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Abstract 
 
 
Bioassays are methods employed to estimate the effect of a given substance in living 
matter, and therefore they are frequently used in the pharmaceutical industry.  
The experimental design of bioassays has to take into account the intrinsic variability in 
the biological test units and other factors as operators, day variation, batch variation, etc. 
Thus, statistical models employed to analyse bioassays include both fixed and random 
effects. The sample size estimation in mixed models is a complicated issue and no 
general formulas can be applied. An alternative approach to estimate the sample size to 
obtain a certain estimate with a confidence interval of a specific width is to perform 
computer simulations.  
In this thesis, simulations are performed to calculate the confidence interval of the 
logarithm of the effect of the test relative to the standard as a function of the number of 
replicates. The simulated data is compared with experimental data. The results obtained 
with the simulations agree well with the experimental ones. Furthermore, the method 
discussed here can also be used to analyse other experimental designs in which the size of 
the main sources of data variability are known. 
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1 Introduction 
 
The design of products and manufacturing processes are very important activities in most 
types of industries. The success of many companies relays on their capability to 
efficiently develop new products to meet the market demands and to deliver existing ones 
with the right level of quality. In this context quality means that the properties of the 
product are within a certain range. Some properties are easily measured, while the 
estimation of others requires sophisticated procedures. Experiments are used to confirm 
or reject a hypothesis, to characterize a process, or to evaluate the performance of a 
system. In general, the objective of an experiment is to determine how certain variables 
affect a system. The way to measure this effect is to study a response to some stimulus. 
 
In industrial applications, experiments are often performed to determine the most 
influential variables in the manufacturing processes. If the most relevant variables are 
known, the variability of the process can be controlled. The response is affected not only 
by the input variables that the experimenter controls but also by other variables, for 
example, small changes in temperature, difference in operators, etc. The experimental 
design should take into account all the relevant variables that affect the response so they 
are represented in the data. The statistical analysis of the data takes these variables into 
account and therefore objective conclusions can be drawn from the data. 
 
Statistical tools are widely used within the pharmaceutical industry. Statistical designed 
experiments are used to determine the properties of the drugs, like for example content 
and efficiency of the active ingredient. The concentration of a medicine can be 
determined by the effect of the active ingredient on the body. One of the experiments 
used to determine the effect of a drug relative to a known standard is the biological assay. 
In biological assays, the variable is the amount of drug, the system is a cell, and a 
response is a property of the cell that changes when the drug is given. The experimental 
design employed in biological assays is different from those typical used in chemical and 
physical experiments since the intrinsic variation in living matter increases the 
complexity of the experiment and the data analysis. The experimental design has not only 
to take into account the intrinsic variability in the biological test units but also other 
factors as operators, day variation, batch variation, etc.  
 
In this thesis a discussion about how experimental designs are used in biological assays is 
presented. Furthermore, experimental data from a pharmaceutical company is presented 
and analysed.  The data consist on a coagulation study performed using batches with 
different properties. The main objective of this study is to determine the biological 
activity of these batches. As mentioned, the experimental results are affected by external 
factors. Therefore, in order to assure that the correct value of response is obtained from 
the analysis it is of fundamental importance to characterize the variability of the 
experimental method. 
 
One of the main objectives of the analysis presented here is to determine how the 
variability of the data affects the uncertainty of the reported results. By knowing the 
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uncertainty of the estimate, it is possible to decide in advance how many experiments are 
needed to estimate the response with certain precision. This is of fundamental practical 
importance since biological experiments are expensive and time consuming. The first part 
of the thesis presents an introduction to bioassays and the statistical methods used to 
analyse the experimental data. An estimation of the uncertainty of the estimate is 
obtained. 
 
In the case of complicated experiments like biological assays with several factors, there is 
not a general formula to estimate how many experiments are needed in order to assure 
that the confidence interval of the estimate has a certain size. An alternative approach to 
estimate the how many experiments are needed is to perform computer simulations with 
data that has the same variability as the experimental data. The second part of this work 
shows the results from simulations based on the results of the analysis of the 
experimental data. By using this method, the number of experiments can be estimated. 
The procedures presented here are valid for other experiments in which the response is 
deeply affected by several variables that cannot be controlled. 
 
The structure of the thesis is as follows: a brief description of biological assays is 
presented in Chapter 2 and a standard experimental design is described in Chapter 3. Data 
from a biological assay taken from the pharmaceutical industry is analysed in Chapter 4. 
Simulations based on the data analysis are discussed in Chapter 5. A summary of the 
work is presented in Chapter 6. 
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2 Principles of biological assays 
 

2.1 Biological assays 
 
A biological assay or bioassay is employed to determine the effect of a substance on a 
certain type of living matter [1, 2]. A biological test system, for example animals, tissue, 
etc, is exposed to a particular stimulus like a drug, whose concentration (dose) is usually 
varied. The magnitude of the response of the biological system depends on the dose. In 
contrast with physical or chemical methods, detailed information of the drug activity as a 
function of the dose is obtained.  
A special characteristic of bioassays is that one of the largest sources of variation in the 
outcome is the difference between the test units, and since the response is dependent on 
living matter this introduces large variability between measurements obtained by 
identical operations [1-3]. 
 
The response can be a characteristic like body weight of the test units, or a change in a 
characteristic, change in body weight, or the occurrence of a certain phenomena, e.g. 
death. For example, in toxicological assays several doses of a substance are given to rats 
and the response variable is the survival of the rats [1].  

Biological assays are usually comparative. The capacity of a substance to cause a specific 
effect is estimated relative to a standard. The standard and the test preparations are 
identical in their biological activity principle and differ only in extends to which they are 
diluted by solvents. This type of bioassay is used in the pharmaceutical industry to 
determine the potency of new batches relative to a standard sample [2, 4-5]. 

