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Abstract

Pairs trading is a statistical arbitrage strategy aimed at exploiting temporary
divergences in assets that move together. By taking corresponding long and
short positions upon divergences, profits can be made if the assets converge.
In this study, the pairs trading strategy is applied onto a novel selection
of non-equity assets, namely price indices, commodities and currencies. By
letting pairs indiscriminately be formed from correlated assets, we examine
the possibility of achieving positive excess return using a computerised trading
implementation of the strategy. The trading yielded average six-month returns
of 1.56 percent (p=0.000). Furthermore, the returns from pairs comprised of
same-type and different-type assets were studied, but in this case no significant
differences were found.

∗The authors would like to thank Professor Hossein Asgharian for his kind assistance.
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1 Introduction

1.1 Background

Investors across the world use a variety of strategies with the common objective

of maximizing profits while keeping risk at a minimum. In recent times, many

large investment institutions and hedge fund companies have made quantitative

and algorithmic trading their focal point, concentrating their efforts in developing

increasingly complex strategies. While some of these strategies have been highly

successful – yielding large profits by making highly frequent trades – the companies

are necessitated to find and exploit new trading tactics to survive. Among these

strategies, the pairs trading strategy not only appears elegant in its intuitive sim-

plicity, but is also still widely used despite its age. It was conceived in the early

1980’s by a quantitative research group within the investment bank Morgan Stanley.

The lifetime of the strategy thus spans at least three decades, making it unusually

vital among competitor strategies.

Pairs Trading is a market neutral strategy which is not only used by individual

investors but also popular among investment banks and hedge funds. Among its

most famous practitioners were Nobel Prize laureates Myron Scholes and Robert C.

Merton, who lead the now infamous Long-Term Capital Management hedge fund.

It is part of a group of strategies known as risk arbitrage, because unlike pure

arbitrage it generates risk for the investor. Another strategy in this category is

mergers arbitrage, which may occur when two publicly listed companies merge. The

disclosure of merger specifics often reveals a discrepancy between the theoretical

price of the merged company and the observed price of its pre-merger parts. The

drawback with this strategy is of course that these opportunities rarely occur.

Pairs Trading opportunities on the other hand are plentiful. Also known as statistical

arbitrage, the strategy works on the principle of buying one asset while selling

another short; hence a pair is formed out of those two assets. By selecting assets

which have a history of “moving together”, or displaying similar returns in other

words, trading positions are opened when the two assets diverge beyond a certain

point.
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The underperforming asset is bought long while the relative outperformer is sold

short, thus speculating in a future convergence generating an arbitrage profit.

Previous research on pairs trading has predominantly been focused on trading eq-

uities. In an oft-cited article, Gatev et al. (2006, p.802) describe some of the issues

that comes with trading stocks in pairs. The most important caveat is the risk of

bankruptcy that stocks carry. Companies defaulting are by no means rare anoma-

lies, but a relatively frequent phenomenon occurring on most markets. If the long

part of a trading pair would default, the loss incurred would by far surpass any

prospective gains that pair could produce. Increased default probability may also

cause unwanted volatility, resulting in non-convergence and consequently negative

yields. Stock indices and commodities are on the other hand far less exposed to

bankruptcy risk. In the first case this is due to the asset being well-diversified in

its construct, while in the latter case the event of a commodity becoming entirely

worthless is very unlikely to occur.

Also, commodity market trading has witnessed a considerable expansion in the last

two decades, growing at an average annual rate of 19 percent. While this is largely

a consequence of the increasing demand produced by developing countries in Asia

(foremost China and India), the recent financial crisis has also spurred commodity

trade as a safe investment alternative. The increased liquidity stemming from this

development furthers the viability of commodities as components of algorithmic

trading strategies. (Coxhead and Jayasuriya 2010)

As interest in statistical arbitrage grew, the profits from pairs trading were ob-

served to decrease in the late 1980’s as a result of investor saturation (Gatev et al.

2006, p.799). There has been little academic interest in applying the pairs trading

strategy onto globally traded “macro” level assets however. With such assets, ad-

justing the price into equilibrium would require larger amounts of money compared

to stocks, and for that reason it should be relatively difficult to saturate arbitrage

opportunities.
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1.2 Purpose

The aim is to apply the pairs trading strategy as formulated by (Gatev et al. 2006)

onto non-equity assets. These are stock indices, commodities and currencies. Our

ambition is to examine whether it is possible to achieve significant excess return by

selecting pairs using a non-discriminating quantitative method from such a heteroge-

neous group of assets. We formulate a hypothesis stating that due to the reduction

in bankruptcy risk in the assets chosen, we can achieve higher reward-to-variability

in comparison with the market as a whole. We also intend to investigate whether

there is a difference in profits generated by pairs composed of different categories of

assets in comparison to same-category pairs.

1.3 Approach

The methodology used consisted of a two-step trading procedure, where the correla-

tions between the assets of every possible pair were first sampled for twelve months.

