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Purpose:     The purpose is to investigate which of the selected models that 

forecasts the out-of-sample data most accurate and whether the 

model based estimators make better forecasts than the implied 

volatility.  

 

Methodology: Trough in-sample data from a Swedish stock index return series 

and a exchange rate return series, different forecasting models are 

evaluated to see which one that predicts the out-of-sample realized 

volatility most accurate. The data is forecasted under different 

distribution assumptions and then evaluated against each other and 

the implied volatility. 

 

Results:  Trough this thesis, it can be concluded that the asymmetric 

EGARCH under general error distribution and under normal 

distribution most accurately describes the stock index return series 

and the exchange rate return series respectively. It can also be 

concluded that the implied volatility does not predict the volatility 

more accurate than the model based forecasts.  
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1 Introduction 

The uncertainty of asset returns has for a long time captured the interest of speculating 

investors and academic researchers. Volatility is an important topic to anyone involved in 

financial markets, and it has recently become an issue of great interest to academics. High 

volatility means deviations from the mean and deviation implies risk (Figlewski, 1997).  

 

Volatility is the only unknown variable in Black and Scholes (1973) options pricing model 

and therefore it has to be forecasted. An options´ value today depends, in part, on the 

volatility that will occur over the time until it is exercised or expired. This implied volatility 

has a central role in determining fair value in option pricing models (Hull, 2006). Even 

portfolio management models, such as Sharp (1964) and Linter (1965) CAPM, that are based 

on ´mean variance´ theory has volatility as an important factor. Volatility is an important 

factor even in risk management where Value-at-Risk (VaR) models are common. Realized 

volatility, the volatility that will occur from now into a specific time in the future, can easily 

be computed from historical data. It can also be forecasted using ´model based´ forecasting 

models such as ARCH family models (Zumbach, 2009). 

 

When B-S was introduced in the 1970s there were only a few types options traded. These 

hade short maturity dates, of only a few months, which made it easy to predict volatility. Over 

short horizons volatility is assumed to remain constant. However, the derivative market has 

since developed and contracts are now available with longer maturity periods. It has been 

more difficult to accurately determine the value of such products, as volatility tends to change 

over longer periods of time. This has brought about the need for more complex forecasting 

models which account for variation in volatility (Figlewski, 1997). 

 

The derivative market has grown rapidly over recent years and today, an enormous amount of 

derivatives exist. Options are the most common and actively traded derivatives within the 

market. An option gives the right to buy ´go long´, or to sell ´go short´ on an underlying asset 

at a certain price and time to maturity (Hull, 2006). The options´ ´implied volatility´ is the 

volatility that is expected by market participants during its life. Implied volatility is therefore 

likely to be a good predictor of the future volatility. Implied volatility is calculated by backing 

it out from Black-Scholes option pricing model, which is based on an assumption of constant 

volatility. It is now established, both in practice and in theory, that volatility is not constant 
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(Poon, 2005). 

 

1.1 Problem discussion 

This thesis evaluates different methods of forecasting volatility to get as good a comparison as 

is possible. There are several crucial factors that have to be discussed. The different factors 

have made prior research ambiguous and there are different conclusions dependent on how 

the different sample periods, forecast horizon and ex post variance, are chosen. The factors 

might be distribution assumptions, asymmetric effects in the data, serial correlation and 

heteroskedasticity. The models are tested and analyzed for the mentioned factors to produce 

accurate forecasting estimates of volatility. 

 

Models of the ARCH-family have been proven to make good estimates of future variance, 

while some authors states that implied volatility is better due to the market´s expectation of 

the future volatility is taken into consideration. There are plenty of ARCH-family models that 

could explain the future volatility, and here we test some of the models recommended in 

previous papers, such as GARCH(1,1), EGARCH, ARMA-models, and implied volatility. To 

be able to make the comparison between the models, it is important to have an accurate 

estimate of the true variance in the out-of-sample period. To investigate the phenomena of 

non-normal distribution in financial time-series data, the models are also analyzed under 

different distribution assumptions.    

 

1.2 Purpose 

The purpose is to investigate which of the selected models that forecasts the out-of-sample 

data most accurate and whether the model based estimators make better forecasts than the 

implied volatility.  

 

1.3 Target Audience 

This thesis is aimed mainly to students at Master level and with an interest in financial 

economics. The reader should have some basic knowledge of financial markets, derivative 

securities, such as Black-Scholes option pricing theory, and volatility methods like ARMA 

and ARCH-family models. The subject could also be of interest for financial institutions, 
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banks and risk managers whose prior interest lies in finding good models to predict volatility 

for their instruments.  

 

1.4 Outline 

Following the introductory part is section 2 with a description of previous research in the 

forecasting subject.  It describes how different model based prediction measurements has 

developed and that the different results might be caused by that different authors test the 

models from different distribution assumptions and sample length. Section 3 describes some 

key definitions and empirical findings in time series data are stated. Section 4 is a theory 

section which starts with a description of some basic model based forecasts. Some of them are 

not used as forecasting models in this thesis, yet they are still important factors in 

understanding why the chosen models look like they do.  

To be able to analyze the data at hand, section 4.2.5 until 4.3 defines and shows the 

calculations behind some different tests that are necessary. Section 4.4 presents a description 

of implied volatility and its characteristic. Here, a description of volatility smile, risk premium 

and market efficiency can be found. Section 4.5 and 4.6 defines the realized volatility, 

realized range and also includes a discussion of which evaluation models that are most 

appropriate.  

Section 5 begins with a method part where the raw data is described. Here, the in-, and out-of-

sample is defined and a discussion concerning data filtering is of importance. Also, a 

discussion of the sampling procedure for the implied volatility data is described. The 

procedure for how to determine and estimate the ARMA and ARCH-family models is 

described from section 5.4 to 5.8. The method part is fulfilled with a description of how the 

procedure for the forecasting is implemented and how the realized volatility and loss 

functions are calculated.    

In section 6 the results are presented staring with the descriptive statistics from the raw return 

data. Then the parameter estimates from the different forecasting models are presented 

followed by results of the ARMA models. Section 6.4 shows the results from the different test 

conducted on the ARCH-family models and are accompanied by its descriptive statistics. The 

most accurate performing forecasting models are plotted against their respective realized 
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volatility and the section is finalized with a discussion about why the implied volatility was 

not the most accurate forecasting method.  

In section 7 the conclusion from this thesis are presented followed by the reference list in 

section 8. Section 9 presents an Appendix where the EViews coding for the forecasting 

models can be found.  
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2 Prior research 

The prediction of future volatility is, and has for several decades been, a topic of great 

interest. Early, autoregressive-and moving average models were used to try to capture the 

volatility dynamics, and later the Box-Jenkins-type ARMA-model gained attention as a 

method for capturing volatility movement. However, researchers and practitioners found that 

the volatility suffered from ´volatility clustering´ and hence, other more sophisticated models 

were invented. The ARCH model was the earliest of these and was groundbreaking due to its 

sufficiency to, in a better way, explain the non-linear dynamics of financial data. However, 

the ARCH-model had limitations due to its non-negatively constrains and the GARCH model 

was introduced by Bollerslev (1986) and Taylor (1986). The GARCH-model is more 

parsimonious, avoids over-fitting and is less likely to breach the non-negativity constraint 

than the ARCH-model. (Brooks, 2008)  

Empirically, findings suggested that negative shocks are likely to increase variance more than  

positive shocks of the same magnitude, this is known as the leverage effect. This effect was 

the origin to what become to be asymmetric GARCH-model. Examples of these models are 

the EGARCH by Nelson (1991) and the GJR-GARCH presented by Glosten, Jagannathan and 

Runkle (1993).  

However, the model based forecasts were challenged by implied volatility as the best means 

of forecasting. The implied volatility is the volatility backed out from the Black and Scholes 

(1973) options pricing model and is said to incorporate all of the available information of the 

market (Poon, 2005). Therefore, it has been stated that implied volatility is a superior 

forecasting tool than model based forecasts. However, this has been questioned as the 

volatility risk premium might set a premium and thus, overestimate it (Mixon, 2007). 

Empirical findings are ambiguous; Franses and van Dijk (1996) find that asymmetric GARCH 

models such as GJR model were unable to outperform standard GARCH when forecasting 

volatility on stock market indices, while authors like Pagan and Schwert (1990), Lee (1991), 

Cao and Tsay (1992) and Heynen and Kat (1994) find that models that capture the property of 

volatility asymmetry perform well in forecasting because of strong negative relationship 

between volatility and shock. These findings are confirmed by Poon and Granger (2003) who 

state, by summarizing 93 working papers on the subject, that GARCH models perform better 

than ARCH models, while asymmetric models outperform standard GARCH models. Still, 

Poon and Granger (2003) do not find the results homogenous. Vilhelmsson (2006) states that 
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one reason for the different results is due to that researcher uses different models and also, 

different sampling periods, sample frequency and forecast horizon. Further, Vilhelmsson 

(2006) also states that the proxy used for ex-post variance, loss function and distribution are 

of great importance. The proxy might be ´noisy´ if not calculated through intraday data and 

hence, the evaluation models can produce inaccurate estimates. 

3 Stylized facts of the financial time series  

Volatility clustering – a phenomenon in financial time-series modeling is that one turbulent 

trading day tends to be followed by another and vice versa concerning tranquil periods (Poon, 

2005).   

Leverage effects – a fall in the stock price would shift a firm’s debt to equity ratio upwards, 

meaning that their equity value decreases. This implies an increase in both the leverage and 

the risk of the firm. Poon (2005) and Christie (1982) acknowledge this effect as the ´leverage 

effect´, which means that the stock price volatility increases more when a negative shock 

occurs, than if a positive shock of the same magnitude occurs.  

Skewness – also known as ´the third moment´, measures how the distribution deviates from its 

mean value (Dowd, 2005).  

Kurtosis – also known as ´the fourth moment´, measures how fat the tails of the distribution 

are (Brooks, 2008) 

Leptokurtosis – is characterized by fatter tails and a greater peak at the mean than normal 

distribution, though it still has the same mean and variance (Brooks, 2008).  