2.2 Types of biological assays 

There are two types of quantitative biological assays: direct and indirect assays [1]. The 
principle of a direct assay is to measure the doses of the standard and the test preparations 
that produced a specified response. The potency of the test preparation relative to the 
standard is defined as the amount of standard equivalent in effect to one unit of the test 
[1]. In other words, the potency of the test is defined as how much standard it is needed to 
produce the same effect as with one unit of the test substance. A direct assay is of limited 
applicability since it requires measuring the exact dose needed, not merely one that is 
large enough to produce a certain effect. The response must be easily recognized and the 
dose must be administered in a manner that the exact amount needed to produce the 
response is recorded [1]. 

In an indirect assay, several doses are given to different biological units. The response is 
recorded for each dose (see Fig. 1). The relative potency of the test sample is determined 
relative to that of the standard by statistical analysis of the dose-response relation. 
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Figure 1 Typical bioassay data. A standard and a test substance are given to biological units. A 
response is recorded and the relative potency of the test substance can be determined relative to the 

potency of the standard. 

2.3 The dose response relation 

In order to compare the biological response caused by a test sample relative to a standard 
preparation, the test sample should contain the same active substances as the standard 
preparation. Furthermore, the test sample should not contain any other chemical, like for 
example impurities, which can affect the response variable. This implies that the test 
substance behaves as a dilution or concentration of the standard preparation. 

A random sample of several identical biological units receives a dose z of the standard 
preparation, which produces a response of size Us. The dose-response function is FS(z), 
which is a real single valued function in the dose range used in the assay. The same 
procedure is repeated for the test preparation. The response function for the test 
preparation is Ft(z). For a certain response U, the doses are Zs and Zt (see Fig. 2). 

Since the test preparation behaves as a dilution of the standard preparation, the 
mathematical form for the response is the same for both preparations. This condition is 
known as similarity, and it is a prerequisite of all dilution assays. For all doses Z is 
fulfilled that 

st ZZ =ρ*  

This expression in log-scale is )log()log()log( st ZZ =+ ρ . The logarithm of the relative 
potency is the horizontal distance between the two responses (see Fig. 2). 
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Figure 2 Dose-response curve for a bioassay. The relative potency is defined as the difference in dose 
between the standard and the test preparation that produces the same response. 

2.4 Parallel line assays 

In general, dose-response functions are not linear but they can be transformed to become 
linear. One of the most frequently used transformations is the log-transformation [2]. In 
the most widely used type of assay, the transformed response has a homoscedasic linear 
regression on log-dose, that is the variance of the log-response is independent of the log-
dose. For such an assay the condition of similarity is equivalent to the condition that the 
test and the sample transformed response curves are parallel. 

An example is presented in Fig. 2. The dose-response curves of the test and the standard 
preparation are 

)log(* dosebaY tt +=  

)log(* dosebaY ss +=  

The relative potency is defined as the amount of standard sample needed to produce the 
same response as with the test preparation, therefore the relative log-potency is the 
horizontal distance between the two responses: 

)log(*)log(* ttss dosebadoseba +=+  

Therefore  
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b
aadosedose ts

st
−

=−= )log()log()log(ρ . 

The value of the relative potency is obtained by taking the exponential of )log(ρ . 
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3 Statistical analysis of bioassays 
 

3.1 Experimental design 

A typical experimental design used in bioassays is presented in Fig. 3. A sample of the 
test and standard drug are taken randomly from a production batch. The samples are 
diluted in different ways until reaching the final preparation. The final preparations are 
given to a certain biological system in several doses, and a numerical response is 
measured. Several response measurements are usually taken for each dose. The whole 
procedure is repeated several times.  

 

Figure 3 Schematic representation of the most common steps in a bioassay. 

The relation between dose and response in biological systems is usually non-linear. 
However, if a small range of doses is used, it is usually possible to find a transformation 
that the response variable linear is this interval. The log-transformation is frequently 
applied [2], and a linear model is used to describe the log-response. Additionally, the 
dose axis is usually also log-transformed since it is easier to calculate the logarithm of the 
relative log potency.  

In addition to the intrinsic variability due to differences between the biological test units, 
there is variability due to other experimental factors, due to variation in sample 
preparations, technicians, equipment, batches, etc. A model that describes the response 
variable as a function of the dose and sample type, must take into account all the factors 
that affect the response. The factors like sample type (test and standard) and dose levels 
are the specific levels of interest and they are denominated fixed factors. The conclusion 
of the experiments is only valid for the levels measured during the experiments and 
cannot be extended to other levels. It is desirable to extend the conclusions from the data 
analysis, not only to a certain machine but all the machines, and for all the batches, etc., 
therefore several factors included in the experimental design will be modelled as random 
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factors. This implies that it is assumed that the levels of these factors are a random 
sample of the entire population, and therefore the conclusions from the data analysis can 
be extended to all levels in this population. Statistical models that include fixed and 
random factors are denominated mixed models. 

Since in the experimental set-up both random and fixed effects are included, the model 
used to analyse the data is a mixed model. The observed variance can be partitioned into 
components related to the experimental variables. This method is called analysis of 
variance (ANOVA) [7] and it allows attributing the variance to different experimental 
parameters. Therefore, it is used in this work to identify which parameters introduce the 
largest variation. 

The observations must fulfil the following assumptions [2]: 

• Independence  
• Constant variance of the responses 
• Normally distributed residuals with mean zero and constant variance. 

During the sample preparation it is common to violate the independence assumption. For 
example, if a multichannel pipette is used, the observations are not really independent. 
Therefore it is important that the statistical model take into account blocks (e.g due to 
serial dilution) [2]. If these factors are not considered in the model, the estimates will not 
be as precise as they could be [2].  

The ANOVA and linear regression methods are reasonably robust to mild departures 
from assumptions regarding constant variance or normality [7]. In many cases, the data 
can be transformed so the transformed response will be sufficiently close to constant 
variance and normality.  
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4 Mixed models applied to bioassays 

4.1 Data 

The data analysed in this work correspond to a coagulation assay and it is provided by 
Novo Nordisk A/S. 