This screening process was repeated on a monthly basis. Pairs displaying correla-

tions exceeding a threshold value were traded for six months, during which time

the pairs were allowed to open and close on multiple occasions. Excess return was

calculated using the weighted returns of the two positions constituting a pair.

Transaction costs have not been taken into consideration in this study because of

the further complexity it would have added to the implementation of the strategy.

A discussion of hypothetical implications of transaction costs is however provided

in section 3.6 .

1.4 Outline

The outline of this study is as follows; In section 2, the principles of pairs trading is

explained along with the theoretical premises for statistical arbitrage. A summary

of previous research in the field is also presented.
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In section 3, we provide the methodology used and the details necessary to reproduce

the trading application. The results are presented in section 4, followed by our

conclusions in section 5.

2 Theory

2.1 The basics of pairs trading

There are two commonly used practices for performing pairs trading. One option

is to manually select assets based on fundamental a priori assumptions regarding

the nature or perceived similarity of the companies. For example, one could argue

that General Motors and Ford, two car producing firms co-existing within the same

business environment, are supposed to react similarly to external factors and to

be equally priced given similar financial circumstances in accordance to the law of

one price. By visually comparing the return charts, an investor can take a trading

position when the two stocks seem to be drifting apart. This methodology is ill-

suited for automated algorithmic trading since it requires the investor to manually

assess and select the assets.

Another option is using a quantitative free-formation strategy, where it is possible

to define a statistical rule set which a computer can be programmed to act upon

automatically. The general procedure of an automated pairs trading strategy as

described in most literature is executed in two phases; a screening or formation

period where assets are matched up against each other and evaluated according to

a specific metric. When a pair meets the predetermined requirements, it is selected

for trading during a trading period. In this period an algorithm will decide, usually

based on a measure of the spread1 between the two assets, if and when positions will

be opened. Most applications limit the trading period to a certain length in time,

allowing positions to be opened and closed multiple times during this time frame.

1It is also possible to speculate in the divergence of a pair (Whistler 2004, pp.44). We have cho-
sen to focus on convergence speculation because this methodology has received the most attention
in previous research.
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Figure 1: A gold–silver pair trading for six months.
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Alternatively, one may consider the period closed once one position has successfully

opened and closed. In such a case, the trading period might continue without closing

for a long period of time if the two assets fail to converge.

2.2 Asymmetry and money management

By definition, the returns of a pairs trade are positive in all cases but one. A loss

is incurred if a pair does not close “naturally”, i.e. by the convergence of the two

assets. Using a time limited trading period, any positions are closed out at the

last day of the period thus generating a negative return. Since the buying signal

is defined by a certain spread metric, this value also represents the maximum gain

attainable with the pair. In contrast, the potential losses of premature closures are

virtually unlimited.
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The asymmetrical nature of the returns can be problematic because any consequent

positive (but small) returns can be cancelled out by a few large losses. For this

reason, it is common to apply some sort of money management scheme in order to

restrict large shortfalls (Whistler 2004, p.107).

Some implementations of the strategy open positions on convergence as indicated by

the second (converging) crossing of a standard deviation limit. A more commonly

used technique is the stop-loss policy, where positions are closed when the total loss

of the positions exceed a certain limit (Hull 2003, pp.300).

2.3 Market neutrality

In the recent past market neutral strategies have gained the attention of investors

because such strategies have the purpose of giving substantial positive gains irre-

spective of the market condition. The capital asset pricing model (Sharpe 1964,

Lintner 1965 and Mossin 1966)(Sharpe 1964, Lintner 1965, Mossin 1966), CAPM,

divides total risk into two components; one is systematic risk (the risk of holding

the market portfolio) and the other is asset specific risk (the risk tied to the spe-

cific asset). The objective of a market neutral strategy is to remove the systematic

risk from a portfolio, and thereby subjecting the investor to asset-specific risk only.

There are several techniques to achieve this effect. One is to buy undervalued assets

while short-selling overvalued asset. When the long asset is affected by the market

exposure, it is offset by the short position thus eliminating the systematic risk that

the market carries (Beliosi 2002). This is also the basis for the pairs trading strategy,

which is therefore characterised as a market neutral strategy as one takes long and

short on relatively mispriced assets (Levy and Jacobs 2005).

2.4 The Law of One Price

The law of one price states that that if the returns from two investments are iden-

tical in every state then the current value of the two investments must be the same

(Ingersoll 1987). Similarly, for markets to be perfectly integrated (which is com-

monly assumed), two portfolios created from two markets cannot exist with different
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prices if the payoffs are identical (Chen and Knez 1995). If these conditions are not

satisfied, arbitrage opportunities exist thus giving investors opportunities to make

risk-free profits by buying underpriced securities and short-selling the overpriced

(Lamont and Thaler 2003).

In a perfectly efficient market, the prices “fully reflect” the available information at

all times (Fama 1970). The market efficiency hypothesis reached its peak in 1970’s,

and at that time there was a consensus on the idea that as soon as any news reach

the market it spreads quickly and immediately gets reflected in stock prices.