Volatility - is a measure of the spread of asset returns of all likely outcomes of an uncertain 

variable provided by the underlying asset. Usually volatility is measured as the sample 

standard deviation. To estimate the volatility of stock prices the stock price is observed at 

fixed intervals of time (e.g. minute, day, week, or month). This may be represented as:  

 






T

t

tr
T 1

2

1

1
  

where 



rt  is the return on the specific interval chosen at time t, and 



  is the average return 

over the period. Even Variance, 



2, is used as a measure of volatility, however, variance is 

less stable and less desirable than volatility as forecast evaluation.  Volatility is associated 
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with risk, but according to Poon (2005), it is a bad measure of risk because it does not say 

anything about the shape of the distribution. 
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4 Theory 

4.1 ARMA  

There is a lot of academic literature that suggests that ARMA models provide a good forecast 

of volatility. Despite the fact that they are marginally less accurate in capturing volatility than 

more complex models, they are relatively simple to implement and the payoff is usually 

beneficial when balanced against the cost of producing forecast (Harris and Sollis, 2003). 

First, a simple first-order autoregressive model AR (1), given in the equation below. This 

model states that variable t  is generated by its own past, and an error term t . The error 

term represent the influence of all the other variables that should be in the model but are 

excluded. The error term t  will be considered to be a ´white noise process´, which is an 

important assumption for time series analysis. Such a process has a constant mean and is 

homoskedastic and does not allow for autocorrelation in the error term. The first order 

autoregressive model is one where t  depends on current and previous values of linear 

combinations of the white noise process of the error term (Verbeek, 2008). 

The AR(1) model is expressed in equation below  

ttt   11 ,    where  11   for stationary     

The dependence of t  on its own past as a moving average (MA) process is an alternative to 

the AR-process and is given in the equation below. Consequently an MA(1) structure implies 

that observations more than two lags apart are uncorrelated. There are no fundamental 

differences between an AR-, and MA-models since the AR(1) model can be rewritten terms 

of a moving average model. 

A moving average model where the dependence of t  is on its own past error term is given 

below. 

ttt   11    Where 



 1        

 

It is possible to combine autoregressive models with moving average processes, which gives 

the ARMA model. When mixing higher orders of AR and MA-models, we get the 

ARMA(p,q) model which is expressed below. The ARMA model observed value of today t , 
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depends on both previous values of t  and, current and previous ,white noise error terms of 

t  .The advantage with ARMA models is that they are very flexible. They can describe many 

time series and are parsimonious, that is, they work well with small models. (Harris and 

Sollis, 2003) 

ARMA model of higher order 

tqtqttptptt    ...... 1111
 , 1 , 



 1 

A shock in an MA (1) process affects t  in two periods only while a shock in the AR(1) 

process affects all future observations  (Verbeek, 2008). 

Models that are non-stationary will often lead to spurious regressions, whereby the results 

assume a relationship, when the results are in fact coincidental. The definition of a stationary 

process is that it tends to return to its mean value and fluctuate around it with a constant 

range. It has finite variance. The statistical properties of a stationary process are as following: 

Its expected value is zero   0tuE  and has a constant variance   22 tuE . It is also 

uncorrelated with its own previous values   0kttuuE  where the latter condition measures 

the independences between observations (Harris and Sollis, 2003). 

Stationarity is a desirable property of an AR model. In absence of a stationary process, the 

impact of previous values is non-declining. If a process contains a unit root that is non-

stationary, and it cannot be modeled as an ARMA model, it instead has to be modeled as an 

autoregressive integrated moving average (ARIMA). Integrated means that the process has a 

unit root and has to be differentiated to be stationary and modeled. When testing for 

stationarity it is important to choose the right model. An Augmented Dickey-Fuller test for 

stationarity is thus important for choosing an appropriate model. (Brooks, 2008) 

 

4.2 ARCH 

The Autoregressive conditionally heteroskedasticity model, also known as ARCH, is useful 

when the data researched is of non-linear character. In financial time-series a problem known 

as heteroskedasticity might occur, which explains that the variance error term is not constant 

over time. Working with a model that assumes constant variance would then worsen the 

approximations and hence, the ARCH-model, that does not assume constant variance over 
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time, might be a more appropriate model to use. Also, volatility might appear in clusters, 

known as volatility clustering. The ARCH-family models are designed to capture these 

effects. The conditional variance of an ARCH(1) depends on one previous value of the 

squared error: 

  
           

  

The movement in the dependant variable,  , is given by the ARCH conditional mean equation 

and is specified after the researchers’ preferences. One example might be 

                                     
     

The ARCH(1) can easily be extended to include infinite lags. This is expressed as the 

ARCH(q) which depends on q lags of the squared returns 

  
           

        
          

  

One problem is that there is not any clear approach when determining the number of lags in 

the variance equation. There might also be a problem with not having a parsimonious 

conditional variance when a large number of q is needed to capture all of the dependence. The 

non-negativity constraint might also be a problem as q gets large.  

 

4.2.1 GARCH 

To get around the drawbacks with ARCH-type models, a more parsimonious model, that is 

less likely to breach the non-negativity constraint, was developed by Bollerslev (1986) and 

Taylor (1986). The ARCH-model is generalized to include, except for the squared error in the 

variance, previous own lags. The conditional GARCH-model, as it is called, both includes the 

squared errors in the variance, as in the ARCH, but also previous own conditional variance 

lags.  

When including the fitted variance from the model during the previous period, a GARCH 

(1,1) is expressed as following 

  
           

       
  

The GARCH(1,1) is often used in empirical studies due to its sufficiency to capture volatility 

clustering in the data. The GARCH-models can be extended to include q lags of the squared 
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error and p lags of the conditional variance. Rarely any higher order model is used in 

empirical studies. Also, due to that the GARCH(1,1) only includes three variables, it is more 

parsimonious than the GARCH(p,q)-model. The GARCH(p,q) is expressed as follows 

(Brooks, 2008). 

  
           

        
          

        
        

          
  

The past squared residuals capture high frequency effects, while the lagged variance captures 

long term influences (Figlewski, 1997). 

 

4.2.2 EGARCH 

In financial time-series, it has been stated that volatility behaves differently depending on if a 

positive or negative shock occurs. This asymmetric relationship is called leverage effect, and 

describes how a negative shock causes volatility to rise more than if a positive shock with the 

same magnitude had occurred. To capture this asymmetry, different models have been 

developed and the one used in this study is EGARCH. This model states the conditional 

variance as 

     
             

    
    

     
 

   
      

     
 

  
 

 
   

The properties of this model define the variance as positive, even though the parameters 

might be negative. In contrast to the other ARCH-models, EGARCH does not need to 

constrain the model for negative parameters. If the gamma coefficient is less than zero, than 

negative shocks will increase the variance more than a positive shock of the same magnitude. 

Vice versa is the case if the gamma coefficient is larger than one (Brooks, 2008) 

 
 

4.2.3 Maximum likelihood 

When estimating the GARCH-type models, it is not appropriate to use ordinary least square, 

instead maximum likelihood should be employed. This method maximizes, given a log-

likelihood function, the most likely parameter values given in the data. The fundamentals are 

when estimating the maximum likelihood, is to first specify which distribution should be used 

and then to specify the conditional mean and variance (Brooks, 2008). In this thesis, the 
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GARCH-models are to be maximized under the normal-, student t-, and general error 

distribution. The normal distribution is the distribution that allows for less kurtosis, while the 

student-t distribution and GED is less restrictive (Hamilton, 1994). The student t-distribution 

converges to the normal distribution as the degrees of freedom increase, but the advantage of 

the t-distribution over the normal is that it can handle a reasonable amount of excess kurtosis 

(Dowd, 2005). The generalized error distribution is regarded as a more flexible distribution 

then the normal. Depending on the degrees of freedom, the GED can take different forms, and 

in a special case GED can also take the form of the normal distribution. Depending on desired 

kurtosis, the degrees of freedom can be adjusted and GED is said to be an improvements over 

normal distribution (Dowd, 2005). When maximizing in EViews an iterative procedure takes 

place to numerically find the values under the log-likelihood function (Brooks, 2008). 

 

4.2.4 Properties when forecasting with GARCH 

GARCH-type models are convenient in forecasting due to that when working with financial 

time-series data, a forecast of   
  will also be a forecast of the future variance of    . As 

Brooks (2008) expresses it 

                                        

Given the lagged variables, the conditional variance of y will be equal to the conditional 

variance of u. 

 

4.2.5 Test for ARCH-effects 

As stated before, financial time-series data are often assumed to be non-linear and to 

appropriately conclude the use of a non-linear model, a test for it should be conducted. A non-

linear model should be used when it is needed and there are different ways to conduct its 

presence. Some argue for the use of a non-linear model when financial theory states that the 

data at hand requires a non-linear model, while, from a statistical point of view, some argue 

that the use of a model should depend on which one describes all of the important features of 

the data most appropriate (Brooks, 2008). 

The first step in the test is to regress a linear equation as follows 
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To test for ARCH-effects, the residual should be squared and regressed on q own lags 

   
            

         
           

  

The test follows a    distribution with a test statistic defined as     and the null hypothesis 

defined as 

                                     

And the alternative hypothesis as 

                                     

This test is pre-programmed in EViews as a residual test for heteroskedasticity. 

 

4.2.6 Test for asymmetries in volatility 

To see whether an asymmetric GARCH-model is appropriate, Engle and Ng´s (1993) sign and 

size bias test is to be performed. This test indicates if the residuals in an ordinary symmetric 

GARCH-model are sign-, or size-biased.  To test for sign and size bias, the following formula 

is used 

   
           

     

The residuals from the symmetric GARCH are programmed to take the value 1 if        

and gives the slope dummy value     
 . If    is significant, negative and positive shocks 

impact differently on the conditional variance and hence, an asymmetric GARCH-model is 

justifiable. 

A test for sign bias can also be conducted using the following test 

   
           

         

As in the previous test, a significant coefficient    will indicate that the size of a shock will 

have an asymmetric impact on volatility.  