4.2 Experimental design 

A bioassay is performed to compare the response of a biological system when exposed to 
four batches of various nature and quality.  

The factors expected to affect the response of the biological system to the drug are: 
 

• Biological unit 
• Batch 
• Operator 
• Sample preparation process 
• Dose 
• Other factors (temperature, day of the week, etc.) 

 
In order to assure that all the variation sources are included in the experiment, the set-up 
presented in Fig. 4 and Fig. 5 is implemented. A sample is selected randomly from each 
batch and treated in several steps to obtain five different concentrations. The final 
preparations are given to randomly selected biological units. Two measurements are 
taken for each unit. The experiment is replicated in 10 blocks during a period of one 
week. Therefore, the block effect and the date effect are highly confounded. 
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Figure 4: Experimental set-up used in a bioassay experiment. This procedure is performed for all 
samples taken from four batches. The experiment is replicated using new preparations and new 

biological units ten times during a week. 

Operator

A B
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A B
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Block 6

Block 8

Block 10  

Figure 5 Experimental set-up used in the biological assay. Each operator was assigned to five 
replicates (blocks) 

Typical data from the experiment is shown in Fig. 6. There it is observed that the 
dispersion in the data increase when increasing the dose1. A log-transformation is applied 
to the data (see Fig. 7). The log-transformed data is linear in log-dose and an ANOVA 
model will be used to analyse the transformed data.  

                                                 
1 Dose is defined as the inverse of the dilution. 
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Figure 6: Typical results obtained in the bioassay. 

 
Figure 7 Log-transformed data from a bioassay. 

 
 

4.3 Statistical models 

In order to characterize the experimental set-up it is important to identify which are the 
largest variation sources.  

A mixed model is applied to estimate the different variance component. The fixed effect 
of the model are: log(dose) and batch. The following factors are modelled as random: 

• Block  
• Operator 
• Sample preparation process  
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These factors are considered random since the conclusions of the assay are to be valid for 
all possible operators, sample processes and blocks. In other words, the levels of these 
factors are randomly selected from a larger population of possible levels.  

The log-transformed data is assumed to follow a normal distribution. Furthermore, it is 
assumed that the variance is constant across the batches and log-dose’s levels. Several 
models are fitted to the transformed data and these approximations and the results are 
discussed in the next section. 

 

4.3.1 Model 1: Full model 

The model is  

ijklmsmlkjiijkmlsY εψκγαδμ ++++++=)log(  

Where 

μ  is the overall mean 

iδ is the batch effect with i levels: batch 1,2, 3 and 4. 

jα is the block effect with j: 1,2,3..,10. 

kγ is the operator effect with k levels (T1 and T2). 

lκ is the log-dose effect with five l levels: 0, -0.6, -1.3, -1.9 and -2.3 

mψ is the sample preparation effect with  m levels: 1, 2. 

ijklmsε is the residual for each data point with s replicates (s:1,2) 

The factors batch and dose are considered as fixed, therefore the inference from the 
experiment is only valid for the levels studied here. 

The random effects are considered to be independently and normally distributed with 
mean zero and variance and . The error term is assumed to be independently 

and normally distributed with mean zero and variance . Furthermore, the random 
factors and the residuals are independent. 

22 , αψ σσ 2
γσ

2σ

The model was fitted in SAS JMP using the “fit model” routine. The results are shown in 
Tabs. 1 and 2.  
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Table 1 ANOVA table for model 1. Both fixed effects are statistically significant at the 0.05 
significance level. The degrees of freedom (DF) of the factors are indicated as well as the DF of 
freedom of the denominator of the test. 
 
Source DF DF Denominator F Ratio P-value
log(dose) 1 717.40 57416.21 0.00 
Batch 3 58.70 3.54 0.02 
 
 
Table 2 Variance components for model 1. The random effects with larger contribution to the total 
variability are the residuals and the block effect. 
 
Random Effect Var 

Component 
Std Error 95% 

Lower 
95% 
Upper 

Pct of 
Total 

Block 0.0011451 0.0005909 -0.000013 0.0023033 52.97 
Operator 0.0000979 0.0001534 -0.000203 0.0003986 4.53 
Sample preparation 
process  

0.0000656 2.679e-5 0.0000131 0.0001181 3.04 

Residual 0.0008531 4.5053e-5 0.0007713 0.0009488 39.47 
Total 0.0021617    100.00 
 
As expected, both log-dose and batch are statistically significant effects. For the random 
effects, the block effect contributes most to the variability of the data after the residual 
contribution. The standard error of the estimate of the variability due to the factor 
operator is much larger than the estimate. This is due to the fact that only two levels of 
operator are tested in the experiment. In order to get a somewhat good estimator of the 
variability it is strongly recommended to include several levels of the random factor [7].  
 
Different plots for the residual analysis of Model 1 are shown in Fig. 8. The normality 
assumption of the residuals can be checked by using the histogram and the normal plot 
(Fig. 8 (C)). Gross deviations from the normality assumptions are not observed. The plot 
of the residuals against the date in which the measurements are performed is useful to 
detect correlation between the residuals and violation of the constant variance 
assumption. From Fig. 8 (A) it seems that the residuals increase with time. This is a 
concern, because it indicates that some factor in the experiment changed overtime.  
Figure 8 (B) also provides information about the violation of the constant variance 
assumption. If the model is correct and the assumptions are satisfied, the residual should 
be structureless, and they should be uncorrelated to any other variable.  
It seems that the residuals for middle log-dose values are more negative than for the other 
log-dose values. Additionally several potential outliers are observed. 
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Figure 8 Residual of Model 1. (A) The residuals are plotted by day to identify potential correlation 
between the residuals. (B) The predicted values are plotted against the residuals to detect possible 
violation of the constant variance across group assumption. (C) Histogram and normal probability 
plot of the residuals are used to check the normality assumption. 