2.5 Mean reversion and market efficiency

Different activities in the market, such as changes in demand and supply, unexpected

events and so forth, lead to changes in asset prices away from their equilibrium prices.

When prices move away from their “normal” (average) levels and then revert back

again, they demonstrate what is known as a mean reversion process. The time it

takes for the price of an asset to come back to its normal level is called time to

reversion. The length of this time period is variable; it could range from days to

months depending on the nature of the event that triggered the deviation. In the

case where prices of goods do not come back to their original level after such an

event, the process is called a random walk.

De Bondt and Thaler (1985) presented so called contrarian strategies which outper-

formed the market. This is considered to be one of the earliest evidences of mean

reversion. Contrarian means that the short-term losers in a portfolio tend to out-

perform the stocks that had the highest previous returns. This is also the central

idea behind the strategy of selecting stocks with low P/E ratios (Dreman 1998).

This also has the implication that there is no information of predictive qualities in

the historical prices or trends of stocks. The dominance of this view declined with

time, and behavioural finance2 appeared. It stood in opposition to the previous

widely accepted market efficiency hypothesis (Shiller 2003). The concept of market

efficiency can be related to the random walk concept. If prices are assumed to reflect

2Behavioural finance incorporates social science perspective including psychology and sociology.
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all market information, the latest news will be instantly absorbed by the market

which consequently results in random prices because news is random (Malkiel 2003).

According to the efficient market hypothesis, there are three levels of efficiency.

The strongest form tests if any investor has private information, whether it is fully

reflected in the market or not. The semi-strong form is concerned with market prices

adjusting to public information, and the weak form implies that future prices cannot

be predicted in any way. According to the weak form there is no use of any kind of

technical analysis, and future prices are not dependant on the current price trend

as no correlations exist in prices. Out of these three forms of market efficiency, the

weak form is of most interest to our work. This form of the efficiency hypothesis

cannot hold if positive returns can be achieved by using the pairs trading strategy.

The critique has indeed been considerable. Fama and French (1988) and Campbell

and Shiller (1988) conducted tests to see whether historical returns may be used for

predicting future returns and the result showed that future returns to some extent

could be predicted from the dividend yield of the market. Apart from using the

dividend yield to forecast returns, also interest rates and price ratios could be used

for this purpose.

Campbell (1987) found that information contained in the spreads of interest rates

could be used to predict future returns. Campbell and Shiller (1998) showed that

P/E ratios could explain a significant part of the variation in future returns. Fama

(1965) showed that most of the Dow Jones stocks are correlated. Thus, markets

cannot be characterized as perfectly efficient even with the weakest form of the

hypothesis. This means that short term arbitrage opportunities might exist in the

market allowing investors to make positive returns.

2.6 Previous research

Several authors have published articles concerning pairs trading and the use of differ-

ent methodologies for the selection of pair assets. Gatev et al. (1998, 2006) pioneered

the academic interest in the strategy using a correlation-like metric to rank feasible

pairs. Long and short positions were taken when the assets diverged as measured

by the historical values of this metric. In the latter and updated article, they used
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data gathered from four decades and found significant positive excess return of 12

percent yearly. Elliott et al. (2005) proposed a mean reverting process for pairs

trading (using stocks from the same sector) known as the Gaussian Markov chain

model. They showed that the model could be used to make predictions about the

spread between the two stocks. After making these predictions, succeeding obser-

vations were compared to the predicted values. If the observed spread were greater

than the corresponding expected value, a pair position was opened.

Huck (2009) developed a methodology based on bivariate information sets which

were used to forecast returns. A ranking is done for the assets in terms of their

expected values which provide information about over- and undervalued assets. The

results turned out rather promising, and when applied to stocks from the S&P100

index the method seemed to have a good forecasting ability of future returns. The

method was found to produce greater returns the smaller number of pairs was.

Dattasharma et al. (2008) attempted to outline a general framework for the pre-

diction of return dependence among stocks. They transformed the time series of

stocks into so called binary strings, a computer science concept, where the depen-

dence of the strings were allowed to be computationally analysed in terms of string

distance. The optimal stopping theory is related to an appropriate time to make

investment decision based on some observed factors which helps to reduce costs and

thus maximising potential profits.