A joint test can be conducted through defining     
  as       

 , which indicates if positive 

size bias is present. The joint test for positive sign bias and positive or negative size bias can 

be expressed as 
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The test follows a    distribution with degrees of freedom equal to 3. The joint test statistic is 

expressed as     under the null hypothesis of no asymmetric effects (Brooks, 2008).   

 

4.3 Jarque-Bera test for non-normality  

Both Bollerslev (1987) and Nelson (1991) early addressed characteristic of excess kurtosis in 

financial time-series data and hence, a normal distribution does not correctly describe the 

data. It is also known that stock index returns exhibit negative skewness (Glosten et al., 

1993). To test the data for normality, and see if the same properties are present in this thesis 

data, a Jarque-Bera (1987) test was performed. A normal distribution is symmetric/ 

mesokurtic, when it has a coefficient of kurtosis equal to 3. According to Brooks (2008), 

financial time-series also often show tendencies to be leptokurtic. The test performed 

evaluates the third and fourth moment, which is expressed as  

   
     

       
        

     

     
 

Here, u is defined as the error and    as the variance, which test that the third and forth 

moment are jointly zero. The test statistic for a Jarque-Bera test is 

    
  
 

 
 

       

  
      

                           

The null hypothesis states that distribution of the series is symmetric and mesokurtic, which 

implies that a rejection is in place if the residuals from the model is skewed or leptokurtic 

(Brooks, 2008).  

 

4.4 Implied Volatility 

4.4.1 Black-Scholes model and Implied Volatility 

To understand implied volatility, the Black-Scholes option-pricing model is first described. 

There are five parameters in the option pricing equation that give its fair value; the price (P) 

of the underlying asset, the option’s strike price (K) and time to maturity (ΔT), the riskless 
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interest rate (rf), and the volatility. Volatility is the only variable that cannot be directly 

observed (Hull, 2006). The option´s implied volatility is the volatility that is expected by the 

market participants during the life of the option. It is possible to solve the model backwards 

from the observed price to determine what implied volatility must be. The inverted option 

pricing formula to derive the unknown volatility is what is known as implied volatility. Due to 

the put-call parity, the implied volatility is the same for both call and put options with the 

same time to maturity and the same strike price. (Poon, 2005) 

 

4.4.2 Volatility Smile and Implied Distribution 

The relationship between implied volatility and strike price at a given maturity is the volatility 

smile. The shape of implied volatility derived from options is anything but a straight line. It is 

well known that implied volatility 



iv  differs across different strike prices and that the shape 

is like a smile when plotting it against different strike prices. The implied volatility is usually 

low for at-the-money options, for in-the-money and out-of the-money options it becomes 

progressively higher which explains why it is U-shaped. (Hull, 2006 and Poon, 2005) 

 

First after the crash of 1987 the smile is downward sloping, which suggests that market 

participants started to incorporate the possibility of future crashes when pricing options. The 

smile is less dependent on time to maturity if it is expressed as a relationship between implied 

volatility and the ratio between strike price and spot price (K/S0). Time to maturity is the 

second parameter that affects the smile. The smile flattens out as it is approaching expiration. 

This is the term structure of implied volatility. The term structure is hence a function of both 

the strike price and time to maturity. Volatility surface is a combination of volatility smile and 

the term structure (Hull, 2006). 

 

The smile tells us that there is a premium charged for in-the-money (ITM) options and out-of-

the money (OTM) options. The lognormal distribution fails to capture extreme outcomes in 

stock prices. For ATM options the implied volatility is equal to the markets constant volatility 

(Poon, 2005). Comparison between implied distribution and lognormal with same mean, and 

standard deviation, is shown in figure 4.1. The solid line is the lognormal and the dashed line 

is the implied.  

 

The volatility smile implies that the distribution is not lognormal distributed; it understates the 
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probability of extreme outcomes. The figure therefore supports the existence of fat tails from 

extreme movements. The reason why the distribution of assets is lognormal is because of the 

assumption about volatility being constant, and because price changes are smooth without 

jumps. Many securities and equities exhibit more extreme outcomes than those consistent 

with the lognormal model (Hull, 2006). 

 
Figure 4.1 A comparison between implied distribution (dashed line) and  

lognormal (solid line) with same mean and standard deviation is illustrated. 

 

 

The relationship between the smile figure 4.2 and implied distribution figure 4.1 are as 

follows. Consider a deep-out-of-the-money call option with a high strike price and an 

outcome at 3. This option is exercised only if the underlying asset is above the strike price. 

The implied distribution shows that the probability of this is higher than for lognormal 

distribution. This is exactly why we expect the price of an option to be higher when implied 

volatility is used. The same proof is valid for deep-out-of-the-money put options. According 

to the smile and implied distribution, lognormal distribution underestimates the probability of 

extreme outcomes. The volatility smile tells us that the implied volatility is relatively low for 

at-the-money options, whereas it becomes progressively higher when it moves either in-to-the 

money, or out-of-the money. The picture below illustrates when options are under and 

overestimated (Hull, 2006).  

 

As mentioned the B-S option pricing model requires stock prices to follow a lognormal 

distribution. There is now widely documented empirical evidence that asset returns have 

leptokurtic tails.  A leptokurtic right tail will give deep-out-of-the money higher probability to 

exceed the strike price and turn in-to-the money. This leads to higher call prices and higher 
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implied volatility at higher strike prices and the notion that options has intrinsic and time 

value. Time value is influenced by the uncertainty of volatility and intrinsic value reflects 

how deep in-to-the money the option is (Poon, 2005). 

 

Leverage is one possible reason for the existence of smile; when a company’s equity 

decreases in value the company’s leverage increases, which imply that the equity becomes 

more risky and more volatile. Another reason could be the fear of another crash similar to 

1987 (Hull, 2006). 

 

 
Figure 4.2. The figure describes the relationship between implied volatility and strike price of the option. Notice 

that the at-the-money option has the lowest implied volatility. The implied volatility increases as the option 

moves either into-, or out of the money. 

 

At-the-money options have the lowest implied volatility and implied volatility rises 

monotonically as one moves to lower (in-the-money) or higher (out-of-the-money) strikes. 

This “classic” U-shaped relationship between IV and moneyness is known as the volatility 

“smile.” Although precise details vary from market to market, and over time within a given 

market, a smile is very common, to the point that it is unusual to find a market that does not 

exhibit something like it. In some cases, only one side will have a strong upward curvature, 

making a skew or smirk (Figlewski, 1997). 

 

This must be considered as strong evidence that the market is valuing options using a 

different model from the one the analyst is assuming. If so, there is no reason to think that 

implied volatilities computed from the wrong model, whether examined individually or 

combined into a weighted average, will yield the market’s true estimate of the volatility of the 

underlying asset (Figlewski, 1997).  



22 
 

4.4.3 Market efficiency 

Financial economics believes that financial markets are efficient; market prices impound all 

available information that is relevant for valuing the underlying asset of an option. Historical 

volatility only takes into account past returns and is backward looking, whereas implied 

volatility is forward looking and also contains information about future (Hull 2006). 

 

Statistical properties of implied volatility, 

   

    MKTIV E        

 

The equation above says that implied volatility is a precise representation of the markets 

expectations about future volatility. This requires that implied volatility has to be computed 

exactly the same way as the model the market uses in pricing options. 

 

     MKTMKT EE  
       

 

 

This equation says that given the markets information set, MKT , the markets expected value 

of volatility is the true conditional value. The hypothesis of market efficiency says that the 

market makers, makes efficient volatility forecasts from the available information.  

 

  



St1,St2,. . .Stn PUBLIC MKT  

 

The set of historical prices includes a subset of public information and a subset of the markets 

information, which could include insider information. It would not be beyond belief if the 

markets expectations about future volatility may include the possibility of unexpected 

happenings, such as discrete price jumps, mean reversion, to fat-tailed distributions, which 

Black-Scholes do not take into consideration. Such a behavior will be impounded in implied 

volatility if it is computed by Black-Scholes model (Figlewski, 1997). 

 

4.4.4 Volatility term structure and volatility risk premium 

As mentioned in the previous section under the Black-Scholes model the term structure of 

volatility should be a flat line. In practice the slope could be upward or downward, but the 
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conduciveness causes are not given. Mixon (2007) finds that the term structure tends to be 

upwardly biased which contributes to an over-prediction bias as the forecasting maturity 

horizon increases. Hull and White (1987) show that the Black-Scholes model overprices 

ATM options and this bias tends to increase as the maturity lengthens. 

According to an empirical study done by Mixon (2007) the expectation hypothesis fails. 

Consequently, the slope of volatility term structure has the capability to predict future implied 

volatility but not at the grade predicted by expectation hypothesis. The consequence is that the 

slope is supposed to have some information about where the market believes implied 

volatility to be in the future.  

One factor that will lead to the failure of the expectation hypothesis is the probability of a 

crash, which causes the expectation hypothesis to be mispriced. Mixon (2007) did not find 

support for the expectation hypothesis to hold. The results agree with volatility risk premium. 

The risk premium makes the options volatility to deviate from the realized volatility as the 

future implied volatility is said to be overprice as a forecast. The gap between the realized and 

implied volatility, as Mixon (2007) calls it, is the volatility risk premium. The slope of the 

term structure is assumed to be a significant predictor of the future short-term implied 

volatility, even if the prediction is not consistent with the expectation hypothesis. Including a 

risk premium into the expectation hypothesis will improve the model. Thus implied volatility 

is overpriced, as forecast of future volatility and it will be obvious as the forecast horizon 

lengthens.   

The volatility risk premium is caused by traders’ liquidity risk, the uncertainty of companies’ 

dividend policies, and the probability of a crash. Mixon (2007) finds support that the risk 

premium is highly correlated with the magnitudes of volatility. Fleming et al. (1998) finds 

support that the volatility index, VIX, contains a premium for risk, thus overstating future 

realized volatility. 