4.3.2 Model 2: Reduced model with two random factors  

It is seen in Tab. 2 that it is not possible to estimate the variation due to the factor 
operator. Therefore, a simpler model without this factor (reduced model) is fitted to the 
data. The model is  

ijmsmljiijlmsY εψκαδμ +++++=)log(  

Where 

μ  is the overall mean 

iδ is the batch effect with i levels: batch 1,2, 3 and 4. 

jα is the block effect with j: 1,2,3..,10. 
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lκ is the log-dose effect with five l levels: 0, -0.6, -1.3, -1.9 and -2.3 

mψ is the sample preparation effect with  2 m levels 

ijmsε is the residual for each data point with s replicates (s:1,2) 

As in the full model, the only fixed factors are batch and log-dose. 

The results are shown in Tabs. 3 and 4. 

Table 3 ANOVA table for model 2. Both fixed effects are statistically significant at the 0.05 
significance level. The degrees of freedom (DF) of the factors are indicated as well as the DF of 
freedom of the denominator of the test. 
 
Source DF DF Denominator F Ratio P-value 
log(dose) 1 719.10 56538.15 0.00 
Batch 3 58.66 3.54 0.02 
 
Table 4 Variance components for model 2. The random effects with larger contribution to the total 
variability are the residuals and the block effect. 
 
Random Effect Var 

Component 
Std Error 95% 

Lower 
95% 
Upper 

Pct of 
Total 

Block 0.0009054 0.0004622 -5.157e-7 0.0018113 49.31 
Sample preparation 
process 

6.4381e-5 2.6786e-5 1.188e-5 0.0001169 3.51 

Residual 0.0008664 0.0000457 0.0007833 0.0009634 47.18 
Total 0.0018362    100.00 
 
Likewise in Model 1, both log-dose and batch are statistically significant effects. For the 
random effects, the block effect contributes most to the variability of the data after the 
residual contribution.  

Different plots for the residual analysis of Model 2 are shown in Fig. 9. Also in this case, 
gross deviation from the normally assumptions are not observed. The assumption of non-
constant variance is not well fulfilled in this model either. 
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Figure 9 Residual of Model 2. (A) The residuals are plotted by day to identify potential correlation 
between the residuals. (B) The predicted values are plotted against the residuals to detect possible 
violation of the constant variance across group assumption. (C) Histogram and normal probability 
plot of the residuals are used to check the normality assumption. 

4.3.3 Model 3: Reduced model with one random factor 

Since approximately 50 % of the variation in the data is due to the blocks (see Tab. 2 and 
4), thus a random model with only this factor is considered. 

The model is  

ijlsljiiljsY εκαδμ ++++=)log(  

Where 

μ  is the overall mean 

iδ is the batch effect with i levels: batch 1,2, 3 and 4. 

jα is the block effect with j: 1,2,3..,10. 

lκ is the log-dose effect with five l levels: 0, -0.6, -1.3, -1.9 and -2.3 
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ijlsε is the residual for each data point with s replicates (s:1,2) 

Likewise in the full model, the only fixed factors are batch and log-dose. 

The results are shown in Tabs. 5 and 6.  

Table 5 ANOVA table for model 3. Both fixed effects are statistically significant at the 0.05 
significance level. The degrees of freedom (DF) of the factors are indicated as well as the DF of 
freedom of the denominator of the test. 
 
Source DF DF  

Denominator 
F Ratio P-value

log(dose) 1 778 53228.35 0.00 
Batch 3 778 6.68 0.00 
 
 
Table 6 Variance components for model 3. The random effects with larger contribution to the total 
variability are the residuals and the block effect. 
 
Random Effect Var Component Std Error 95% Lower 95% Upper Pct of Total 
Block 0.0009108 0.0004612 6.8898e-6 0.0018146 49.735 
Residual 0.0009205 4.667e-5 0.0008354 0.0010192 50.265 
Total 0.0018312    100.000 
 
As in the other cases, both log-dose and batch are statistically significant effect. The 
estimate for the variance component of block is similar to that of Model 2. In comparison 
with Models 1 and 2, Model 3 has larger degrees of freedom to estimate the fixed effects, 
since this model contains only one random effect. 

Different plots for the residual analysis of Model 3 are shown in Fig. 10. Large deviations 
from the normality assumptions are not observed. The assumption of non-constant 
variance is not well fulfilled in this model either. 
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Figure 10: Residual of Model 3. (A) The residuals are plotted by day to identify potential correlation 
between the residuals. (B) The predicted values are plotted against the residuals to detect possible 
violation of the constant variance across group assumption. (C) Histogram and normal probability 
plot of the residuals are used to check the normality assumption. 
 

4.3.4 Investigation of non-constant variance 
 
As observed in Figs. 8-10, there are indications that the error variance is not constant. 
This is an important concern in models with random factors since the estimation of the 
variances of the random effects can be affected. Figure 11 show the data plotted by batch, 
block and by log-dose. The variability of the data is similar for all batch types, and for all 
block levels. The variability increases with log-dose, meaning that the detection and/or 
the sample preparation methods do not perform as well for large log-dose values. 
 
A formal test of the equality of variance can also be performed. Bartlett’s test is 
frequently used to test the equality of variance hypothesis [1, 7]. This test compares the 
weighted arithmetic average of the sample variances to the weighted geometric average 
of the sample variances [8].  Under the null hypothesis (the variances of all treatments are 
equal), the geometric mean is less than or equal to the arithmetic mean. A difference 
between the means indicates that the variances between treatments differ. The Bartlett’s 
test is based on a function of these means that approximates a χ2-distribution. A drawback 
of this procedure is that it is very sensitive to the normality assumption.  
The modified Levene test is robust to departure from normality [7]. This test calculates 
the absolute deviation of the observations in each treatment from the treatment median. 
Then it evaluates whether the means of these deviation are equal for all treatments. The 
results of the Bartlett’s test and the modified Levene test are listed in Tabs. 7-9. 
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Figure 11 Log-response vs log-dose, batch and blocks. The variability seems to be constant across 
batch and block’s levels. The variability of the response increases with log-dose indicating that the 
measuring and/or the sample preparation procedures are not as efficient for large dose levels as for 
lower levels. 
 
