelation (ACF) and the sample cross correlation functions (XCF). To 

ensure the inference from the estimated parameters in the MGARCH model is enough 

valid, the residuals should be exhibited as a set of white noise with features like 

expected zero mean vector, no autocorrelations, constant variance, and normal 

distribution of the residuals.  

The autocorrelation and cross correlation functions for the squared process are 

shown to be useful in identifying and checking time series behavior in the conditional 

variance equation of the GARCH form. 

In the literature, several tests have been developed to test the autocorrelation no 

matter in univariate or multivariate form. Box and Pierce derived a goodness-of-fit test, 

called the portmanteau test. It may be the most popular one among all the diagnostics for 

conditional heteroscedasticity models. The test statistic may be expressed as a function 

of the covariances between the residuals of the fitted model [Hosking, 1980]. 

A multivariate version is given by 

 


 


M

j

YYYY jCCjCCtrjTTMHM
1

1112 )()0()()0()()( ,                  (15) 

where T is the number of observations, CY(j) is the sample autocovariance matrix of 

order j and )( ttt yyvechY  . 

The distribution of HM(M) is the asymptotical )( 22 MK  under the null 

hypothesis that there is no MGARCH effects. 

But still, the fact is that very few tests are adaptable to multivariate models even 

though there are many diagnostic tests dealing with univariate models. 

To summarize, once the model is assumed to catch the dynamics of the time series, 

the standardized residual ttt Hz ̂ˆˆ 2/1  should satisfy the following conditions 

[Bauwens et al., 2006]: 
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1) Ntt IzzE )ˆˆ( ;                                              (16) 

2) ,0)ˆ,ˆ( 22 jtit zzCov  for all pairs of the variable index i ≠ j;            (17) 

3) ,0)ˆ,ˆ( 2

,

2 ktjit zzCov  for k > 0.                                 (18) 

Testing 1) would find the misspecification in the conditional mean; testing 2) is to 

verify whether the conditional distribution is Gaussian; the purpose of testing 3) is to 

check the adequacy of the dynamic specification of Ht even without knowing the 

validity of the assumption on the distribution of zt. 

Concerning the comparison of the BEKK-GARCH model and the DCC-GARCH 

model, the mean absolute error (MAE) is used to evaluate the fitting performance of 

both models. 

2.3.4 Forecasting 

In the class of multivariate ARCH/GARCH models and their extensions, the 

covariance matrix is no longer constant over time. After such model has been estimated, 

it is always meaningful to get to understand the mechanism that how the future series 

can be generated and whether they fit well with the real series.  

Forecasting by the BEKK-GARCH model 

In the conditional covariance equation of the BEKK-GARCH model 

BHBAACCH tttt 111 
  ,                                    (19) 

Ht is a function of the past information, i.e., Ht-1 and 1t . For this reason, the parameter 

estimation of MGARCH models can be used to predict the future covariance matrix. 

Forecasting by the DCC-GARCH model 

The forecast of the covariance matrix of the DCC model is implemented in a 

two-step procedure. The prediction of the diagonal matrix of the time-varying standard 
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variation through the univariate GARCH models and the forecast of the conditional 

correlation matrix of the standardized residuals are dealt with separately. 

Under the assumption that the volatility at time t is known, what is its forecast 

value at time t+k? In a three-variable case, the answer when k = 1 is given below, 

tiititii hh ,

2

,1,
 


                                            (20) 

where i = 1, 2, 3. 

To obtain the forecast hii,t+k at time t+k, one just need to repeat the substitution 

successively. 

Cited from the definition formula of the DCC-GARCH model, the structure of the 

conditional correlation matrix is the equation (11). 

Under the assumption that QR   and Rt+i = Qt+i for i = 1, …, k, a successive 

calculation as before can be performed to derive Rt+k.  

MGARCH models can be used for forecasting. However, by analyzing the relative 

forecasting accuracy of the two formulations BEKK and DCC, it can be deduced that the 

forecasting performance of the MGARCH models is not always satisfactory. Many 

studies, e.g. see Andersen and Bollerslev (1998), reveals that the apparent poor 

forecasting effect of the MGARCH models is due to using the squared shocks as an 

approximate value for the true conditional volatility. 
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3. Construction of Multivariate GARCH Models 

 

3.1 Data Description 

The original data is provided by the European Central Bank (ECB) website
2
. It 

contains daily zero rates of AAA-rated euro area central government bonds, from 

01/01/2007 to 30/04/2010. The following table gives a fraction of the data, for example, 

on 2-Jan-07, the zero rate with maturity 6 month is 3.61% in continuous compounding. 