 

4.5 Realized volatility 

The realized volatility is an estimate of the true out-of-sample volatility and is defined by 

Zumbach (2009) as the volatility that will occur between t and t +ΔT. Since the realized 

volatility is used when evaluating the forecasts, it is crucial that the measure is properly 

calculated.  The realized volatility, calculated from squared intraday returns is, according to 
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Anderson et al (2001b), an unbiased and efficient estimator of the variance. It has also been 

stated by Andersson and Bollerslev (1998) that if using intraday squared returns of no shorter 

than 5 minutes intervals, an accurate measure of the latent process that defines volatility can 

be estimated. If using too short frequency, market microstructure effects might appear in the 

realized volatility and according to Bandi and Russel (2005,2006), Aït-Sahalia et al. (2005) 

and Hansen and Lunde (2006b), the realized volatility becomes biased and inconsistent.  

Since intraday data is hard to get a hold of, the following model proposed by Parkinson 

(1980) is used instead 

   
  

           
 

     
 

The intraday high and low at time t,    and   , gives the realized range for time t. One of the 

alternatives to this expression is to estimate the realized volatility through daily squared 

returns, but Parkinson (1980) shows that the realized range expression is five times more 

efficient and is also an unbiased estimator when bias adjusted. Martens and Van Dijk (2006) 

confirms the results that realized range is a better measure than the daily squared return. 

When the daily squared return is collected at high frequency, the realized range is still a more 

efficient estimator in theory. In practice though, market microstructure effects worsen the 

realized range estimator due to infrequent trading, a problem that high frequency realized 

volatility does not suffer from. However, the bid-ask bounce is a problem that both estimators 

suffer from. To get around this problem in realized range, Martens and Van Dijk (2006) 

propose a bias adjustment procedure. This bias-adjustment procedure is shown to improve 

significantly in the realized range over the intraday squared returns.   

 

 

4.6 Evaluation models 

The use of an imperfect volatility proxy can lead to undesirable outcomes when evaluating 

forecast volatility over different models. The evaluation models chosen have to be those most 

robust against the presence of noise. The impact from a few extreme outcomes may lead to a 

large influence on forecast evaluation and comparison test. The solution is to employ more 

robust forecast loss functions that are less sensitive to extremes. According to Patton (2006), a 

robust loss function is not only a function that is robust to noise in the proxy (Huber, 1981) 

but also to an expected loss ranking of between two volatility forecasts is the same. Hence, 
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the ranking should not differ with respect to the true conditional variance,   
  or if some 

conditionally unbiased volatility proxy,    
 . This means that for the model to be robust against 

noise, the true conditional variance should be the optimal forecast (Patton, 2006). Tests 

conducted by Patton (2006) indicate that the only evaluation model that is robust, according 

to this criterion, is the mean squared error, MSE. 

As discussed in the previous section, the realized range estimator is, when bias-adjusted, an 

unbiased estimator of conditional variance. It has been shown by Anderson and Bollerslev 

(1998, footnote 20) that, the adjusted realized range estimator produces comparable results 

with the 2-3 hours of intraday squared return.  

Patton (2006) shows that, as the intraday frequency increases, realized volatility converges to 

the true conditional variance.  

        
          

        
           

        
           

Where m is the number of intraday observations – as the number of observation increases, the 

variance rapidly converges to the true conditional variance. Thus, as the adjusted realized 

range is comparable to realized volatility at 2-3 hours intraday returns, the adjusted realized 

range produces a good approximation of the conditional variance. Patton (2006) shows that 

the range estimator is approximately the same as using 6 intra-daily observations in the 

realized volatility. The true conditional volatility approximated with the realized range 

estimator is shown by Patton (2006) to be         
 . 

The results presented by Patton (2006), shown above, indicate that robust MSE evaluation 

model should by used in this thesis when using the realized range as a proxy. However, MSE 

has limitations when forecasting variance. According to Vilhelmsson (2006) MSE as a loss 

function is sensitive to outliers. Instead, the mean absolute error is used by Vilhelmsson 

(2006) in the sense that it is more robust against outliers. It is also used in this thesis due to 

the fact that outliers might be present in the financial time-series data. As a third model to 

adjust for heteroskedasticity, the heteroskedasticity-adjusted mean absolute error is used 

(Andersen et al. 1999).  

Mean square error is defined as 
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Mean absolute error is defined by, 

 

 
      

 

 
          

 

   

 

   

 

The third performance measure is HMAE, which is a heteroskedasticity-adjusted mean 

absolute error and is used to account for heteroskedasticity.    

 

 
      

 

 
  

   

  
   

 

   

 

   

 

The difference between using MAE and HMAE is that instead of using squared mean 

distance, as in MSE, MAE uses absolute distance. Hence, the optimization problem in the loss 

function changes to produce a median of the series, instead of an expected value, as the MSE 

does.  
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5. Method 

5.1 Data and sampling procedure model based forecasts 

We are going to investigate which of the Swedish Stock market index OMXS30, USD/EURO 

exchange rate and implied volatility, for the same series, that predicts the out-of-sample 

forecast most accurately. The reason for choosing these series is both that options trading with 

them is liquid and that it is interesting to compare the different series. The data is collected 

from DATASTREAM and processed in both EViews and Excel.  

 

5.1.1 In-, and out-of-sample length 

Market microstructure problems, or as often called noise in the data, occurs in real markets 

due to bid-ask spreads (bounce), non-trading, and serial correlation. This makes most intraday 

data unusable for calculations (Figlewski, 1997). Instead returns from daily closing prices are 

calculated and used in the different GARCH-models. However, positive serial correlation is 

often found in daily closing prices for equities and other securities (Figlewski, 1997). 

Sampling at longer intervals is an easy way to limit the effect of serial dependence at high 

frequencies, but it also means using fewer data points, which increases sampling error. The 

best choice of sampling frequency must depend on the statistical properties of the particular 

price series under consideration (Figlewski, 1997). The choice of the length of the forecasting 

horizon has to be taken into consideration when deciding which historical data to elaborate 

on. Having a large data sample does not guarantee an accurate model that provides unbiased 

volatility, because volatility tends to change over time. There is a trade-off between trying to 

collect as much data as possible and trying to eliminate data that is obsolete. When the 

forecasting horizon is short, it is more appropriate to choose a short sample of the latest 

observations, which captures volatility clustering, thereby, capturing the abilities/phenomenon 

of the current market conditions (Figlewski, 1997).  

By using a large number of daily observations, sampling error can be reduced, while for 

intraday data the deviations are more apparent. The choice of frequency at which the data is 

collected can have a large effect on volatility (Figlewski, 1997). Practitioners and researchers 

usually use very recent past data when forecasting. However, Figlewski (1997) shows that 

this might not produce an accurate forecast and he instead advocates usage of a longer 

horizon. Hence, the choice of in-sample data period is, in this case, set to five years of daily 
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observations – 2003-01-01 to 2007-12-31 – while the out-of-sample forecasted period is set to 

two years – 2008-01-01 to 2009-12-31. When forecasting short horizons, intraday data is 

needed to get more accurate estimates of the daily volatility. In lack of intraday data, the 

length of the pre-forecast data is extended to give as many observations as possible, without 

including obsolete observations.  

5.1.2 Treatment of raw data 

Before performing any tests, the behavior of the raw data has to be analyzed. First, a 

statement is made regarding why no filtering action is performed on the outliers. The reasons 

for not filtering for outliers are due to the assumption that outliers are extreme events that 

might occur in the forecast period. Filtering out, for example extreme events like natural 

catastrophes and financial crisis, might give a better forecast of tranquil periods where no 

such events occur. Including them will give the opportunity to capture such an event. In 

previous years, there have been several extreme events, and in our opinion, there is little 

evidence that tells us that these extreme events will not occur again. Hence, we choose not to 

filter the data to give a better view of the recent events that deviate from normality and, in our 

opinion, give a better explanation of what might occur in the future.    

Ordinary non-trading days, e.g. Easter and Christmas are excluded from the in-sample to not 

affect the out-of-sample volatility. The dates are then converted into figures instead of dates 

to represent upcoming future trading days in the out-of-sample forecasted period.  

The raw data is then tested for normality trough the earlier presented (section 4.3) Jarque-

Bera test. This gives knowledge about if the data at hand is to be assumed normally 

distributed, is skewed or suffers from excess kurtosis. The raw data from the entire in-sample 

period, 2003-01-01 to 2007-12-31, is used to calculate the Jarque-Bera test.  

 

5.2 Data and sampling procedure Implied Volatility 

The data, delivered by Thomson’s to DATASTREAM, are one month’s at-the-money 

European call options in both the OMXS30 and USD/EURO index. The raw data are gathered 

daily from the out of sample period 1 January 2008 to 31 December 2009. The values are the 

same as traders deal with from the market’s Black-Scholes implied volatility. The implied 

volatility is backed out from the Black-Scholes model. Implied volatility is expressed on a 
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yearly basis at each time t and needs to be converted into daily volatility using the following 

scalar. 

                       

 

5.3 ATM or Weighted Implied volatility 

It is well known that options of different strikes provide different implied volatilities even 

though the Black and Scholes model assumes it to be constant. There are typically two 

strategies when deciding on which options that should be used, at-the-money options or a 

weighted scheme. The implied volatility derived from ATM options is most liquid and less 

exposed to measurement error when comparing with implied volatility at different strikes. 

Options that are traded with greater liquidity are expected to contain more information than 

less frequently traded options. Options that have longer maturities or are far away from the 

money are not traded as often as ATM options (Figlewski 1997). ATM options and near 

expiration options provides, on average, the volatility assumedly implied by the life of the 

option. Omitting or assuming volatility risk premium to be either zero or constant makes the 

implied volatility less likely to be biased. Volatilities derived from call and put options with 

different strike prices are combined to produce a weighted scheme composite of implied 

volatility. The composite volatility implied that favor ATM options are said to be less prone 

to measurement error (Poon, 2005).  

There are different findings from authors whether an individual implied performed better than 

a weighted one. Beckers et al. (1981) found support for an implied to be the best, while 

Kroner, Kneafsey, and Claessens (1995) find that composite implied provide better forecasts 

(Poon and Granger 2003).  