Table 7 Results for the homogeneity of variance test for batch. 
Test Statistics P-value
Levene 0.01 1.00
Bartlett 0.01 1.00
 
Table 8 Results for the homogeneity of variance test for block. 
Test Statistics P-value
Levene 0.34 0.95
Bartlett 0.06 1.00
 
Table 9 Results for the homogeneity of variance test for log-dose. 
Test Statistics P-value 
Levene 11.65 0.00
Bartlett 11.93 0.00
 
The conclusions obtained from the plot analysis and the Levene and Bartlett’s tests are 
similar, the variances for different blocks and batches can be assumed to be equal at the 
0.05 significance level, but the variances for different doses are different. This 
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information is very valuable to evaluate the performance of the experimental method and 
plan possible improvements. 
 
It is expected that the departure from the constant variance assumption should not affect 
the results considerable since ANOVA is a robust method. However in models with 
random effects, unequal error variances would disturb inference on the variance 
components [7]. 
 

4.3.5 ANOVA F-test and the normality assumption  
The validity of the ANOVA F-test relays on the assumption that the random errors are 
normally and independently distributed random variables [7].  An alternative approach 
that does not relay on the normality assumption is to calculate the F randomization 
distribution [7]. Briefly, the data is randomly sorted between the different treatments. For 
example, if there is not difference between the blocks’ means, all data allocation is 
equally likely. For each randomly selected data allocation, the F-values are calculated. 
These values are called the randomization distribution. Then, the actual F-value is 
compared to the randomization distribution. 
 
The disadvantage of this approach is that for large amount of data is complicated to 
calculate the exact randomization distribution. However, this distribution is well 
approximated by the normal F distribution [7]. Therefore, even without the normality 
assumption, the ANOVA F-test can be seen as an approximation to the randomization 
test [7]. 

4.3.6 General considerations about the experimental design 

There are several factors that must be considered when designing a bioassay. First of all 
the intrinsic variation between the biological units largely affect the results. Since the 
samples have to be manipulated before the measurements, factors like operator and 
sample preparation also increase the variability. Furthermore, additional “noise” is 
introduced by inhomogeneities in the drug’s batches. Day-to-day variation also plays an 
important role. 

In order to determine which factors affect the most this bioassay, several mixed models 
are fitted to the data. In all cases, it is observed that the larger contribution is the block-
to-block variation, which reflects the day-to-day variation (the block and day effects are 
largely confounded in this design). It is also observed that the results obtained for larger 
log-dose show more variability, indicating that the experimental method does not perform 
as well for this log-dose range.  

The objective of this study is to find an optimal set-up to obtain an estimate of the 
relative potency with a certain confidence interval. From the analysis presented in this 
chapter, it is concluded that the main variability factor are the blocks. In all cases the 
block-to-block variation accounted for almost 50 % of the total variability. Therefore, 
data simulations will be performed only considering a block-to-block variance of 0.001, 
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which is the rounded value corresponding to the block’s variance component presented in 
Tab. 6. The results of the simulations are discussed in Chapter 5. 
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5 Data simulations for bioassays 

5.1 Relative log-potency calculation of the experimental data 
 
This chapter describes the calculations of the relative log-potency for four different 
batches. In the first case, we consider the drug of batch 1 as reference and the others as 
test. In the second case, we consider drug of batch 2 as reference and drug of batch 3 and 
4 as test. Finally, drug of batch 3 is treated as a reference and drug of batch 4 as test. 
With this procedure six different log-potencies are calculated.  
 
For each pair of samples, the following regression model is applied in each block [1] 

)log(**)log( dosexY iii κδ +=            (5.1) 

Where 

ix  is the batch type (i=1,2). 

iδ  is the intercept for each batch type. 

κ  is the slope of the line. 

According to Ref. [1], the reportable value for the logarithm of relative potency ( )log(ρ ) 
is the average of the )log(ρ  values obtained for each block. A confidence interval is 
obtained by assuming that the distribution of the mean of )log(ρ  is normal with mean 
and variance 
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where n is the total number of blocks and l is the total number of observations in each 
block.  
 
As an example, the data corresponding to measurements in one block of batch 1 and 2 is 
shown in Fig. 12. This block contains 394 data points. Equation 5.1 is fitted to the data.   
The fit seems adequate and the residuals are approximately normally distributed.  
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Figure 12 Linear model with residuals for batches 1 and 2 for block 1 (a) Data is plotted together 
with the line fit. (b) Histogram of the residuals. 

 

5.1.1 Parallelism  
 
For each pair of batches, a linear fit is applied to all blocks. The adequacy of the linear fit 
is used as a criterion to assess whether the parallelism approximation is fulfilled. No 
deviations from parallelism of practical importance are observed for the samples studied 
here.  
 

5.1.2 Relative log-potency calculations 
 
The relative potency is defined as the difference in which both drugs have the same 
response (see Fig. 2). Since the data is log-transformed the logarithm of the relative 
response is calculated.  
 
The log-response curve is modelled using Eq. 5.1, thus the logarithm of the  relative log-
potency is calculated as 
 

κ
δδ

ρ
)(

)log()log( REFERENCETESTpotencyrelative
−

==  

 
The distribution of )log(ρ  corresponds to the distribution of the ratio of two correlated 
normally distributed variables [9]. This distribution has finite moments. 
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A value of )log(ρ  is calculated for each block, and the final result is the average of 
)log(ρ  values. The outcome of each experiment is an estimate of the mean value of 
)log(ρ . The )log(ρ  ratios are independent from each other, equally distributed and 

randomly selected. The central limit theorem [10] is applied to obtained ratios, thus the 
distribution of the mean of )log(ρ  is normal with the same mean as the original 
distribution and a variance equal to the variance of the original distribution divided by the 
number of blocks. 