Table 3.1 the Zero Rate Data from ECB 

 6m 1y 2y 

2-Jan-07 3.611032 3.749662 3.790767 

3-Jan-07 3.611704 3.74577 3.782817 

4-Jan-07 3.618205 3.754924 3.792305 

5-Jan-07 3.626887 3.776559 3.823927 

8-Jan-07 3.625807 3.76995 3.815602 

9-Jan-07 3.636011 3.777952 3.822553 

10-Jan-07 3.65271 3.798284 3.843286 

With given ZRit , the zero rate at time t, and maturity T, the zero coupon bond price 

pit is calculated as 

TZR

it
iteSp


 , i = 1, 2, 3.                                          (21) 

where S is the par value, in our case taking the value 100. The daily log return rt is 

calculated as follows: 

)ln(
1,

,

,




ti

ti

ti
p

p
r , i = 1, 2, 3.                                           (22) 

Their associated line graphs are plotted in the following Figure 3.1. Three variables 

(var1/var2/var3) correspond to three daily returns with different maturities (6m/1y/2y). 

One may see that during the second half of year 2008, the daily returns exhibits high 

                                                             
2 http://www.ecb.int/stats/money/yc/html/index.en.html 
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volatility, reflecting a financial crisis. Besides, their descriptive statistics are given in 

Table 3.2. Moreover, the result of ARCH effect [Walter, 2009] test proposed by Engle of 

each return series is given in Table 3.3, where ”H” being 1 indicates rejecting of null 

hypothesis that there is no ARCH effect. One may see that each variable/return has 

significant ARCH effect. 

 

Figure 3.1 Daily Log-Return of Bonds with Different Maturities - 

 6m, 1y and 2y from top to bottom  

Table 3.2 Descriptive Statistics of Return Series with different maturities (6m/1y/2y) 

  Mean Median Max Min Std.Dev. Skewness Kurtosis Jarque-Bera Prob 

var1 0.002325 -0.000084 0.137364 -0.058140 0.016573 2.532435 19.69058 8049.379 0.0000 

var2 0.004493 0.001949 0.218942 -0.194397 0.040345 0.305750 6.771629 386.2683 0.0000 

var3 0.008162 0.006838 0.353296 -0.452186 0.097917 -0.139231 5.129021 121.9801 0.0000 
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Table 3.3 GARCH Effect Testing of Return Series 

 var1 var2 var3 

Lag H pValue H pValue H pValue 

1 1 0.0357 1 0.1887×10
-5

 1 0.2385×10
-5

 

2 1 0.0121 1 0.4053×10
-5

 1 0.1165×10
-5

 

3 1 0.0000 1 0.0157×10
-5

 1 0.0279×10
-5

 

4 1 0.0000 1 0.0002×10
-5

 1 0.0108×10
-5

 

5 1 0.0000 1 0.0006×10
-5

 1 0.0086×10
-5

 

One can detect from Table 3.2 or Figure 3.1 that the bonds with the longer maturity 

are much more volatile than those with a shorter maturity. 

Additionally, the financial data here exhibits features like: 

 Volatility clustering – Volatility does not keep constant. It is quite common that 

high returns tend to be followed by high returns and low returns tend to be close with 

low returns. 

 Leptokurtosis effect – By viewing the value of kurtosis, one can conclude that the 

return series can show the feature of fat tails relative to the normal distribution as high 

kurtosis indicates a larger possibility of extreme movements. 

 Leverage effect – Volatility increases more after low returns than after high returns. 

A simple explanation for this is that negative returns imply a larger proportion of debt 

which leads to a high volatility after smaller changes. 

 Skewness – All of three variables show evidence of some degree of skewness. The 

effect of skewness may be positive or negative, which describes their departure from 

symmetry. 

 Long-run memory effect – The existence of this effect reflects persistence 

temporal dependence even between distant observations. 