Since there are different opinions whether an individual ATM or a weighted scheme is 

preferred, we will select ATM options that are one month from maturity. As mentioned earlier 

ATM options are less prone to measurement error. They are traded at a higher volume and are 

believed to have more reliable information than less traded options. 
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5.4 Building ARMA models 

Box and Jenkins (1976) were the first to estimate ARMA models using a three step procedure. 

The steps involves following: 

1) Identification 

2) Estimation 

3) Diagnostic testing 

 

In the first step the dynamic features of the data are checked.  Plotting a graph of the data and 

a correlogram of the ACF and PACF has to be done to determine if the series are correlated. 

A plot of the residuals is also important when checking for outliers. In the second step the 

estimation is done by OLS of the specified model from the first step. The third step involves 

model checking, determining whether the model is accurate or not (Brooks 230). 

It is preferred to form a parsimonious model, which is one that captures all features of the data 

of interest with as few variables as possible. A model which has more parameters than needed 

will increase the standard error and lead to misleading inference.  The identification stage is 

done by checking which information criterion gives the lowest value. The advantage of 

information criteria against R-squared is that it punishes models with irrelevant variables.  

The three most popular criteria are those of Akaike s (1974), Schwartz s (1978) and Hannan-

Quinn (HQIC). When choosing between different AR and ARMA models, the best is the 

model that is significant and has the lowest AIC, SBIC or HQIC value. The residual 

diagnostic checking for serial correlation is done by a Ljung-Box test. Recall that for a series 

to be considered white noise, the autocorrelations should be zero (Brooks, 231).  

 

5.5 Decision of the most accurate ARMA models 

To forecast the future volatility through the ARMA-models, the historical realized volatility is 

used instead of the returns series. Through the 21 day overlapping rolling window forecast, an 

estimate will be received for each observation    .  

In the examination of the OMXS30 index we found out that ARMA(1,1) was the most 

accurate model because both the AR(1) and MA(1) term where significant. The choice of 

picking a simple model is preferred to a more complex one, because too many lags reduce the 



31 
 

power of the test while too few lags could mean that we have remaining autocorrelation. 

Since the ARMA(1,1) does not show any sign of correlation in all of the tests performed, this 

would not be issue.  

We also estimate several other combinations of ARMA(p,q) models and test the significance 

of the additional parameters. ARMA(2,2) and ARMA(2,1) also show significant values of the 

additional parameters but have marginally higher criteria values than the chosen ARMA(1,1). 

In some of the cases the three information criteria suggest different models, in these cases we 

choose the model that is suggested from two out of the three information criteria and, as 

mentioned above, a simple model is preferred because it has better statistic properties.  

The examination of USD/EURO is similar to the OMXS30 index. In this case the most 

accurate model with significant values of all parameters is an ARMA(2,2) with a constant. 

One reason why the constant should be included is due to that it is a period where one 

exchange rate is appreciating against the other. The other candidates were ARMA(2,1) and 

ARMA(2,2) without a constant. Since Akaike, Schwarz and Hannan-Quinn all suggested 

ARMA(2,2) to be the most adequate model, there is no doubt in which model that is most 

accurate. 

The model used is the one with most information criteria speaking for it. Also, to see whether 

the model must be integrated, the models are tested for unit roots. As a last step, the models 

distribution is also analyzed. The results of these tests are presented in the next section.  

5.6 Diagnostic checking of ARMA models 

As a last step, diagnostic checking is performed on ARMA(1,1) which indicates that it is the 

best series for OMXS30. Meanwhile, ARMA(2,2) with a constant is found to be the best 

model in association with the USD/EURO examination. The residual analysis provided by the 

Ljung-Box test, and the Dickey-Fuller unit root test are performed. 

The test for unit root is done by a Dickey-Fuller, under the null hypothesis that 



 1 implies 

a unit root. Accepting the null hypothesis of a unit root implies that the series is non-

stationary and follows a random-walk (Verbeek 2008). 



DF 



1

se(


)
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The Dickey-fuller test for stationary rejects the null of a unit root in the ARMA(1,1) model. 

This is appropriate because otherwise the series would give misleading statistics. The unit 

root test for ARMA(2,2) with a constant is done by an augmented Dickey-Fuller test. The 

reason is that we have an autoregressive of higher order, namely AR(2) model with a constant 

in this case. The stationary condition requires that both 



1 and



2  are less than one. The null-

hypotheses of a unit root for the ARMA(2,2) is  



1 2 1. According to the ADF test 

statistic the null of unit root is rejected even here. The residuals should though be white noise, 

and for white noise the autocorrelation should be zero.  

The Ljung-Box test provides a Box-Pierce Q-statistic for testing whether the autocorrelations 

are zero (Brooks, 2008). 

          
   
 

   

 

   

   
  

The Q-stat is approximately Chi-squared distributed with 2 degrees of freedom in the 

ARMA(1,1) and 4 degrees of freedom in the ARMA(2,2). We test the null hypothesis of the 

presence of autocorrelation against the alternative, of a white noise. The test indicates no 

presence of autocorrelation at lags less than three. When lags increase to more than three, 

there is presence of autocorrelation in the models. Since the other autocorrelation test 

indicates of no autocorrelation, and that the information criteria indicates that ARMA(1,1) 

and ARMA(2,2) are the most accurate. Therefore the chosen models are the ARMA(1,1) for 

OMXS30 and the ARMA(2,2) for exchange rate. 

 

5.7 GARCH-model 

The first step before concluding that an ARCH-family model could be appropriate is to 

perform an ARCH-test as described in the theory. The test for ARCH-effects conducted non-

linearity in the data and an ARCH-type model is therefore used.   

As stated in the 4.2.1 GARCH-model theory part, a GARCH(1,1) is often used due to that it is 

parsimonious. Figlewski (1997) describes that a GARCH-model with many parameters tends 

to fit the in-sample data better than a model with less parameters but, the model with several 

parameters tends to fall apart quicker in the out-of-sample. Figlewski (1997) also emphasizes 

the importance of a GARCH-model that is sufficiently stable and hold over time. Prior 
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research points towards that a GARCH(1,1) model is the most sufficient and stable, and is 

hence used as a forecast tool in this thesis.       

Next, the test for sign and size bias (section 4.2.6) is performed on the residuals of the 

GARCH-model. The sign and size bias test conclude whether there is an asymmetry in the 

residuals of the model. The test finds a presence of sign bias and hence, an asymmetric 

GARCH-model is justifiable to use in the forecast.  The earlier presented (section 4.2.2) 

asymmetric EGARCH-model is chosen due to our lack of programming skills and hence, pre-

made programming is used when forecasting with EGARCH. 

 

5.8 Problems with ARCH-family models 

A common problem with ARCH-type models is that they require a large amount of data to get 

a robust estimation. Models that have many parameters tend to fit the in-sample data better, 

but also they tend to fall apart in the out-of-sample. This is a problem, as to produce an 

accurate forecast the model has to be sufficiently stable and continue to hold over time 

(Figlewski, 1997).  

When maximizing the model, the coefficients might be non-positive or sum to values greater 

than one. The latter implies long run instability in the model and a long run steady state 

requires the parameters to sum to one. If the coefficients are negative or do not sum to one, 

the maximum might lie outside of the theoretically accepted region (Figlewski, 1997). 

According to Verbeek (2008), a parameter value that sums to more than one gives a non-

stationary process, but is a typical finding in empirical studies.  

 

5.9 Forecasting procedure   

Figure 5.1 above describes the fundamentals behind how the forecast is performed. The out-

of-sample period is forecasted through the in-sample data with a 21-day overlapping rolling 

window. This implies that the first forecasted period is done using the entire in-sample data. 

Moving one step ahead in the forecast, the in-sample data used for forecasting is moved one 

step forward, meaning that the oldest observation now is excluded from the forecast. The 

realized value in the out-of-sample, as the forecast is moved one step ahead, is used in the in-

sample data to do the next forecast. This is done throughout the entire out-of-sample period 

giving the conditional variance for the forecast. Table 6.2 in the results section gives the 
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different parameter estimates for the models used to forecast the volatility expressed as an 

average of the forecasted period. 

 

Figure  5.1. The 21 days ahead overlapping forecasting procedure 

 

5.10 Calculating realized volatility 

Due to the lack of intraday data, other approaches have to be considered when computing the 

realized volatility. As stated above, the high-low measure recommended Parkinson (1980) is 

used to minimize the impact of market microstructure effects and get an as good measure of 

the realized volatility as possible.  

The realized range estimator is calculated at daily basis due to the conditional variances, and 

ARMA forecasts producing daily estimates. When evaluating the forecasts with the different 

loss functions, the daily realized range estimates would simplify the loss function 

calculations. 

5.11 Evaluating with loss functions 

The inputs in the loss functions are given by the values of the realized range estimate at time t 

and the forecasted variance from the different models at time t. The estimate is then calculated 

through mean square error, mean absolute error and heteroskedasticity-adjusted mean 

absolute error loss functions. They are summed from        until        giving an 

average for the out-of-sample loss which can be compared between the different models.  
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6 Results 

6.1 Descriptive statistics of data 

As has been described earlier, the Jarque-Bera test is    distributed with a skewness and 

kurtosis of zero respective three. At a five percent significant level, the normality assumptions 

of the error terms are rejected for both the OMXS30 and USD/EURO series. The exchange 

rate returns error has a slightly positive skewness while the OMXS30 has a negative. Both the 

USD/EURO and the OMXS30 series have heavier tails than a normally distributed series. The 

heavy tales indicate that the returns suffer from extreme events outside the normal distribution 

assumption.   

    OMXS30     USD/EURO 

Mean 0,000585 0,000263 

Median 0,000684 0,000235 

Maximum 0,053495 0,023981 

Minimum -0,048819 -0,021438 

Std.dev 0,011288 0,005626 

Skewness -0,235133 0,006338 

Kurtosis 5,224527 3,960231 

   

Jarque-Bera 281,1009 50,14486 

Probability 0,00000 0,00000 
Table 6.1. The descriptive statistics are shown above for the two different series. 