5.2 Data simulation 
 
In order to estimate how the number of blocks affects the obtained results, data was 
simulated in MATLAB. The simulated data reflects the block-to-block variation and the 
error made in the linear fit.  
The value used to estimate the block-to-block variation is obtained from the mixed model 
analysis of the original data presented in Chapter 4 (see variance component 
corresponding to block listed in Tab 6). The uncertainty contribution of the linear fit in 
each block is estimated by fitting the original data and calculating the distribution of the 
error term for each fit.  
 
The formula used to simulate data is  
 
Simulated log(data) = m + κ *log(dose) + Random Normalblock (0,0.001)+ Random 
Normalpoint (0,0.009) 
 
where Random Normal (a,b) is built-in function in MATLAB that randomly selects a 
normally distributed number with mean a and variance b. Random Normalblock takes into 
account the block-to-block variation, meaning that it is the same for all simulated points 
that belongs to the same block. Random Normalpoint is the measurement error in each 
point and it is therefore different for all points. These values are taken from the fit of the 
original data. The constants k and m are the slope and the intercept.  
 

5.2.1 Simulated relative log-potency 
 
In order to calculate )log(ρ , a linear fit for each pair of samples is performed for each 
block. In the original data, samples from four different batches are measured in ten 
blocks. The obtained )log(ρ  are shown in Fig. 14.  
The logarithm of the relative potency is calculated as the mean of the obtained )log(ρ  
divided by the number of blocks. Figure 15 shows how )log(ρ changes with the number 
of blocks. As expected, when several blocks are included a better estimate of )log(ρ  is 
obtained. 
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Figure 13 Histogram of the logarithm of the relative potency for the original data.  Each subplot 

represents a different pair of batches. 
 

 
Figure 14 Relative potency ( ρ  ) for the experimental data as a function of the number of blocks.  

The colors indicate ρ  for different pairs of batches. 
 
Simulations are performed to 10, 50, and 100 blocks. The results are shown in Figs. 16-
19. The estimated value of ρ  varies when a few blocks are included. However, for 50 
blocks convergence is practically achieved.  
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The distribution of )ln(ρ  becomes more normal as the number of blocks increases (see 
Figs 19-21). 

 
Figure 15  Relative potency for 10 simulated blocks as a function of the number of blocks.  The colors 

indicate ρ  for different pairs of batches. 

 
Figure 16: Relative potency for 50 simulated blocks as a function of the number of blocks. The colors 

indicate ρ  for different pairs of batches. 
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Figure 17 Relative potency ( ρ ) for 100 simulated blocks as a function of the number of blocks. The 

colors indicate ρ  for different pairs of batches. 

 
Figure 18 Histogram of the logarithm of the relative potency for the 10 blocks.  Each subplot 

represents a different pair of batches. 
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Figure 19 Histogram of the logarithm of the relative potency for the 50 blocks.  Each subplot 

represents a different pair of batches. 
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Figure 20 Histogram of the logarithm of the relative potency for the 100 blocks.  Each subplot 

represents a different pair of batches. 
 
 

5.2.2 Results 
 
The results obtained for )log(ρ  using the experimental and the simulated data are listed 
in Tab. 10. The relative 95% confidence intervals2 in percent are also listed to facilitate 
the comparison between the different numbers of blocks. It is not possible to compare the 
results for )log(ρ  between the simulations and the experimental data since the values of 
the slope and the intercept in the linear fit used in the simulations are arbitrary values. A 
good agreement for the variances is found between the results obtained from the 
experiment and from simulations.  
 
The simulations can be used to analyse the applicability of the experimental set-up. For 
example, in order to compare batches 1 and 2, it is expected to measure 10 blocks to 
obtain a relative confidence interval of 99.24 - 100.76 %. However when comparing the 
batches 4 and 2, 50 blocks are needed to obtain a relative confidence interval of 99.74-
100.26 %

                                                 
2 The relative confindence interval is calculated by dividing the confindence interval by the estimate.  
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Table 10 )log(ρ  and ρ obtained from the simulations with their relative 95 % confidence intervals. 

The results obtained with the experimental data are also listed. is the variance of 2σ )log(ρ . 
Data type Number of blocks Batch )log(ρ  2σ  ρ  95 % Relative  

lower CI for  
ρ  

95 % Relative 
upper CI for 

ρ  
2 relative to 1  0.017  98.89 101.12 
3 relative to 1  0.021  98.45 101.57 
4 relative to 1  0.030  97.91 102.13 
3 relative to 2  0.007  99.51 100.49 
4 relative to 2  0.025  98.19 101.85 

Experimental 10 

4 relative to 3  0.023  98.02 102.02 
2 relative to 1 -0.002 0.012 0.99800 99.24 100.76 
3 relative to 1 -0.006 0.016 0.99402 98.90 101.12 
4 relative to 1 -0.002 0.016 0.99800 98.62 101.40 
3 relative to 2 -0.004 0.015 0.99601 98.97 101.04 
4 relative to 2 0.001 0.011 1.00100 98.64 101.38 

10  

4 relative to 3 0.005 0.021 1.00501 98.40 101.63 
2 relative to 1 -0.001 0.012 0.99900 99.77 100.23 
3 relative to 1 -0.008 0.012 0.99203 99.64 100.36 
4 relative to 1 -0.004 0.012 0.99601 99.65 100.35 
3 relative to 2 -0.006 0.011 0.99402 99.70 100.30 
4 relative to 2 -0.002 0.011 0.99800 99.74 100.26 

50 

4 relative to 3 0.004 0.010 1.00401 99.71 100.30 
2 relative to 1 -0.005 0.012 0.99501 99.76 100.24 
3 relative to 1 -0.011 0.012 0.98906 99.76 100.24 
4 relative to 1 -0.006 0.013 0.99402 99.73 100.27 
3 relative to 2 -0.006 0.012 0.99402 99.77 100.23 
4 relative to 2 -0.001 0.013 0.99900 99.72 100.28 

Simulation 

100 

4 relative to 3 0.006 0.013 1.00602 99.72 100.28 
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6 Conclusions 
 
In this thesis, a description of parallel bioassays is presented. Additionally, the main 
statistical tools used to analyse them, in particular mixed models are discussed. These 
concepts are applied to an example taken from a pharmaceutical company. 
 