In addition, the Jarque-Bera statistics reject the null hypothesis that the log return 

series are normally distributed as the probability of BJ test are all equal to zero.  
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3.2 Multivariate-GARCH modeling 

The data of 2007, 2008 and first half of 2009, totally 635 observations, is used to 

estimate MGARCH models, and the rest data, i.e., from Jul/2009 is used to evaluate 

model forecasting. As the BEKK-GARCH and DCC-GARCH models are the two most 

widely used multivariate GARCH models, we will restrict to model the volatility and 

co-volatility of the three variables by using BEKK and DCC forms. 

Next we present the estimated model, and their diagnostics and forecasting are 

provided in following subsections. 

3.2.1 Model Estimation 

As stated before, MGARCH models are estimated by maximum likelihood 

techniques. In our case, the process was performed by the econometrics software 

package RATS 7.0 (Regression Analysis of Time Series) which is used worldwide for 

analyzing time series, developing or estimating econometric models and forecasting. 

Because of the flexible maximum likelihood estimation capabilities of RATS [Estima, 

2007a; 2007b], it has advantages over many other software packages on estimating 

standard multivariate-ARCH and multivariate-GARCH models. 

RATS supports different forms of MGARCH models, including general MGARCH, 

BEKK, diagonal, VECH, CCC (Constant Conditional Correlation), DCC (Dynamic 

Conditional Correlations), and EWMA (Exponentially Weighted Moving Average) 

models. In this thesis, only two widely used MGARCH forms, BEKK form and DCC 

form are estimated. 

The optimization algorithm used for the maximum likelihood estimation is BFGS 

proposed independently by Broyden (1970), Fletcher (1970), Goldfarb (1970) and 

Shanno (1970). As a numerical optimization algorithm, it uses iteration routines to 

obtain the coefficient estimation.  

Convergence is assumed to occur if the change in the coefficients to be estimated, 
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i.e. ),/min( 12112   , is less than the convergence criterion option cvcrit 

specified. The convergence criterion option cvcrit used in this thesis was chosen as the 

default value 0.00001. 

3.2.2 BEKK models 

As illustrated before, the BEKK form [Engle and Kroner, 1995] of MGARCH takes 

the following form: 

BHBAACCH tttt 111 
                                      (23) 

Note that an advantage of BEKK form over VECH form is that positive-definiteness 

is automatically ensured. Parameter estimation of BEKK form is provided in Table 3.4. 
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Table 3.4 the Estimation of BEKK-GARCH Model Parameters 

Variable Coeff Std Error T-Stat Signif 

Mean(1) -0.0012 0.0003 -4.3372 0.0000 

Mean(2) -0.0021 0.0010 -2.1793 0.0293 

Mean(3) -0.0039 0.0026 -1.4932 0.1354 

C(1,1) 0.0007 0.0003 2.3633 0.0181 

C(2,1) 0.0035 0.0009 3.9886 0.0001 

C(2,2) -0.0000 0.0016 0.0004 0.9998 

C(3,1) 0.0077 0.0023 3.2883 0.0010 

C(3,2) -0.0000 0.0048 -0.0003 0.9998 

C(3,3) 0.0000 0.0008 0.0002 0.9999 

A(1,1)                  0.3400 0.0711 4.7793 0.0000 

A(1,2)                0.1881 0.1658 1.1345 0.2566 

A(1,3)               0.6015 0.3843 1.5651 0.1175 

A(2,1)              -0.0415 0.0670 -0.6197 0.5354 

A(2,2)                  -0.1082 0.1356 -0.7985 0.4246 

A(2,3)              -0.5756 0.3350 -1.7179 0.0858 

A(3,1)             0.0245 0.0216  1.1343 0.2567 

A(3,2)               0.1713 0.0424 4.0429 0.0001 

A(3,3)               0.5036 0.1129 4.4603 0.0000 

B(1,1)              1.2262 0.0172 71.3272 0.0000 

B(1,2)                0.3803 0.0392 9.6977 0.0000 

B(1,3)                 -0.1912 0.1171 -1.6328 0.1025 

B(2,1)              -0.3316 0.0169 -19.6146  0.0000 

B(2,2)              0.6331 0.0140 45.0757  0.0000 

B(2,3)               0.1752 0.0183 9.5760 0.0000 

B(3,1)            0.0997 0.0061   16.3942   0.0000 

B(3,2)            0.0802 0.0098 8.1893   0.0000 

B(3,3)               0.9035 0.0085 48.2091 0.0000 

We can see from Table 3.4 that most of variables estimated here are statistically 

significant. 