Perlin (2007) introduced a multivariate approach to pairs trading. The main idea

behind this approach was to find pairs of stocks using information generated by

all other stocks rather than picking pairs randomly. This approach was applied to

the Brazilian financial market on 57 assets. The results of adopting multivariate

approach came out to be promising. Moreover, if a company has announced bad

results then fewer long positions were observed to be taken.
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3 Methodology

3.1 Statistical bias and trade parameters

When evaluating quantitative trading methodologies, over-optimising trading pa-

rameters is a common temptation. Optimising is one example of where one is

exposed to “data snooping bias”, which occurs when one derives inference or con-

clusions from the same set of data more than once. This problem is especially

widespread in time-series analysis and hence in the financial field. Because it is

possible to evaluate a large number of models on the data set, one or more hypoth-

esises may be adjusted into eventually being accepted. Results of this nature are

often worthless in terms of prediction abilities. Not only can the consequences of

data snooping be severe, there is also a lack of good methods for identification of

such errors and for consequence analysis (White 2000). There are, however, means

to avoid the risk of data snooping. Working with time-series data, one option is

to save a reasonably large chunk at the end for evaluation once the parameters are

settled based on the analysed subset. In this manner, false positives can be detected

given that the evaluation subset is substantial. In this case, the dataset covered

only twenty years worth of price observations, which left little room for such a frag-

mentation of the data. Instead, all trading parameters were predetermined in order

to avoid alterations of the model.

3.2 Data

We gathered daily price data3 for 25 assets (displayed in tables 2, 3 and 4 under

section 4.1) from a time period spanning twenty years (1990–2010). The assets

were chosen from three different non-equity classes of assets; stock market indices,

commodities and currencies. A number of the chosen assets are important world

economy markers, but this selection was broadened by assets of lesser significance.

To get enough useful data, we limited our selection to assets with price information

available for the largest part of the study’s time period. Nonetheless, it should

be noted that some of these assets had a shorter lifespan, but the design of the

3Provided by Thomson DataStream.

12



trading software took these irregularities into consideration. Additional clusters of

currencies were included that would have a reasonably good likelihood of correlating

(none were however screened numerically). For example, the Danish Krone, Finnish

Markka, Norwegian Krone and Swedish Krona were included because the similarities

in those economies. For similar reasons, the Polish Zloty and the Czech Koruna were

included into the study. All assets were denominated in US Dollars to eliminate

currency effects on the trades.

3.3 Formation of pairs

As previously mentioned, different metrics can be used to find and rank feasible

pairs. The intricacies of the different formation algorithms and methodologies lay

outside the scope of this thesis, and for this reason a computationally straightfor-

ward procedure was selected. We adhered, with one exception, to the methodology

outlined by Gatev et al. (2006, p.803), where the sum of squared deviances (SSD)

of the indexed cumulative returns are calculated for all screened pairs. The twelve

month averages of these deviances are sorted ascendingly, and finally a fixed number

of pairs are selected for a six month trading period from the top of this list each time

the screening is done. The drawback of this practice is that the output disregards

the quality of the pairs. If all assets are entirely uncorrelated for one period, one is

still left with the same amount of pairs that get traded.

In this study, we chose to use a correlation measure to select the pairs. This way,

only pairs displaying correlations greater than the predetermined threshold value

0.95 were traded. For this reason, we know for certain that the traded pairs at-

tain a certain level of quality, and that they do in fact have a history of moving

together. This threshold value was selected to give a sufficient number of pairs. The

correlations were calculated on the indexed cumulative returns for the 300 possible

pairs (N(N−1)
2

where N = 25) once a month iteratively. Even though the SSD was

not used for the pairs selection, it was still calculated since the construction of the

trading application required this measure (see section 3.4). As noted, assets were

included that lacked price observations for short periods in the beginning or the end

of the study period. Thus, for every monthly round of sampling, only assets with

observations reaching twelve months back were eligible for matching.
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3.4 Trading signals

Once a pair was formed and fulfilled the aforementioned condition, it was traded

for a period of six months. The SSD of the two assets was tracked on a daily basis,

and a pair was opened as soon as the deviation exceeded two standard deviations

(as measured during the formation period) according to our specifications. Upon

opening, the asset with the greater cumulative return was sold short while the other

asset was bought long. One hundred dollars were invested into these positions

respectively.

The opening trigger was programmed to use same-day prices based on the assump-

tion that the program could be instructed to execute purchases near or very near the

closing call of the exchange day. Open pairs were closed upon convergence expressed

by either the intersection of cumulative price indices or a deviation falling short of

0.1 standard deviations. In the case where assets were unlisted (as was the case with

the Finnish Markka), any affected open pair was closed.

As a consequence of the discussion on asymmetrical returns (section 2.2), the trading

procedure was supplemented with a twenty percent stop-loss restraint in a second

round of execution. The restraint was activated when the spread between the two

positions exceeded 2.4 standard deviations, thus restricting the losses to twenty

percent by exiting the positions. Re-entry of trading positions was not allowed until

the regular conditions for a close were satisfied.