In the example presented here, the main sources of experimental variation are:  
 

• Operator 
• Block (day) 
• Sample preparation process 
• Batches 

 
The data is analysed within the ANOVA framework. Since the conclusions of the 
experiment, meaning the effect of the batches, have to be valid for all blocks, operators 
and sample preparations, these effects are considered as random. 
By reducing the model, it is concluded that approximately 50 % of the variation in the 
data is due to the day to day variation. The variance component associated with this is 
estimated to be 0.001.  
 
In order to estimate how many experiments are needed to obtain a confidence interval for 
the batches’ potency (biological effect), simulations are performed. The simulated data 
should have the same noise as the experimental data. Therefore, the simulated data has a 
normally distributed random component with a variance equal to the block variance. 
Additionally, the simulated data has also a normally distributed random component that 
takes into account the uncertainty in the measurement at each data point. Simulations are 
performed for several blocks. For each case, the potency and its relative confidence 
interval are calculated. The results from the simulations agree well with those obtained in 
the experiments.  
 
The simulations show that different numbers of replicates are needed to obtain the same 
width in the confidence interval for the relative potency, depending on which type of 
batches are compared.  For applications within the pharmaceutical industry, it is usually 
desired to report an estimate for potency with a relative confidence interval of 99 – 101 
%. The simulation shows that when 10 blocks are used, only one comparison of batches 
has a confidence interval with this width.  The simulations also indicate that when 50 
measurements are performed, all batches are within this confidence interval.  
 
The method presented in this work can be used to save time and experimental resources, 
since only the exact amount of needed data is collected. Furthermore, the analysis of 
variance provides valuable information about the performance of the experimental set-up. 
This information can be further used to improve the set-up by for example, response 
surface analysis. 
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The approach presented here can also be applied to other experiments. In industrial 
applications, historical data is usually available. This data can be used to estimate the size 
of the main sources of variation by an ANOVA analysis. The obtained variances are then 
used to simulate data that is analysed using the same procedures as the experimental data. 
The result of this analysis can be used to determine the sample size, and the accuracy of 
the simulation can be checked by comparison with the experimental data.  
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8 Appendix 

8.1 MATLAB code to calculate log-relative potency 
 

8.1.1 Function to used to simulate data 
 
function [data] = simdata(nbrseries,repetition) 
 
logdose=[0.00 -0.64 -1.29 -1.90 -2.30]; 
 
data=zeros(nbrseries*4*repetition*length(logdose),9); 
 
k=-0.34; 
%m=linspace(1,1.03,4); 
m=[3.318 3.316 3.310 3.314]; 
 
row=1; 
for series=1:nbrseries 
    randseries=0.03*randn(1); 
    for sample=1:4 
        for rep=1:repetition 
            for dose=1:length(logdose) 
                data(row,1)=series; 
                data(row,2)=sample; 
                data(row,8)=logdose(dose); 
                
data(row,9)=k*logdose(dose)+m(sample)+0.03*randn(1)+randseries; 
                row=row+1; 
            end 
        end 
    end 
end 
 
 

8.1.2 Program to calculate the logarithm of the relative potency 
between two substances 

%Program to calculate the relative potency between 2 drugs; 
% 
%Load the Excel file is data stored elsewhere 
clear all 
close all 
 
 
f=0;%Index used to count combinations of A and B levels of X1; 
s=0; %Index used to count number of series used in each calculations; 
 
%Define total number of repetition (series); 
total_number_series=100; 
total_number_X1_levels=4; 
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total_number_repetitions= 4; 
         
data=simdata(total_number_series,total_number_repetitions); 
 
%Create vector for betas and ratio; 
betas=zeros(3,total_number_series); 
Ratio_B_A=zeros(1,total_number_series); 
Final_ratio=zeros(1,total_number_series); 
Total_Ratio= zeros(6,total_number_series); %6 is the number of 
independent combinations of levels X1; 
 
order=randperm(total_number_series); 
 
for A=1:1:4;   %For each level of X1 combination: 
    for B=(A+1):1:4; 
         
        f=f+1;       
        index_A_B=((data(:,2)==A)|(data(:,2)==B)); 
        data_A_B=data(index_A_B,:); 
 
        %Code X2 to -1 and 1; 
        X2=data_A_B(:,8); 
        X2_max=max(data_A_B(:,8)); 
        X2_min=min(data_A_B(:,8)); 
        b_X2=2/(X2_max-X2_min); 
        a_X2=(-b_X2)*(X2_max+ X2_min)/2; 
        coded_X2= a_X2+ (b_X2)*X2; 
 
        %Code X1 to -1 and 1; 
        X1 = data_A_B(:,2); 
        coded_X1 = X1; 
        coded_X1(coded_X1==A)=1; 
        coded_X1(coded_X1==B)= -1; 
 
        %New matrix with coded variables; 
        coded_data= data_A_B; 
        coded_data(:,2)=coded_X1; 
        coded_data(:,8)=coded_X2; 
           for number_series=1:1:total_number_series;        
           %Do fitting for each series separately; 
                 
               for i=1:1:number_series 
                
                        index=(coded_data(:,1)==order(i)); 
                        new_data=coded_data(index,:); 
                        X1=new_data(:,2); 
                        X2=new_data(:,8); 
                        Y=new_data(:,9); 
                        b=length(X2);    
                        X0=ones(b,1); 
                        X=[X0 X1 X2]; 
                        betas=inv(X'*X)*X'*Y; 
                        y_approx=X*betas; 
                        Error=Y-y_approx; 
                        %hist(Error) 
                        %pause(0.2) 
                        %Sum of squares; 
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                        SSE= Error'*Error; %Sum squares residuals; 
                        SSR=betas'*X'*Y-(((sum(Y))^2)/length(Y));%Sum 
of squares regression; 
                        MSR= SSR/3; %total number of regresion 
coefficients length Beta; 
                        MSE=SSE/(length(Y)-3-1); 
                        F_null=MSR/MSE;%To be used in test for beta; 
                        Ratio_B_A(i)= betas(2)/betas(3);%X2-X1; 
                    end; 
                    