 

The results for the OMXS30 series are in line with Glosten et al. (1993) who has found, as 

stated in 4.2.6, that stock index returns often exhibit negative skewness. The excess kurtosis 

in the series is also expected since outliers are not removed in the raw data. This implies that 

the usage of different distributions that might capture extreme events in tails is justified. Also, 

as stated by Figlewski (1997), equities and many other securities suffer from fatter tails since 

the lognormal diffusion model is inconsistent with the large price changes.    
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6.2 Parameter estimates 
Repeating the different models to ease the reading of the parameter estimates 

GARCH(1,1) 

  
           

       
  

EGARCH under normal distribution 

     
             

    
    

     
 

   
      

     
 

  
 

 
   

ARMA(p,q) 

tqtqttptptt    ...... 1111  

 

OMX                   

GARCH(1,1)normal   
  = 2.156e-06 + 0.067*    

  + 0.928*    
      

GARCH(1,1) t-dist   
  = 2.434e-06 + 0.065*    

 + 0.929*    
      

GARCH(1,1) GED   
  = 2.829e-06 + 0.067*    

  + 0.926*    
      

          

EGARCH normal ln(  
 ) = -0.123 + 0.077*(      /SQRT(    

    - 0.096*    /SQRT(    
  + 0.992*Ln(    

   

EGARCH t-dist ln(  
 ) = -7.699 + 0.261*(      /SQRT(    

 )) - 0.126*    /SQRT(    
   + 0.033*Ln(    

 ) 

EGARCH GED 

 

ln(  
 ) = -0.128 + 0.077*(      /SQRT(    

 )) - 0.098*    /SQRT(    
   + 0.991*Ln(    

   

          

ARMA(1,1)    
  = 0.988*     

 + (-0.82*    )      

          

USD/EURO          

GARCH(1,1)normal   
  = 6.287e-07 + 0.043*    

  + 0.95*    
      

GARCH(1,1) t-dist   
  = 1.144e-06 + 0.052*    

 + 0.933*    
      

GARCH(1,1) GED   
  = 9.155e-07 + 0.045*    

 + 0.943*    
      

          

EGARCH normal Ln(  
 ) = -0.209 + 0.127*(      /SQRT(    

 )) + 0.016*    /SQRT(    
 ) + 0.988*Ln(    

   

EGARCH t-dist Ln(  
 ) = -0.235 + 0.132*(      /SQRT    

 )) + 0.009*    /SQRT(    
 ) + 0.986*Ln(    

   

EGARCH GED Ln(  
 ) = -0.208 + 0.12*(      /SQRT    

 )) + 0.007*    /SQRT(    
 ) + 0.988*Ln(    

   

          

ARMA(2,2)     
  = 7.328e-05 + 1.646*     

  + (-0.65*     
 ) + (-1.406*      + 0.442*      

Table 6.2. Forecast output for the different parameter estimates at an average of the daily 21 days overlapping 

rolling window forecast.   
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Analyzing the coefficients of the GARCH(1,1) models under different distribution 

assumptions and underlying series, it can be seen that the sum of    and   is less than one. 

This indicates, as stated by Verbeek (2008), that the GARCH(1,1) is close to being non-

stationary and could suffer from instability in the models. This also implies that, when 

maximizing, the problem with getting a sample outside the accepted region is possible. The   

and   close to one also indicates, as stated by Harris and Sollis (2003) that the persistence of 

conditional variance is high. This means that the volatility tomorrow is highly dependent on 

the volatility today.  A GARCH model that provides persistent forecasts does not work very 

well due to its inability to capture periods with highly fluctuating volatility (Schmalensee and 

Trippi, 1978).  

Analyzing EGARCH, the gamma parameter indicates, as described in 4.2.2, that if it is less 

than zero, as in the case of the OMXS30 series, negative shocks increases the volatility more 

than positive shocks. This finding is in line with the empirical findings of leverage effects. 

For the exchange rate series, the gamma parameter is greater than zero, indicating that a 

positive shock increases volatility more than a negative shock of the same magnitude.  

Interesting to notice is that the EGARCH estimate for the t-distribution for the OMXS30 

deviates from the other results. The beta value is equal to approximately 0,033 which indicate 

that tomorrow’s volatility is not that dependant of today’s. One reason why the beta-value for 

the EGARCH under t-distribution might differ from the normal distribution could be a 

consequence of that the t-distribution allows for heavier tails. Although, comparing to the 

EGARCH under GED, the t-distributions beta almost differs as much as in the normal 

distribution case. The possible reason might be that the forecasting model continuously 

underestimates the impact of the volatility in    . This might be a consequence of why this 

model did not explain the forecast in the most accurate way.    

As in the case of the GARCH(1,1), the EGARCH model at all distributions also follows a 

high persistence. Only the beta value effects the volatility at time t with more than 

0.98*Ln(    
  . The same follows for the ARMA models, where the realized volatility at time 

    is given a lot of weight, indicating high volatility persistence. Although, according to 

Brooks (2008), there is no real value in trying to interpret the coefficients individually. Since 

the ARMA model is not constructed from any economic or financial theory, the model should 

be interpreted as a forecasting tool and not by its parameters. What is interesting is whether 
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the model is stationary or not. In section 6.3 and 6.4, the best performing models are 

presented.   

 

6.3 ARMA 

For the OMXS30, the three information criteria showed unambiguous results. The 

ARMA(1,1) performs best according to all of the information criteria, while still being 

significant in all parameters. For USD/EURO, the ARMA(2,1) has lower SBIC than the 

ARMA(2,2) with a constant, while the latter has both better AIC and HQIC. As the 

ARMA(2,2) has the lowest value in two out of three information criteria, this model is the 

most appropriate. Neither of the models have a unit root according to the performed Dickey-

Fuller test, which implies that the models are stationary. The model is also analyzed for 

autocorrelation through a Durbin Watson test and a plot of the correlogram is performed to 

investigate whether ACF and PACF are autocorrelated. The Ljung-Box test investigates 

whether the model follows a white noise or not. The test indicates no presence of 

autocorrelation at lags less than three. Though, when lags increase to more than three, 

presence of autocorrelation is found in the models. According to Figlewski (1997) it is not 

uncommon in financial time series. The correlation might come from bid-ask bounce or from 

index series that are less liquid (Figlewski, 1997). However, the Durbin-Watson statistic, ACF 

and PACF does not show any sign of autocorrelation in the series. Since the information 

criteria indicates that the ARMA(1,1) and the ARMA(2,2) are most accurate, these models are 

chosen.  

 

6.3.1 Descriptive statistics for chosen ARMA models 

The chosen ARMA models are presented in Table 6.3 with diagnostic checking. The 

OMXS30 indicates that both the AR(1) and the MA(1) term are highly significant. The 

Durbin-Watson statistic indicates no presence of autocorrelation when analyzing the residuals 

from the model. The presented values for Ljung-Box test up to lag 3 indicates that the chosen 

ARMA(1,1) is white noise, and therefore indicates no presence of autocorrelation. The 

Dickey-Fuller test for stationary implies that there is no unit root in our series. 

Analyzing the exchange rate ARMA(2,2) forecast it can be seen in the same table that all the 

coefficients are significant. Even in this case, there is no presence of autocorrelation up to the 
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third lag and the model thus follows a white noise process. The Augmented Dickey-Fuller test 

for unit root implies that our series are stationary. 

       Coefficient   P-value 
 ARMA(1,1) OMXS30     
AR(1) 0.987733 0.0000 
MA(1) -0.820341 0.0000 
Q-stat 7,8089 0,0990 
Durbin-Watson 
D-F test 

1.842611 
-23,08949 0.0000 

ARMA(2,2) USD/EURO   
C 0.0251 0.0251 
AR(1)  1.646146 0.0000 
AR(2) -0.649509 0.0005 
MA(1) -1.406411 0.0000 
MA(2) 0.442373 0.0154 
Q-stat 2.28322 0,2430 
Durbin-Watson 2.026558  
ADF test -23,06723 0,0000 

Table 6.3. Shows descriptive statistics for the chosen ARMA models. 

 

6.4 GARCH 

6.4.1 Test for ARCH effects 

To properly motivate the usage of an ARCH-family model, there has to be evidence of 

ARCH-effects in the returns. The test for ARCH-effects, described in 4.2.5 and presented in 

Table 6.4, conducts presence of ARCH-effects. What can be concluded from this test is that 

the squared residuals from previous lags are correlated with the squared residual at time t. 

This indicates that there is presence of heteroskedasticity in the return data and hence, a 

model that does not assume constant variance might make better forecasts.   

 

ARCH-effects OMX USD/EURO 

P-value 0.0000 0.0000 

F-statistic 80.25 134.78 
Table 6.4. The p-value and the F-statistic from the performed ARCH-test. 

 

6.4.2 Test for asymmetry in volatility 

The joint test for asymmetries in the volatility indicates that there is neither any positive-, nor 

negative size bias. However, a sign bias is present and it can thus be concluded that positive 
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and negative shocks impact the volatility differently. The usage of an asymmetric GARCH-

model is hence justified by the test.  

 

 SIGN BIAS,  NEGATIVE SIZE POSITIVE SIZE  

MODEL p-value BIAS, p-value BIAS, p-value JOINT p-value 

GARCH(1,1) NORMAL DIST 0.4621 0.0000 0.0002 0.0000 
Table 6.5. The sign and size bias test indicates of a sign bias, but not any neither positive nor negative size bias. 

 

6.4.3 Descriptive statistics chosen ARCH-family models 

Gamma is the indicator of asymmetry effects in the model and it is interesting to analyze 

whether it is significant or not. In the OMXS30 case, gamma is negative and significant, 

meaning that there is an asymmetry in the forecast of the future volatility. In the case of the 

exchange rate, gamma is positive but insignificant. This is in line with the result Verbeek 

(2008) got from forecasting the volatility in exchange rate with an EGARCH model where the 

gamma also was insignificant.  

In exchange rates, the asymmetric effects are not as obvious as in the case of stock indices. 