3.5 Excess return

In theory, trading pairs is a zero-investment strategy because the short selling funds

the long position. Hence no capital is actually invested in a pair position, and as

a consequence, the ordinary arithmetic return model (r = Vt−V0
V0

) is invalid because

the denominator is zero in all cases. In practice, however, short-selling investors are

subjected to margin requirements. This margin can be used as one way to estimate

the capital base of the position, but this adds complexity in that the margin varies

with the price of the underlying asset.
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Another option is using the weighted average return of the two opposing positions,

forming a pair portfolio, as proposed by Gatev et al. (2006, p.805). Since we chose

to abide by this work, this model was also used in this study. The rather straightfor-

ward calculation is equivalent to using the sum of capital committed in the positions

as a capital base. In other words, if the overpriced asset is shorted for a total of one

hundred dollars and this amount is used to purchase the underpriced asset, the ef-

fective capital base is two hundred dollars. Thus, the return of one pair is calculated

on a daily basis in the following fashion;

rP,t =

∑
i∈P

wi,tri,t∑
i∈P

wi,t
(1)

where

wi,t = wi,t−1(1 + ri,t−1) = (1 + ri,1) . . . (1 + ri,t−1) (2)

The weights wi,t are essentially the previous day cumulated returns for the positions.

Due to the self-funding nature of the strategy, the expression in equation 1 has the

interpretation of excess return. This notion of return can be considered quite con-

servative, considering the vastly larger capital base in relation to a realistic margin

requirement.

In contrast, the conventional approach dictates denominating returns using only the

capital invested in the long position, or one hundred dollars in this example. While

we chose to focus on the former method, trading returns were also calculated using

the latter. In that case, we found that the payoffs were increased by approximately

0.5 percentage points, and the difference in standard deviations between the no-

constraints and the stop-loss trading rounds was particularly pronounced. The stop-

loss returns were found to be significantly greater than the no-constraints returns.

In order to further assess the outcome of the pair trades, a benchmark zero-investment

portfolio was constructed. The average of the Swedish central bank reference rate
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over the study period, 4.15 percent, was used to simulate a zero-coupon bond sold

short to finance the purchase of the OMXS30 index. This portfolio was marked-to-

market on a daily basis in a similar fashion using the method described above.

3.6 Transaction costs

It is important to stress that the model used did not include any transaction costs.

The returns generated in the study should therefore be interpreted with caution.

While specifically currency trade is normally exempt from commissions, it is still

subjected to bid-ask spreads. Bessembinder (2003) studied the bid-ask spreads on

the NYSE and NASDAQ exchanges, and found that the average spreads (for all

shares) were 0.486 and 0.739 percent of the share price respectively. For large stocks

the corresponding figures were 0.212 and 0.238 percent. Thus, it is reasonable to

assume that bid-ask spreads alone generate an overhead of roughly half a percent on

each transaction. Since positions need to be entered and exited, the returns suffer

from these spreads twice.

Another caveat to consider is the extra costs caused by a stop-loss constraint. Hull

(2003, p.301) shows that if the limit price is K, purchases must be made at K + ε

and sales at K − ε. Buying and selling one asset therefore incurs costs of 2ε on top

of the regular transaction costs.

3.7 Long-horizon PT portfolio

It was also desirable to get an idea of what a practical computerised implementation

of the pairs trading strategy could look like. The average profit of one pair has little

significance to an investor if there are few arbitrage opportunities to exploit. Two

long-horizon portfolios were constructed, one using the unconstrained pair trade

returns and the other using the stop-loss strategy returns. The income streams

generated by the individual pairs previously described formed the components of

the portfolios.
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These cash flows were either positive or negative, and when a profit was recorded,

interest was accrued on the proceeds. Interest was paid correspondingly on losses.

Hence, no money was deposited nor withdrawn with the portfolios, and the portfolio

returns were calculated as weighted averages (as above) of the individual income

streams marked-to-market daily.
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4 Results

4.1 Asset statistics

As previously mentioned, assets of three different types were used in the trading.

The distribution of these assets is shown in table 1. The descriptive statistics of

the daily returns for these assets are displayed in tables 2, 3 and 4. In appendix A,

correlation matrices are provided for these categories, and the price performances

are displayed in appendix B.

Table 1: Asset frequencies

Asset class N Proportion
Commodities 9 36%

Currencies 10 40%
Indices 6 24%∑

25 100%

Table 2: Commodities, daily returns.

Asset N Average Median StDev StdErr Min Max
Copper 5220 0.0333% 0.00% 1.76% 0.0243% -11.7% 16.7%
Cotton 5220 0.0178% 0.00% 1.75% 0.0242% -8.32% 9.46%

Gold 5220 0.0240% 0.00% 0.964% 0.0133% -6.96% 7.66%
Oil 5220 0.0567% 0.00% 2.37% 0.0328% -35.5% 14.5%

Palladium 5220 0.0458% 0.00% 2.06% 0.0285% -16.4% 17.2%
Silver 5220 0.0394% 0.00% 1.79% 0.0248% -14.8% 20.1%

Tin 5220 0.0293% 0.00% 1.38% 0.0191% -12.9% 20.7%
Uranium 5220 0.0372% 0.00% 1.26% 0.0174% -19.0% 20.8%

Wheat 5220 0.0181% 0.00% 1.75% 0.0242% -11.6% 13.4%

4.2 Trade frequencies

The frequencies of pair assets are shown in table 5, arranged by long/short positions

and by the three asset categories. Currencies were clearly the most traded assets,

and with involvement in 73 percent of the pairs they were also overrepresented in

relation to the 40 percent share they held of all assets included. Commodities on

the other hand were underrepresented with 15 percent of the pairs compared to
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Table 3: Currencies, daily returns.