                %Take mean value for ratio for all series included in 
the calculations;  
                
Final_ratio(1,number_series)=sum(Ratio_B_A)/number_series; 
                SingleSerie_ratio(number_series)=Ratio_B_A(i); 
                 
           end; 
 
         Total_Ratio(f,:)= Final_ratio; 
         Total_SingleRatio(f,:) = SingleSerie_ratio; 
         %Clear variables; 
         Ratio_B_A=zeros(1,total_number_series); 
         Final_ratio=zeros(1,total_number_series); 
          
    end; 
end; 
 
%Calculate relative log relative potency 
Rel_log_pot_1_2= Total_Ratio(1,:); 
Rel_log_pot_1_3= Total_Ratio(2,:); 
Rel_log_pot_1_4= Total_Ratio(3,:); 
Rel_log_pot_2_3= Total_Ratio(4,:); 
Rel_log_pot_2_4= Total_Ratio(5,:); 
Rel_log_pot_3_4= Total_Ratio(6,:); 
 
%Calculate relative log relative potency, singles series 
RelSingle_log_pot_1_2= Total_SingleRatio(1,:); 
RelSingle_log_pot_1_3= Total_SingleRatio(2,:); 
RelSingle_log_pot_1_4= Total_SingleRatio(3,:); 
RelSingle_log_pot_2_3= Total_SingleRatio(4,:); 
RelSingle_log_pot_2_4= Total_SingleRatio(5,:); 
RelSingle_log_pot_3_4= Total_SingleRatio(6,:); 
 
%Plot histogram 
 
figure 
subplot(3,2,1) 
hist(RelSingle_log_pot_1_2) 
xlabel('Log relative potency'); 
 
subplot(3,2,2) 
hist(RelSingle_log_pot_1_3) 
xlabel('Log relative potency'); 
 
subplot(3,2,3) 
hist(RelSingle_log_pot_1_4) 
xlabel('Log relative potency'); 
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subplot(3,2,4) 
hist(RelSingle_log_pot_2_3) 
xlabel('Log relative potency'); 
 
subplot(3,2,5) 
hist(RelSingle_log_pot_2_4) 
xlabel('Log relative potency'); 
 
subplot(3,2,6) 
hist(RelSingle_log_pot_3_4) 
xlabel('Log relative potency'); 
 
 
[rel_pot_1_2,var_1_2, CI_rel_pot_1_2,CI_var_1_2]= 
normfit(RelSingle_log_pot_1_2); 
[rel_pot_1_3,var_1_3, CI_rel_pot_1_3,CI_var_1_3]= 
normfit(RelSingle_log_pot_1_3); 
[rel_pot_1_4,var_1_4, CI_rel_pot_1_4,CI_var_1_4]= 
normfit(RelSingle_log_pot_1_4); 
[rel_pot_2_3,var_2_3, CI_rel_pot_2_3,CI_var_2_3]= 
normfit(RelSingle_log_pot_2_3); 
[rel_pot_2_4,var_2_4, CI_rel_pot_2_4,CI_var_2_4]= 
normfit(RelSingle_log_pot_2_4); 
[rel_pot_3_4,var_3_4, CI_rel_pot_3_4,CI_var_3_4]= 
normfit(RelSingle_log_pot_3_4); 
 
 
Mean_log_rel_pot_all_samples= [rel_pot_1_2 rel_pot_1_3 rel_pot_1_4 
rel_pot_2_3 rel_pot_2_4  rel_pot_3_4 ] 
 
Var_log_rel_pot_all_samples= [var_1_2 var_1_3 var_1_4 var_2_3  var_2_4 
var_3_4 ] 
 
Pct_CI_rel_log_pot_1_2= 100.*CI_rel_pot_1_2./rel_pot_1_2; 
Pct_CI_rel_log_pot_1_3= 100.*CI_rel_pot_1_3./rel_pot_1_3; 
Pct_CI_rel_log_pot_1_4= 100.*CI_rel_pot_1_4./rel_pot_1_4; 
Pct_CI_rel_log_pot_2_3= 100.*CI_rel_pot_2_3./rel_pot_2_3; 
Pct_CI_rel_log_pot_2_4= 100.*CI_rel_pot_2_4./rel_pot_2_4; 
Pct_CI_rel_log_pot_3_4= 100.*CI_rel_pot_3_4./rel_pot_3_4; 
 
Pct_CI_log_rel_pot_all_samples=[ Pct_CI_rel_log_pot_1_2 
Pct_CI_rel_log_pot_1_3 Pct_CI_rel_log_pot_1_4 Pct_CI_rel_log_pot_2_3 
Pct_CI_rel_log_pot_2_4 Pct_CI_rel_log_pot_3_4] 
 
Result=exp(Total_Ratio); 
 
figure 
    plot(Result','*') 
    xlabel('Number of blocks included in the simulation'); 
    ylabel('Relative potency'); 
     
sprintf('%3.3f\n%3.3f\n%3.3f\n%3.3f\n%3.3f\n%3.3f\n%3.3f\n%3.3f\n%3.3f\
n%3.3f\n',Mean_log_rel_pot_all_samples) 
 
sprintf('%3.3f\n%3.3f\n%3.3f\n%3.3f\n%3.3f\n%3.3f\n%3.3f\n%3.3f\n%3.3f\
n%3.3f\n',Var_log_rel_pot_all_samples) 
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sprintf('%3.3f\n%3.3f\n%3.3f\n%3.3f\n%3.3f\n%3.3f\n%3.3f\n%3.3f\n%3.3f\
n%3.3f\n',Pct_CI_log_rel_pot_all_samples)         
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