The estimated BEKK-GARCH model can be obtained by substituting the following 

matrices into equation (23). 



















503572680.0171321966.0024501622.0

575566895.0108241876.0041537184.0

601514375.0188091926.0340011859.0

A  
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

















903467974.0080216739.0099658347.0

50.1751654880.6331476780.33162841-

40.19117352-50.3802992881.22615944

B  





















000000121.0000001374.0007689214.0

0000000480.0003544914.0

00000653422.0

C  

3.2.3 DCC models 

As reviewed in previous chapter, the DCC model has the following form: 

 tttt DRDH  ,                                              

where ),,( 2/12/1

11 NNttt hhdiagD  , each hiit is a univariate GARCH model, and  

 ),,(),,( 2/12/1

11

2/12/1

11 NNtttNNttt qqdiagQqqdiagR  .  

The matrix Qt = (qijt) is the N×N symmetric positive definite matrix updated by the 

following: 

 111)1(   tttt QuuQQ  . 

where iititit hu / . 

Parameter estimation of DCC model from RATS is provided in Table 3.5. 

Table 3.5 the Estimation of DCC-GARCH Model Parameters 

Variable Coeff Std Error T-Stat Signif 

Mean(1) -9.0478e-04           2.8310e-04 -3.1959 0.0014 

Mean(2) -2.0104e-03    8.6466e-04      -2.3250   0.0201 

Mean(3) -4.2393e-03         2.2654e-03 -1.8713 0.0613 

C(1) 1.2142e-06            4.3198e-07 2.8109 0.0049 

C(2) 4.6008e-07           2.4914e-06 0.1847 0.8535 

C(3) -5.1693e-06           1.7046e-05 -0.3033 0.7617 

A(1)                  0.2145               0.0250 8.5835 0.0000 

A(2)                0.1692                0.0185 9.1365 0.0000 

A(3)               0.1502               0.0179 8.3777 0.0000 

B(1)              0.8259               0.0161 51.2268 0.0000 

B(2)                0.8566             0.0124 69.2042   0.0000 

B(3)                 0.8713               0.0130 67.1575 0.0000 

DCC(1)      0.0934            0.0110   8.4944 0.0000 

DCC(2)      0.8971             0.0119 75.6349 0.0000 
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Except for the constant terms, all the other estimated variables are statistically 

significant. 

Then the estimated DCC model is as following, where Q is the 3×3 unconditional 

covariance matrix of ut: 











































0034.19683.06979.0

9683.00124.18301.0

6979.08301.09934.0

),,(),,(

8971.00934.0)8971.00934.01(

8713.01502.0101693.5

8566.01692.0106008.4

8259.02145.0102142.1

2/1

33

2/1

22

2/1

11

2/1

33

2/1

22

2/1

11

111

1,33

2

1,3

6

33

1,22

2

1,2

7

22

1,11

2

1,1

6

11

Q

qqqdiagQqqqdiagR

QuuQQ

hh

hh

hh

tttttttt

tttt

ttt

ttt

ttt







 

where iititit hu / . 

3.3 Model Diagnostics 

3.3.1 Diagnostics of BEKK models 

The empirical measure of logarithmic daily return variability is called the realized 

volatility. It is computed from high-frequency logarithmic returns [Hull, 2005].  

It is calculated using the subsequent 10 observations on the log-returns in our case. 

In contrast realized volatility constructed from high-frequency returns with the 

restrictive parametric multivariate GARCH models, links between realized volatility and 

the diagonal elements of the conditional covariance matrix have been established 

[Andersen et al., 2003]. 
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(a) 

 

(b) 

 

(c) 

Figure 3.2 Estimated and Realized Volatility of the BEKK Model 
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Basically, the estimated volatility follows the dynamic of the realized volatility. And 

the graph reveals two of the financial data’s features, the volatility clustering and the 

relation between maturity and volatility, that is, longer maturity corresponds to higher 

volatility as indicated in Fig. 3.2 (c). On average, there exists a horizontal lag between 

these two lines for the reason that we calculated the realized volatility by using the next 

ten observations.  