Asset N Average Median StDev StdErr Min Max
AUD 5220 0.00654% 0.0130% 0.760% 0.0105% -8.33% 8.31%
CAD 5220 0.00401% 0.000% 0.474% 0.00656% -3.35% 3.95%
CZK 4770 0.0115% 0.000% 0.791% 0.0114% -7.01% 7.05%
DKK 5220 0.00528% 0.000% 0.660% 0.00913% -3.34% 3.52%
FIM 4830 0.00185% 0.000% 0.696% 0.0100% -13.3% 3.74%

NOK 5220 0.00476% 0.000% 0.749% 0.0104% -5.26% 5.66%
PLN 4770 -0.0150% 0.000% 1.10% 0.0160% -16.9% 13.4%
SEK 5220 -0.000169% 0.000% 0.762% 0.0105% -6.61% 5.80%
CHF 5220 0.00935% 0.000% 0.723% 0.0100% -3.70% 4.32%
NZD 5220 0.00634% 0.000% 0.735% 0.0102% -6.65% 6.14%

Table 4: Stock indices, daily returns.

Asset N Average Median StDev StdErr Min Max
DAX 5220 0.0325% 0.0360% 1.46% 0.0202% -9.40% 11.4%

Dow Jones 5220 0.0322% 0.0180% 1.10% 0.0153% -7.87% 11.1%
FTSE100 5220 0.0242% 0.00% 1.13% 0.0157% -8.85% 9.84%
NASDAQ 5220 0.0591% 0.0671% 1.87% 0.0259% -10.52% 18.8%

NIKKEI 5220 -0.00856% 0.00% 1.53% 0.0212% -11.4% 14.2%
OMXS30 5220 0.0438% 0.00639% 1.51% 0.0209% -8.17% 11.7%

a 36 percent share among assets. The corresponding numbers for indices were 28

percent among pairs and 24 percent among assets. Also apparent is that for each

asset category, the most frequent opposing asset was from the same category. In

other words, indices were found to be the best matches for indices, currencies for

currencies and so forth. In total, only 17 percent of the pairs contained assets from

different categories.

Table 5: Trade frequencies.

Short
Index Currency Commodity

∑
Long

Index 250 22 49 321
Currency 39 790 78 907

Commodity 5 23 46 74∑
294 835 173 1302
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4.3 Returns

The six month trading returns from the two variations executed, the no-constraints

and the twenty percent stop-loss applications, are presented in table 8. Interestingly,

the fear of great losses as a consequence of the asymmetrical construction of the

trading algorithm was proved somewhat unnecessary. The maximum loss in the

unconstrained application was a staggering near 54 percent. However, the maximum

profit was almost 67 percent.

To get an understanding of what the pair returns could look like, the five best and

five worst trades are illustrated in tables 6 and 7. It was observable that there was

an assortment of asset combinations in both extremes.

Table 6: Five best trades.

Long Short Return Date
Nikkei OMXS30 67% 2008-12-02–2009-06-02
Gold Silver 43% 2006-03-22–2006-09-20
DAX NIKKEI 43% 2009-02-02–2009-08-03
NASDAQ Silver 42% 2001-07-02–2001-12-31
SEK Tin 41% 2009-03-04–2009-09-02

Table 7: Five worst trades.

Long Short Return Date
DJ OMXS30 -54% 1999-09-23–2000-03-23
Palladium Cotton -42% 2002-01-02–2002-07-03
PLN Oil -42% 2009-01-01–2009-07-02
NIKKEI Copper -42% 2006-01-19–2006-07-20
OMXS30 Copper -35% 2006-01-19–2006-07-20

From table 8, it is evident that the introduction of a stop-loss rule altered the extreme

values yielded by the trades. While the maximum gain decreased to 32 percent, the

worst case set us back merely six percent. Also, the standard deviation using a stop-

loss constraint was approximately a third of the unconstrained value. A one-sample

t-test was used to test whether the two groups of returns were significantly greater

than zero (µα > 0 and µβ > 0), or in other words, whether excess return existed.

Both variations produced significant p-values of 0.000.
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Table 8: Six month returns for two application runs (observations=1302).

No-constraints Stop-loss
Average 1.56% 1.41%
Median 0.813% 0.944%

StDev 9.08% 3.11%
StdErr 0.252 0.0863

Min -53.5% -6.22%
Max 66.6% 31.9%

Skewness 0.264 3.77
Kurtosis 7.45 21.0

Average trades 1.35 1.35
t 6.21 16.37
p 0.000∗∗∗ 0.000∗∗∗

The distributional transformation of returns caused by the stop-loss restraint is

displayed in figure 2 and is confirmed by the skewness measures in table 8. It is

apparent that the stop-loss effectively cut short the negative tail of the distribution

while the positive tail remained considerably long. The stop-loss was included in

the model hoping to increase the average returns. The two groups were therefore

tested for inequality (µα 6= µβ), and the corresponding p-value was 0.572 (t=0.57).