The test of the GARCH residuals indicates presence of asymmetry and the loss function also 

indicates that the EGARCH model under normal distribution produces the most accurate 

forecast. Therefore, the statistical rejection of the model is overlooked in this case due to that 

the economical properties suggests that the chosen model produces most accurate forecasts. 

According to Verbeek (2008) statistical arguments are not always certain and sometimes 

practical economical selected variables might be more accurate. 

 

 
      

EGARCH GED      EGARCH norm dist   

Coefficients OMXS30 p-value USD/EURO p-value 

Omega -0.128 0.0099 -0.209 0.0033 

Beta 0.991 0.0000 0.988 0.0000 

Gamma -0.098 0.0000 0.016 0.2954 

Alpha 0.077 0.0194 0.127 0.0000 
Table 6.6. The above table gives descriptive statistics and p-values of the chosen ARCH-family models.         

The descriptive statistics is expressed as an average of the out-of-sample forecasted period.  
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6.5 Comparing forecasting performance 

6.5.1 Evaluation models for OMXS30 

As mentioned in section 4.7, a robust loss function according to Patton (2006) is one where 

the true conditional variance is the optimal forecast for the model. The mean square error loss 

function is the only one that fulfills this criterion of the three loss functions chosen. Hence, 

the MSE is the function that should carry most weight in our decision on which forecasting 

model is the most accurate. Vilhelmsson (2006) though, states that the MAE is more robust 

against outliers and should therefore be of great importance since the outliers are not removed 

from the raw data. The last evaluation model takes the heteroskedasticity into account and 

adjusts for it. This implies that when the volatility is high, the HMAE does not punish the 

model for forecasting high errors (Koehler, 2009).  

OMXS30              MSE            MAE             HMAE 

GARCH(1,1)       

Normal dist 0,00168 2,5743 0,5332(1) 

T-dist 0,00167 2,5654 0,5347(3) 

GED-dist 0,00165(3) 2,5569(2) 0,5334(2) 

EGARCH  
   Normal dist 0,00159(2) 2,5641(3) 0,5510 

T-dist 0,00189 2,8716 0,6540 

GED dist 0,00157(1) 2,5333(1) 0,5516 

    ARMA(1,1) 0,00371 3,4581 194,0038 

    Implied volatility 0,01101 9,9018 0,7836 
Table 6.7. Under each loss function, a ranking of the forecasted models from 1 to 3                                           

can be seen to the right of the figures. The bold ones indicates of the most accurate                                         

forecasting model according to that specific loss function. 

 

Since the loss functions are calculated in completely different ways, no comparison can be 

made between the functions. Instead the comparison is done for each loss function against the 

different forecasting models. According to the loss functions, the MSE and MAE states that 

the EGARCH under the GED makes for the most accurate forecast. However, when adjusting 

for heteroskedasticity, the normally distributed GARCH(1,1) model has the most accurate 

performance. Thus, both the roust loss function according to Patton (2006) and MAE, that is 

robust to outliers, points towards the EGARCH. Under GED this model is assumed to 

produce most accurate forecasts. This is not a surprise since the test for asymmetry in the data 

indicates ARCH-effects.  
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The ARMA(1,1) evaluated by the HMAE loss function produce a notable estimate while it for 

the other forecasted model produce quite similar results. The remarkable deviation can be 

explained trough the characteristics of the HMAE loss function. Here, the realized volatility is 

divided by the forecasted and if the inputs deviate a lot, the loss function estimate will be 

quite large. This is not the case in the other loss functions used in the thesis. The outliers 

might be a factor that could produce high forecasted values that deviates a lot. However, since 

an average is calculated, this should not produce an estimate that deviates at this magnitude. 

When the forecasted volatility is a product of several deviating inputs, the problem is instead 

a consequence of the way the loss function is calculated. 

 

 

Figure 6.1. Plotting the daily realized volatility against the daily forecasted with a 21 day overlapping rolling 

window of the most accurate model describing OMX.  

 

Except for the peak in volatility around the 15
th

 observation, the volatility of the forecast of 

EGARCH clusters in a tranquil period between the 20
th

 observation and 170
th

 observation. It 

is followed by a more turbulent period for the OMXS30 where the volatility tends to fluctuate 

at a higher rate than in the previous period. The clustering effect of the volatility can easily be 

distinguished through a simple overview of Figure 6.1. The turbulent period is followed by 

one less fluctuating, but still clustering. At the end of the forecasted horizon the volatility is 

moving towards a cluster in a more tranquil period.            
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As Figure 6.1 shows, the forecasted trend follows the realized volatility under tranquil 

periods, but under periods where the volatility tends to fluctuate more, the model is not able to 

capture these fully, even though the distribution is excepting for more in the tails. This can be 

explained by the parameter estimates where it has been concluded that the EGARCH model 

experience persistence. As the figure indicates, the trend is able to be followed when the next 

day’s volatility is near that of the previous. Though, when the volatility tends to fluctuate, the 

parsimonious EGARCH model is not able to capture the movements. This problem is 

mitigated due to that the volatility tends to cluster over time. Hence, due to persistence in the 

volatility it is still able to capture some of the movements, but still not as much as if the model 

did not suffers from persistence. 

 

6.5.2 Evaluation models USD/EURO 

The same statement is done here as in the discussion of robust loss functions in the part of 

evaluating the OMXS30 forecasting models (section 6.5.1). The robust MSE in Patton’s 

(2006) sense, the robust MAE against outliers and the MAE that adjusts for heteroskedasticity 

indicate unanimously that, the normally distributed EGARCH model produces the most 

accurate forecasts for the exchange rate series.   

USD/EURO MSE MAE HMAE 

GARCH(1,1)       

Normal dist 0,000051(2) 0,424139(2) 0,559353(2) 

T-dist 0,003108 2,912885 4,181000 

GED-dist 0,003108 2,907513 4,205031 

EGARCH  
   Normal dist 0,000047(1) 0,407200(1) 0,547664(1) 

T-dist 0,003096 2,900437 4,200073 

GED dist 0,003097 2,898162 4,211903 

    ARMA(1,1) 0,000140(3) 0,651881(3) 1,977421 

    Implied volatility 0,002404 4,675655 0,879222(3) 
Table 6.8. Under each loss function, a ranking of the forecasted models from                                                         

1 to 3 can be seen to the right of the figures. The bold ones indicate of the                                                        

most accurate forecasting model according to that specific loss function.  

 

Even though the returns are not normally distributed according to the normality test 

performed, the loss function indicates that the normal distribution is explaining the 
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forecasting models most accurate. Comparing the kurtosis, the exchange rate suffers less than 

the OMXS30. Still, the exchange rate suffers from excess kurtosis in the in-sample, but not to 

the extent of the OMXS30. The test also indicates that the exchange rate series is closer to 

being normally distributed than the OMXS30 since the Jarque-Bera statistic is closer to being 

significant. This can be an explanation why the normal distribution is the most accurate in the 

exchange rate forecast and not a distribution that accounts for more extreme events. Since the 

EGARCH captures the asymmetry in the data it has, as in the case of OMXS30, been shown 

to most accurately produce the forecast. This is not a surprise since the test for asymmetry in 

the data indicates ARCH-effects.  

 

 

Figure 6.2. Plotting the daily realized volatility against the daily forecasted with a 21 day overlapping rolling 

window of the most accurate model describing the exchange rate. 

 

As in the OMXS30 stock index return series, the clustering effects of volatility can be easily 

distinguished. During the first period it can be seen that the exchange rate volatility has low 

fluctuation through a tranquil period. It then turns into a much more turbulent period, as in the 

OMXS30 case. This could be due to the financial crisis that started during the 2008. Since the 

EGARCH model is persistent, it is not able to capture the drastic changes in realized volatility 

under fluctuating periods. The turbulent period is followed by one less fluctuating but still, 

tendencies of clustering effects can be distinguished. At the end of the forecasted horizon, a 

more tranquil period can be observed where the volatility is clustering with relative low 

fluctuations.  
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As the Figure 6.2 shows, the forecasted trend follows the realized volatility under tranquil 

periods, but under periods where the volatility tends to fluctuate more, the model is not able to 

capture all. As the OMXS30 series shows, this can be explained by the persistence shown in 

the parameter estimates. As the figure indicates, the EGARCH model under normal 

distribution is able to follow the realized volatility when the next day’s volatility is near that 

of the previous days. Though, when the volatility tends to fluctuate more, the EGARCH 

model is not able to capture the movements. Since the volatility tends to cluster over time, this 

problem is mitigated. Hence, even though there is some persistence in the volatility, it is still 

able to capture some of the movements, but still not as much as if the model did not suffer 

from persistence. 

 

6.6 Implied Volatility versus model based forecasts 

Implied volatility is the volatility that should have the richest, most up-to-date, information 

set and it should be the most accurate model. Poon (2005) summarized numerous articles 

where the conclusions drawn were that implied volatility outperformed historical price 

volatility models. In the stock market index case most of the studies indicated that implied 

volatility performed better than historical volatility (Poon, 2005). It is surprising that Canina 

and Figlewski (1993) conclude that implied volatility does not have any further information 

about future volatility. The same conclusion is drawn by Frennberg and Hansson (1996) who 

study the Swedish OMXS30 market which is assumed to be small. According to Poon (2005), 

implied volatility tends to outperform historical volatility models even in the currency market. 

The most studies were done in USD/EURO as in our case. The conclusions drawn were that 

implied volatility did not outperformed historical volatility models in stock index markets and 

exchange rate markets.  

Since the authors have different forecasting horizons, different frequency in the data, evaluate 

using different loss functions, investigate different markets and apply different historical 

models, it is complicated to conclude which market is most efficient under the circumstances. 

According to Mixon (2007) the risk premium is found to be highly correlated with the 

magnitude of volatility. Meanwhile, Hull and White (1987) show that the Black-Scholes 

model overprices ATM options and this bias tends to increase as the maturity lengthens.  