The realized correlation over a horizon of T days is approximated by a consistent, 

empirical estimate. In our case, the realized correlation between the log daily return of 

var i and var j at time t over a T-day horizon is calculated as 






















T

k

jkt

T

k

ikt

T

k

jktikt

Tt

ji

ji

ji

1

2

1

2

1
,

)(var)(var

))(var(var

)var,(var





                 (24) 

where i and j are the corresponding sample means over the T-day period. 
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(a) 

 

(b) 

 

(c) 

Figure 3.3 Estimated and Realized Correlation of the BEKK Model 
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The comparison between the estimated and realized correlation is shown above. It 

can be seen that there is a huge decline on estimated and realized correlation during the 

second half of year 2008. With regard to other time periods, the value of correlation 

between var1 and var2/var3 is around 0.8 and the value of correlation between var1 and 

var3 is even above 0.9. As for the performance of fit, the estimated correlation more or 

less follows the dynamics of the realized correlation except there is also a horizontal lag 

between them. 

The model estimation employed here is the Gaussian quasi MLE method. One of its 

assumptions is that the residuals have a Gaussian distribution. Hence, to test whether the 

estimations of the model parameters are robust, we can check whether the residuals of 

the estimated process are white noise. 

 

Figure 3.4 Standardized Residuals of the BEKK Models 

Calculated by the formula ttt Hz ̂ˆ 2/1 , the standardized residuals are shown in Fig 
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3.4 for the three variables. It indicates that no distinct difference exists among the 

distributions of the three residuals. They all look like white noise on a certain degree. 

Table 3.6 shows the testing result of GARCH effect on the standardized residuals of 

the BEKK model. H = 0 represents the acceptance of the null hypothesis that no 

GARCH effects exist. In contrast with Table 3.3, we can conclude that GARCH effect 

has eliminated quite a lot. The Ljung-Box test based on the autocorrelation plot tests the 

randomness at each distinct lag. H = 0 means that we tend to accept the null hypothesis 

that the series is random. 

Table 3.6 GARCH Effect Testing of each Standardized Residuals (BEKK) 

 var1 var2 var3 

Lag H pValue H pValue H pValue 

1 0 0.2117 0 0.1537 0 0.8706 

2 0 0.3649 0 0.3154 0 0.8924 

3 0 0.4380 0 0.5108 0 0.9291 

4 1 0.0309 0 0.3234 0 0.6651 

5 1 0.0163 0 0.3108 0 0.6329 

 

Table 3.7 LBQ Test of each Standardized Residuals of the BEKK Model 

 var1 var2 var3 

Lag H pValue H pValue H pValue 

1 0 0.9488 0 0.0935 0 0.0507 

2 0 0.8372 0 0.1144 0 0.1412 

3 0 0.9459 0 0.2220 0 0.2655 

4 0 0.9164 0 0.2025 0 0.2158 

5 0 0.9477 0 0.2984 0 0.3276 

Results of the sample autocorrelation and the sample cross-correlation of the 

standardized residuals and the squared standardized residuals are presented here to 

examine the adequacy of the MGARCH model.  

Figure 3.5 shows the sample autocorrelation function of the standardized residual of 

the BEKK model (b) and compare it to the sample autocorrelation of the returns ahead of 

modeling (a). For most of lags, the sample ACFs and XCFs are within the distance between 

positive and negative 2 times standard deviation lines at 95% confidence level. A 
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comparison between the ACFs of the premodel data and the standardized residual indicates 

that GARCH effect has been removed quite a lot. In Fig 3.8, the contrast between the XCFs 

of the corresponding squared terms before and after the BEKK model also proves that the 

GARCH effect has been diminished a lot. 
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(a)                               (b) 

Figure 3.5 ACFs of Premodel Data and Standardized Residual of the BEKK Model 
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(a)                               (b) 

Figure 3.6 ACFs of the Squared Premodel Data and the Squared Standardized Residual of 

the BEKK Model 
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    (a)                                  (b) 

Figure 3.7 XCFs of Premodel Data and Standardized Residuals of the BEKK Model 
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 (a)                                  (b) 

Figure 3.8 XCFs of the Squared Premodel Data and the Squared Standardized Residuals of 

the BEKK Model 
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3.3.2 Diagnostics of DCC models 

Volatility clustering is also presented in Fig 3.9. The estimated volatility on the 

whole changes along with the realized volatility. Also, there exists a horizontal lag 

between these two lines for the same reason explained before. The fitting performance 

of the DCC model is shown in Fig 3.9 and Fig 3.10 not such satisfying as that of the 