Hence, there was no statistical evidence of the stop-loss constraint having an effect

in any direction on the average returns.

Figure 2: Distributions of the no-constraint and the stop-loss returns.
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4.4 Sharpe ratios

The six-month returns were correspondingly calculated for the benchmark zero-

investment portfolio (see section 3.5). Because this portfolio was formed by one

short position funding the long part, the portfolio return can be interpreted as

excess return analogue to the pairs trading returns. In table 9, we present the

Sharpe ratios (Sharpe 1994). The Sharpe ratio quantifies the reward given to an

investor for taking risk, and is defined as:

Si =
Ri −Rf

σi
(3)

The higher the ratio, the higher is the compensation for each unit of risk. The

numerator in equation 3 corresponds to excess return or risk premium of an asset.

Bearing this in mind, the numerator was replaced by the returns from our trading

application runs. While the benchmark portfolio outperformed the no-constraints

pair trading strategy, the stop-loss constraint clearly gave the best reward for risk

by almost doubling the benchmark Sharpe ratio.

Table 9: Six month Sharpe ratios.

No-constraints 20% Stop-loss Benchmark
Excess return 1.56% 1.41% 6.75%

StDev 9.08% 3.11% 27.1%
Sharpe ratio 0.16 0.45 0.25

4.5 Asset category significance

The previously analysed two groups, the no-constraint and the stop-loss strategies,

were each divided into two subgroups. The “different” group was defined by pairs

where the two assets came from different asset categories, whereas “same” allowed

only same-category asset pairs. The purpose of this separation was to test the

hypothesis formulated in section 1.2, that is, to examine whether it is possible to

attain higher returns by trading pairs with assets of different types. The result is
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shown in table 10. All four groups yielded returns significantly greater than zero.

As can be seen from the table however, in none of the two strategies are there

any signs of a significant difference in returns comparing the same-category and

different-category pairs.

Table 10: Six month returns grouped by same and different category assets.

No-constraints Stop-loss
Different Same Different Same

Average 2.02% 1.45% 1.54% 1.39%
Median 1.29% 0.797% 0.536% 0.991%

StDev 14.1% 7.71% 4.83% 2.65%
StdErr 0.959% 0.234% 0.329% 0.0803%

Min -42.1% -53.5% -6.22% -5.25%
Max 42.5% 66.6% 22.9% 31.9%

N 216 1086 216 1086
p(µ > 0) 0.018∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗

t 2.10 6.30 4.68 17.29
p(µsame 6= µdiff) 0.583ns 0.658ns

t 0.55 0.44

Table 11: Same-category pair returns.

Index Commodity Currency
N 250 46 790

Average 4.28% 2.88% 0.505%
StDev 11.6% 18.6% 4.00%

StdErr 0.732 2.75 1.42
p(µ > 0) 0.000∗∗∗ 0.150ns 0.000∗∗∗

t 5.84 1.05 3.54

We also compared the returns for the three varieties of same-category pairs. The

descriptive statistics are displayed in table 11. Both index and currency pairs showed

significant excess return. The commodity pair returns were not significant, but the

number of observations was only 46, and the result should therefore be interpreted

with caution. When testing for differences, only index-index pairs and currency-

currency pairs were significantly different with p=0.000 (t=5.06). The corresponding

values for index versus commodity pairs are p=0.625 (t=0.49), and p=0.393 (t=0.86)

for commodity versus currency pairs.
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4.6 Portfolio returns

In section 3.7, the construction of a long-term portfolio using the pairs trading

strategy was described. One portfolio was constructed using the no-constraints

trading returns and another using the stop-loss returns. Because no distinctive

difference in returns could be observed for the asset class separated groups in the

previous section, these were excluded from this treatment.

To evaluate the performance of these portfolios, an additional buy-and-hold bench-

mark portfolio was added consisting of a long position in the Swedish OMXS30

index and a short position in a simulated zero-coupon bond yielding 4.15 percent

annually. The performances of the three portfolios are shown in figure 3.

Weekly returns were computed for the portfolios by measuring the percentage in-

crease in the cumulative returns of each portfolio. Descriptive statistics of the port-

folios are displayed in table 12. The index-invested portfolio clearly outperformed

the trading portfolios in terms of sheer returns but was far more volatile than both of

the pair trading portfolios with a standard deviation of 2.9 percent. This compares

to 0.47 and 0.13 percent for the no-restrictions and stop-loss strategies correspond-

ingly. It should be noted, however, that the standard deviations of the trading

portfolios were not stable over time. This is due to the construction of the portfolios

where the returns from trades continue to amass either positive or negative interest.

With time the pair returns are hence given smaller weights as more and more of the

returns from previous pairs are weighted into the portfolio.