The risk premium makes the option’s volatility deviate from the realized volatility as the 

future implied volatility is, by contrast, “overpriced” as a forecast. The gap between the 
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realized and implied volatility, as Mixon (2007) calls it, is the volatility risk premium. This 

volatility risk premium is caused by traders facing liquidity risk, companies facing uncertain 

dividend policies and the possibility of a crash. Fleming (1998 et. al) finds support that 

volatility index, VIX, contains a premium for risk, thus it overstates future realized volatility. 

Including a risk premium into the expectation hypothesis improves the model. Thus implied 

volatility is overpriced in contrast to forecast of future volatility and this becomes 

increasingly obvious as the forecast horizon lengthens.   
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7 Conclusion  

As most previous research has shown, the raw data from financial time series suffers from 

skewness and excess kurtosis. This has been taken into consideration by adopting two other 

distributions, in addition to the normal. This allows for more observation in the tails. Tests 

conclude that the volatility reacts asymmetrically dependant on the shocks imposed on it. 

Furthermore, the volatility also tends to be very persistent, meaning that the lags of previous 

volatility tend to die away slowly.  

To examine the different models forecasting performance, three loss functions with different 

characteristics are used: MSE that is robust against noise; MAE that is robust against outliers; 

and, the HMAE that is adjusted for heteroskedasticity. To properly perform the loss functions, 

an as good as possible measure of the realized volatility has to be calculated. The realized 

volatility is usually, and most accurately, calculated through high frequency data with 

intervals of no less than 5 minutes. Since the intraday data is hard to get a hold of, the realized 

range estimator is instead used in this thesis. Through bias-adjusting the realized range, it 

performs as well as the realized volatility calculated through intraday data with an interval of 

2-3 hours. It has also been shown that as the intraday observations increase from 1, the 

realized volatility quickly moves towards the true conditional variance.  

The ARMA models in the thesis were chosen in line with Box-Jenkins procedure. The results 

indicate that the ARMA(1,1) model and ARMA(2,2) are the most appropriate when 

forecasting the OMXS30 index and the exchange rate USD/EURO respectively. The 

conclusion is that the ARMA models do not produce the most accurate forecast nor do they 

produce the worst.  

Since the asymmetry test evidenced heteroskedasticity in the data, the ARCH-family models 

are used as one predicting tool. The GARCH(1,1) is first used, as it has been found to be the 

most accurately performing model in previous research, while still being parsimonious. 

Empirical studies also conclude that there is a leverage effect in financial data and hence, a 

sign and size bias test is performed to confirm this statement. Since there is presence of sign 

bias, the EGARCH model is used as another tool to predict volatility. All forecasting is done 

under normal-, student t-, and general error distribution. From all tests, it can be concluded 

that the EGARCH outperforms the other models to forecast volatility.    

Implied volatility is supposed to outperform historical volatility models since it is assumed to 

contain not only historic information, but also the markets expectation of future volatility. 
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This is not the case in our thesis; the conclusions drawn are that implied volatility does not 

outperform any of the historical volatility models in both the stock index market and 

exchange rate market. The reason may be that Black-Scholes’ model overprices ATM options 

and that this bias tends to increase as the maturity increases. The risk premium makes the 

options volatility deviate from the realized volatility as the future implied volatility is said to 

be “overpriced” as a forecast. This volatility risk premium could be caused by traders facing 

liquidity risk, companies facing uncertain dividend policies, or by the possibility of a crash. 
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9 Appendix 
The forecasting script for the different models used in EViews is presented below. Only the 

ARMA models that are used as a forecasting tool is presented.  

ARMA(1,1) without a constant  

scalar noobs=1826 

scalar nw=521 

matrix(1826,21)armaforecast 

vector(21)forecastresult 

for !i=nw to noobs 

smpl !i-nw+1 !i 

equation arma_n 

arma_n.ls rvdaily ar(1) ma(1) 

for !j=1 to 21 

 

if !j=1 then 

forecastresult(1)=arma_n.@coefs(1)*rvdaily(!i)+arma_n.@coefs(2)*resi

d(!i) 

endif 

 

if !j=2 then 

forecastresult(2)=arma_n.@coefs(1)*forecastresult(1)+arma_n.@coefs(2

)*rvdaily(!i) 

endif 

 

if !j=3 then 

forecastresult(3)=arma_n.@coefs(1)*forecastresult(2)+arma_n.@coefs(2

)*forecastresult(1) 

endif 

 

if !j>3 then 

forecastresult(!j)=arma_n.@coefs(1)*forecastresult(!j-

1)+arma_n.@coefs(2)*forecastresult(!j-2) 

endif 

 

next !j 

rowplace(armaforecast,@transpose(forecastresult),!i) 
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next !i 

  

ARMA(2,2) with a constant  

scalar noobs=1826 

scalar nw=521 

matrix(1826,21)armaforecast 

vector(21)forecastresult 

for !i=nw to noobs 

smpl !i-nw+1 !i 

equation arma_n 

arma_n.ls rvdaily c ar(1) ar(2) ma(1) ma(2) 

for !j=1 to 21 

 

if !j=1 then 

forecastresult(1)=arma_n.@coefs(2)*rvdaily(!i)+arma_n.@coefs(3)*rvda

ily(!i1)+arma_n.@coefs(4)*resid(!i)+arma_n.@coefs(4)*resid(!i-1) 

endif 

 

if !j=2 then 

forecastresult(2)=arma_n.@coefs(2)*forecastresult(1)+arma_n.@coefs(3

)*rvdaily(!i) 

endif 

 

if !j=3 then 

forecastresult(3)=arma_n.@coefs(2)*forecastresult(2)+arma_n.@coefs(3

)*forecastresult(1) 

endif 

 

if !j=4 then 

forecastresult(4)=arma_n.@coefs(2)*forecastresult(!j-

1)+arma_n.@coefs(3)*forecastresult(!j-2) 

endif 

 

if !j>4 then 

forecastresult(!j)=arma_n.@coefs(2)*forecastresult(!j-

2)+arma_n.@coefs(3)*forecastresult(!j-3) 
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endif 

 

next !j 

rowplace(armaforecast,@transpose(forecastresult),!i) 

next !i 

 

GARCH(1,1) normal distribution 

smpl @all 

scalar noobs=1826 

scalar nw=521 

matrix(1826,21) garchforecast 

vector(21) forecastresult 

for !i=nw to noobs 

smpl !i-nw+1 !i 

equation garch_n 

garch_n.arch(1,1) series02 c 

garch_n.makegarch garchcondvar 

 

for !j=1 to 21 

  if !j=1 then 

forecastresult(1)=garch_n.@coefs(2)+garch_n.@coefs(3)*resid(!i)^2+ga

rch_n.@coefs(4)*garchcondvar(!i)  

endif 

 

if !j>1 then 

forecastresult(!j)=garch_n.@coefs(2)+garch_n.@coefs(3)*@SQRT(forecas

tresult(!j-1))^2+garch_n.@coefs(4)*forecastresult(!j-1) 

endif 

 

next !j 

 

rowplace(garchforecast,@transpose(forecastresult),!i) 

 

next !i 
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GARCH(1,1) t-distribution 

smpl @all 

scalar noobs=1826 

scalar nw=521 

matrix(1826,21) garchforecast 

vector(21) forecastresult 

for !i=nw to noobs 

smpl !i-nw+1 !i 

equation garch_n 

garch_n.arch(1,1, tdist) series02 c 

garch_n.makegarch garchcondvar 

 

for !j=1 to 21 

if !j=1 then 

forecastresult(1)=garch_n.@coefs(2)+garch_n.@coefs(3)*resid(!i)^2+ga

rch_n.@coefs(4)*garchcondvar(!i)  

endif 

 

if !j>1 then 

forecastresult(!j)=garch_n.@coefs(2)+garch_n.@coefs(3)*@SQRT(forecas

tresult(!j-1))^2+garch_n.@coefs(4)*forecastresult(!j-1) 

endif 

 

next !j 

 

rowplace(garchforecast,@transpose(forecastresult),!i) 

 

next !i 

GARCH(1,1) General error distribution 

smpl @all 

scalar noobs=1826 

scalar nw=521 

matrix(1826,21) garchforecast 

vector(21) forecastresult 

for !i=nw to noobs 

smpl !i-nw+1 !i 
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equation garch_n 

garch_n.arch(1,1, GED) series02 c 

garch_n.makegarch garchcondvar 

 

for !j=1 to 21 

  if !j=1 then 

forecastresult(1)=garch_n.@coefs(2)+garch_n.@coefs(3)*resid(!i)^2+ga

rch_n.@coefs(4)*garchcondvar(!i)  

endif 

 

if !j>1 then 

forecastresult(!j)=garch_n.@coefs(2)+garch_n.@coefs(3)*@SQRT(forecas

tresult(!j-1))^2+garch_n.@coefs(4)*forecastresult(!j-1) 

endif 

 

next !j 

 

rowplace(garchforecast,@transpose(forecastresult),!i) 

 

next !i 

EGARCH 

scalar noobs=1826 

scalar nw=521 

matrix(1826,21) garchforecast 

vector(21) forecastresult 

for !i=nw to noobs 

smpl !i-nw+1 !i 

equation garch_n 

garch_n.arch(egarch) series02 c 

garch_n.makegarch garchcondvar 

 

for !j=1 to 21 

 

if !j=1 then 
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forecastresult(1)=@EXP(garch_n.@coefs(2)+garch_n.@coefs(3)*@ABS(resi

d(!i)/@SQRT(garchcondvar(!i)))+garch_n.@coefs(4)*(resid(!i)/@SQRT(ga

rchcondvar(!i)))+garch_n.@coefs(5)*@LOG(garchcondvar(!i))) 

endif 

 

if !j>1 then 

forecastresult(!j)=@EXP(garch_n.@coefs(2)+garch_n.@coefs(3)*@LOG(for

ecastresult(!j-1))) 

endif 

next !j 

rowplace(garchforecast,@transpose(forecastresult),!i) 

next !i 

 

The forecasts for the different distribution is done the some way in 

EGARCH as in the GARCH(1,1) programming.  