BEKK model shown in Fig 3.2 and Fig 3.3. 
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(a) 

 

(b) 

 

(c) 

Figure 3.9 Estimated and Realized Volatility of the DCC Model 
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(a) 

 

(b) 

 

(c) 

Figure 3.10 Estimated and Realized Correlation of the DCC Model 
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Figure 3.11 Standardized Residuals of the DCC Models 

Table 3.8 shows the testing result of GARCH effect on the standardized residuals of 

the DCC model. In contrast with Table 3.3, we can also conclude that GARCH effect has 

eliminated quite a lot. The Ljung-Box test based on the autocorrelation plot tests the 

randomness at each distinct lag.  
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Table 3.8 GARCH Effect Testing of each Standardized Residuals (DCC) 

 var1 var2 var3 

Lag H pValue H pValue H pValue 

1 0 0.0500 0 0.4501 0 0.5339 

2 0 0.1458 0 0.5963 0 0.6506 

3 0 0.2669 0 0.1113 0 0.7538 

4 0 0.3477 0 0.1851 0 0.8506 

5 0 0.4898 0 0.2481 0 0.9222 

Table 3.9 LBQ Test of each Standardized Residuals of the DCC Model 

 var1 var2 var3 

Lag H pValue H pValue H pValue 

1 0 0.1951 0 0.0292 0 0.0830 

2 0 0.4152 0 0.0928 0 0.2226 

3 0 0.5695 0 0.1779 0 0.3635 

4 0 0.2261 0 0.1891 0 0.2889 

5 0 0.2339 0 0.2262 0 0.4050 

 

A comparison, see in fig. 3.12, between the ACF of the premodel data and the 

standardized residual indicates that GARCH effect has been erased much. For most of lags, 

the sample ACFs and XCFs are within the distance between positive and negative 2 times 

standard deviation lines at 95% confidence level. ACFs of the squared data before and after 

the modeling show that they are serially uncorrelated. The cross-correlations of the squared 

pre-model data and the squared standardized residuals of the DCC model also reflects that 

less GARCH effect exists in the squared standardized residuals after modeling. 
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(a)                                  (b) 

Figure 3.12 ACFs of Premodel Data and Standardized Residual of the DCC Model 
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(a)                                  (b) 

Figure 3.13 ACFs of the Squared Premodel Data and the Squared Standardized 

Residual of the DCC model 
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(a)                                  (b) 

Figure 3.14 XCFs of Premodel Data and Standardized Residuals of the DCC Model 
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(a)                                  (b) 

Figure 3.15 XCFs of the Squared Premodel Data and the Squared Standardized 

Residuals of the DCC model 
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3.3.3 Comparison of BEKK and DCC models 

The mean absolute error (MAE) [Engle, 2000] can measure how close the estimated 

variables are to the realized values. It is also called the mean average error. In our case 

MAE is calculated by 





n

k

ikik
n

MAEvi
1

ˆ
1

                                                 (25) 

for volatility where n is the total number of observations or 





n

k

ijkijk
n

MAEij
1

ˆ
1

                                                 (26) 

for correlation where i, j = 1, 2, 3. 

Table 3.10 MAE in correlation and volatility of the BEKK model 

Average error in correlation Average error in volatility 

MAE12 0.1317 MAEv1 0.0056 

MAE13 0.1990 MAEv2 0.0132 

MAE23 0.0324 MAEv3 0.0306 

 

Table 3.11 MAE in correlation and volatility of the DCC model 

Average error in correlation Average error in volatility 

MAE12 0.1354 MAEv1 0.0062 

MAE13 0.2027 MAEv2 0.0142 

MAE23 0.0352 MAEv3 0.0309 

The values of the measure absolute error between these models suggest that the 

parameter estimation of the BEKK model is more accurate than that given by the DCC 

model even through the magnitude of the difference between their corresponding MAEs is 

not enough. 

3.4 Forecasting 

We split our sample into two parts, 2.5-year estimation period and the subsequent 

half-year forecast periods. The dynamic characteristics of the logarithmic daily returns of 

the zero-coupon bonds have been simulated during the estimation period by the 

multivariate GARCH models. After the parameters of the model are estimated, the 

determination of the prediction on the conditional covariance matrix Ht+k at time t+k can 

be attained. 
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As for BEKK-GARCH models, the iteration formula for the purpose of forecast is 

BHBAACCH tttt
  111  . 