Table 12: Portfolio returns (weekly).

No-constraints Stop-loss Benchmark
Average 0.0377% 0.0773% 0.135%
Median 0.0422% 0.0780% 0.281%

StDev 0.470% 0.125% 2.86%
StdErr 0.0149% 0.00397% 0.0909%

Min -3.52% -0.978% -12.9%
Max 2.48% 1.36% 22.8%
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Figure 3: Portfolio development over 19 years.
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5 Conclusions

By applying the pairs trading strategy onto a novel selection of non-equity price

data, we intended to examine whether positive excess return could be generated.

We found that using this strategy, we were able to achieve statistically significant

excess return of almost 1.6 percent on a six month basis.

By theoretically skewing the return distribution, we had expected significantly im-

proved returns using a stop-loss constraint. However, adding the constraint yielded

a slightly lower average return. While the constraint did provide defence against

large shortfalls, it effectively reduced the number of positive gains. It also managed

to cut the standard deviation to a third compared to the unconstrained trading run.

When the returns of the two trading runs were regarded with respect to the risks

they carried, we recorded a lower reward-to-risk, measured by the Sharpe ratio, for

the unconstrained trading compared to a benchmark portfolio (0.16 versus 0.25).

The benchmark portfolio consisted of a short position in a theoretical zero-coupon

obligation and a long position in the Swedish stock index OMXS30, thus forming a
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zero-investment portfolio. When the stop-loss was applied, a Sharpe ratio of 0.45

was attained. As a consequence, investors using this strategy are compensated by

almost the double return given a certain level of risk compared to the benchmark.

Positive excess returns were also established for pairs comprised of the combina-

tions index-index and currency-currency. We were particularly interested in the

latter case, because of two reasons. One is that currency-to-currency arbitrage op-

portunities were quite plentiful – they constituted almost 61 percent of all pairs.

Producing large profits in terms of percentage has little relevancy if there is a lack

of opportunities to exploit the arbitrage scheme. The other reason was that usually

there are no commissions charged for trading currencies, and hence the transaction

costs are limited to the bid-ask spreads. However, the average six month returns

from pure currency pairs are a meagre 0.5 percent. Index pairs on the other hand

exhibit returns exceeding 4 percent.

While we found many instances of significant excess returns, the model used did

not include transaction costs. In section 3.6, we refer to a study estimating bid/ask

spreads to the vicinity of half a percent. As was also shown, applying a stop-

loss constraint introduces additional costs, which in addition to the relatively fewer

positive returns would likely reduce the favourable Sharpe ratio received from the

stop-loss trading. On the other hand, the small margin requirements for short

selling assets would likely offset these costs by generating greater returns in practice

in comparison to our results.

Nonetheless, in this study we have shown that a free-formation pairs trading strategy

could indeed generate significant positive excess return using non-equity assets of

various types. Constructing long-term portfolios using the strategy were shown to

yield small but low-risk arbitrage profits. Furthermore, there were observations that

we feel would benefit from further examination. Specifically, it would be interesting

to investigate the reasons behind the recorded differences in return achieved from

trading the three types of same-category pairs.
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A Correlation matrices

Displayed below are the 20 year correlations for the assets used in the study, grouped

by their corresponding asset type.

Table 13: Commodity correlations
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Cotton 0.132
Gold 0.195 0.076

Oil 0.162 0.078 0.172
Palladium 0.123 0.036 0.284 0.069

Silver 0.099 0.032 0.416 0.098 0.365
Tin 0.249 0.085 0.129 0.090 0.124 0.126

Uranium 0.004 -0.006 -0.003 -0.022 -0.009 0.007 0.012
Wheat 0.144 0.116 0.104 0.074 0.062 0.060 0.070 -0.001

Table 14: Currency correlations

AUD CAD CZK DKK FIM NOK PLN SEK CHF
CAD 0.523
CZK 0.384 0.328
DKK 0.380 0.286 0.554
FIM 0.286 0.180 0.438 0.865

NOK 0.422 0.346 0.505 0.820 0.757
PLN 0.291 0.261 0.474 0.304 0.190 0.306
SEK 0.436 0.364 0.499 0.785 0.748 0.769 0.315
CHF 0.258 0.189 0.457 0.866 0.772 0.710 0.239 0.671
NZD 0.773 0.478 0.379 0.405 0.310 0.428 0.278 0.437 0.292

Table 15: Index correlations.

DAX DJ FTSE100 NASDAQ NIKKEI
DJ 0.492

FTSE100 0.719 0.451
NASDAQ 0.399 0.718 0.326

NIKKEI 0.256 0.116 0.281 0.083
OMXS30 0.698 0.400 0.693 0.334 0.272

29



B Price charts

Below are three graphs displaying the indexed cumulative relative development of

the assets used in the study, grouped by asset type.

Figure 4: Commodity performances.
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Figure 5: Currency performances.
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Figure 6: Stock index performances.
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