With regards to DCC-GARCH models, the iteration formula for the purpose of forecast 

is 

ktktktkt DRDH  
 

where Dt+k and Rt+k can be computed separately and 

),,( 2/1

,33

2/1

,11 ktktkt hhdiagD   
, each hii,t+k is a univariate GARCH model, and  

),,(),,( 2/1

,33

2/1

,11

2/1

,33

2/1

,11 ktktktktktkt qqdiagQqqdiagR   
.  

The matrix Qt+k = (qij,t+k) is the 3×3 symmetric positive definite matrix updated by 

following: 

111)1(   ktktktkt QuuQQ 
. 

where ktiiktikti hu   ,,, / . 
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(a) 

 
(b) 

 
(c) 

Figure 3.16 the Estimated and Forecasted Volatilities-BEKK 

Fig. 3.16 shows the performance of the prediction is better as the maturity gets 

longer. Especially in the third plot (c), a horizontal lag is presented clearly. What is 
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needed to pay attention is that a very sparse observation appears at the very beginning of 

year 2010. That is why a peak suddenly emerges. But the tendency is that the forecast 

volatility then goes back to its normal dynamics exponentially.  

Fig 3.17 presents the poor performance of the BEKK-GARCH model on forecasting 

through the comparison of the realized correlations and the forecast correlations. On the 

left of the vertical line in Fig 3.17 presents the comparison between the realized 

correlation and the estimated correlation by the BEKK form. On the right side of the 

vertical line, it shows the poorer performance on forecasting the correlation among each 

pair of variables in the subsequent half year. 

The forecasting performance of DCC-GARCH models looks better than that of the 

BEKK-GARCH model. The forecast volatility generally follows the dynamics of the 

realized volatility. For the same reason that there is a very sparse observation, a peak 

also appears in the following figure. 

The forecasted correlations by the DCC form in Fig 3.19 also fit better with the 

realized ones. 
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(a) 

 
(b) 

 
(c) 

Figure 3.17 the Estimated and Forecasted Correlations-BEKK 
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(a) 

 

(b) 

 

(c) 

Figure 3.18 the Estimated and Forecasted Volatilities-DCC 
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(a) 

 

(b) 

 

(c) 

Figure 3.19 the Estimated and Forecasted Correlations-DCC 
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The relatively better prediction performance of DCC-GARCH models can also be 

presented in the comparison of the estimated and forecast correlations. One of the 

reasons for this distinction is that the number of parameters estimated in the 

BEKK-GARCH models is more than that of DCC-GARCH models so that the 

summation of the error accumulated by each parameter of the BEKK-GARCH models 

tends to be larger than that of the DCC-GARCH models. 
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4. Conclusions and Future Work 

 

This thesis focuses on the construction and the diagnostics of two formulations of 

multivariate GARCH models – the BEKK and DCC forms. The estimation process is 

fulfilled in the software package RATS 7.0 through the maximum likelihood method. 

After the parameters of these models are estimated, the forecast of the conditional 

covariance matrix is conducted by the iteration process. All our implementations are 

realized under the assumption that the residual terms are followed by a Gaussian 

distribution. Therefore, the diagnostics in evaluating the adequacy of modeling are 

operated by checking whether such assumption is credible enough.  

By comparing the goodness of fit through the mean absolute error, we find that the 

fitting performance of the BEKK – GARCH form is better than DCC – GARCH form in 

our case. This difference may due to the number of parameters of the BEKK – GARCH 

model is comparatively more; so that BEKK – GARCH model has a better capability in 

explaining the information hidden in the history data. In the opposite, the DCC – 

GARCH model has an advantage over the BEKK – GARCH model in the area of 

forecasting as the DCC – GARCH model is more parsimonious than the BEKK – 

GARCH model. In this sense, it is crucially important to balance parsimony and 

flexibility when modeling multivariate GARCH models. 

Regarding the diagnostic tests applied to multivariate GARCH models, our work is 

inadequate because of the fact that few tests are applicable to multivariate cases and also 

due to the difficulty in implementing those extended forms of the tests for detecting the 

univariate GARCH effect.  
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